Конденсатор 104 маркировка: Маркировка и основные характеристики конденсатора 104

Содержание

Маркировка и основные характеристики конденсатора 104

Одним из важнейших элементов электронной схемы и практически любой теле,- радиоаппаратуры является ёмкостной двухполюсник под названием конденсатор. Из всего разнообразия, которое выдаёт потребителям рынок электронных деталей, можно выделить конденсатор 104. Это пассивный компонент электроцепи, который часто используется в частотных фильтрах, колебательных контурах и других узлах.

Керамический конденсатор

Устройство керамических конденсаторов

Изначально этот элемент представлял собой две пластины, между которыми сохранялся воздушный промежуток. Впоследствии этот промежуток стали заполнять различными диэлектриками.

Конструкция керамической детали

Важно! Изменяя размер пластин (площадь обкладок) и экспериментируя с составом и структурой диэлектрика, варьировали главное свойство двухполюсника – ёмкость (C). Конденсаторы иногда зовут просто емкостью.

На схемах подобный элемент обозначают двумя параллельными вертикальными отрезками с расстоянием между ними. Это визуально напоминает две пластины и воздушный промежуток.

Изображение емкости на схемах

Керамические конденсаторы относятся к классу элементов с твёрдым диэлектриком неорганического происхождения. Это в данном случае  керамика. Структура конденсатора 104к представляет собой следующее строение:

  • керамический диск, выступающий в качестве диэлектрика;
  • два слоя серебра, которые нанесены на диск методом напыления с двух сторон;
  • выводы для подключения.

У керамических дисковых двухполюсников устойчивая линейная зависимость C от температуры. Схема их включения не зависит от полярности прикладываемого напряжения, поэтому они называются неполярными.

Внимание! Конденсатор является накопителем (аккумулятором) энергии, которую он собирает, заряжаясь, и может отдать её в нужный момент, разрядившись на нагрузку. Ёмкостной двухполюсник не пропускает постоянный ток, но не препятствует прохождению переменного.

Элементы с одним диэлектрическим промежутком называют однослойными. Небольшой размер дисковых керамических ёмкостей, согласно их электрическим характеристикам, не позволяет накопить на обкладках заряд, воздействие которого можно проверить, коснувшись рукой двух его выводов одновременно. Однако детали, обладающие большой ёмкостью (несколько тысяч микрофарад), могут, разрядившись через тело человека, нанести ему удар током.

Керамические дисковые элементы

Многослойные конденсаторы

Если у металлопленочных элементов для увеличения величины С применяют не один слой плёнок диэлектрика и обкладок, то у керамических для этого также заменяют один слой несколькими.

К сведению. Применение подобных элементов для цепей с изменяющейся полярностью питания давало хорошие результаты по частотным характеристикам, позволяло иметь малые потери, низкий ток утечек, небольшие габариты, но и маленькую ёмкость.

Японская фирма Murata разработала технологию, которая поставила на конвейер конденсаторы с C = 100 мкФ и выше. Современным представителем керамических элементов с большой емкостью выступают многослойные модели.

Формула их ёмкости (в фарадах):

C = E0*(E*S0*N)/D,

где:

  • E0 – постоянная диэлектрическая проницаемость (ПДП) вакуума;
  • E – ПДП керамики;
  • S0 – рабочая площадь обкладки (электрода), мм2;
  • N – количество диэлектрических слоёв;
  • D – толщина диэлектрического слоя, мм.

Формула говорит о том, что, если уменьшить слой керамики, увеличить число электродов (слоёв) и их площадь, то можно добиться значительного увеличения ёмкости элемента.

Важно! Нельзя бесконечно истончать слой диэлектрика без риска получить низкий порог пробоя. Этот критичный баланс между высоким рабочим напряжением и большой ёмкостной характеристикой ограничивает производство идеальных элементов подобной конструкции.

Та же корпорация Murata, увеличивая количество слоёв с одного до сотни (за десятилетие), добилась уменьшения толщины керамики с 10 мкм лишь до 1,8 мкм. Технически увеличить количество диэлектрических слоев допустимо, только истончая единичный слой. Для того чтобы правильно подбирать нужный ёмкостной элемент, разработана маркировка керамических конденсаторов (КК).

Маркировка КК

Любая расшифровка емкостных двухполюсников выполняется двумя или тремя знаками. На элементы маленького размера наносят обозначения по стандартам EIA. Первые две цифры – это всегда обозначение емкости. Если после двух цифр стоит буква n, это нанофарады. Конденсатор с 10n на корпусе имеет номинал 10 нанофарад.

В трёхзначной кодировке третья цифра обозначает множитель нуля. Так, например, 104 на корпусе элемента – это 10 пикофарад и множитель 104.

В итоге получается:

10*104пФ = 100000 пФ = 100 нФ = 0,1 мкФ.

Исходя из этого, код 010 будет означить 0,1 пФ. Часто используют латинскую R, чтобы обозначить значение С, которое меньше 1 пФ, например, 0R7 = 0,7 пФ.

Внимание! Когда после первых двух знаков стоят цифры 9 или 8, то это значит, что величину С необходимо умножить на 0,1 и 0,01, соответственно, а не умножать на 10 со степенью 9 или 8. К примеру, 109 = 10*0,1 = 1,0 пФ; 138 = 13*0,01 = 0,13 пФ.

Буквы, стоящие сразу за тремя цифрами, обозначают процент погрешности значения С. У конденсатора 104j, j означает ± 5%.

Для керамических конденсаторов маркировка в таблице

Варианты кодировок номинальных напряжений конденсатора

Значение напряжения, которое является для элемента номинальным (Uном), может наноситься на корпус детали отдельным кодом. К примеру, для 104j конденсатора номинал 16 В будет отмечен сочетанием 1С.

Отмечены следующие соотношения между кодом и величиной Uном:

  • 1С = 16 В;
  • 1E = 25 В;
  • 1H = 50 В;
  • 2A = 100 В;
  • 2D = 200 В;
  • 2E = 250 В;
  • 2F = 315 В;
  • 2G = 400 В;
  • 2J = 630 В.

Если на элементе присутствует маркер 2E, значит, к нему можно приложить номинальное напряжение 250 В.

Емкостные величины

Конденсатор 104 емкость которого считают как 10*104, будет обладать величиной С, равной 100000 пф или 0,1 мкФ. Чтобы ответить на вопрос, конденсатор 100n это сколько пикофарад, нужно знать кратность и дробность математических приставок. Для этого можно заглянуть в таблицу или воспользоваться онлайн-переводчиком величин.

Таблица кратных и дробных приставок

Умение расшифровывать кодировку керамических конденсаторов позволяет подобрать аналогичную деталь, заменить неисправную или применить нужную при сборке схемы. Обозначения на корпусе типа 104, 100n, 108j и другие буквенно-цифровые метки уже никого не смогут ввести в заблуждение.

Видео

Конденсатор 104: что это значит?

Очень часто от начинающих радиолюбителей и от людей, далеких от радиоэлектроники, но по тем или иным причинам столкнувшихся с ремонтом электронных приборов, можно услышать такие вопросы: «Конденсатор 104 – что это значит? Как понять значение маркировки конденсаторов?» В этой статье мы попробуем популярно разобрать этот вопрос.

Подобная маркировка конденсаторов (104) может быть только у керамических изделий. Это связано с тем, что они, в отличие от электролитических, имеют довольно малые габаритные размеры, и, соответственно, на их корпусе просто нет места для полной и подробной записи всей необходимой информации, такой как емкость изделия, тип и прочее.

Керамический конденсатор (104) является естественной частью любой радиоэлектронной схемы. Эти изделия используют везде, где необходимо работать с сигналами, которые меняют свою полярность. Керамические конденсаторы имеют отличные частотные характеристики, малые токи утечки, незначительные потери, небольшие размеры и низкую стоимость. В тех схемах, где требуются описанные выше характеристики, керамические конденсаторы просто незаменимы, однако до недавнего времени проблемы, связанные с технологическим процессом их производства, отвели этим приборам нишу устройств с малой емкостью. Еще совсем недавно керамические конденсаторы с емкостью 10 мкФ воспринимались как экзотика, стоимость таких изделий была неоправданно высока. Развитие современных технологий позволило на сегодняшний день нескольким фирмам достичь емкости 100 мкФ в керамических конденсаторах и заявить о скором достижении еще больших значений. К тому же цены на все группы этих изделий постоянно снижаются.

Теперь перейдем к маркировке керамических конденсаторов. Она бывает двух типов: из трех и четырех знаков. У нас маркировка «104», конденсатор с такой формой записи имеет отношение к трехзнаковой кодировке. Расшифровка данного типа довольно простая: первые два знака означают величину емкости в пикофарадах, а последний — количество нулей. Давайте разберем, что же означает конденсатор «104». Получается, что первые две цифры (10) означают емкость, а последняя (4) – количество нулей. Значит, маркировка 104 подразумевает 100000 пФ (100 нФ, или 0,1 мкФ). Как видите, все очень просто. Такой формой записи можно закодировать минимальное значение 1,0 пФ, она будет иметь следующий вид: 010. Если необходимо записать величину емкости менее одного пикофарада, используют латинскую литеру R. Такая запись будет иметь следующий вид: 0R5, что означает 0.5 пФ. Если значение емкости меньше 1,0 пФ, тогда последней цифрой ставится 9, это не значит, что надо дописывать 9 нулей. Вот пример такой записи – 109 (1,0 пФ), 159 (1,5 пФ) и 689 (6,8 пФ).

Теперь рассмотрим четырехзнаковую маркировку керамических конденсаторов. В таком виде записи первые три цифры означают емкость в пикофарадах, а четвертая — количество нулей.

Вот мы и разобрали, что означает конденсатор «104». Теперь, если вам понадобятся керамические конденсаторы, вы с легкостью сможете разобраться, какое значение емкости записано на том или ином элементе. И вам не придется обращаться за помощью к специалистам.

Различная маркировка малых конденсаторов?

Обычно на большинстве крышек есть две метки.

Первым является значение, которое написано:
<Digit><Digit><Exponential Notation>
Обычно в пикофарадах.

Вторым является TempCo, или Температурный коэффициент. Существует две общие системы спецификаций, а именно EIA Class 1 и Class 2 . Это таинственный второй лейбл в большинстве случаев. Обычно написано:
<Letter><Number><Letter> (хотя есть несколько вариантов)
Есть несколько общих темпов — NP0 / C0G, X7R, X5R, Y5V, Z5U

Танталы и керамика большего размера часто также имеют напряжения:
<voltage number><+ or v>

Следовательно:

  • 104 K5K (маленький)
    Значение составляет 10e4 или 100 000 пф / 0,1 мкФ. Tempco не является стандартным, может зависеть от производителя / расширенного диапазона.

  • 10 (коробка, перпендикулярно правому верхнему углу) 35+ (колпак тантала, больший вариант последнего)
    Нужна картина, чтобы быть более конкретной, это, скорее всего, 35В номинальная крышка, от 35+.

  • 154 C1K (что такое C1K, какая-то другая запись в Википедии?)
    Емкость 15e4, или 150000 пф / 0,15 мкФ. Похоже, диэлектрик класса 1 от C1K. Это большая крышка? Темпко очень хорош.

  • Orange Ceramic 333 K5X (что такое 5X? X римская цифра?)
    33e3 или 33000 пф / 33 нФ. Tempco либо зависит от производителя, либо неправильно прочитано.

  • Коричневая круглая щель 10n (без другой маркировки, что такое op.temp?) (Диаметр: 7,5 мм)
    Скорее всего, 10n означает 10 нф или 10000 шв. Если это керамика, то, вероятно, 50v. Скорее всего дешевая деталь, если напряжение не обозначено.

