Что означают цифры и буквы в маркировке конденсаторов. Как определить емкость конденсатора по маркировке. Какие бывают способы кодирования параметров конденсаторов. Как расшифровать обозначения допуска и рабочего напряжения конденсаторов.
Основные параметры конденсаторов, указываемые в маркировке
При выборе и использовании конденсаторов важно правильно интерпретировать информацию, указанную в их маркировке. Основными параметрами, которые обычно отражаются в маркировке конденсаторов, являются:
- Номинальная емкость
- Допустимое отклонение емкости (допуск)
- Максимальное рабочее напряжение
Рассмотрим подробнее, как кодируются эти параметры в маркировке различных типов конденсаторов.
Способы обозначения емкости конденсаторов
Существует несколько основных способов маркировки емкости конденсаторов:
1. Трехзначный цифровой код
При таком способе маркировки:
- Первые две цифры обозначают значение емкости
- Третья цифра — количество нулей после первых двух цифр
Например, маркировка «104» означает емкость 10 * 10000 = 100000 пФ = 100 нФ = 0.1 мкФ.

2. Буквенно-цифровой код
В этом варианте маркировки используются буквы для обозначения единиц измерения:
- p или пФ — пикофарады
- n или нФ — нанофарады
- μ или мкФ — микрофарады
Например, «100n» означает 100 нФ, «4.7μ» — 4.7 мкФ.
Как определить допуск конденсатора по маркировке
Допуск конденсатора обычно обозначается буквой после значения емкости. Вот некоторые распространенные обозначения допусков:
- F: ±1%
- G: ±2%
- J: ±5%
- K: ±10%
- M: ±20%
Например, маркировка «100nK» означает емкость 100 нФ с допуском ±10%.
Обозначение рабочего напряжения конденсаторов
Максимальное рабочее напряжение обычно указывается в вольтах после обозначения емкости и допуска. Используются следующие варианты:
- Просто число, например «250» — 250 В
- Число с буквой V, например «400V» — 400 В
- Буквенный код (реже), например «2J» — 63 В
Особенности маркировки керамических конденсаторов
Керамические конденсаторы из-за своих малых размеров часто маркируются только трехзначным цифровым кодом емкости. Например:
- 101 = 100 пФ
- 222 = 2200 пФ = 2.2 нФ
- 473 = 47000 пФ = 47 нФ
На некоторых керамических конденсаторах можно встретить четырехзначный код, где последняя цифра также обозначает число нулей.

Как расшифровать маркировку пленочных конденсаторов
Пленочные конденсаторы часто имеют более подробную маркировку, включающую:
- Тип диэлектрика (например, MKT для полиэстера)
- Емкость (например, 0.1μF)
- Допуск (например, ±10%)
- Рабочее напряжение (например, 400V)
Полная маркировка может выглядеть так: MKT 0.1μF ±10% 400V
Маркировка электролитических конденсаторов
На электролитических конденсаторах обычно указывается:
- Емкость в микрофарадах
- Рабочее напряжение
- Полярность (знак «+» у положительного вывода)
- Максимальная рабочая температура
Например: 470μF 25V 105°C
Как правильно читать маркировку импортных конденсаторов
Маркировка импортных конденсаторов в целом схожа с отечественной, но могут быть некоторые отличия:
- Чаще используются буквенные обозначения единиц измерения (p, n, μ)
- Десятичная точка может заменяться буквой R
- Допуск может обозначаться не только буквами, но и числами (например, ±5%)
Важно внимательно изучать маркировку и при необходимости обращаться к справочным данным производителя.

Практические советы по расшифровке маркировки конденсаторов
При работе с конденсаторами рекомендуется придерживаться следующих правил:
- Всегда проверяйте соответствие рабочего напряжения конденсатора напряжению в схеме
- Учитывайте допуск при подборе конденсаторов для точных цепей
- При сомнениях в расшифровке маркировки измеряйте емкость мультиметром
- Сверяйтесь с даташитами производителей для уточнения системы маркировки
- Помните, что на старых или миниатюрных конденсаторах маркировка может быть неполной
Часто задаваемые вопросы о маркировке конденсаторов
Что означает буква R в маркировке конденсатора?
Буква R в маркировке конденсатора обычно используется вместо десятичной точки. Например, «4R7» означает 4.7 (единицы измерения зависят от контекста — это могут быть пФ, нФ или мкФ).
Как определить полярность электролитического конденсатора?
Полярность электролитического конденсатора обычно обозначается следующим образом:
- Знак «+» или «-» рядом с соответствующим выводом
- Более длинный вывод — положительный
- Полоса на корпусе со стороны отрицательного вывода
Что делать, если маркировка конденсатора стерлась?
Если маркировка конденсатора стерлась или неразборчива, можно:

- Измерить емкость с помощью мультиметра или измерителя LCR
- Определить тип конденсатора по его внешнему виду и размерам
- Попробовать найти аналогичный конденсатор в той же схеме или устройстве
Помните, что точное определение всех параметров стертого конденсатора может быть затруднительным, поэтому в ответственных случаях лучше заменить его на новый с известными характеристиками.
Маркировка конденсаторов расшифровка 104
Правила маркировки конденсаторов постоянной ёмкости
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0. +100 | P | |
-10. +30 | Q | |
± 22 | S | |
-0. +50 | T | |
-0. +75 | U | Э |
-10. +100 | W | Ю |
-20. +5 | Y | Б |
-20. +80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Источник: go-radio.ru
Кодовая маркировка конденсаторов
В аппаратуре часто встречаются конденсаторы с кодовой маркировкой в виде цифр — 102, 103, 501, 772 и т.д. Как же распознать эти значения? Давайте подробнее рассмотрим кодировку в этой статье.
Первые две цифры кода указывают на значение ёмкости в пикофарадах (пф), последняя — количество нулей.
Вот например:
Если на конденсаторе написано «105» (нижняя строчка таблицы) значит у него ёмкость 1,0 мкф (микрофарада) или 1000нф (нанофарад) или 100 000пф (пикофарад).
Если на конденсаторе написано «104» (см. таблицу) значит у него ёмкость 0,1 мкф (микрофарада) или 100нф (нанофарад).
Если на конденсаторе написано «103» (см. таблицу) значит у него ёмкость 0,01 мкф (микрофарада) или 10нф (нанофарад) или 10 000пф (пикофарад).
Если на конденсаторе написано «102» (см. таблицу) значит у него ёмкость 0,001 мкф (микрофарада) или 1нф (нанофарада) или 1000пф (пикофарад).
Если на конденсаторе написано «101» (см. таблицу) значит у него ёмкость 0,0001 мкф (микрофарада) или 0,1нф (нанофарада) или 100пф (пикофарад).
Если конденсатор имеет ёмкость менее 10 пФ, то последняя цифра может быть «9».
Например, код «109» — ёмкость 1,0 пф или 0,001 нф (нанофарад) — смотрите верхняя строчка таблицы.
При ёмкостях меньше 1 пф первая цифра «0». Буква «R» используется в качестве запятой.
Например, код «010» равен 1,0 пф, а код «0R1» — 0,1 пФ.
Источник: www.mastervintik.ru
Маркировка конденсаторов
Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.
Как маркируются большие конденсаторы
Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.
Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.
В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).
При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.
При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.
При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.
Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.
Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.
Расшифровка маркировки конденсаторов
Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.
Обозначение цифр
Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.
Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.
Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.
После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.
Обозначение букв
После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.
При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.
Маркировка керамических конденсаторов
Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» — + 0,25 пФ, D — + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.
Смешанная буквенно-цифровая маркировка
Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.
Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.
Прочие маркировки
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.
Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
Источник: electric-220.ru
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
1. Кодировка 3-мя цифрами
Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.
* Иногда последний ноль не указывают.
2. Кодировка 4-мя цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).
3. Маркировка ёмкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
4. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандар-
тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Источник: cxem.net
Маркировка конденсаторов
Правила маркировки конденсаторов постоянной ёмкости
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0. +100 | P | |
-10. +30 | Q | |
± 22 | S | |
-0. +50 | T | |
-0. +75 | U | Э |
-10. +100 | W | Ю |
-20. +5 | Y | Б |
-20. +80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Источник: go-radio.ru
Маркировка пленочных конденсаторов импортных — Морской флот
Правила маркировки конденсаторов постоянной ёмкости
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) – 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C – 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0. +100 | P | |
-10. +30 | Q | |
± 22 | S | |
-0. +50 | T | |
-0. +75 | U | Э |
-10. +100 | W | Ю |
-20. +5 | Y | Б |
-20. +80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Выбирая любой элемент при создании схемы, необходимо знать его маркировку. В отличие от резисторов, для обозначения конденсаторов используются более сложные коды. Чаще всего трудности возникают при подборе элементов малого размера. Каждый специалист, много работающему с этим типом устройств, должен знать маркировку керамических конденсаторов.
Единицы емкости конденсаторов и их обозначение
Для прочтения технических характеристик устройств необходимо обладать определенным набором знаний. В первую очередь речь идет о единицах измерения. Емкость принято определять в фарадах (Ф). Однако один фарад является слишком большим значением для используемых в технике электрических цепей. Таким образом, все номиналы устройств указаны чаще всего в следующих единицах:
- Микрофарад — мкФ.
- Нанофарад — нФ.
- Пикофарад — пФ.
Чтобы упростить задачу, были созданы таблицы номиналов конденсаторов.
Маркировка наносится на корпус устройства. Хотя и встречаются некоторые особенности конструкции кода, ориентироваться стоит на единицы измерения. Некоторые обозначения могут быть нанесены прописными буквами, например, M. F. На практике это означает микрофарад (mF). Также можно встретить и маркировку FD — сокращение от слова «farad». В результате надпись mmfd советует одной пикофараде.