  • 27J 100V (что такое 27J?) (Диаметр 4,9 мм, черная голова на голове)
    Номинальное напряжение самоочевидно. J — множитель, и я думаю, что есть стандарт для буквенных множителей, но я не помню, где его найти.

  • Голубая квадратная щель (треугольник) 104K X7R50 (Что такое треугольник? X7R50? Рабочий V?) (Сторона = 4,9 мм)
    Значение 10e4 — 100 000 пф / 0,1 мкФ. Tempco — X7R. 50, скорее всего, номинальное напряжение.

  • 104 (сторона = 2,6 мм, оп. V? Допуск?)
    10e4 — 100 000 пф / 0,1 мкФ. Напряжение не известно

Это своего рода предположение. В любом случае, это должно показать, как это работает. Старые части могут сильно отличаться, и это всегда только руководство. Лучшее, что можно сделать, — найти фактическую таблицу данных колпачка.

У многих частей есть необычные темпы. Это автомобильная / экстремальная часть, которая содержит эти компоненты?

Различная маркировка малых конденсаторов?

Обычно на большинстве крышек есть две метки.

Первым является значение, которое написано:
<Digit><Digit><Exponential Notation>
как правило, в пикофарадах.

Вторым является TempCo, или Температурный коэффициент. Существует две общие системы спецификаций, а именно EIA Class 1 и Class 2 . Это таинственный второй лейбл в большинстве случаев. Обычно написано:
<Letter><Number><Letter>(хотя есть несколько вариантов)
Есть несколько общих темпов — NP0 / C0G, X7R, X5R, Y5V, Z5U

Танталы и керамика большего размера часто также имеют напряжения:
<voltage number><+ or v>

Следовательно:

  • 104 K5K (маленький)
    Значение 10e4, или 100 000 пф / 0,1 мкФ. Tempco не является стандартным, может зависеть от производителя / расширенного диапазона.

  • 10 (прямоугольник, перпендикулярно правому верхнему углу) 35+ (колпак тантала, более крупный вариант последнего)

    Нужна картина, чтобы быть более точной, очень вероятно, что колпачок рассчитан на 35 В, из 35+.

  • 154 C1K (что такое C1K, некоторые другие обозначения Википедии?)
    Емкость 15e4, или 150 000 пф / 0,15 мкФ. Похоже, диэлектрик класса 1 от C1K. Это большая крышка? Темпко очень хорош.

  • Orange Ceramic 333 K5X (что такое 5X? X римская цифра?)
    33e3, или 33 000 пф / 33 нФ. Tempco либо зависит от производителя, либо неправильно прочитано.

  • Коричневая круглая щель 10n (без другой маркировки, что такое op.temp?) (Диаметр: 7,5 мм)
    10n, скорее всего, означает 10 нф или 10000 шв. Если это керамика, то, вероятно, 50v. Скорее всего дешевая деталь, если напряжение не обозначено.

  • 27J 100V (что такое 27J?) (Диаметр: 4,9 мм, черная точка на голове) Номинальное
    напряжение очевидно. J — множитель, и я думаю, что есть стандарт для буквенных множителей, но я не помню, где его найти.

  • Голубая квадратная щель (треугольник) 104K X7R50 (Что такое треугольник? X7R50? Рабочий V?) (Сторона =
    4,9 мм ) 10e4 — это значение — 100 000 пф / 0,1 мкФ Tempco — X7R. 50, скорее всего, номинальное напряжение.

  • 104 (сторона = 2,6 мм, оп. V? Допуск?)
    10e4 — 100 000 пф / 0,1 мкФ. Напряжение не известно

Это своего рода предположение. В любом случае, это должно показать, как это работает. Старые части могут сильно отличаться, и это всегда только руководство. Лучшее, что можно сделать, — найти фактическую таблицу данных колпачка.

У многих частей есть необычные темпы. Это автомобильная / экстремальная часть, которая содержит эти компоненты?

Какая емкость конденсатора 100 к. Конденсаторы. Кодовая маркировка. Итак, расшифровывать коды нужно так

Очень часто от начинающих радиолюбителей и от людей, далеких от радиоэлектроники, но по тем или иным причинам столкнувшихся с ремонтом электронных приборов, можно услышать такие вопросы: «Конденсатор 104 — что это значит? Как понять значение маркировки конденсаторов?» В этой статье мы попробуем популярно разобрать этот вопрос.

Подобная (104) может быть только у керамических изделий. Это связано с тем, что они, в отличие от электролитических, имеют довольно малые и, соответственно, на их корпусе просто нет места для полной и подробной записи всей необходимой информации, такой как емкость изделия, тип и прочее.

Керамический конденсатор (104) является естественной частью любой радиоэлектронной схемы. Эти изделия используют везде, где необходимо работать с сигналами, которые меняют свою полярность. имеют отличные частотные характеристики, малые токи утечки, незначительные потери, небольшие размеры и низкую стоимость. В тех схемах, где требуются описанные выше характеристики, керамические конденсаторы просто незаменимы, однако до недавнего времени проблемы, связанные с технологическим процессом их производства, отвели этим приборам нишу устройств с малой емкостью. Еще совсем недавно керамические конденсаторы с емкостью 10 мкФ воспринимались как экзотика, стоимость таких изделий была неоправданно высока. Развитие современных технологий позволило на сегодняшний день нескольким фирмам достичь емкости 100 мкФ в керамических конденсаторах и заявить о скором достижении еще больших значений. К тому же цены на все группы этих изделий постоянно снижаются.

Теперь перейдем к маркировке керамических конденсаторов. Она бывает двух типов: из трех и четырех знаков. У нас маркировка «104», конденсатор с такой формой записи имеет отношение к трехзнаковой кодировке. Расшифровка данного типа довольно простая: первые два знака означают величину емкости в пикофарадах, а последний — количество нулей. Давайте разберем, что же означает конденсатор «104». Получается, что первые две цифры (10) означают емкость, а последняя (4) — количество нулей. Значит, маркировка 104 подразумевает 100000 пФ (100 нФ, или 0,1 мкФ). Как видите, все очень просто. Такой формой записи можно закодировать минимальное значение 1,0 пФ, она будет иметь следующий вид: 010. Если необходимо записать величину емкости менее одного пикофарада, используют латинскую литеру R. Такая запись будет иметь следующий вид: 0R5, что означает 0.5 пФ. Если значение емкости меньше 1,0 пФ, тогда последней цифрой ставится 9, это не значит, что надо дописывать 9 нулей. Вот пример такой записи — 109 (1,0 пФ), 159 (1,5 пФ) и 689 (6,8 пФ).

Теперь рассмотрим четырехзнаковую маркировку керамических конденсаторов. В таком виде записи первые три цифры означают емкость в пикофарадах, а четвертая — количество нулей.

Вот мы и разобрали, что означает конденсатор «104». Теперь, если вам понадобятся керамические конденсаторы, вы с легкостью сможете разобраться, какое значение емкости записано на том или ином элементе. И вам не придется обращаться за помощью к специалистам.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 микрофарад [мкФ] = 1000000 пикофарад [пФ]

Исходная величина

Преобразованная величина

фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарад децифарад сантифарад миллифарад микрофарад нанофарад пикофарад фемтофарад аттофарад кулон на вольт абфарад единица емкости СГСМ статфарад единица емкости СГСЭ

Общие сведения

Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:

C = Q/∆φ

Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).

В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.

Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).

Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.

В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.

Использование емкости

Конденсаторы — устройства для накопления заряда в электронном оборудовании

Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.

Историческая справка

Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.

В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.

В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.

Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.

Примеры конденсаторов

Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.

Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.

Вторым по важности параметром конденсаторов является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.

Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.

Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ) . Он даёт представление об изменении ёмкости в условиях изменения температур.

В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).

Маркировка конденсаторов

Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.

Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.

Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.

Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.

Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.

Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.

Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.

Имеются и другие типы конденсаторов.

Ионисторы

В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.

С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.

Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.Электромобиль А2В Университета Торонто. Под капотом

Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.

Поверхностно-емкостные экраны

Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.

Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.

Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.

Проекционно-емкостные экраны

Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.

Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Маркировка конденсаторов обладает большим разнообразием по сравнению с маркировкой резисторов. Довольно сложно увидеть маркировку маленьких конденсаторов, потому что площадь поверхности их корпусов очень незначительная. В этой статье рассказывается, как читать маркировку практически всех типов современных конденсаторов, произведенных за рубежом. Возможно, на вашем конденсаторе маркировка будет нанесена в другом порядке (по сравнению с описываемым в этой статье). Более того, на некоторых конденсаторах отсутствуют значения напряжения и допуска – для создания низковольтной цепи вам понадобится только значение емкости.

Шаги

Маркировка больших конденсаторов

    Ознакомьтесь с единицами измерения. Основной единицей измерения емкости является фарад (Ф). Один фарад – это огромное значение для обычной цепи, поэтому бытовые конденсаторы маркируются дольными единицами измерения.

  • 1 µF , uF , mF = 1 мкФ (микрофарад) = 10 -6 Ф. (Внимание! В случаях, не связанных с маркировкой конденсаторов, 1 mF = 1 мФ (миллифарад) = 10 -3 Ф)
  • 1 nF = 1 нФ (нанофарад) = 10 -9 Ф.
  • 1 pF , mmF , uuF = 1 пФ (пикофарад) = 10 -12 Ф.
  • Определите значение емкости. В случае больших конденсаторов значение емкости наносится непосредственно на корпус. Конечно, могут быть некоторые различия, но в большинстве случаев ищите число с одной из единиц измерения, описанных выше. Возможно, вам придется учесть следующие моменты:

    Определите значение допуска. На корпус некоторых конденсаторов наносится значение допуска, то есть допустимое отклонение номинальной емкости от указанной; учитывайте эту информацию, если при сборке электроцепи необходимо знать точное значение емкости конденсатора. Например, если на конденсаторе нанесена маркировка «6000uF+50%/-70%», то его максимальная емкость равна 6000+(6000*0,5)=9000 мкФ, а минимальная – 6000-(6000*0,7)=1800 мкФ.

    Определите номинальное напряжение. Если корпус конденсатора довольно большой, на нем проставляется численное значение напряжения, за которым следуют буквы V или VDC, или VDCW, или WV (от английского Working Voltage – рабочее напряжение). Это максимально допустимое напряжение конденсатора, которое измеряется в вольтах (В).

    Поищите символы «+» или «-». Если на корпусе конденсатора присутствует один из этих символов, такой конденсатор поляризован. В этом случае подключите положительный («+») контакт конденсатора к положительной клемме источника питания; в противном случае может произойти короткое замыкание конденсатора или конденсатор может взорваться. Если символов «+» или «-» на корпусе нет, вы можете включать конденсатор в цепь так, как вам угодно.

    Интерпретация маркировки конденсаторов

    1. Запишите первые две цифры значения емкости. Если конденсатор маленький и на его корпусе не помещается значение емкости, оно маркируется в соответствии со стандартом EIA (это справедливо для современных конденсаторов, чего не скажешь про старые конденсаторы). Для начала запишите первые две цифры, а затем сделайте следующее:

      Воспользуйтесь третьей цифрой в качестве множитель нуля. Если емкость конденсатора маркируется тремя цифрами, то такая маркировка интерпретируется следующим образом:

      • Если третей цифрой является цифра от 0 до 6, к двум первым цифрам припишите соответствующее количество нулей. Например, маркировка «453» – это 45 x 10 3 = 45000.
      • Если третьей цифрой является 8, умножьте первые две цифры на 0,01. Например, маркировка «278» – это 27 x 0,01 = 0,27.
      • Если третьей цифрой является 9, умножьте первые две цифры на 0,1. Например, маркировка «309» – это 30 x 0,1 = 3,0.
    2. Определите единицы измерения . В большинстве случаев емкость самых маленьких конденсаторов (керамических, пленочных, танталовых) измеряется в пикофарадах (пФ, pF), которые равны 10 -12 Ф. Емкость больших конденсаторов (алюминиевых электролитических или двухслойных) измеряется в микрофарадах (мкФ, uF или µF), которые равны 10 -6 Ф.