На корпусах маленьких конденсаторов можно встретить надпись, содержащую число и букву, скажем, 300 m. На практике это означает 3 пикофарады. Встречаются устройства, на которые нанесены только цифры. Так маркировка «102», соответствует емкости в 1 нанофарад. На корпус также могут быть нанесены и предельные отклонения от номинальной емкости устройства. Данная информация окажется полезной в ситуации, когда в цепи должны использоваться конденсаторы с точным значением емкости.
Если в коде не указан символ %, то необходимо обратить внимание на букву. Она может быть расположена отдельно либо сразу после показателя емкости устройства. Следующим шагом в расшифровке обозначений радиодеталей этого типа является их напряжение. Здесь также используется буквенно-цифровой код. Единицами измерения в данном случае является вольт. В ситуации, когда подобная информация не указана, устройство может быть использовано только в низковольтных схемах. Если устройство рассчитано на постоянный ток, то его нельзя применять в схемах с переменным.
Следующим этапом является определение полярности конденсатора. С этим проблем возникнуть не должно, так как используются символы + и — около соответствующего вывода. Если они отсутствуют на корпусе устройства, то его можно подключать к любой клемме. Если размеры конденсатора малы, то полярность может обозначаться цветными полосами.
Правила расшифровки маркировки
Сначала разберемся с цифровой маркировкой конденсаторов. Ели устройство имеет маленькие размеры, то для указания емкости используется стандарт EIA. При наличии в коде только двух цифр, после которых следует буква, их значение соответствует номинальной емкости. Третья цифра в коде представляет собой множитель нуля. Если она находится в диапазоне от 0 до 6, то к первым двум цифрам необходимо добавить соответствующее количество нулей. Скажем, обозначение «463» равно 46*10 3 .
Единицы измерения зависят от размеров устройства, и для маленьких это — пикофарады. В остальных случаях принято использовать микрофарады. Когда цифровое обозначение будет расшифровано, необходимо переходить к буквам. Когда они расположены в составе первых двух символов, то используется один из 2 способов:
- Буква «R» заменяет запятую — надпись 3R2 соответствует емкости в 3,2 пикофарады.
- Буква «р» используется в качестве десятичной запятой — р60 соответствует 0,6 пикофарадам. Буквы «n» и «m» выполняют аналогичную задачу, но соответствуют нано- и микрофараде.
Когда может помочь онлайн-калькулятор
Также может использоваться и смешанная маркировка конденсаторов, расшифровка которой проводится похожим образом. Однако первая буква в этом случае указывает на минимальную рабочую температуру элемента. Затем следует номинальная емкость устройства и показатели предельных отклонений. На совсем маленьких устройствах может быть нанесен цветовой код. В такой ситуации вам может помочь расшифровать маркировку конденсаторов калькулятор онлайн. Это позволит сэкономить массу времени.
Другие виды маркировки
Кроме описанных выше способов кодирования информации о конденсаторах, иногда встречаются и другие, если они были выпущены достаточно давно. В подобной ситуации стоит обратиться к соответствующей справочной литературе, чтобы сделать правильный выбор. В большинстве случаев вполне достаточно и рассмотренных выше вариантов. Советские конденсаторы маркируются аналогично импортным, но на них может быть использована кириллица для обозначения емкости.
1. Маркировка тремя цифрами.
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Маркировка четырьмя цифрами.
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.
3. Буквенно-цифровая маркировка.
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы.
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы.
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
буква | e | G | J | A | C | D | E | V | H (T для танталовых) |
напряжение | 2,5 В | 4 В | 6,3 В | 10 В | 16 В | 20 В | 25 В | 35 В | 50 В |
Кодовая маркировка, дополнение
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
А. Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Код | Емкость [пФ] | Емкость [нФ] | Емкость [мкФ] |
109 | 1,0 | 0,001 | 0,000001 |
159 | 1,5 | 0,0015 | 0,000001 |
229 | 2,2 | 0,0022 | 0,000001 |
339 | 3,3 | 0,0033 | 0,000001 |
479 | 4,7 | 0,0047 | 0,000001 |
689 | 6,8 | 0,0068 | 0,000001 |
100* | 10 | 0,01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0,022 | 0,000022 |
330 | 33 | 0,033 | 0,000033 |
470 | 47 | 0,047 | 0,000047 |
680 | 68 | 0,068 | 0,000068 |
101 | 100 | 0,1 | 0,0001 |
151 | 150 | 0,15 | 0,00015 |
221 | 220 | 0,22 | 0,00022 |
331 | 330 | 0,33 | 0,00033 |
471 | 470 | 0,47 | 0,00047 |
681 | 680 | 0,68 | 0,00068 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1,5 | 0,0015 |
222 | 2200 | 2,2 | 0,0022 |
332 | 3300 | 3,3 | 0,0033 |
472 | 4700 | 4,7 | 0,0047 |
682 | 6800 | 6,8 | 0,0068 |
103 | 10000 | 10 | 0,01 |
153 | 15000 | 15 | 0,015 |
223 | 22000 | 22 | 0,022 |
333 | 33000 | 33 | 0,033 |
473 | 47000 | 47 | 0,047 |
683 | 68000 | 68 | 0,068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0,15 |
224 | 220000 | 220 | 0,22 |
334 | 330000 | 330 | 0,33 |
474 | 470000 | 470 | 0,47 |
684 | 680000 | 680 | 0,68 |
105 | 1000000 | 1000 | 1,0 |
* Иногда последний ноль не указывают.
В. Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Код | Емкость[пФ] | Емкость[нФ] | Емкость[мкФ] |
1622 | 16200 | 16,2 | 0,0162 |
4753 | 475000 | 475 | 0,475 |
С. Маркировка емкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
Код | Емкость [мкФ] |
R1 | 0,1 |
R47 | 0,47 |
1 | 1,0 |
4R7 | 4,7 |
10 | 10 |
100 | 100 |
D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Код | Емкость |
p10 | 0,1 пФ |
Ip5 | 1,5 пФ |
332p | 332 пФ |
1НО или 1nО | 1,0 нФ |
15Н или 15n | 15 нФ |
33h3 или 33n2 | 33,2 нФ |
590H или 590n | 590 нФ |
m15 | 0,15мкФ |
1m5 | 1,5 мкФ |
33m2 | 33,2 мкФ |
330m | 330 мкФ |
1mO | 1 мФ или 1000 мкФ |
10m | 10 мФ |
Кодовая маркировка электролетических конденсаторов для поверхностного монтажа
Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования
А. Маркировка 2 или 3 символами
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Код | Емкость [мкФ] | Напряжение [В] |
А6 | 1,0 | 16/35 |
А7 | 10 | 4 |
АА7 | 10 | 10 |
АЕ7 | 15 | 10 |
AJ6 | 2,2 | 10 |
AJ7 | 22 | 10 |
AN6 | 3,3 | 10 |
AN7 | 33 | 10 |
AS6 | 4,7 | 10 |
AW6 | 6,8 | 10 |
СА7 | 10 | 16 |
СЕ6 | 1,5 | 16 |
СЕ7 | 15 | 16 |
CJ6 | 2,2 | 16 |
CN6 | 3,3 | 16 |
CS6 | 4,7 | 16 |
CW6 | 6,8 | 16 |
DA6 | 1,0 | 20 |
DA7 | 10 | 20 |
DE6 | 1,5 | 20 |
DJ6 | 2,2 | 20 |
DN6 | 3,3 | 20 |
DS6 | 4,7 | 20 |
DW6 | 6,8 | 20 |
Е6 | 1,5 | 10/25 |
ЕА6 | 1,0 | 25 |
ЕЕ6 | 1,5 | 25 |
EJ6 | 2,2 | 25 |
EN6 | 3,3 | 25 |
ES6 | 4,7 | 25 |
EW5 | 0,68 | 25 |
GA7 | 10 | 4 |
GE7 | 15 | 4 |
GJ7 | 22 | 4 |
GN7 | 33 | 4 |
GS6 | 4,7 | 4 |
GS7 | 47 | 4 |
GW6 | 6,8 | 4 |
GW7 | 68 | 4 |
J6 | 2,2 | 6,3/7/20 |
JA7 | 10 | 6,3/7 |
JE7 | 15 | 6,3/7 |
JJ7 | 22 | 6,3/7 |
JN6 | 3,3 | 6,3/7 |
JN7 | 33 | 6,3/7 |
JS6 | 4,7 | 6,3/7 |
JS7 | 47 | 6,3/7 |
JW6 | 6,8 | 6,3/7 |
N5 | 0,33 | 35 |
N6 | 3,3 | 4/16 |
S5 | 0,47 | 25/35 |
VA6 | 1,0 | 35 |
VE6 | 1,5 | 35 |
VJ6 | 2,2 | 35 |
VN6 | 3,3 | 35 |
VS5 | 0,47 | 35 |
VW5 | 0,68 | 35 |
W5 | 0,68 | 20/35 |
В. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
С. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
Маркировка конденсаторов импортных 33n. Кодовая и цветовая маркировака конденсаторов
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов. Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре. Естественно, перед вторичным использованием необходимо проверить конденсаторы , особенно электролитические , которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n .
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47H C. Данная запись соответствует 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте .
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов .
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK , 220nM , 470nJ .
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Д опуск в % | Б уквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0…+100 | P | |
-10…+30 | Q | |
± 22 | S | |
-0…+50 | T | |
-0…+75 | U | Э |
-10…+100 | W | Ю |
-20…+5 | Y | Б |
-20…+80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Н оминальное рабочее напряжение , B | Б уквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов :
Кодовая маркировка конденсаторов 3 цифрами
К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.
Код | Пикофарады, пФ, pF | Нанофарады, нФ, nF | Микрофарады, мкФ, μF |
109 | 1.0 пФ | 0.0010нф | |
159 | 1.5 пФ | 0.0015нф | |
229 | 2.2 пФ | 0.0022нф | |
339 | 3.3 пФ | 0.0033нф | |
479 | 4.7 пФ | 0.0048нф | |
689 | 6.8 пФ | 0.0068нФ | |
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Кодовая маркировка конденсаторов 4 цифрами
При маркировки конденсаторов этим способом важно запомнить что полученное значение будет измеряться в пикоФарадах. К примеру маркировка конденсатора 1002 будет расшифровываться следующим образом: 1002 = 100*10 2 пФ = 10000 пФ = 10.0 нФ . Последняя цифра это показатель степени по основанию 10. А первые три это число которое необходимо умножить на 10 возведенную в определенную степень.
Буквенно-цифровая маркировка
В данном случае вместо запятой ставится соответсвующая единица измерения (пФ, нФ, мкФ).
Пример: 10п или 10p = 10 пФ, 4n7 или 4н7 = 4,7 нФ, μ 22 = 0.22 мкФ.
Вожно запомнить что буква «п» очень похожа на «n» и не нужно их путать. Что довольно часто делают начинающие радиолюбители.
Иногда вместо мкФ используют букву R.
Например: 6R8 = 6,8 мкФ
Маркировка планарных керамических конденсаторов
Такие конденсаторы маркируются двумя буквами, первая это производитель конденсатора, а вторая это значение в пикофарадах в соответствии с таблицей, приведенной ниже.
Маркировка тремя цифрами.
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF | код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF | ||||
1.0 пФ | 1000 пФ | 1 нФ | |||||||||
1.5 пФ | 1500 пФ | 1.5 нФ | |||||||||
2.2 пФ | 2200 пФ | 2.2 нФ | |||||||||
3.3 пФ | 3300 пФ | 3.3 нФ | |||||||||
4.7 пФ | 4700 пФ | 4.7 нФ | |||||||||
6.8 пФ | 6800 пФ | 6.8 нФ | |||||||||
10 пФ | 0.01 нФ | 10000 пФ | 10 нФ | 0.01 мкФ | |||||||
15 пФ | 0.015 нФ | 15000 пФ | 15 нФ | 0.015 мкФ | |||||||
22 пФ | 0.022 нФ | 22000 пФ | 22 нФ | 0.022 мкФ | |||||||
33 пФ | 0.033 нФ | 33000 пФ | 33 нФ | 0.033 мкФ | |||||||
47 пФ | 0.047 нФ | 47000 пФ | 47 нФ | 0.047 мкФ | |||||||
68 пФ | 0.068 нФ | 68000 пФ | 68 нФ | 0.068 мкФ | |||||||
100 пФ | 0.1 нФ | 100000 пФ | 100 нФ | 0.1 мкФ | |||||||
150 пФ | 0.15 нФ | 150000 пФ | 150 нФ | 0.15 мкФ | |||||||
220 пФ | 0.22 нФ | 220000 пФ | 220 нФ | 0.22 мкФ | |||||||
330 пФ | 0.33 нФ | 330000 пФ | 330 нФ | 0.33 мкФ | |||||||
470 пФ | 0.47 нФ | 470000 пФ | 470 нФ | 0.47 мкФ | |||||||
680 пФ | 0.68 нФ | 680000 пФ | 680 нФ | 0.68 мкФ | |||||||
1000000 пФ | 1000 нФ | 1 мкФ | |||||||||
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
«Справочник» — справочная информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам ,конденсаторам , светодиодам и т.д. Вся справочная информация электронных компонентов электронных компонентов .
· Допуски
· Кодовая маркировка
· Допуски
· Конденсаторы с линейной зависимостью от температуры
· Конденсаторы с нелинейной зависимостью от температуры
· Кодовая маркировка
· Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»
Допуски
Таблица 1
*-Для конденсаторов емкостью
Δ=(δхС/100%)[Ф]
Пример:
Конденсаторы с ненормируемым ТКЕ
Таблица 2
Конденсаторы с линейной зависимостью от температуры
Таблица 3
Обозначение ГОСТ | Обозначение международное | ТКЕ * | Буквенный код | Цвет** |
П100 | P100 | 100 (+130…-49) | A | красный+фиолетовый |
П33 | N | серый | ||
МПО | NPO | 0(+30..-75) | С | черный |
М33 | N030 | -33(+30…-80] | Н | коричневый |
М75 | N080 | -75(+30…-80) | L | красный |
M150 | N150 | -150(+30…-105) | Р | оранжевый |
М220 | N220 | -220(+30…-120) | R | желтый |
М330 | N330 | -330(+60…-180) | S | зеленый |
М470 | N470 | -470(+60…-210) | Т | голубой |
М750 | N750 | -750(+120…-330) | U | фиолетовый |
М1500 | N1500 | -500(-250…-670) | V | оранжевый+оранжевый |
М2200 | N2200 | -2200 | К | желтый+оранжевый |
* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85 ° С.
** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Кодовая маркировка
А. Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Таблица 10
Код | Емкость [пФ] | Емкость [нФ] | Емкость [мкФ] |
1,0 | 0,001 | 0,000001 | |
1,5 | 0,0015 | 0,000001 | |
2,2 | 0,0022 | 0,000001 | |
3,3 | 0,0033 | 0,000001 | |
4,7 | 0,0047 | 0,000001 | |
6,8 | 0,0068 | 0,000001 | |
100* | 0,01 | 0,00001 | |
0,015 | 0,000015 | ||
0,022 | 0,000022 | ||
0,033 | 0,000033 | ||
0,047 | 0,000047 | ||
0,068 | 0,000068 | ||
0,1 | 0,0001 | ||
0,15 | 0,00015 | ||
0,22 | 0,00022 | ||
0,33 | 0,00033 | ||
0,47 | 0,00047 | ||
0,68 | 0,00068 | ||
1,0 | 0,001 | ||
1,5 | 0,0015 | ||
2,2 | 0,0022 | ||
3,3 | 0,0033 | ||
4,7 | 0,0047 | ||
6,8 | 0,0068 | ||
0,01 | |||
0,015 | |||
0,022 | |||
0,033 | |||
0,047 | |||
0,068 | |||
0,1 | |||
0,15 | |||
0,22 | |||
0,33 | |||
0,47 | |||
0,68 | |||
1,0 |
В. Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Таблица 11
В. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
С. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»
http://www.radioradar.net/hand_book/hand_books/conder.html
Кодовая маркировка
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
Кодировка тремя цифрами
Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пФ.
Таблица 1
* Иногда последний ноль не указывают.
Кодировка четырьмя цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).
Таблица 2
Цветовая маркировка
На практике для цветового кодирования постоянных конденсаторов используются несколько методик цветовой маркировки
* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.
** Цвет корпуса указывает на значение рабочего напряжения.
Вывод «+» может иметь больший диаметр.
Для маркировки пленочных конденсаторов используют 5 цветных полос или точек:
Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.
Маркировка допусков
В соответствии с требованиями Публикаций 62 и 115-2 IEC (МЭК) для конденсаторов установлены следующие допуски и их кодировка:
Маркировка ТКЕ
Маркировка тремя цифрами.
Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF | код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF | ||||
1.0 пФ | 1000 пФ | 1 нФ | |||||||||
1.5 пФ | 1500 пФ | 1.5 нФ | |||||||||
2.2 пФ | 2200 пФ | 2.2 нФ | |||||||||
3.3 пФ | 3300 пФ | 3.3 нФ | |||||||||
4.7 пФ | 4700 пФ | 4.7 нФ | |||||||||
6.8 пФ | 6800 пФ | 6.8 нФ | |||||||||
10 пФ | 0.01 нФ | 10000 пФ | 10 нФ | 0.01 мкФ | |||||||
15 пФ | 0.015 нФ | 15000 пФ | 15 нФ | 0.015 мкФ | |||||||
22 пФ | 0.022 нФ | 22000 пФ | 22 нФ | 0.022 мкФ | |||||||
33 пФ | 0.033 нФ | 33000 пФ | 33 нФ | 0.033 мкФ | |||||||
47 пФ | 0.047 нФ | 47000 пФ | 47 нФ | 0.047 мкФ | |||||||
68 пФ | 0.068 нФ | 68000 пФ | 68 нФ | 0.068 мкФ | |||||||
100 пФ | 0.1 нФ | 100000 пФ | 100 нФ | 0.1 мкФ | |||||||
150 пФ | 0.15 нФ | 150000 пФ | 150 нФ | 0.15 мкФ | |||||||
220 пФ | 0.22 нФ | 220000 пФ | 220 нФ | 0.22 мкФ | |||||||
330 пФ | 0.33 нФ | 330000 пФ | 330 нФ | 0.33 мкФ | |||||||
470 пФ | 0.47 нФ | 470000 пФ | 470 нФ | 0.47 мкФ | |||||||
680 пФ | 0.68 нФ | 680000 пФ | 680 нФ | 0.68 мкФ | |||||||
1000000 пФ | 1000 нФ | 1 мкФ | |||||||||
2. Маркировка четырьмя цифрами.
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.
3. Буквенно-цифровая маркировка.
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ, 22p = 22 пФ, 2н2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы.
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы.
Кодовая и цветовая маркировака конденсаторов
«Справочник» — справочная информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам ,конденсаторам , светодиодам и т.д. Вся справочная информация содержит все, необходимые для подбора электронных компонентов и проведения инженерных расчетов, параметры, а также цоколевку корпусов, типовые схемы включения и рекомендации по использованию электронных компонентов .