      Интерпретируйте маркировку, включающую буквы . Если одним из первых двух символов маркировки является буква, интерпретируйте это следующим образом:

      Определите значение допуска керамических конденсаторов. Керамические конденсаторы имеют плоскую круглую форму и два контакта. Значение допуска таких конденсаторов приводится в виде одной буквы непосредственно после трехзначного маркера емкости. Допуск – это допустимое отклонение номинальной емкости от указанной. Если необходимо знать точное значение емкости, интерпретируйте маркировку следующим образом:

  • Кроме буквенно-цифровой маркировки применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC (табл. 2.5, 2.6).

    При таком способе маркировки первые две или три цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей. При обозначении емкостей менее 10 пФ последней цифрой может быть «9» (109 = 1 пФ), при обозначении емкостей 1 пФ и менее первой цифрой будет «0» (010 = 1 пФ). В качестве разделительной запятой используется буква R (0 R 5 = 0,5 пФ).

    При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ. В случае необходимости маркировки дробных значений емкости в качестве разделительной запятой ис­пользуется буква R: R 1 — 0,1 мкФ, R 22 — 0,22 мкФ, 3 R 3 — 3,3 мкФ (при обозначении емкости в мкФ перед буквой R цифра 0 не ставится, а она ставится только при обозначении емкостей менее 1 пФ).

    После обозначения емкости может быть нанесен буквенный символ, обозначаю­ щий допустимое отклонение емкости конденсатора в соответствии с табл. 2.4.

    Таблица 2.5. Кодировка номинальной емкости конденсаторов тремя цифрами

    Пикофарады (пФ; pF)

    Нанофарады (нФ; nF)

    Микрофарады (мкФ)

    Емкость

    Пикофарады ( пф ; pF)

    Нанофарады ( нФ ; nF)

    Микрофарады ( мкФ ; mF)

    Таблица 2.6. Кодировка номинальной емкости конденсаторов четырьмя цифрами

    Емкость

    Пикофарады (пФ; pF)

    Нанофарады (нФ; nF)

    Микрофарады (мкФ

    ТКЕ (температурный коэффициент емкости) — параметр конденсатора, который характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды. Этот параметр принято выражать в миллионных долях емкости конденсатора на градус
    (10/-6 / °С). ТКЕ может быть положительным (обозначается буквой «П» или «Р»), отрицательным
    («М» или « N »), близким к нулю («МП») или ненормированным («Н»).

    Конденсаторы изготавливаются с различными по ТКЕ типами диэлектриков: группы NPO , X 7 R , Z 5 U , Y 5 V и другие. Диэлектрик группы NPO (COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильно­стью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовлен­ ные с применением этого диэлектрика, наиболее дорогостоящие. Диэлектрик группы X 7 R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность.

    Диэлектрики групп Z 5 U и Y 5 V имеют очень высокую диэлектрическую проница­ емость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющие значительный разброс параметров. SMD конденсаторы с диэлектриками групп X 7 R и Z 5 U используются в цепях общего назначения.


    В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

    1. Кодировка 3-мя цифрами

    Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.

    * Иногда последний ноль не указывают.

    2. Кодировка 4-мя цифрами

    Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).

    Примеры:



    3. Маркировка ёмкости в микрофарадах

    Вместо десятичной точки может ставиться буква R.

    4. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения

    В отличие от первых трех параметров, которые маркируются в соответствии со стандар-
    тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

    Программа для определения емкости конденсатора по цифровой маркировке

    Данная программа позволяет оперативно определить емкость конденсатора по цифровой маркировке. Определение емкости конденсатора выполняется в соответствии со стандартами IEC по таблице 1. Сам принцип определения емкости конденсатора показан на рис.1.

    Таблица 1

    Рис.1 – Определение емкости конденсатора

    Рассмотрим на примере определение емкости конденсатора по цифровой маркировке с помощью данной программы. Выберем конденсатор с цифровой маркировкой 104, для данного конденсатора в соответствии с таблицей 1 и представленным методом определения емкости (см.рис.1), емкость составит: 104 = 10 х 104 = 100000 pF = 100 nF = 0,1 µF, для цифровой маркировки 330, емкость составит: 330 = 33 pF = 0,033 nF = 0,000033 µF. Как мы видим, программа правильно определяет емкость конденсатора по цифровой маркировке.

    Если же Вам нужно определить емкость конденсатора по цветовой маркировке, воспользуйтесь программой «Конденсатор v1.2».

    Всего наилучшего! До новых встреч на сайте Raschet.info.

    конденсатор по цифровой маркировке, определить емкость конденсатора по цифровой маркировке, определить емкость по цифровой маркировке, программа определения емкости по цифровой маркировке

    Поделиться в социальных сетях

    Благодарность:

    Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal».

    Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

    Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

    расшифровка, таблица. Как расшифровать маркировку конденсатора и узнать его ёмкость?


    Что такое конденсатор?

    Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.

    Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).

    Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.

    Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.

    Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.

    Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.

    Принцип работы конденсаторов

    При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.

    В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.

    Характеристики и свойства

    К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:

    1. Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
    2. Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
    3. Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
    4. Полярность. При неверном подключении произойдет пробой и выход из строя.
    5. Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
    6. Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
    7. Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.

    Плёночные конденсаторы с диэлектриком из полиэтилентерефталата

    Электроемкость плоского конденсатора
    Перечисленные преимущества во многом объясняются конструктивными особенностями. Рассматриваемые модификации конденсаторов создают с применением диэлектрика, созданного из полимерной пленки. Для уменьшения индуктивных свойств вместо рулона применяют сложное формирование слоя с прессованием. Фактически создается множество пластинчатых накопителей энергии, соединенных параллельно.

    Главным преимуществом диэлектрика этого типа является способность к самостоятельному восстановлению. После электрического пробоя созданный проводник постепенно испаряется. Процесс ускоряется прохождением тока по соответствующему участку конструкции, что сопровождается нагревом соответствующей области. Достаточно быстро без дополнительных действий функциональные характеристики конденсатора нормализуются.

    Для сравнения с другими диэлектриками можно изучить сведения, представленные ниже.

    Параметры конденсаторов

    ХарактеристикиТип диэлектрика
    ПолиэтилентерефталатПолипропиленПолистирол
    Тангенс угла потерь0,01-0,10,0020,0001-0,0015
    Сопротивление изоляции, МОм10 00050 000100 000
    Коэффициент абсорбции, %0,2-0,8Меньше 0,5Меньше 0,1
    ТКЕ (температурный коэффициент), 10-6/°CОт -200 до 400От -200 до 100-200

    При выборе полиэтилентерефталатного изделия можно использовать высокую прочность конструкции, хорошие показатели диэлектрической проницаемости. Однако следует учесть сравнительно небольшой тангенс угла потерь и ограниченные изоляционные свойства.

    На стадии подготовки проекта в комплексе проверяют рабочие параметры конденсатора и соответствие условиям будущей эксплуатации. Чтобы исключить ошибки, рекомендуется изучить отзывы экспертов о продукции определенных производителей. При выборе поставщика (магазина) оценивают затраты и официальные гарантийные обязательства.

    Типы маркировок

    На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.

    Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы. Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.


    Маркировка больших изделий

    Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.


    Числовая и численно-буквенная маркировка маленьких конденсаторов

    Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:

    • первые две цифры обозначают первые две цифры емкости;
    • третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
    • такие конденсаторы всегда измеряются в пикофарадах.

    Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.

    Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка .55 равна 0.55 микрофарад.

    Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.

    Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.


    Керамические конденсаторы с маркировкой

    • Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом: первые два цвета означают емкость в пикофарадах;
    • третий цвет показывает количество нулей, которые необходимо дописать;
    • четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
    ЦветЗначение
    Черный
    Коричневый1
    Красный2
    Оранжевый3
    Желтый4
    Зеленый5
    Голубой6
    Фиолетовый7
    Серый8
    Белый9

    Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5.1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.

    Маркировка твердотельных конденсаторов

    По международному стандарту — начинают читать с единиц измерения. Фарады применяются для измерения ёмкости. Маркировку наносят на корпус самого устройства.

    Иногда наносят маркеры, которые указывают на допустимые отклонения от нормы емкости самого конденсатора (указывается в процентах).

    Порой, вместо них используется буква, которая обозначает то или иное значение самого допуска. Затем опреедляем номинальное напряжение. В том случае, если же корпус устройства имеет большие размеры, данный параметр обозначается цифрой, за которой далее следуют буквы. Максимально допустимое значение параметра указывается с помощью цифр. Если на корпусе нет никакой информации о допустимом значении напряжения, то использовать его можно только в цепях с низким напряжением. Если же устройство, согласно его параметрам, должно использоваться в цепях, где есть переменный ток, то применяться оно, соответсвенно, должно именно так и не иначе.

    Устройство, которое работает с постоянным током, нельзя использовать в цепях с переменным.

    Далее, определием полярность устройства: положительную и же отрицательную. Этот шаг очень важен. Если полюса будут определены неверно, велик риск возникновения короткого замыкания или даже взрыва самого устройства. Независимо от полярности, конденсатор можно будет подключить в том случае, если не указана какая-либо информация о плюсе и же минусе клемм.

    Значение полярности могут наносить в виде специальных углублений, которые имеют форму кольца, или же в виде одноцветной полосы. В конденсаторах из алюминия, которые по своему внешнему виду похожи на банку из-под консервов, подобные обозначения говорят об отрицательной полярности. А, например, в танталовых конденсаторах, которые имеют небольшие габариты, все наоборот — полярность при данных обозначениях будет являться положительной. Цветовую маркировку не стоит учитывать лишь в том случае, если на самом конденсаторе будут указаны плюс и минус.

    Маркировка конденсаторов: расшифровка

    Значения первых двух цифр на корпусе, которые указывают на ёмкость устройства. Если конденсатор небольшого размера — маркировка осуществляется согласно стандарту EIA.

    Цифры: обозначение

    Когда в обозначении указаны только одна буква и две цифры, то цифры соответствуют параметру ёмкости конденсатора. По-своему нужно расшифровывать остальные маркировки, опираясь на ту или иную инструкцию. Множитель нуля — это третья по счету цифра. Расшифровку проводят в зависимости от того, какая цифра находится в конце. К первым двум цифрам необходимо добавить определённое количество нолей, если цифра входит в диапазон от ноля до шести. Если последней цифрой является число восемь, то в таком случае необходимо на 0,01 умножить две первые цифры. Когда значение ёмкости конденсатора станет известным, нужен будет определить то, в таких единицах измерения указана данная величина. Устройства из керамики, а также плёночные варианты являются мелкими. В них данный параметр измеряется в пикофарадах. Микрофарады используются для больших конденсаторов.

    Буквы: их обозначение

    Далее необходимо провести расшифровку букв, которые есть в маркировке. Если в первых двух символах есть буква, то в таком случае расшифровать ее можно несколькими методами. Если есть буква R, то она играет роль запятой, которая используется в дроби. Если есть буквы u, n, p — то оно тоже выполняют роль запятой в той же самой дроби.

    Керамические конденсаторы: маркировка

    Данные виды устройств имеют два контакта, а также круглую форму. На корпусе будут указаны как основные показатели, так и допуск отклонений от номы параметра ёмкости. Для этого используют специальную букву, которая находится после обозначения ёмкости в цифрах.

    Если есть буква В, то отклонение в таком случае будет равняться +0,1 пФ, если буква С — то + 0,25 пФ и так далее. Только при значении параметра ёмкости менее 10пФ используются данные значения. Если параметр ёмкости больше указанного выше, то буквы — это процент допустимых отклонений.

    Смешанная маркировка из цифр и букв

    Маркировка может быть указана в виде буквы, затем цифры, а после снова буквы. Первый символ — это самая маленькая допустимая температура. Второй символ обозначает, наоборот, самую большую допустимую температуру. Третий символ — это ёмкость устройства, которая может изменяться в переделах ранее указанных значений температур.

    Остальные маркировки

    Значение напряжения можно узнать с помощью маркировки, которая находится на корпусе устройства. Символы говорят о допустимом максимальном значении параметра для того или иного конденсатора. Иногда маркировку упрощают. Например, используется только первая цифра. Напряжение меньше десяти вольт будет обозначаться, например, нулём, а этот же параметр, который будет иметь напряжение в пределах от десяти до девяноста девяти вольт — единицей и так далее. Другую маркировку имеют устройства, которые были выпущены намного раньше. Тогда нужно обратиться к справочнику во избежание совершения ошибок. У нас вы можете также узнать, как проверить конденсатор мультиметром на плате.

    Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

    Приведенные ниже принципы кодовой маркировки применяются такими известными , «Hitachi» и др. Различают три основных способа кодирования

    А. Маркировка 2 или 3 символами

    Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

    Рис. 9

    Таблица 14

    КодЕмкостьНапряжение
    А61,016/35
    А7104
    АА71010
    АЕ71510
    AJ62,210
    AJ72210
    AN63,310
    AN73310
    AS64,710
    AW66,810
    СА71016
    СЕ61,516
    СЕ71516
    CJ62,216
    CN63,316
    CS64,716
    CW66,816
    DA61,020
    DA71020
    DE61,520
    DJ62,220
    DN63,320
    DS64,720
    DW66,820
    Е61,510/25
    ЕА61,025
    ЕЕ61,525
    EJ62,225
    EN63,325
    ES64,725
    EW50,6825
    GA7104
    GE7154
    GJ7224
    GN7334
    GS64,74
    GS7474
    GW66,84
    GW7684
    J62,26,3/7/20
    JA7106,3/7
    JE7156,3/7
    JJ7226,3/7
    JN63,36,3/7
    JN7336,3/7
    JS64,76,3/7
    JS7476,3/7
    JW66,86,3/7
    N50,3335
    N63,34/16
    S50,4725/35
    VA61,035
    VE61,535
    VJ62,235
    VN63,335
    VS50,4735
    VW50,6835
    W50,6820/35

    Советуем изучить Станок для разделки кабеля своими руками

    Рис. 10

    В. Маркировка 4 символами

    Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

    Рис. 11

    С. Маркировка в две строки

    Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

    Рис. 12

    Маркировка планарных электролитических конденсаторов

    Существую два основных способов маркировки таких конденсаторов:

    1. Буквенно-цифровой. Пример: 10 3.3V что соответсвует 10мкФ и 3.3 Вольтам.
    2. В соответствии с кодом. Пример : G101 где G — это напряжение по таблице, а 101 это10*101 что соответсвует 100пФ.
    БукваeGJACDEVH (T для танталовых)
    Напряжение2,5 В4 В6,3 В10 В16 В20 В25 В35 В50 В
    • < Назад
    • Вперёд >
    Комментарии

    ололош 22.12.2015 20:56

    Цитировать

    mihan 12.03.2016 16:24 Спасибо! Теперь все стало на свои места, долго не мог разобраться с маркировкой конденсаторов.

    Цитировать

    Alexandr 11.12.2016 12:00 Подскажите плиз. Что вырвано отсюда https://prnt.sc/dhzjl2 https://prnt.sc/dhzjf9 Это древняя видеокарта nvidia 9800gt

    Цитировать

    Обновить список комментариев

    Применение

    Конденсаторы применяются почти во всех областях электротехники. Перечислим лишь некоторые из них:

    • построение цепей обратной связи, фильтров, колебательных контуров;
    • использование в качестве элемента памяти;
    • для компенсации реактивной мощности;
    • для реализации логики в некоторых видах защит;
    • в качестве датчика для измерения уровня жидкости;
    • для запуска электродвигателей в однофазных сетях переменного тока.

    С помощью этого радиоэлектронного элемента можно получать импульсы большой мощности, что используется, например, в фотовспышках, в системах зажигания карбюраторных двигателей.

    Обозначение в схемах

    Вообще при ремонте и перепайке современных печатных SMD-плат удобнее всего, когда под рукой все же имеется схема, глядя на которую намного проще разобраться с тем, что установлено, узнать расположение определенной детали, потому как SMD-конденсатор по виду может совершенно не отличаться от того же транзистора. Обозначения этих деталей в схемах остались такими же, как и были до прихода на рынок чипов, а потому и емкость, и другие нужные характеристики можно также без труда найти радиолюбителю, который не сталкивался с SMD-компонентами.

    Маркировка конденсаторов импортного производства

    На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

    Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

    Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

    Маркировка СМД (SMD) конденсаторов.

    Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с данными предоставленными в предидущем разделе. Номинальная емкость может кодироваться либо с помощью трехзначного цифрового кода(вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).

    Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе). Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость — 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость — 1,6* 100000 = 0,1 микрофарад и.т.д.

    Маркировка планарных керамических конденсаторов

    Такие конденсаторы маркируются двумя буквами, первая это производитель конденсатора, а вторая это значение в пикофарадах в соответствии с таблицей, приведенной ниже.

    МаркировкаЗначениеМаркировкаЗначениеМаркировкаЗначениеМаркировкаЗначение
    A1.0J2.2S4.7a2.5
    B1.1K2.4T5.1b3.5
    C1.2L2.7U5.6d4.0
    D1.3M3.0V6.2e4.5
    E1.5N3.3W6.8f5.0
    F1.6P3.6X7.5m6.0
    G1.8Q3.9Y8.2n7.0
    H2.0R4.3Z9.1t8.0

    Зачем нужна маркировка?

    Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:

    • данные о ёмкости конденсатора – главной характеристике элемента;
    • сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
    • данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
    • процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
    • дату выпуска.

    Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.

    Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.

    Маркировка SMD компонентов

    SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.


    Маркировка SMD

    Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

    Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

    Конденсаторы постоянной емкости

    Конденсаторы постоянной емкости применяют в различных схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсации напряжений выпрямителя. В сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре. Конденсаторы постоянной емкости классифицируют по величине номинальной емкости, классу точности, номинальному рабочему напряжению, назначению, материалу диэлектрика и по конструктивным признакам.

    Номинальные величины емкостей конденсаторов установлены ГОСТ 2519 — 60. При изготовлении конденсаторов действительное значение емкости отличается от номинального, обозначенного в маркировке. Допустимое отклонение емкости от номинального называется допуском. По этому принципу все конденсаторы разделяют на пять классов: 0, 1, II, III, IV, допуски их соответственно составляют ±2%; ±5%; ±10%; ±20% и от — 20 до + 50%.


    Керамический высоковольтный конденсатор.

    В зависимости от назначения различают контурные, разделительные, блокировочные и фильтровые конденсаторы. По материалу диэлектрика конденсаторы делят на слюдяные, керамические, бумажные, металлобумажные, бумаго-масляные, пленочные, стеклоэмалевые, стеклокерамические, электролитические, воздушные, вакуумные, газонаполненные. По конструктивному признаку конденсаторы подразделяют на трубчатые, дисковые, бочоночные, горшковые, опрессованные и герметизированные, плоские и цилиндрические и т. д.

    Независимо от вида конденсатор характеризуется рабочим напряжением. Рабочим напряжением называется напряжение, под которым обкладки конденсатора могут длительно находиться без пробоя разделяющего их диэлектрика. Рабочее напряжение выражают в вольтах. Большое значение для нормальной работы конденсатора имеет сопротивление его изоляции. При малом сопротивлении изоляции возникают утечки, нарушающие нормальную работу схемы. Потери в конденсаторе характеризуются тангенсом угла диэлектрических потерь, выражающим отношение мощности активных потерь к реактивной мощности конденсатора.

    В маломощных конденсаторах потери энергии в основном вызываются проводимостью диэлектрика и диэлектрическим гистерезисом, т. е. потерями на поворот полярных молекул в направлении поля при приложении напряжения к обкладкам. Потери в обкладках и выводах малы, поэтому ими обычно пренебрегают. Одной из важнейших характеристик конденсатора является стабильность — неизменность величины емкости конденсатора во время работы. Изменение емкости может быть как временным, так и необратимым. Основным фактором, влияющим на стабильность емкости конденсатора, является воздействие температуры окружающей среды и нагрев конденсатора за счет рассеиваемой на нем мощности. При повышении температуры увеличиваются геометрические размеры материала, что и влечет за собой временное (до возвращения температуры к первоначальному значению) изменение емкости.

    Механизм и строение

    Состав керамического BaTiO3 является совокупностью, составленной из микрокристаллов от 1 до 20 миллиметрового в диаметре. Этот микрокристалл называют частицей, и состоит из кристаллической структуры, которая показана на рис. 1 и 2. Частица разделена на много доменов при температуре ниже Точки Кюри. Кристаллические оси выровнены в одном направлении в пределах домена, таким образом, как и спонтанная поляризация. При нагревании до Точки Кюри и выше кристаллическая структура BaTiO3 изменяется от четырехугольной до кубической. Тогда, спонтанные поляризационные и доменные стены исчезают (пропадают).


    Строение керамического конденсатора.

    Когда BaTiO3 находится в охлажденном состоянии (ниже Точки Кюри), ее кристаллическая структура поворачивается от кубической до четырехугольной, отрезки примерно до 1 % вдоль оси C и вдоль других осей – сокращаются. Тогда появляются спонтанные поляризационные и доменные стены. В то же время от воздействия «из вне» частицы искажаются. В этой стадии генерируются много мелких доменных стен, и направление спонтанной поляризации в каждом домене легко полностью изменить, даже малыми (низкими) электрическими полями. Так как диэлектрическая постоянная – пропорциональна сумме инверсии спонтанной поляризации к единице объема, наблюдается большая емкость.

    Когда конденсаторы хранятся (применяются) без нагрузки при температурах ниже Точки Кюри размер беспорядочно ориентированных доменов становится большим, и они (домены) постепенно сдвигаются к устойчивому энергетическому состоянию (Рис. 3, 90 доменов). Это также облегчает сбор остаточного напряжения при кристаллическом искажении.

    Кроме того, перемещение пространственных зарядов (ионы с низкой подвижностью, свободные точки кристаллической решетки и т.д.) в пределах доменной стены приводит к поляризации пространственного заряда. Эта поляризация пространственного заряда неблагоприятно воздействует на спонтанную поляризацию, преграждая ее инверсию.

    Другими словами, временный переход от генерации спонтанной поляризации (спонтанная поляризация постепенно перестраивается к более устойчивому состоянию) к инверсии затруднена появлением поляризации пространственного заряда. В этом состоянии более высокое электрическое поле необходимо, чтобы полностью изменить спонтанную поляризацию в доменах, которые в свою очередь могут быть полностью изменены низким уменьшением электрического поля и снижениями емкости. Это, как полагают и есть механизм старения.