· Допуски
· Конденсаторы с линейной зависимостью от температуры
· Конденсаторы с нелинейной зависимостью от температуры
· Кодовая маркировка
· Кодовая маркировка электролетических конденсаторов для поверхностного монтажа
· Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»
· Допуски
· Температурный коэффициент емкости (ТКЕ)
Конденсаторы с ненормируемым ТКЕ
· Конденсаторы с линейной зависимостью от температуры
· Конденсаторы с нелинейной зависимостью от температуры
· Кодовая маркировка
· Кодовая маркировка электролитических конденсаторов для поверхностного монтажа
· Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»
Допуски
В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:
Таблица 1
*-Для конденсаторов емкостью
Перерасчет допуска из % (δ) в фарады (Δ):
Δ=(δхС/100%)[Ф]
Пример:
Реальное значение конденсатора с маркировкой 221J (0.22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10 -9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.
Температурный коэффициент емкости (ТКЕ)
Конденсаторы с ненормируемым ТКЕ
Таблица 2
* Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Маркировка конденсаторов пленочных 100н 100в. Маркировка конденсаторов
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов. Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре. Естественно, перед вторичным использованием необходимо проверять конденсаторы , особенно ёмкость электролитических , которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает.
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке конденсатора, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы постоянной ёмкости.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от маркировки отечественных производителей.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Номинальная ёмкость конденсатора.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n .
Обозначение 100n – это значение номинальной ёмкости конденсатора. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47H C. Данная маркировка ёмкости соответствует маркировке 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определять ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость конденсатора является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что ёмкость конденсатора с маркировкой M10С равно ёмкости конденсатора с маркировкой 100nJ. Только условная маркировка чуть отличается.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код ёмкости.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220 000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . При 221, ёмкость равна 220 пФ, при 220 – 22 пФ. Если же в маркировке конденсатора используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 – 47,2 нФ.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости для конденсатора аналогично допуску у резисторов.
Буквенный код отклонения ёмкости конденсатора (допуск).
Так если конденсатор со следующей маркировкой – M47C, то его ёмкость 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK , 220nM , 470nJ .
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов.
Д опуск в % | Б уквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0…+100 | P | |
-10…+30 | Q | |
± 22 | S | |
-0…+50 | T | |
-0…+75 | U | Э |
-10…+100 | W | Ю |
-20…+5 | Y | Б |
-20…+80 | Z | А |
Допустимое рабочее напряжение конденсатора.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя конденсаторов. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения конденсатора указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.
Н оминальное рабочее напряжение , B | Б уквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Это наиболее важные параметры конденсаторов, которые стоит знать при подборе нужного конденсатора. Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева
1 нанофарад [нФ] = 0,001 микрофарад [мкФ]
Исходная величина
Преобразованная величина
фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарад децифарад сантифарад миллифарад микрофарад нанофарад пикофарад фемтофарад аттофарад кулон на вольт абфарад единица емкости СГСМ статфарад единица емкости СГСЭ
Общие сведения
Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:
C = Q/∆φ
Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).
В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.
Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).
Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.
В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.
Использование емкости
Конденсаторы — устройства для накопления заряда в электронном оборудовании
Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.
Историческая справка
Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.
В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.
В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.
Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.
Примеры конденсаторов
Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.
Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.
Вторым по важности параметром конденсаторов является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.
Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.
Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ) . Он даёт представление об изменении ёмкости в условиях изменения температур.
В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).
Маркировка конденсаторов
Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.
Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.
Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.
Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.
Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.
Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.
Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.
Имеются и другие типы конденсаторов.
Ионисторы
В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.
С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.
Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.
В бытовой электронике ионисторы применяются для стабилизации основного питания и в качестве резервного источника питания таких приборов как плееры, фонари, в автоматических коммунальных счетчиках и в других устройствах с батарейным питанием и изменяющейся нагрузкой, обеспечивая питание при повышенной нагрузке.
В общественном транспорте применение ионисторов особенно перспективно для троллейбусов, так как становится возможна реализация автономного хода и увеличения маневренности; также ионисторы используются в некоторых автобусах и электромобилях.
Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.
Емкостные сенсорные экраны
В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.
Поверхностно-емкостные экраны
Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.
Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.
Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.
Проекционно-емкостные экраны
Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.
Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Самый простой состоит из двух металлических пластин (обкладок), разделенных тонким слоем диэлектрика (изолятора), в качестве которого может служить воздух, фарфор, слюда, керамика, бумага или другой материал, обладающий достаточно большим сопротивлением.Единицей электрической емкости конденсатора является фарада (Ф) — дань памяти великому английскому ученому Майклу Фарадею.
В радиоэлектронике используются конденсаторы, емкость которых составляет дробные единицы фарад: пикофарады (пФ), нанофарады (нФ), микрофарады (мкФ).
1 Ф (фарада) = 1000000 мкФ (микрофарад)
1 мкФ (микрофарада) = 1000 нФ (нанофарад) = 1000000 пФ (пикофарад)
1 нФ (нанофарад) = 1000 пФ (пикофарад)
Керамические конденсаторы |
Наибольшее распространение имеют керамические конденсаторы. Емкость керамических конденсаторов составляет единицы — тысячи пикофарад.
Самой большой емкостью обладают электролитические конденсаторы , у которых в качестве изолятора используется тончайший слой окисла, получаемый электролитическим способом. Емкость электролитических конденсаторов может достигать тысяч микрофарад. Электролитические конденсаторы, как правило, полярные, т. е. имеют положительный и отрицательный полюса. Нарушение правильной полярности при включении электролитического конденсатора в цепь недопустимо, так как может вывести его из строя.
На корпусе конденсаторов наряду со значением их емкости и величиной ее возможного отклонения от номинала обычно указывается значение рабочего электрического напряжения. На конденсаторах, в основном, указано номинальное рабочее напряжение при постоянном токе. Включение конденсатора в цепь, напряжение в которой превосходит его рабочее напряжение, не допускается, так как происходит разрушение изолятора, вследствие чего конденсатор выходит из строя.
Конденсаторы, емкость которых можно менять в заданных интервалах, называются конденсаторами переменной емкости и подстроечными.
Для конденсаторов постоянной емкости на схеме рядом с условным графическим обозначением указывают значение емкости. При емкости менее 0,01 мкФ (10000 пФ) ставят число пикофарад без обозначения размерности, например, 15, 220, 9100. Для емкости 0,01 мкФ и более ставят число микрофарад.
У электролитических конденсаторов возле одной из обкладок ставят плюс. Такой же знак обычно стоит и на корпусе конденсатора около соответствующего вывода. Также чаще всего указывают номинальное напряжение.
Для конденсаторов переменной емкости и подстроечных указывают пределы изменения емкости при крайних положениях ротора, например, 6…30, 10…180, 6…470.
Маркировка конденсаторов
При обозначении номинала на зарубежных керамических конденсаторах часто используется специальная кодировка, при которой последняя цифра в числе обозначает количество нулей (емкость в пикофарадах). Например:
Заряд конденсатора
Рассмотрим процесс накопления конденсатором электрической энергии. Подсоединим обкладки конденсатора к полюсам источника тока. В момент замыкания цепи на обкладках конденсатора начнет накапливаться заряд. Как только напряжение на конденсаторе уравнивается с напряжением источника, процесс заряда конденсатора закончится и ток в цепи станет равным нулю. Таким образом, по окончании заряда цепь постоянного тока окажется разомкнутой. Если теперь несколько увеличить напряжение источника, то конденсатор накопит еще некоторый заряд. Чем больше емкость конденсатора, тем больший заряд будет на его обкладках при заданном значении напряжения между обкладками.
Если цепь конденсатора и источника постоянного тока разорвать, то конденсатор остается заряженным. Заряженный конденсатор может быть использован в качестве источника энергии, которая накоплена в нем в виде энергии электрического поля зарядов на обкладках. Именно таким образом используют конденсатор в солнечных двигателях BEAM-роботов. Источником электроэнергии при этом является солнечная батарея.
Посмотрим, что произойдет, если теперь подключить заряженный конденсатор, например, к светодиоду (с учетом полярностей). В получившейся цепи снова потечет ток (ток разряда конденсатора). Этот ток имеет направление, противоположное току заряда, то есть вытекает из положительно заряженной обкладки конденсатора как из положительного полюса источника. По мере разряда напряжение на конденсаторе уменьшится, и ток в цепи начнет убывать. В момент окончания разряда энергия конденсатора окажется полностью израсходованной, и ток в цепи исчезнет.
1. Маркировка тремя цифрами .
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Маркировка четырьмя цифрами .
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ .
3. Буквенно-цифровая маркировка .
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ, 22p = 22 пФ, 2н2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы .
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы .
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
По таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
Конденсатор можно сравнить с небольшим аккумулятором, он умеет быстро накапливать и так же быстро ее отдавать. Основной параметр конденсатора – это его емкость (C) . Важным свойством конденсатора, является то, что он оказывает переменному току сопротивление, чем больше частота переменного тока, тем меньше сопротивление. Постоянный ток конденсатор не пропускает.
Как и , конденсаторы бывают постоянной емкости и переменной емкости. Применение конденсаторы находят в колебательных контурах, различных фильтрах, для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.
Основная единица измерения емкости – фарад (Ф) – это очень большая величина, которая на практике не применяется. В электронике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ) . 1 мкФ равен одной миллионной доле фарада, а 1 пФ – одной миллионной доле микрофарада.
На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.
Номинальное напряжение – значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.
Температурный коэффициент емкости конденсатора (ТКЕ)
ТКЕ показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения на корпусе.
Маркировка емкости конденсаторов
Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:
22 = 22p = 22П = 22пФ
Если емкость меньше 10пФ, то обозначение может быть таким:
1R5 = 1П5 = 1,5пФ
Так же конденсаторы маркируют в нанофарадах (нФ) , 1 нанофарад равен 1000пФ и микрофарадах (мкФ) :
10n = 10Н = 10нФ = 0,01мкФ = 10000пФ
Н18 = 0,18нФ = 180пФ
1n0 = 1Н0 = 1нФ = 1000пФ
330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ
100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ
1Н5 = 1n5 = 1,5нФ = 1500пФ
4n7 = 4Н7 = 0,0047мкФ = 4700пФ
6М8 = 6,8мкФ
Цифровая маркировка конденсаторов
Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.
Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.
Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.
4722 = 47200пФ = 47,2нФ
Электролитические конденсаторы
Для работы в диапазоне звуковых частот, а так же для фильтрации выпрямленных напряжений питания, необходимы конденсаторы большой емкости. Такие конденсаторы называются – электролитическими. В отличие от других типов электролитические конденсаторы полярны, это значит, что их можно включать только в цепи постоянного или пульсирующего напряжения и только в той полярности, которая указана на корпусе конденсатора. Не выполнение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.
Емкость конденсатора какая буква — Строительство домов и бань
Маркировка конденсаторов
Правила маркировки конденсаторов постоянной ёмкости
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0. +100 | P | |
-10. +30 | Q | |
± 22 | S | |
-0. +50 | T | |
-0. +75 | U | Э |
-10. +100 | W | Ю |
-20. +5 | Y | Б |
-20. +80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Маркировка конденсаторов
Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.
Как маркируются большие конденсаторы
Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.
Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.
В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).
При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.
При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.
При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.
Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.
Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.
Расшифровка маркировки конденсаторов
Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.
Обозначение цифр
Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.
Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.
Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.
После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.
Обозначение букв
После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.
При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.
Маркировка керамических конденсаторов
Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» — + 0,25 пФ, D — + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.
Смешанная буквенно-цифровая маркировка
Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.
Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.
Прочие маркировки
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.
Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
Как расшифровать маркировку конденсатора и узнать его ёмкость?
Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.
С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.
Зачем нужна маркировка?
Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:
- данные о ёмкости конденсатора – главной характеристике элемента;
- сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
- данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
- процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
- дату выпуска.
Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.
Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.
Маркировка отечественных конденсаторов
Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.
Ёмкость
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Номинальное напряжение
Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.
Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.
Дата выпуска
Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.
“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц — двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).
4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”
Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.
Год | Код |
---|---|
1990 | A |
1991 | B |
1992 | C |
1993 | D |
1994 | E |
1995 | F |
1996 | H |
1997 | I |
1998 | K |
1999 | L |
2000 | M |
2001 | N |
2002 | P |
2003 | R |
2004 | S |
2005 | T |
2006 | U |
2007 | V |
2008 | W |
2009 | X |
2010 | A |
2011 | B |
2012 | C |
2013 | D |
2014 | E |
2015 | F |
2016 | H |
2017 | I |
2018 | K |
2019 | L |
Расположение маркировки на корпусе
Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.
По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.
Цветовая маркировка отечественных радиоэлементов
При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.
На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.
Приводим для вас пример как обозначается тот или иной элемент — емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.
Маркировка конденсаторов импортного производства
На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.
Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.
Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.
Цветовая маркировка импортных конденсаторов
Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.
Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.
Маркировка smd компонентов
Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.
Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.
Как обозначаются конденсаторы на схеме?
Конденсаторы необходимы для накопления в себе энергии, с целью дальнейшей ее передачи далее по схеме в определенное время. Самый элементарный конденсатор состоит из пластин, сделанных из металла. Они называются обкладки. Также обязательно должен присутствовать диэлектрик, расположенный между ними. Каждый конденсатор имеет свою маркировку, которая наносится на него во время производства.
Любой человек, который занимается составлением схем и увлекается пайкой, должен понимать ее и уметь читать. В маркировке содержится вся информация о технических характеристиках данного конденсатора. Если к нему подключить питание, на обкладках конденсатора возникнет разнополярное напряжение и тем самым возникнет поле, которое будет притягивать их друг другу. Этот заряд накапливается между этими пластинами.
Основная единица измерения – фарады. Она зависит от размера пластин и расстояния между ними и величины проницаемости. В данной статье подробно рассмотрены все тонкости маркировки конденсаторов. Также статья содержит видеоролик и подробный файл с материалом по данной тематике.
Единицы измерения
e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.
- S – площадь одной из обкладок(в метрах).
- d – расстояние между обкладками(в метрах).
- C – величина емкости вфарадах.
Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.
1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:
- 1 Микрофарада – одна миллионная часть фарады.10 -6
- 1 нанофарада – одна миллиардная часть фарады. 10 -9
- 1 пикофарада -10 -12 фарады.
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Маркировка четырьмя цифрами
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.
Буквенно-цифровая маркировка
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.
Планарные керамические конденсаторы
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Планарные электролитические конденсаторы
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.
Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
Маркировка конденсаторов, перевод величин и обозначения (пФ, нФ, мкФ)
Полезная информация начинающим радиолюбителям по маркировке конденсаторов, обозначениям и переводу величин – пикофарад, нанофарад, микрофарад и других. Пожалуй, трудно найти электронное устройство, в котором бы вообще не былоконденсаторов. Поэтому важно уметь по маркировке конденсатора определять его основные параметры, хотя бы основные -номинальную емкость и максимальное рабочее напряжение.
Несмотря на присутствие определенной стандартизации, существует несколько способов маркировки конденсаторов. Однако, существуют конденсаторы и без маркировки, – в этом случае емкость можно определить только измерив её измерителем емкости, что же касается максимального напряжения., здесь, как говорится, медицина бессильна.
Цифро-буквенное обозначение
Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».
Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:
- p – пикофарады,
- n – нанофарады
- m – микрофарады.
При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».
Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:
Небольшие замечания и советы по работе с конденсаторами
Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.
Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).
Заключение
В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм. Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.
Более подробно о маркировке конденсаторов можно узнать здесь. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Как определить емкость конденсатора?
Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.
Существуют разные способы определения ёмкости:
- по кодовой или цветной маркировке деталей;
- с помощью измерительных приборов;
- с использованием формулы.
Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.
Рис. 1. Измерение ёмкости с помощью измерителя C и ESRС использованием мультиметра и формул
Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.
Режим «Сх» в мультиметреМенее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).
Рис. 2. Схема подключения конденсатораАлгоритм измерения следующий:
- Измерьте напряжение источника питания щупами контактов измерительного прибора.
- Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
- Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
- Замерьте напряжение образованной цепи с помощью мультиметра.
- Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
- Вычислите 95% от полученного значения. Запишите показатели измерений.
- Возьмите секундомер и включите его одновременно с убиранием закоротки.
- Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
- По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.
Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.
Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f – частота тока, а Xc – ёмкостное сопротивление.
Осциллографом
С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = UR / UC* ( 1 / 2*π*f*R ).
Рис. 4. Простая схемаАлгоритм вычисления простой:
- Подключите осциллограф к электрической схеме. При подключении щупов прибора к электролитам соблюдайте полярность электрического тока.
- Измерьте амплитуды напряжений на конденсаторе и на резисторе.
- Путём подстройки частоты генератора добивайтесь, чтобы значения амплитуд на обоих элементах сравнялись (хотя бы приблизительно).
- Подставьте полученные значения в формулу и вычислите ёмкость конденсатора.
При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r4 / Cx = r2 / C.
Рисунок 5. Мостовая схемаГальванометром
При наличии баллистического гальванометра также можно определить ёмкость конденсатора. Для этого используют формулу:
C = α * Cq / U , где α – угол отклонения гальванометра, Cq – баллистическая постоянная прибора, U – показания гальванометра.
Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.
Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.
Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.
По маркировке
Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:
- миллифарады (mF, мФ ) = 10 -3 Ф;
- микрофарады (µF, uF, mF, мкФ) = 10 -3 мФ = 10 -6 Ф;
- нанофарады (nF, нФ) = 10 -3 мкФ =10 -9 Ф;
- пикофарады (pF, mmF, uuF) = 1 пФ = 10 -3 нФ = 10 -12 Ф.
Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).
Рис. 6. Маркировка крупных конденсаторовОбратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.
Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».
На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.
По стандарту EIA:
- Две цифры и одна буква. Цифры обозначают ёмкость, обычно в пикофарадах, а буква – допуски.
- Если буква стоит на первом или втором месте, то она обозначает либо десятичную запятую (символ R), либо указывает на название единицы измерения («p» – пикофарад, «n» – нанофарад, «u» – микрофарад). Например: 2R4 = 2.4 пФ; N52 = 0,52 нФ; 6u1 = 6,1 мкф.
- Маркировка тремя цифрами. В данном коде обращайте внимание на третью цифру. Если её значение от 0 до 6, то умножайте первые две на 10 в соответствующей степени. При этом 10 0 =1; 10 1 = 10; 10 2 = 100 и т. д. до 10 6 .
Цифры от 7 до 9 указывают на показатель степени со знаком «минус»: 7 условно = 10 -3 ; 8 = 10 -2 ; 9 = 10 -1 .
- 256 обозначает: 25× 10 5 = 2500 000 пФ = 2,5 мкФ;
- 507 обозначает: 50 × 10 -3 = 50 000 пФ = 0, 05 мкФ.
Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 10 3 = 25 000 пФ = 0,025 мкФ.
В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.
Приводим полный список символов:
- B = ± 0,1 пФ;
- C = ± 0,25 пФ;
- D = ± 0,5 пФ или ± 0,5% (если емкость превышает 10 пФ).
- F = ± 1 пФ или ± 1% (если емкость превышает 10 пФ).
- G = ± 2 пФ или ± 2% (для конденсаторов от 10 пФ»).
- J = ± 5%.
- K = ± 10%.
- M = ± 20%.
- Z = от –20% до + 80%.
Изделия с кодовой маркировкой изображены на рис. 7.
Рис. 7. Пример кодовой маркировкиЕсли в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.
Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.
Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.
Цветовая маркировка
Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):
Рис. 8. Цветовая маркировкаЗапомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.
Box77 › Блог › Основы автоэлектрики. Часть5. Электрическая ёмкость и конденсаторы
Сегодня мы коснёмся темы накопителей заряда, именуемых конденсаторами.
Конденсатор — пассивный электронный компонент, состоящий из двух полюсов, накапливающий заряд.