    Однако, микротекстура кристаллической решетки возвращается в исходное состояние при нагревании до температуры выше Точки Кюри, в которой старение решетки начинается снова и снова. Вообще емкость многослойного керамического конденсатора с высокой диэлектрической постоянной уменьшается приблизительно линейно в логарифмическом масштабе времени – в течение 24 часов после термической обработки выше 125 C. Пожалуйста, обратитесь к прикрепленным типовым данным старения нашей продукции и номинальной емкости конденсаторов. Емкость, которая уменьшилась в результате естественного старения, имеет свойство восстанавливаться при нагревании конденсаторов до Точки Кюри и выше.

    Ожидаемая емкость многослойного керамического конденсатора будет в его номинале, когда эти условия установлены на оборудовании. Мы выбираем свою амплитуду емкости, основанную на предшествующем предположении. Кстати, температура, компенсирующая значения типовых конденсаторов, не проявляют явление старения.


    Керамические конденсаторы стандартных параметров.

    Керамические и стеклокерамические конденсаторы с твердым неорганическим диэлектрическим слоем выпускаются в высоковольтном и низковольтном исполнении. Отличаются компактными размерами и надежностью. Широко востребованы в вычислительной, бытовой, медицинской, военной техники, транспорте. По номинальному напряжению их разделяют на высоко- и низковольтные.

    По типу конструкции выпускают следующие керамические конденсаторы:

    • КТК – трубчатые;
    • КДК – дисковые;
    • SMD – поверхностные и другие.

    Для изготовления керамических конденсаторов используют не обожженную глину, а материалы, сходные с ней по структуре, – ультрафарфор, тиконд, ультрастеатит. Обкладка – серебряный слой. Керамические и стеклокерамические устройства используются в схемах, в которых важных частотные характеристики, невысокие потери при утечке, компактные габариты, невысокая стоимость.

    Единицы измерения


    Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:
    C= e*S/d

    e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.

    • S – площадь одной из обкладок(в метрах).
    • d – расстояние между обкладками(в метрах).
    • C – величина емкости вфарадах.

    Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.

    1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:

    • 1 Микрофарада – одна миллионная часть фарады.10-6
    • 1 нанофарада – одна миллиардная часть фарады. 10-9
    • 1 пикофарада -10-12 фарады.
    кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
    1091.0 пФ
    1591.5 пФ
    2292.2 пФ
    3393.3 пФ
    4794.7 пФ
    6896.8 пФ
    10010 пФ0.01 нФ
    15015 пФ0.015 нФ
    22022 пФ0.022 нФ
    33033 пФ0.033 нФ
    47047 пФ0.047 нФ
    68068 пФ0.068 нФ
    101100 пФ0.1 нФ
    151150 пФ0.15 нФ
    221220 пФ0.22 нФ
    331330 пФ0.33 нФ
    471470 пФ0.47 нФ
    681680 пФ0.68 нФ
    1021000 пФ1 нФ
    1521500 пФ1.5 нФ
    2222200 пФ2.2 нФ
    3323300 пФ3.3 нФ
    4724700 пФ4.7 нФ
    6826800 пФ6.8 нФ
    10310000 пФ10 нФ0.01 мкФ
    15315000 пФ15 нФ0.015 мкФ
    22322000 пФ22 нФ0.022 мкФ
    33333000 пФ33 нФ0.033 мкФ
    47347000 пФ47 нФ0.047 мкФ
    68368000 пФ68 нФ0.068 мкФ
    104100000 пФ100 нФ0.1 мкФ
    154150000 пФ150 нФ0.15 мкФ
    224220000 пФ220 нФ0.22 мкФ
    334330000 пФ330 нФ0.33 мкФ
    474470000 пФ470 нФ0.47 мкФ
    684680000 пФ680 нФ0.68 мкФ
    1051000000 пФ1000 нФ1 мкФ

    Маркировка четырьмя цифрами

    Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.


    Маркировка конденсатора.

    Буквенно-цифровая маркировка

    При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

    15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

    Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.

    Планарные керамические конденсаторы

    Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.

    Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

    Пример:

    N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ

    S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ

    Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.


    Таблица маркировки конденсаторов по рабочему напряжению.

    Планарные электролитические конденсаторы

    Электролитические SMD конденсаторы маркируются двумя способами:

    1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

    2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

    Будет интересно➡ Что такое полярность конденсатора и как ее определить?

    Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

    Физические величины, используемые в маркировке емкости керамических конденсаторов

    Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.

    Таблица единиц емкости, применяемых для бытовых керамических конденсаторов

    Наименование единицыВарианты обозначенийСтепень по отношению к Фараду
    МикрофарадMicrofaradмкФ, µF, uF, mF10-6F
    НанофарадNanofaradнФ, nF10-9F
    ПикофарадPicofaradпФ, pF, mmF, uuF10-12F

    Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф).

    На деталях советского производства, чаще всего имеющих довольно большую площадь поверхности, наносились числовые значения емкости, ее единица измерения и номинальное напряжение в вольтах. Например, 23 пФ, то есть 23 пикофарада.

    Расшифровка маркировки обозначений современных керамических конденсаторов отечественного и зарубежного производства – мероприятие более сложное.

    Небольшие замечания и советы по работе с конденсаторами

    Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.

    Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

    Каких видов бывают конденсаторы

    • Из бумаги или металлобумаги – применимы как для высоко-, так и низкочастотных цепей. Из-за небольшой механической прочности их «начинка» размещена в корпусе из металла;
    • Электролитические – их диэлектрик – тонкий слой оксида металла, который образуется в результате электрохимических манипуляций. Практически все виды данных элементов поляризованы, поэтому функционируют лишь в тех цепях, где есть постоянное напряжение, и соблюдается полярность. Если случается инверсия полярности, внутри элемента происходит необратимая химическая реакция, которая способна привести к его разрушению. Так как внутри выделяется газ, изделие может даже взорваться;
    • Полимерные – полимерный диэлектрик нивелирует раздутие и потерю заряда конденсаторов. Полимер характеризуется своими физическими параметрами, поэтому изделие имеет следующие достоинства: большой импульсный ток, низкий показатель эквивалентного сопротивления, стабильный температурный коэффициент даже в условиях низкой температуры;
    • Плёночные – диэлектриком здесь служит пластиковая пленка. Имеют немало преимуществ: способны функционировать при больших токах, прочные на растяжение и характеризуются минимальным током утечки. Применяются следующие виды пластика: полиэстер, поликарбонат, полипропилен. В последнее время все чаще применяется полифениленсульфид;
    • Керамические – такие изделия имеют различные свойства и кодировку. Лишь материалы, произведенные из керамики, обладают широким диапазоном значений относительной электропроницаемости (исчисляется десятками тысяч). Высокая проницаемость позволяет производить элементы компактных размеров, но большой емкости. При этом они способны функционировать при любой поляризации и характеризуются небольшими утечками. Параметры устройства зависят от температуры, напряжения и частоты;
    • С воздушным диэлектриком – диэлектрик устройств – воздух. Их особенность – отличная работоспособность при высоких частотах. По этой причине они нередко устанавливаются как конденсаторы с переменной емкостью.


    Устройства бывают разных видов

    Маркировка конденсаторов с помощью численно-буквенного кода.

    Маркировка конденсаторов может указывать на следующие параметры: Тип конденсатора, его номинальную емкость, допустимое отклонение емкости, Температурный Коэффициент Емкости(ТКЕ), номинальное напряжение работы.

    Порядок маркировки может быть разным — первой строкой может стоять номинальное напряжение, ТКЕ или фирменный знак производителя. ТКЕ может отсутствовать вовсе, номинальное напряжение тоже указываются не всегда! Практически всегда имеется маркировка номинальной емкости. Что касается емкости, то имеются различные способы ее знаковой кодировки. 1. Маркировка емкости с помощью трех цифр. При такой маркировке первые две цифры указывают на значение емкости в пикофарадах, а последняя на разрядность, т. е. количество нулей, которых к первым двум цифрам необходимо добавить. Но если последняя цифра — «9» происходит деление на 10.

    КодЕмкость(пФ)Емкость(нФ)Емкость(мкФ)
    1091,0(пФ)0,001(нФ)0,000001(мкФ)
    1591,5(пФ)0,0015(нФ)0,0000015(мкФ)
    2292,2(пФ)0,0022(нФ)0,0000022(мкФ)
    3393,3(пФ)0,0033(нФ)0,0000033(мкФ)
    4794,7(пФ)0,0047(нФ)0,0000047(мкФ)
    6896,8(пФ)0,0068(нФ)0,0000068(мкФ)
    10010(пФ)0,01(нФ)0,00001(мкФ)
    15015(пФ)0,015(нФ)0,000015(мкФ)
    22022(пФ)0,022(нФ)0,000022(мкФ)
    33033(пФ)0,033(нФ)0,000033(мкФ)
    47047(пФ)0,047(нФ)0,000047(мкФ)
    68068(пФ)0,068(нФ)0,000068(мкФ)
    101100(пФ)0,1(нФ)0,0001(мкФ)
    151150(пФ)0,15(нФ)0,00015(мкФ)
    221220(пФ)0,22(нФ)0,00022(мкФ)
    331330(пФ)0,33(нФ)0,00033(мкФ)
    471470(пФ)0,47(нФ)0,00047(мкФ)
    681680(пФ)0,68(нФ)0,00068(мкФ)
    1021000(пФ)1(нФ)0,001(мкФ)
    1521500(пФ)1,5(нФ)0,0015(мкФ)
    2222200(пФ)2,2(нФ)0,0022(мкФ)
    3323300(пФ)3,3(нФ)0,0033(мкФ)
    4724700(пФ)4,7(нФ)0,0047(мкФ)
    6826800(пФ)6,8(нФ)0,0068(мкФ)
    10310000(пФ)10(нФ)0,01(мкФ)
    15315000(пФ)15(нФ)0,015(мкФ)
    22322000(пФ)22(нФ)0,022(мкФ)
    33333000(пФ)33(нФ)0,033(мкФ)
    47347000(пФ)47(нФ)0,047(мкФ)
    68368000(пФ)68(нФ)0,068(мкФ)
    104100000(пФ)100(нФ)0,1(мкФ)
    154150000(пФ)150(нФ)0,15(мкФ)
    224220000(пФ)220(нФ)0,22(мкФ)
    334330000(пФ)330(нФ)0,33(мкФ)
    474470000(пФ)470(нФ)0,47(мкФ)
    684680000(пФ)680(нФ)0,68(мкФ)
    1051000000(пФ)1000(нФ)1,0(мкФ)

    2. Второй вариант — маркировка производится не в пико, а в микрофарадах, причем вместо десятичной точки ставиться буква µ.

    КодЕмкость(мкФ)
    µ10,1
    µ470,47
    11,0
    4µ74,7
    10µ10,0
    100µ100,0

    3.Третий вариант.

    КодЕмкость(мкФ)
    p100,1пФ
    Ip50,47пФ
    332p332пФ
    1HO или 1no1нФ
    15H или 15no15,0нФ
    33h3 или 33n233,2нФ
    590H или 590n590нФ
    m150,15МкФ
    1m51,5мкФ
    33m233,2мкФ
    330m330мкФ
    10m10,0мкФ

    У советских конденсаторов вместо латинской «р» ставилось «п».

    Допустимое отклонение номинальной емкости маркируется буквенно, часто буква следует за кодом определяющим емкость(той же строкой).