Электрическая ёмкость — это отношение электрического заряда к разности потенциалов между полюсами конденсатора (или иного другого электронного компонента). Единица измерения — Фарад и его производные (пикоФарад, наноФарад, микроФарад). Обозначается ёмкость латинской буквой С.
Мы уже обсуждали, что ток — это есть скорость перемещения заряда, а напряжение — это разность потенциалов. Мы всегда удобно проводить некие параллели, поэтому напряжение ассоциируется с разницей давления в жидкости или газе, а ток — с объёмной скоростью жидкости или газа. Поэтому конденсатор можно представить себе как некий сосуд, который наполняют жидкостью или газом давлением, которое выше чем в сосуде. Наполнение сосуда будет происходить до тех пор, пока давление подачи не уровняется с давлением в сосуде. Так и работает конденсатор: по мере наполнения зарядом растет напряжение. Чем ближе будет напряжение в конденсаторе к напряжению заряжающего источника, тем меньше будет скорость заряда. Это аналогично тому, как наполняется сосуд. Если мы заполнили сосуд, затем открыли кран у него — ток начинает утекать, тем самым снижая количество заряда и понижая напряжение.
Если рассматривать провод или резистор как трубу, а конденсатор — как сосуд, многое становится понятно на интуитивном уровне. Ну, и проще понять реактивные сопротивления, о которых мы говорили ранее. Но надо понимать, что сосуд — это сосуд, а конденсатор — это конденсатор=)
Итак, в простейшем виде конденсатор представляет собой две параллельные пластины, между которыми находится некий диэлектрик. Самый простой диэлектрик — это воздух. Конечно, сегодня воздушные конденсаторы уже и не встретить, но я ещё несколько лет назад использовал переменный воздушный конденсатор для сборки радиоприёмника=) Правда, в этом конденсаторе пластин было гораздо больше двух, и выглядел примерно вот так:
Вращая ручку, можно было изменять значение электрической ёмкости.
На, а вот так обычно представляют простейший конденсатор:
В случае такого конденсатора ёмкость вычисляется следующим образом:
Сегодня конденсаторов огромное множество. Наиболее популярные — керамические, электролитические и танталовые. Отличие последних двух в том, что они полярны, и крайне не рекомендую включать их в схему обратной полярностью=)
Основными параметрами конденсатора являются:
— Электрическая ёмкость,
— Максимально допустимое напряжение на его обкладках (немаловажный параметр, при подачи бОльшего напряжения можно увидеть много весёлых, но крайне не безопасных эффектов:-), особенно на конденсаторах большой ёмкости),
— Полярность (т.е. полярный или неполярный),
— Допустимые отклонения от номинального значения ёмкости (обычно в процентах),
— Диапазон рабочих температур,
— Тип корпуса.
Полярность, допустимые отклонения и диапазон температур напрямую зависят от применяемого диэлектрика. Как правило, конденсаторы большой ёмкости — электролитические, т.е. в качестве диэлектрика — электролит. А электролитические конденсаторы по физике процессов сильно напоминают всем знакомые свинцово-кислотные аккумуляторы и аналогично им имеют полярность, что приводит к некоторым ограничениям. Кроме того, они имеют свойство высыхать. И именно они являются частой причиной выхода из строя бытовой и промышленной электроники, в результате чего страдают и иные компоненты. Выглядят электролитические конденсаторы так:
Танталовые конденсаторы были некогда призваны заменить электролитические, но и те имеют ряд ограничений и так и не достигли приличных ёмкостей. Кроме того, взрываются они не менее весело=) Выглядят они вот так:
Спешу обрадовать, что развитие электроники не стоит на месте и сегодня вполне можно приобрести обычные керамические конденсаторы с ёмкостью, сравнимой с танталовыми, а некоторые достигают ёмкости 330 мкФ при допустимом напряжении в 4 В. И это всё в малом чип-корпусе 1206!
Кстати, размеры основных корпусов чип-конденсаторов:
Ну, и не все конденсаторы в чипах, поэтому существуют и выводные конденсаторы:
Причина такому прорыву — отличный диэлектрик под кодовым названием X5R. 330 мкФ при 4В — не густо конечно. Но на большие напряжения ёмкости также достигли впечатляющих значений — на те же 16В найти 100 мкФ не проблема, на 25 В — на 22 мкФ, на 35-50 В пока не больше 10 мкФ. Тем не менее, во многих и многих приложениях электроники появляется возможность отказаться от электролитов и танталов.
Вернемся к основным свойствам. Если рассматривать глубже, то параметров конденсаторов гораздо больше:
— Температурная зависимость параметров,
— Входное сопротивление (ESR),
— Внутреннее сопротивление,
— Время наработки на отказ (очень интересный параметр, которому реально посвятить целую статью),
— многие другие.
Расписывать здесь все детали не вижу смысла, так эти параметры важны тем, кто глубоко занимается электроникой. Тем не менее счел важным упомянуть о них. Кому захочется капнуть — можно порыться в сети.
Помимо указанных выше конденсаторов следует немного сказать о плёночных конденсаторах. Выглядят они вот так:
Их основное отличие от предыдущих — это поражающая надежность и способность работать в силовых цепях, особенно в цепях с высоким напряжением.
Наверное, сегодня краткого обзора будет достаточно. О применении конденсаторов поговорим в следующих статьях.
В прошлой статье писал, но и здесь напомню, что конденсаторы на схемах обозначаются так:
На сим всё;)
Продолжение следует=)
___________________________________________________________________________
Э лектрические конденсаторы служат для накопления электроэнергии. Простейший конденсатор состоит из двух металлических пластин — обкладок и диэлектрика находящегося между ними. Если к конденсатору подключить источник питания, то на обкладках возникнут разноименные заряды и появится электрическое поле притягивающее их на встречу, друг к другу. Эти заряды остаются после отключения источника питания, энергия сохраняется в электрическом поле между обкладками.
В керамических конденсаторах диэлектриком является высококачественная керамика: ультрафарфор,тиконд,ультрастеатит и др. Обкладкой служит слой серебра, нанесенный на поверхность. Керамические конденсаторы применяются в разделительных цепях усилителей высокой частоты. В электролитических полярных конденсаторах диэлектриком служит слой оксида, нанесенный на металлическую фольгу. Другая обкладка образуется из пропитанной электролитом бумажной ленты. В твердотельных оксидных конденсаторах жидкий диэлектрик заменен специальным токопроводящим полимером. Это позволяет увеличить срок службы(и надежность). Недостатками твердотельных оксидных конденсаторов являются более высокая цена и ограничения по напряжению(до 35 в). Оксидные электролитические и твердотельные конденсаторы отличаются большой емкостью, при относительно малых размерах. Эта их особенность определяется тем, что толщина оксида — диэлектрика очень мала. При включении оксидных конденсаторов в цепь, необходимо соблюдать полярность. В случае нарушения полярности, электролитические конденсаторы взрываются, твердотельные — просто выходят из строя. Что бы полностью избежать возможности взрыва(у электролитических конденсаторов), некоторые модели снабжаются предохранительными клапанами(отсутствуют у твердотельных). Область применения оксидных (электролитических и твердотельных) конденсаторов — разделительные цепи усилителей звуковой частоты, сглаживающие фильтры источников питания постоянного тока. Конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания. Таблица 2.Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена.
Слюдяные конденсаторы изготавливаются путем прокладывания между обкладками из фольги слюдяных пластин, или наоборот — металлизацией слюдяных пластин. Слюдяные конденсаторы находят применение в звуковоспроизводящих устройствах, фильтрах высокочастотных помех и генераторах. Конденсаторы на основе полиэстера — это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока. Таблица 3.Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала.
Конденсаторы на основе поликарбоната используются
в фильтрах, генераторах и времязадающих цепях.
Конденсаторы на основе полистирена и тантала используются тоже, во времязадающих
и разделительных цепях. Они считаются конденсаторами общего назначения.
2. Второй вариант — маркировка производится не в пико, а в микрофарадах, причем вместо десятичной точки ставиться буква µ. 3.Третий вариант. У советских конденсаторов вместо латинской «р» ставилось «п». Допустимое отклонение номинальной емкости маркируется буквенно, часто буква следует за кодом определяющим
емкость(той же строкой). Конденсаторы с линейной зависимостью от температуры.
Далее следует напряжение в вольтах, чаще всего — в виде обычного числа.
Маркировка СМД (SMD) конденсаторов.Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично.
Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с (вариант 2 на рисунке), либо с использованием двухзначного
буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке). Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением
в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе).
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт |
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Маркировка четырьмя цифрами .
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ .
3. Буквенно-цифровая маркировка .
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ, 22p = 22 пФ, 2н2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы .
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы .
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
По таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.
Зачем нужна маркировка
Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:
- собственно, емкость – основная характеристика;
- максимально допустимое значение напряжения;
- температурный коэффициент емкости;
- допустимое отклонение емкости от номинального значения;
- полярность;
- год выпуска.
Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.
Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.
Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.
Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.
Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.
Маркировка отечественных конденсаторов
Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.
Емкость
На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:
- p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
- n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
- μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
- m или И – миллифарада, 1 mF = 10-3 F;
- F или Ф – фарада.
Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:
- 2n2 = 2.2 нанофарад или 2200 пикофарад;
- 68n = 68 нанофарад или 0,068 микрофарад;
- 680n или μ68 = 0.68 микрофарад.
Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.
Допустимое отклонение
Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.
Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.
Температурный коэффициент емкости
Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.
Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.
Номинальное напряжение
Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.
В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.
Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.
Год и месяц выпуска
Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.
Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.
Расположение маркировки на корпусе
Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.
Подобным же методом наносится маркировка пленочных конденсаторов.
Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.
Цветовая маркировка отечественных радиоэлементов
С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.
Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.
Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.