    Буквенное обозначениеДопуск(%)
    B± 0,1
    C± 0,25
    D± 0,5
    F± 1
    G± 2
    J± 5
    K± 10
    M± 20
    N± 30
    Q-10…+30
    T-10…+50
    Y-10…+100
    S-20…+50
    Z-20…+80

    Далее, может следовать(а может и отсутствовать!) маркировка Температурного Коэффициента Емкости(ТКЕ). Для конденсаторов с ненормируемым ТКЕ кодировка производится с помощью букв.

    Допуск при -60²…+85²(%) обозначениеБуквенный код
    ± 10B
    ± 20Z
    ± 30D
    ± 50X
    ± 70E
    ± 90F

    Конденсаторы с линейной зависимостью от температуры.

    ТКЕ(ppm/²C)Буквенный код
    100(+130….-49)A
    33N
    0(+30….-47)C
    -33(+30….-80)H
    -75(+30….-80)L
    -150(+30….-105)P
    -220(+30….-120)R
    -330(+60….-180)S
    -470(+60….-210)T
    -750(+120….-330)U
    -500(-250….-670)V
    -2200K

    Далее следует напряжение в вольтах, чаще всего — в виде обычного числа. Например, конденсатор на этой картинке промаркирован двумя строчками. Первая(104J) — означает, что его емкость составляет 0,1мкФ(104), допустимое отклонение емкости не превышает ± 5%(J). Вторая(100V) — напряжение в вольтах.

    Кроме того, напряжение конденсаторов может быть так же, закодировано с помощью букв(см. таблицу ниже).

    Напряжение (В)Буквеный код
    1I
    1,6R
    3,2A
    4C
    6,3B
    10D
    16E
    20F
    25G
    32H
    40C
    50J
    63K
    80L
    100N
    125P
    160Q
    200Z
    250W
    315X
    400Y
    450U
    500V

    Способы маркировки емкости конденсатора

    На деталях советского производства, чаще всего имеющих довольно большую площадь поверхности, наносились числовые значения емкости, ее единица измерения и номинальное напряжение в вольтах. Например, 23 пФ, то есть 23 пикофарада.

    Расшифровка маркировки обозначений современных керамических конденсаторов отечественного и зарубежного производства – мероприятие более сложное.

    Немного о параметрах

    Про два последних параметра (мощность и допуск) стоит сказать пару слов. Допуск в характеристиках конденсаторов — это допустимое/возможное отклонение ёмкости от указанного номинала. Есть виды с малым допуском — в несколько процентов, есть с больши́м — до 20%. Заменить конденсатор с малым допуском на аналог по ёмкости и напряжению, но более высоким допуском можно далеко не всегда. Такое допустимо только в бытовой технике. И то, только там, где величина заряда не слишком критична. Но лучше искать замену с аналогичным допуском.

    Кодировка допустимого отклонения емкостиДопуск %
    E0.005
    L0.01
    P0.002
    W0.005
    B0.1
    C0.25
    D0.5
    F1
    G2
    H2.5
    J5
    K10
    M20
    N30
    Q-10 … +30
    T-10…+50
    S-20…+50
    Z-20…+80

    Часто бывает так, что периодически «вылетает» конденсатор на одном и том же месте. По нашей логике хочется заменить его на элемент с больши́м напряжением. Но здесь может быть 2 варианта. Во-первых: в цепи имеют место скачки напряжения превышающие номинальное напряжение детали. Во-вторых, не учтена реактивная мощность конденсатора, если он работает в высокочастотных цепях.

    Советуем к прочтению: SMD справочник, SMD коды, маркировка радиодеталей

    По большей части параметр мощности не указывают и найти его можно в спецификации на деталь. Им обычно пользуются узкие специалисты.

    Ещё может быть указан температурный коэффициент — ТКЕ, но он ставится далеко не во всех случаях. Он отображает изменение ёмкости в зависимости от температуры элемента. Обычно проставляется, если есть значительная зависимость. Если изменения незначительны, их просто опускают. Многие параметры легко узнавать имея тестер радиоэлементов.

    Особенности хранения

    Танталовые конденсаторы способны сохранять рабочие характеристики в течение длительного времени. При соблюдении нужного режима (температура до +40°, относительная влажность 60%) конденсатор при длительном хранении теряет способность к пайке, сохраняя другие рабочие характеристики.

    Общие рекомендации по продлению срока службы танталового конденсатора и повышению безопасности его эксплуатации:

    • Соблюдение требований техпроцессов;
    • Многоступенчатый контроль качества продукции;
    • Соблюдение условий хранения;
    • Выполнение требований к организации рабочего места для монтажа устройств на плату;
    • Соблюдение рекомендуемого температурного режима пайки;
    • Правильный выбор безопасных рабочих режимов;
    • Соблюдение требований по эксплуатации.

    Особенности применения конденсатора 2A 104 J

    Энергия конденсатора
    Хорошие потребительские параметры обеспечивают возможность использования радиокомпонентов этой категории для решения разных инженерных задач. Конденсаторы применяют в низковольтных цепях для создания качественных фильтров подавления помех. При подготовке конструкторского расчета можно учитывать следующие преимущественные особенности:

    • минимальную паразитную индуктивность;
    • значительный ток разряда;
    • надежность;
    • длительное сохранение исходных рабочих параметров в сложных условиях эксплуатации.

    При рассмотрении аналогов следует обратить внимание на относительно высокую температурную зависимость. Керамические конденсаторы обладают недостаточно большой емкостью при сравнительных габаритах.

    Различная маркировка малых конденсаторов? — Обмен электротехнического стека

    Обычно на большинстве крышек есть две этикетки.

    Первое — это значение, которое записывается:
    <Цифра> <Цифра> <Экспоненциальное представление>
    Обычно оно выражается в пикофарадах.

    Второй — TempCo или температурный коэффициент. Существует две общие системы спецификаций, а именно EIA Class 1 и Class 2. В большинстве случаев это загадочная вторая метка.Обычно пишется:
    <Буква> <Число> <Буква> (хотя есть несколько вариантов)
    Есть несколько распространенных tempcos — NP0 / C0G, X7R, X5R, Y5V, Z5U

    Тантал и керамика большего размера часто также имеют напряжения:
    <номер напряжения> <+ или v>

    Следовательно:

    • 104 K5K (малый)
      Значение 10e4 или 100000 пФ / 0,1 мкФ. Tempco не является стандартным, может быть определенным производителем / расширенным диапазоном.

    • 10 (прямоугольная коробка, перпендикулярный правый верхний угол) 35+ (танталовый колпачок, более крупный вариант последнего)
      Чтобы быть более конкретным, нужна картинка, скорее всего, это колпачок с номинальным напряжением 35 В от 35+.

    • 154 C1K (что такое C1K, некоторые другие обозначения в Википедии?)
      Емкость составляет 15e4, или 150 000 пФ / 0,15 мкФ. Похоже, что это диэлектрик класса 1 от C1K. Это большая кепка? темпко очень хорошо .

    • Orange Ceramic 333 K5X (что такое римская цифра 5X? X?)
      33e3, или 33 000 пФ / 33 нФ.Tempco либо указана производителем, либо неправильно прочитана.

    • Коричневая круглая щель 10n (без другой маркировки, какова рабочая температура?) (Диаметр: 7,5 мм)
      10n, скорее всего, означает 10 nf или 10000 pf. Если керамический, то наверное 50в. Скорее всего дешевая деталь, если не указано напряжение.

    • 27J 100V (что такое 27J?) (Диаметр: 4,9 мм, черная точка на голове)
      Номинальное напряжение самоочевидно. J — множитель, и я думаю, что есть стандарт для буквенных множителей, но я не помню, где его найти.

    • Синий квадрат с щелью (треугольник) 104K X7R50 (Что такое треугольник? X7R50? Рабочее напряжение?) (Сторона = 4,9 мм)
      10e4 — это значение — 100000 пФ / 0,1 мкФ Tempco — это X7R. 50 — это, вероятно, номинальное напряжение.

    • 104 (сторона = 2,6 мм, рабочее напряжение? Допуск?)
      10e4 — 100000 пФ / 0,1 мкФ. Напряжение неизвестно

    Это своего рода предположение. В любом случае, он должен показать, как это работает. Старые детали могут сильно отличаться, и это всегда только ориентир.Лучше всего найти настоящую таблицу данных крышки.

    Многие детали имеют необычные температуры. Это автомобильная / сверхмощная деталь, которая содержит эти компоненты?

    Расчет кода конденсатора

    — Загрузить диаграмму в формате PDF

    В этой статье я объяснил, как рассчитать значение емкости на основе 3-значного кода конденсатора. Для керамических конденсаторов трехзначный код, нанесенный на конденсатор, указывает их значение емкости.

    Что такое керамический конденсатор

    Керамические конденсаторы — это конденсаторы постоянной емкости, в которых диэлектрик изготовлен из керамических материалов.Для любых керамических конденсаторов существует два или более чередующихся слоев керамики и металла, действующих как электроды.

    Таблица кодов конденсаторов: Таблица

    для кодов конденсаторов со значением емкости в пФ и нФ

    Обучающее видео по коду конденсатора

    Как рассчитать код конденсатора 104

    Наиболее распространенный код использует первую цифру, вторую цифру, и схема умножения.

    На этом рисунке я показал, как получить значение емкости из кода конденсатора 104.

    Чтобы получить значение емкости, сначала запишите первую и вторую цифру. Третья цифра указывает количество нулей, которые вы должны написать после первых двух цифр.

    Для кода 104 третья цифра — 4 , поэтому вы должны написать 0000 (4 нуля) после 10 (первые две цифры).

    Таким образом, значение емкости для 104 будет 100000 пикофарад или 100 нанофарад или 0,1 мкФ.

    Код маркировки допуска
    Дополнительные примеры:

    Для некоторых конденсаторов значение емкости указано очень ясно .

    Керамический конденсатор 22 пФ

    Как вы можете видеть на рисунке для 22 пФ , 22 кОм отмечен на конденсаторе. (K означает допуск 10%)

    Дополнительные примеры:

    Измерение емкости с помощью мультиметра

    Вы также можете использовать мультиметр для проверки значения емкости конденсаторов. Здесь я тестирую керамический конденсатор 155J . В мультиметре можно значение емкости 1,5 мкФ .

    Поделитесь своими отзывами об этом обучающем видео по конденсаторам, а также дайте мне знать, если у вас возникнут какие-либо вопросы.

    Вы также можете посетить наш канал YouTube e l для получения дополнительных полезных руководств по базовой электронике.

    Надеюсь, вам понравился этот урок. Спасибо за ваше время.

    Руководство по идентификации комплектов деталей для начинающих

    Добавлено в избранное Любимый 7

    Конденсаторы

    Керамические конденсаторы — 10 пФ, 100 пФ, 1 нФ, 10 нФ, 0,1 мкФ, 1 мкФ

    Конденсаторы никогда не будут играть ведущую роль в схемах, тем не менее, они лежат в основе большинства конструкций.Эти колпачки обычно используются для развязки цепи , где они размещаются параллельно источнику постоянного напряжения для подавления шума. У них также есть множество других применений, таких как накопление энергии и настройка схемы синхронизации (см. Таймер 555 ниже).

    Каждую из этих крышек можно отличить по крошечному принту на корпусе. См. Таблицу ниже, чтобы сопоставить каждую границу с ее значением, вы, вероятно, заметите шаблон:

    Значение ограничения Маркировка крышки
    10 пФ 100
    100пФ 101
    1 нФ 102
    10 нФ 103
    0.1 мкФ 104
    1 мкФ 105
    Электролитические конденсаторы — 10 мкФ и 100 мкФ

    Не слишком дальний родственник керамического конденсатора, эти электролитические колпачки имеют одну очень отличительную черту: они поляризованы , что означает, что у них есть как положительная, так и отрицательная ножка.