Маркировка конденсаторов импортного производства
Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.
Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.
Цветовая маркировка импортных конденсаторов
Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.
Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.
Маркировка SMD компонентов
SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.
Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.
Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.
Видео
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы , особенно электролитические , которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n .
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47H C. Данная запись соответствует 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте .
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов .
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK , 220nM , 470nJ .
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Д опуск в % | Б уквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0…+100 | P | |
-10…+30 | Q | |
± 22 | S | |
-0…+50 | T | |
-0…+75 | U | Э |
-10…+100 | W | Ю |
-20…+5 | Y | Б |
-20…+80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Н оминальное рабочее напряжение , B | Б уквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Как определить рабочее напряжение конденсатора
Правила маркировки конденсаторов постоянной ёмкости
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0. +100 | P | |
-10. +30 | Q | |
± 22 | S | |
-0. +50 | T | |
-0. +75 | U | Э |
-10. +100 | W | Ю |
-20. +5 | Y | Б |
-20. +80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
У меня не возникало вопросов к метало-плёночным конденсаторам. Большинство из них имеют напряжение 63 В, а некоторые — и более. А я до недавнего времени работал с устройствами, у которых напряжения были ниже этого значения.
630В, 0.47 мкф, 10%
Но вот, пришла пора разрабатывать импульсные источники питания, и понеслось! Конденсаторов (выдранных из трупов старых телевизоров) много, а вот на какое они напряжение — хрен его знает! Риск спалить не только сам конденсатор, но и всю схему, оказался очень большой. Пришлось копать Большую Помойку — Интернет.
Стыдно признаться, но я таки не смог в интернете найти готовую таблицу кодов напряжения для конденсаторов. Пришлось её составлять самостоятельно по крупицам скудной информации.
В общем, выношу на суд общественности таблицу кодов напряжения для конденсаторов.
Юзайте на здоровье, а если есть чем дополнить — присылайте коды!
Буква | 0x | 1x | 2x | 3x |
A | 10 | 100 | 1000 | |
B | 12,5 | 125 | ||
C | 16 | 160 | ||
D | 2 | 20 | 200 | |
E | 2,5 | 25 | 250 | |
F | 315 | |||
G | 4 | 400 | ||
H | 50 | 500 | ||
I | ||||
J | 6,3 | 63 | 630 | |
K | 8 | 80 | ||
L | 5,5 | |||
M | ||||
N | ||||
O | ||||
P | 220 | |||
Q | 110 | |||
R | ||||
S | ||||
T | (50) | |||
U | ||||
V | 35 | 350 | ||
W | 450 | |||
X | ||||
Y | ||||
Z | 180 |
Как правило на конденсаторы наносится значение ёмкости, допуск и номинальное напряжение.
Напряжение может указываться как явно, например, 100V, 250В, 630 В. так и в виде кода. Причем, следует заметить, что в мире действуют две системы кодирования напряжения.
Первая система имеет одно-буквенное значение. Обычно так кодируется напряжение на метало-плёночных конденсаторах. (Возможно и на керамических, но в этом я не уверен.)
Вот эта таблица:
Напр В | Букв. обозн. | Напр. В | Букв. обозн. | Напр. В | Букв. обозн. | Напр. В | Букв. обозн | Напр. В | Букв. обозн |
---|---|---|---|---|---|---|---|---|---|
1,0 | I | 6.3 | B | 40 | S | 100 | N | 350 | T |
2,5 | M | 10 | D | 50 | J | 125 | P | 400 | Y |
3.2 | A | 16 | E | 63 | K | 160 | Q | 450 | U |
4.0 | C | 20 | F | 80 | L | 315 | X | 500 | V |
Найти в интернете эту таблицу не составляет особого труда.
Вторая система имеет двух-символьный код напряжения. Вот как раз её-то найти и не удалось.
Напряжение в этой системе может обозначаться как: 1J, 2A, 2G, 2J, что соответствуют напряжению 63В, 100В, 400В, 630В.
Эти обозначения также наносятся на метало-плёночные (и, возможно, керамические) конденсаторы.
А вот коды напряжения на танталовых конденсаторах я встречал только второй системы. Первую систему ни видел ни разу. Ну, иногда бывает, что на танталовых конденсаторах указывают напряжение непосредственно.
Я специально заговорил о танталовых конденсаторах. У них, как правило, небольшое напряжение. Я много раз видел, когда указывается только одна буква, например, — «D». В этом случае подразумевается, что ей предшествует отсутствующая единичка. Нетрудно догадаться, что такой конденсатор рассчитан на напряжение 20 В. Или вместо «1A» или «1E» стоит просто «A» или «E», что означает, что конденсатор рассчитан на напряжение 10 В или 25 В.
«E» = 25 В, «j» = 6.3 В
Здесь очень легко ошибиться, перепутав «J» и «j». Будьте внимательны! Просто подумайте, что танталовый конденсатор 10 мкФ и напряжением 63 В, не может быть меньше конденсатора 10 мкФ и напряжением 25 В. И к тому же, танталовых SMD-конденсаторов на напряжение более 50 В пока не выпускают.
Но там где указывается прописная буква, например, — «e», то следует понимать, что перед ней должен стоять нулик. То есть полное обозначение должно быть «0e», что соответствует напряжению 2.5 В.
«A» = 10 В, «C» = 16 В
В таблице я указал напряжение для кода «1T» в скобочках. Код этого напряжения я увидел в интернете всего один раз, причем, увидел его не в официальных документах. Возможно, это ошибка, так как согласно таблице напряжению 50 В должен соответствовать код «1H». Тем более, что коду «2H» соответствует напряжение 500 В.
Вы видите, что таблица не полная. Поэтому, я обращаюсь ко всем заинтересованным товарищам — не стесняйтесь присылать мне отсутствующую в таблице информацию. Единственная просьба: информация должна быть достоверной. Например, было бы логично установить в клеточку «1H» значение напряжения 5.0 В. Но я это не сделал, так как еще не встречал этого. Поэтому пусть лучше в клеточке будет «ничего», чем будет указано ошибочное значение.
Таблицу допусков (точности изготовления) тоже относительно легко найти в интернете. Я ее продублирую здесь чтобы вам (да и мне тоже!) не рыть интернет в её поисках. Пусть будет всё в одном месте.
У меня не возникало вопросов к метало-плёночным конденсаторам. Большинство из них имеют напряжение 63 В, а некоторые — и более. А я до недавнего времени работал с устройствами, у которых напряжения были ниже этого значения.
630В, 0.47 мкф, 10%
Но вот, пришла пора разрабатывать импульсные источники питания, и понеслось! Конденсаторов (выдранных из трупов старых телевизоров) много, а вот на какое они напряжение — хрен его знает! Риск спалить не только сам конденсатор, но и всю схему, оказался очень большой. Пришлось копать Большую Помойку — Интернет.
Стыдно признаться, но я таки не смог в интернете найти готовую таблицу кодов напряжения для конденсаторов. Пришлось её составлять самостоятельно по крупицам скудной информации.
В общем, выношу на суд общественности таблицу кодов напряжения для конденсаторов.
Юзайте на здоровье, а если есть чем дополнить — присылайте коды!
Буква | 0x | 1x | 2x | 3x |
A | 10 | 100 | 1000 | |
B | 12,5 | 125 | ||
C | 16 | 160 | ||
D | 2 | 20 | 200 | |
E | 2,5 | 25 | 250 | |
F | 315 | |||
G | 4 | 400 | ||
H | 50 | 500 | ||
I | ||||
J | 6,3 | 63 | 630 | |
K | 8 | 80 | ||
L | 5,5 | |||
M | ||||
N | ||||
O | ||||
P | 220 | |||
Q | 110 | |||
R | ||||
S | ||||
T | (50) | |||
U | ||||
V | 35 | 350 | ||
W | 450 | |||
X | ||||
Y | ||||
Z | 180 |
Как правило на конденсаторы наносится значение ёмкости, допуск и номинальное напряжение.
Напряжение может указываться как явно, например, 100V, 250В, 630 В. так и в виде кода. Причем, следует заметить, что в мире действуют две системы кодирования напряжения.
Первая система имеет одно-буквенное значение. Обычно так кодируется напряжение на метало-плёночных конденсаторах. (Возможно и на керамических, но в этом я не уверен.)
Вот эта таблица:
Напр В | Букв. обозн. | Напр. В | Букв. обозн. | Напр. В | Букв. обозн. | Напр. В | Букв. обозн | Напр. В | Букв. обозн |
---|---|---|---|---|---|---|---|---|---|
1,0 | I | 6.3 | B | 40 | S | 100 | N | 350 | T |
2,5 | M | 10 | D | 50 | J | 125 | P | 400 | Y |
3.2 | A | 16 | E | 63 | K | 160 | Q | 450 | U |
4.0 | C | 20 | F | 80 | L | 315 | X | 500 | V |
Найти в интернете эту таблицу не составляет особого труда.
Вторая система имеет двух-символьный код напряжения. Вот как раз её-то найти и не удалось.
Напряжение в этой системе может обозначаться как: 1J, 2A, 2G, 2J, что соответствуют напряжению 63В, 100В, 400В, 630В.
Эти обозначения также наносятся на метало-плёночные (и, возможно, керамические) конденсаторы.
А вот коды напряжения на танталовых конденсаторах я встречал только второй системы. Первую систему ни видел ни разу. Ну, иногда бывает, что на танталовых конденсаторах указывают напряжение непосредственно.
Я специально заговорил о танталовых конденсаторах. У них, как правило, небольшое напряжение. Я много раз видел, когда указывается только одна буква, например, — «D». В этом случае подразумевается, что ей предшествует отсутствующая единичка. Нетрудно догадаться, что такой конденсатор рассчитан на напряжение 20 В. Или вместо «1A» или «1E» стоит просто «A» или «E», что означает, что конденсатор рассчитан на напряжение 10 В или 25 В.