    Отрицательная ветвь отмечена знаком «-» на корпусе крышки (золотой на 100 мкФ и белым на 10 мкФ) и более короткой ножкой.Убедитесь, что напряжение на длинном положительном проводе выше, чем на отрицательном. Если вы случайно закрутите колпачок задом наперед, неизбежен катастрофический отказ, обычно в виде того, что колпачок издает забавный «хлопающий» звук и вроде как надувается. Звучит забавно, я знаю, но у вас только пять штук каждого, так что вы можете держать их в рабочем состоянии.

    Совет: Ищете дополнительную информацию о керамических конденсаторах? Ознакомьтесь с этим разделом нашего руководства по идентификации комплектов конденсаторов для получения дополнительной информации о маркировке конденсаторов.

    Для получения дополнительной информации ознакомьтесь с нашим руководством по конденсаторам.

    Конденсаторы

    19 июня 2013 г.

    Узнайте обо всем, что касается конденсаторов. Как они сделаны. Как они работают. Как они выглядят. Типы конденсаторов. Последовательные / параллельные конденсаторы. Конденсаторные приложения.



    ← Предыдущая страница
    Блок регулируемых деталей

    MCQ конденсаторов с пояснительными ответами

    MCQ конденсаторов с пояснительными ответами

    1. Маркировка керамических или неполяризованных конденсаторов — «104». В чем ценность конденсатора?

    1. 104 мкФ
    2. 10000 мкФ
    3. 10000 нФ
    4. 100000 пФ

    Показать пояснительный ответ

    Ответ: 4. 100000 пФ

    Пояснение :
    Вот обозначение конденсатора
    Это означает, что = 10 + 4 нуля = 1,000,00 пФ
    = 100 нФ = 0,1 мкФ

    2. Конденсатор пропускает переменный ток и блокирует постоянный ток

    1. True
    2. False

    Показать пояснительный ответ

    Ответ: (1)

    Емкостное реактивное сопротивление определяется как:

    X c = 1/2 πfC

    Где f — частота приложенного напряжения к пластинам конденсатора, а C — емкость.

    Для постоянного тока значение f равно нулю и, следовательно, емкостное реактивное сопротивление бесконечно. Поскольку емкостное реактивное сопротивление, как и сопротивление, означает противодействие протеканию тока, это означает, что через конденсаторные блоки проходит постоянный ток.

    Поскольку частота сигналов переменного тока не равна нулю или меньше, емкостное реактивное сопротивление имеет конечное значение для питания переменного тока и позволяет пропускать переменный ток.

    3. Выводы всех конденсаторов поляризованы.

    1. True
    2. False

    Показать пояснительный ответ

    Ответ: (2)

    Конденсаторы бывают двух типов в зависимости от их полярности — электролитные и неполяризованные.В то время как электролитические конденсаторы имеют поляризованные выводы, неполяризованные конденсаторы, такие как керамические, слюдяные и т. Д., Имеют эквивалентные выводы.

    4. Значение керамического конденсатора под диском составляет:

    1. 400pF , допуск +/- 5%
    2. 250pF , допуск +/- 2%
    3. 300pF , Допуск +/- 4%
    4. 100 нФ , допуск +/- 2%

    Показать пояснительный ответ

    Ответ: (2)

    В соответствии с цветовым кодом дискового керамического конденсатора первые два цвета представляют значение емкости, третий цвет представляет множитель, а последний цвет представляет допуск.

    Таким образом, обращаясь к таблице цветов, приходим к следующему выводу:

    1. Первый цвет: Красный. Следовательно, первая цифра — 2
    2. Второй цвет: зеленый. Отсюда вторая цифра 5
    3. Таким образом, значение емкости 25
    4. Третий цвет: Коричневый. Следовательно, множитель 10pF
    5. Четвертый цвет: красный. Следовательно, допуск составляет +/- 2%

    Следовательно, емкость конденсатора составляет 25 x 10 пФ, +/- 2%, то есть 250 пФ, допуск +/- 2%.

    5. Показание конденсатора ниже

    1. 46 x 10 пФ, допуск +/- 5%, 250 В
    2. 50 x 100 пФ, допуск +/- 2%, 100 В
    3. 35 x 10 мкФ, допуск +/- 1%, 60 В
    4. 50 x 100 нФ, допуск +/- 4%, 250 В

    Показать пояснительный ответ

    Ответ: (1)

    В соответствии с цветовым кодом для трубчатого конденсатора первые два цвета представляют значение емкости, третий цвет представляет множитель, четвертый цвет представляет допуск, а последний цвет представляет максимально допустимое напряжение на конденсаторе.

    Таким образом, обращаясь к таблице цветов, приходим к следующему выводу:

    1. Первый цвет: Желтый. Следовательно, первая цифра — 4
    2. Второй цвет: синий. Следовательно, вторая цифра — 6
    3. Таким образом, значение емкости — 46.
    4. Третий цвет: Коричневый. Следовательно, множитель 10pF
    5. Четвертый цвет: зеленый. Следовательно, допуск составляет +/- 5%.
    6. Пятый цвет: красный. Следовательно, напряжение составляет 250 Вольт

    Таким образом, емкость конденсатора составляет: 46 x 10 пФ, допуск +/- 5%, 250 Вольт.

    6. Для конденсаторов, соединенных параллельно, общая емкость будет:

    1. Произведение индивидуальных емкостей
    2. Сумма отдельных емкостей
    3. Обратная сумма обратных значений конденсаторов
    4. Ни одна из эти

    Показать пояснительный ответ

    Ответ: (2)

    Рассмотрим нижеприведенное параллельное соединение конденсаторов

    Применяя закон Кирхгофа, мы получаем

    Теперь мы знаем, что ток через конденсатор равен N ,

    Кроме того, напряжение на каждом конденсаторе одинаковое.

    Подставляя в уравнение 1 , получаем:

    Таким образом, при параллельном соединении конденсаторов общая емкость является суммой отдельных емкостей.

    7. Для конденсаторов, соединенных последовательно, общая емкость составляет:

    1. То же, что и значение полного сопротивления при параллельном соединении
    2. Сумма отдельных значений
    3. То же, что и значение итога сопротивление последовательно
    4. Ни один из этих

    Показать пояснительный ответ

    Ответ: (1)

    Рассмотрим схему, приведенную ниже

    Применяя закон Кирхгофа:

    для напряжения, мы получаем

    Теперь напряжение на конденсаторе N,

    Так как ток в контуре такой же.Следовательно, уравнение 1 принимает следующий вид:

    Таким образом, общая емкость конденсаторов, подключенных последовательно, такая же, как и полное сопротивление параллельно.

    8. Энергия, запасенная в конденсаторе, составляет:

    1. ¼ CV
    2. ½ CV 2
    3. CV 2
    4. 1 1 / 2CV25 1 / 2CV25 Пояснительный ответ

      Ответ: (2)

      Когда на конденсатор подается напряжение v (t), через него протекает ток I.Энергия, запасенная в конденсаторе, является интегралом мгновенной мощности.

      Таким образом, энергия,

      Таким образом, энергия, запасенная в конденсаторе, E = 1 / 2CV 2

      9. Значение ESR для реальных конденсаторов находится в диапазоне:

      1. Милли Ом до Ом
      2. Микроом до Милли Ом
      3. Ом до Мегаом
      4. Наноом до Ом

      Показать пояснительный ответ

      Ответ: (1)

      Хотя теоретически диэлектрический материал между пластинами конденсатора имеет бесконечное удельное сопротивление, у него есть некоторое конечное удельное сопротивление, которое приводит к протеканию тока, известного как ток утечки.- 4 Джоулей, 72 x 10 -4 Джоулей

    5. 0 Джоулей, 144 x 10 -5 Джоулей, 72 x 10 -5 Джоулей
    6. 72 x 10 -4 Джоулей, 144 микроджоулей, 0 Джоулей
    7. Ни один из этих

    Показать пояснительный ответ

    Ответ: (2)

    Дано: Напряжение на конденсаторе, C1 = 0

    Следовательно, энергия, накопленная в конденсаторе , C1 = 0 Дж

    Напряжение на конденсаторе, C2 = 12 В

    Следовательно, энергия, запасенная в конденсаторе, C2 = 1 / 2CV 2 = 144 x 10 -5 Дж

    Напряжение на конденсаторе, C3 = 12 В

    Следовательно, энергия, запасенная в конденсаторе, C3 = 1 / 2CV 2 = 72 x 10 -5 Джоулей

    11. Для приведенной ниже схемы ток через конденсатор составляет ———-?

    1. 0,2cos 100πt
    2. 0,15cos 100πt
    3. 0,1cos 100πt
    4. 0,25cos 100πt

    Показать пояснительный ответ Напряжение

    9000 ) = 30sin (100 πt)

    Емкость, C1 = 50uF

    Таким образом, ток через конденсатор, i (t) = Cdv (t) / dt = 50 x 10 -6 d (30sin 100πt) / dt = 50 x 10 -6 x 30 x 100 x πcos 100 πt = 15 x 10 -2 cos 100πt

    12. Конденсатор работает в ———–

    1. электрическом поле
    2. Магнитном поле
    3. Ни одного из этих
    4. Оба

    Показать пояснительный ответ

    Ответ: (1)

    Конденсатор состоит из двух электрических проводники, разделенные диэлектрическим материалом на расстояние d. Когда к проводникам прикладывается напряжение, разность потенциалов между проводниками заряжает проводники, что создает однородное электрическое поле между проводниками.Это электрическое поле определяется как сила на единицу заряда. Таким образом, конденсатор работает в электрическом поле.

    13. Емкость конденсатора — это мера его способности к ——-

    1. Сопротивление протеканию тока
    2. Сохранение заряда
    3. Разрешение протекания тока
    4. Ни одно из этих значений

    Показать пояснительный ответ

    Ответ: (2)

    Емкость — это мера конденсатора для хранения заряда при заданном электрическом потенциале.Если он заряжен до «V» вольт, он сохраняет заряд + Q на одной пластине и заряжает -Q на другой пластине. Емкость 1 Фарад означает накопление 1 кулоновского заряда для разности потенциалов 1 вольт.

    14. Когда на конденсатор подается постоянное напряжение, он ———–

    1. Действует как короткое замыкание при подаче напряжения, а затем как разомкнутая цепь после полной зарядки
    2. Действует как разомкнутая цепь с самого начала
    3. Действует как короткое замыкание
    4. Ни один из этих

    Показать пояснительный ответ

    Ответ: (1)

    Рассмотрим схему, приведенную ниже:

    При подаче постоянного напряжения к конденсатору сначала через пластины конденсатора проходит большой ток, когда он начинает заряжаться.По истечении времени «t» значение тока падает до нуля, когда пластины конденсатора полностью заряжаются. На этот раз «t» задается как величина, обратная RC, где R — номинал резистора R1.

    15. Конденсаторы используются в системе электроснабжения для ——–

    1. Повышение коэффициента мощности
    2. Уменьшение сетевого тока
    3. Обеспечение стабильности напряжения
    4. Все эти

    Показать пояснительный ответ

    Ответ: (4)

    Большинство систем электроснабжения имеют индуктивные нагрузки, которые вызывают запаздывающий эффект на ток питания.Это вызывает увеличение полной или реактивной мощности и увеличивает ток питания.

    Конденсатор 104: что это значит?

    Очень часто от новичков до радиолюбителей и от людей, далеких от радиоэлектроники, но по тем или иным причинам столкнувшихся с ремонтом электронных устройств, можно услышать такие вопросы: «Конденсатор 104 — что это значит? Как понять значение маркировки конденсаторов? »В этой статье мы постараемся популяризировать этот вопрос.

    Такая маркировка конденсаторов (104) может быть только для керамических изделий. Это связано с тем, что они, в отличие от электролитических, имеют довольно небольшие габаритные размеры, и соответственно на их корпусе просто нет места для полной и подробной записи всей необходимой информации, такой как емкость продукта, тип и так далее. .

    Керамический конденсатор (104) является естественной частью любой электронной схемы. Эти изделия используются везде, где необходимо работать с сигналами, меняющими полярность.Керамические конденсаторы имеют отличные частотные характеристики, низкие токи утечки, незначительные потери, малые габариты и невысокую стоимость. В тех схемах, где требуются описанные выше характеристики, керамические конденсаторы просто незаменимы, но до недавнего времени проблемы, связанные с технологическим процессом их производства, отводили этим устройствам нишу устройств малой емкости. Еще совсем недавно керамические конденсаторы емкостью 10 мкФ воспринимались как экзотика, стоимость таких изделий была неоправданно высокой.Развитие современных технологий позволило нескольким компаниям достичь на сегодняшний день емкости керамических конденсаторов 100 мкФ и заявить о скором достижении еще более высоких значений. Кроме того, цены на все группы этих товаров постоянно снижаются.

    Теперь перейдем к маркировке керамических конденсаторов. Он может быть двух типов: трех или четырех символов. У нас маркировка «104», конденсатор с такой формой записи имеет трехзначную кодировку. Расшифровка этого типа довольно проста: первые два символа указывают емкость в пикофарадах, а последний — количество нулей.Посмотрим, что означает конденсатор «104». Получается, что первые две цифры (10) означают емкость, а последняя (4) — количество нулей. Следовательно, маркировка 104 означает 100000 пФ (100 нФ или 0,1 мкФ). Как видите, все очень просто. Эта форма записи может кодировать минимальное значение 1,0 пФ, она будет иметь следующий вид: 010. Если необходимо записать значение емкости меньше одного пикофарада, используйте латинскую букву R. Эта запись будет иметь следующий вид: 0R5, что означает 0,5 пФ.Если значение емкости меньше 1,0 пФ, то последняя цифра устанавливается на 9, это не означает, что необходимо добавить 9 нулей. Вот пример такого рекорда — 109 (1,0 пФ), 159 (1,5 пФ) и 689 (6,8 пФ).

    Теперь рассмотрим четырехзначную маркировку керамических конденсаторов. В этой форме записи первые три цифры указывают емкость в пикофарадах, а четвертая — количество нулей.

    Вот и что понимается под конденсатором «104». Теперь, если вам нужны керамические конденсаторы, вы легко сможете выяснить, сколько емкости записано на том или ином элементе.И вам не придется обращаться за помощью к специалистам.

    Как читать значения конденсатора?

    У вас есть куча из конденсаторов и вы не можете их использовать, потому что вы не знаете их номинала ? Наряду с резисторами , конденсаторами являются второй наиболее часто используемой частью практически в любой аудиосхеме, и возможность считывания их значения является обязательной для любого электронного любителя . Продолжайте читать и узнайте, как узнать номинал конденсатора по его маркировке !

    КОНДЕНСАТОРЫ — КОЛ.

    Способность быстро считывать значение конденсатора и возможность переключаться между устройствами — важный навык, который поможет вам сэкономить много времени при создании ваших педалей эффектов или даже ваших собственных проектов DIY.Прежде всего, мы объясним, как устройства работают с конденсаторами. Базовый конденсаторный блок — Фарад . Проблема в том, что этот блок действительно огромен, и в большинстве проектов номиналы конденсаторов намного ниже, а работа с числами, такими как 0,0000000047 Фарад, довольно неудобна и подвержена ошибкам. Вот почему, если с резисторами мы используем килоОм (10 Ом) и Мега Ом (10 Ом), то с конденсаторами мы используем делителей основного блока . Вот они:

    • пикофарад ( пФ ) — это наименьший блок , используемый в аудиосхемах, и обычно ассоциируется с керамическими конденсаторами , поскольку они имеют очень низкое значение. 1 пФ = 10⁻¹² F = 0,000000000001 F
    • наноФарад ( нФ ) является наиболее распространенной единицей измерения, и стандартные полиэфирные конденсаторы обычно попадают в этот диапазон. 1 нФ = 10 F = 0,000000001 F
    • мкФ ( мкФ ) в основном используется с электролитическими конденсаторами , поскольку они имеют более высокое значение емкости, чем другие. 1 мкФ = 10⁻⁶ F = 0,000001 F

    Как это может показаться немного запутанным, вот справочная таблица конденсатора с соотношением между ними:

    Таблица 1: Соотношение единиц емкости

    КОНДЕНСАТОРЫ — ЧТЕНИЕ

    Чтобы немного усложнить задачу, не все конденсаторы имеют одну и ту же систему маркировки , поэтому мы должны сделать разницы между тремя основными типами конденсаторов: электролитический, керамический и полиэфирный .Начнем с электролитических , так как они самые простые для чтения . Полиэстер и керамика имеют одинаковую систему маркировки, но с некоторыми небольшими различиями . В следующих примерах мы будем использовать изображения некоторых конденсаторов, которые мы отправляем с нашими наборами педалей эффектов для самостоятельного изготовления , поэтому обязательно возьмите один, и примените свои знания на практике !


    1 — Конденсаторы электролитические

    Пример: значение электролитического конденсатора

    Пример : электролитический конденсатор 100 мкФ, максимум 400 В.

    Электролитические конденсаторы довольно просты для чтения : поскольку они довольно большие по сравнению с остальными, значение прямо записано в корпусе . Единица измерения также указана, но поскольку они имеют большие значения емкости, выбранная единица — мкФ, ( мкФ, ) почти в 100% случаев, даже если единица меньше (например, электролитический конденсатор 220 нФ будет помечен как 0,22 мкФ , а не 220 нФ). Кроме того, максимальное напряжение конденсатора также может быть считано.Это значение напряжения, которое не должно превышать ни при каких обстоятельствах , так как конденсатор может быть необратимо поврежден и даже взорваться.


    2 — Конденсаторы керамические

    Керамические конденсаторы на меньше, чем на электролитические, поэтому на них нельзя записать полную стоимость плюс единицу. Вместо этого у них 3-значная система кодирования . Первые две цифры представляют собой значение конденсатора , а третья — , количество нулей , которые нужно добавить справа.Таким образом, мы получаем значение конденсатора в пикофарадах .


    Пример 1: керамический конденсатор обозначен как 104

    10 → базовое значение
    4 → количество нулей для добавления

    Значение : 100000 пФ = 100 нФ

    Пример 1: показание номинала керамического конденсатора
    Пример 2: показание номинала керамического конденсатора

    Пример 2:

    У этого конденсатора всего две цифры.Что делать в этом случае? Когда значение меньше, чем 100 пФ , только , две цифры используются для непосредственной маркировки значения конденсатора. В данном случае у нас конденсатор 22пФ . Обычные значения — 47 пФ (обозначено 47), 470 пФ (обозначено 471). Что касается максимальных напряжений, керамические конденсаторы имеют больших значений (~ 50 В), поэтому маловероятно, что вы повредите их, превысив это значение!


    3 — Конденсаторы полиэфирные

    Если вы умеете правильно читать керамические конденсаторы, у вас не должно возникнуть проблем с полиэфирами! Маркировка конденсаторов из полиэстера работает так же, как и для керамики , но обычно на них написано больше информации.Они могут показаться немного более запутанный из-за этого, но вам нужно только сосредоточиться на трех последовательных цифрах . В отличие от керамики, которая может иметь две цифры для некоторых значений, полиэфиры всегда имеют три цифры , поэтому вам будет легко их идентифицировать. Дополнительная информация появляется только в некоторых случаях и показывает допуск , , что составляет , насколько реальное значение может отличаться от обозначенного (буква рядом со значением) и максимального напряжения рейтинг, который нельзя превышать (цифра + буквенный код или цифра, в зависимости от конденсатора).В таблице ниже вы можете найти эквивалентов между кодами и значениями .

    Пример 1: Показание значения конденсатора из зеленого полиэстера

    Пример 1: зеленый полиэфирный конденсатор с маркировкой 2A104J

    10 → базовое значение
    4 → количество добавляемых нулей
    — 2A → 100 В, обозначенные цифрой + буквенный код
    — J → 5% допуск

    Значение : 100000 пФ → 100 нФ ± 5%, 100 В максимум

    — Насколько реальное значение может отличаться от обозначенного значения ? 100 нФ x 5% = 5 нФ → реальная емкость конденсатора будет в диапазоне 95 нФ — 105 нФ

    В то время как резисторы имеют более жесткие допуски (обычно 1% -5%), для конденсаторов все, что ниже 10%, является хорошим допуском , и мы разрабатываем наши схемы педалей эффектов так, чтобы эти допуски не влияли на конечный результат .

    Таблица 2: Таблица допусков и кодов напряжения полиэфирного конденсатора
    Пример 2: показание номинала конденсатора полиэфирной коробки

    Пример 2: полиэфирный конденсатор коробчатого типа, обозначенный как 474J63

    47 → базовое значение
    4 → количество добавляемых нулей
    — 63 Максимум 63 В (обозначается непосредственно значением напряжения )
    — J → допуск 5%

    Значение : 470000 пФ → 470 нФ ± 5%, 63 В

    — Насколько реальное значение может отличаться от обозначенного значения ? 470 нФ х 5% = 23.5 нФ → реальное значение конденсатора будет в диапазоне 446,5 нФ — 493,5 нФ

    Лучший способ проверить свои знания — применить их на практике, поэтому обязательно посетите наш раздел комплектов , где вы найдете комплекты педалей эффектов со всем необходимым для создания собственной педали эффектов.

    Надеемся, этот пост был вам полезен! Если вам понравилось, поделитесь им и помогите другим людям улучшить свои навыки чтения конденсаторов 😉

    20pcs A 3216 10uF 16V 106 106C SMD Танталовый конденсатор: Amazon.com: Industrial & Scientific


    В настоящее время недоступен.
    Мы не знаем, когда и появится ли этот товар в наличии.
    • Убедитесь, что это подходит введя номер вашей модели.
    • Протестировано перед отправкой. Ссылка на упаковку ♥ Справочная масса: 0,1 кг (0,22 фунта).
    • Обычно расчетное время доставки: 7-24 дня (отслеживается) —— Мы также обеспечиваем ускоренную доставку через DHL или UPS: 2-7 дней (без учета времени обработки).
    • Если сумма заказа в нашем магазине превышает 120 долларов США, мы бесплатно воспользуемся услугой ускоренной доставки.
    • Продукты редкого типа предоставляют —— ключевое слово для поиска или модель продукта, такую ​​как «RF-кабель» или «разъем» в нашем магазине, вы можете найти некоторые продукты редкого типа.. Или без колебаний отправьте нам электронное письмо с моделью продукта, мы отправим вам ссылку напрямую.
    • Мы придаем большое значение сотрудничеству с каждым клиентом. Любой вопрос, пожалуйста, не стесняйтесь обращаться ко мне. Желаю отличного дня!
    ]]>
    Характеристики
    Фирменное наименование Phoncoo
    Ean 5303396756427
    Материал Тантал
    Номер детали phICa10718
    Код UNSPSC 32121500
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.