«E» = 25 В, «j» = 6.3 В
Здесь очень легко ошибиться, перепутав «J» и «j». Будьте внимательны! Просто подумайте, что танталовый конденсатор 10 мкФ и напряжением 63 В, не может быть меньше конденсатора 10 мкФ и напряжением 25 В. И к тому же, танталовых SMD-конденсаторов на напряжение более 50 В пока не выпускают.
Но там где указывается прописная буква, например, — «e», то следует понимать, что перед ней должен стоять нулик. То есть полное обозначение должно быть «0e», что соответствует напряжению 2.5 В.
«A» = 10 В, «C» = 16 В
В таблице я указал напряжение для кода «1T» в скобочках. Код этого напряжения я увидел в интернете всего один раз, причем, увидел его не в официальных документах. Возможно, это ошибка, так как согласно таблице напряжению 50 В должен соответствовать код «1H». Тем более, что коду «2H» соответствует напряжение 500 В.
Вы видите, что таблица не полная. Поэтому, я обращаюсь ко всем заинтересованным товарищам — не стесняйтесь присылать мне отсутствующую в таблице информацию. Единственная просьба: информация должна быть достоверной. Например, было бы логично установить в клеточку «1H» значение напряжения 5.0 В. Но я это не сделал, так как еще не встречал этого. Поэтому пусть лучше в клеточке будет «ничего», чем будет указано ошибочное значение.
Таблицу допусков (точности изготовления) тоже относительно легко найти в интернете. Я ее продублирую здесь чтобы вам (да и мне тоже!) не рыть интернет в её поисках. Пусть будет всё в одном месте.
Маркировка пленочных конденсаторов 100н 100в. Маркировка конденсатора
При сборке самодельных электронных схем обязательно сталкивается с подбором необходимых конденсаторов. Причем для сборки устройства можно использовать конденсаторы, которые уже использовались и какое-то время проработали в электронном оборудовании. Естественно, перед повторным использованием необходимо проверить конденсаторы, особенно емкость электролитических, которые более подвержены старению.
При подборе конденсаторов постоянной емкости необходимо понимать маркировку этих радиоэлементов, иначе при возникновении ошибки собранное устройство либо откажется работать корректно, либо вообще не будет работать.
Конденсатор имеет несколько важных параметров, которые следует учитывать при их использовании.
Первый — это емкость конденсатора , емкость . Измеряется в долях Фарады.
Второй — прием. Или по-другому допуск номинальной емкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ± 20%, а иногда и больше. Все зависит от назначения устройства и конкретных особенностей устройства.На принципиальных схемах этот параметр обычно не указывается.
Третье, что указано в маркировке конденсатора допустимое рабочее напряжение . Это очень важный параметр, на него стоит обратить внимание, если конденсатор будет эксплуатироваться в цепях высокого напряжения.
Итак, давайте разберемся, как маркируются конденсаторы постоянной емкости.
Некоторые из наиболее популярных конденсаторов, которые можно использовать, это постоянные конденсаторы К73 — 17, К73 — 44, К78 — 2, керамические КМ-5, КМ-6 и т.п.Также в электронном оборудовании зарубежного производства используются аналоги этих конденсаторов. Их маркировка отличается от маркировки отечественных производителей.
Бытовые конденсаторы К73-17 — конденсаторы, защищенные полиэтилентерефталатом. На корпусе этих конденсаторов нанесена маркировка буквенно-цифровым индексом, например, 100нДж, 330нК, 220нМ, 39нДж, 2н2М.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Номинальная емкость конденсатора.
Емкости от 100 пФ до 0,1 мкФ указаны в нанофарадах с обозначением буквы H или n .
Обозначение 100 n Это значение номинальной емкости конденсатора. Для 100н — 100 нанофарад (нФ) — 0,1 мкФ (мкФ). Таким образом, конденсатор с индексом 100н имеет емкость 0,1 мкФ. Аналогично для других обозначений. Например:
330n — 0,33 мкФ, 10n — 0,01 мкФ. Для 2n2 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Обозначение типа 47 H C.Эта маркировка емкости соответствует маркировке 47 n K и 47 — нанофарад или 0,047 мкФ. Аналогично 22НС — 0,022 мкФ.
Чтобы легко определить емкость, необходимо знать обозначения основных частичных единиц — милли, микро, нано, пико и их числовые значения.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как М47С, М10С.
Здесь буква M условно означает микрофарад. Значение 47 стоит после M, то есть номинальная емкость конденсатора составляет доли микрофарад, то есть 0.47 мкФ. Для M10C — 0,1 мкФ. Получается, что емкость конденсатора с маркировкой М10С равна емкости конденсатора с маркировкой 100 нДж. Только условная маркировка немного отличается.
Таким образом, емкость 0,1 мкФ и выше обозначается буквой M , m вместо десятичной точки, незначительный ноль опускается.
Номинальная емкость отечественных конденсаторов до 100 пФ обозначается в пикофарадах, после номера ставится буква P или p .Если емкость меньше 10 пФ, то ставим букву R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют небольшие размеры, обычно указывается только числовой код емкости.
Керамические конденсаторы с маркировкой емкости с маркировкой числовым кодом
Например, цифровой маркировкой 224 соответствует значению 220 000 пикофарад, или 220 нанофарад и 0,22 мкФ. В этом случае 22 — это числовое значение номинальной стоимости.Цифра 4 указывает количество нулей. Результат — это значение емкости в пикофарадах . У 221 емкость 220 пФ, у 220 — 22 пФ. Если в маркировке конденсатора используется четырехзначный код, первые три цифры — это числовое значение номинала, а последняя, четвертая цифра — количество нулей. Итак, у 4722 емкость 47200 — 47,2 нФ.
Допустимое отклонение емкости обозначается цифрой в процентах (± 5%, 10%, 20%) или латинскими буквами.Иногда можно встретить старое обозначение допуска, закодированное русской буквой. Допуск емкости конденсатора аналогичен допуску резисторов.
Буквенный код отклонения емкости конденсатора (допуск).
Так, если конденсатор со следующей маркировкой — М47С, то его емкость 0,047 мкФ, а допуск ± 10% (по старой маркировке русской буквой). Довольно сложно встретить конденсатор с допуском ± 0.25% (маркировкой латинской буквой) в бытовой технике, поэтому выбрано значение с большей погрешностью. В основном в бытовой технике широко используются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск, указывается после значения номинальной емкости конденсатора, вот так 22n K , 220n M , 470n J .
Таблица для расшифровки условного буквенного кода допуска емкости конденсаторов.
D % вниз | Б уквенное обозначение | |
лат | рус | |
± 0,05p | A | |
± 0,1p | B | F |
± 0,25p | C | Имеют |
± 0,5p | D | D |
± 1.0 | F | R |
± 2.0 | G | L |
± 2,5 | H | |
± 5,0 | Дж | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | AT |
± 30 | N | F |
-0 … + 100 | п. | |
-10… + 30 | К | |
± 22 | S | |
-0 … + 50 | т | |
-0 … + 75 | U | Uh |
-10 … + 100 | З | Ю |
-20 … + 5 | Y | B |
-20 … + 80 | Z | НО |
Допустимое рабочее напряжение конденсатора.
Важным параметром конденсатора также является допустимое рабочее напряжение. Это следует учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя конденсаторов. Не лишним будет взять конденсатор с запасом по рабочему напряжению.
Обычно значение допустимого рабочего напряжения конденсатора указывается после номинальной емкости и допуска.Он указывается в вольтах буквой B (старая маркировка) и V (новая маркировка). Например, вот так: 250В, 400В, 1600В, 200В. В некоторых случаях буква V опускается.
Иногда используется латинская кодировка. Для расшифровки воспользуйтесь таблицей буквенного кодирования рабочего напряжения конденсаторов.
H рабочее напряжение A b | B ключевой код |
1,0 | Я |
1,6 | R |
2,5 | M |
3,2 | А |
4,0 | С |
6,3 | В |
10 | Д |
16 | E |
20 | Ф |
25 | G |
32 | H |
40 | S |
50 | Дж |
63 | К |
80 | л |
100 | N |
125 | -п. |
160 | Q |
200 | Z |
250 | Вт |
315 | Х |
350 | т |
400 | Y |
450 | U |
500 | В |
Это наиболее важные параметры конденсаторов, которые вы должны знать при выборе правильного конденсатора.Маркировка импортных конденсаторов разная, но во многом соответствует изложенной выше.
Длина и расстояние Вес Измеряет объем сыпучих пищевых продуктов и пищевых продуктов Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Мощность Время Линейная скорость Плоский угол Тепловой КПД и топливная эффективность Числа Единицы измерения информация Информация Скорость обмена Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и скорость вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момен тонн силы Крутящий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разница температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоемкость Энергетическое воздействие, мощность теплового излучения Плотность теплового потока Коэффициент теплопередачи Объемный расход Массовый расход Молярный расход Плотность массового потока Молярная концентрация Массовая концентрация в растворе Динамический (a bsolute) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость парообмена Уровень звука Чувствительность микрофона Уровень звукового давления (SPL) Яркость Сила света Освещенность Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) заряд Линейная плотность заряда Поверхностная плотность заряда Насыпная плотность заряда Электрический ток Линейная плотность тока Плотность поверхностного тока Напряженное электрическое поле Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электропроводность Электропроводность Электроемкость Индуктивность Уровни в американской шкале проводов в дБм (дБм или дБм) ), дБВ (дБВ), Вт и другие единицы. Магнитная движущая сила. Напряжение магнитного поля. Магнитный поток. Магнитная индукция. Мощность поглощенной дозы ионизирующего излучения. Радиоактивность.Радиоактивный распад Радиация. Доза облучения Радиация. Поглощенная доза Десятичные префиксы Передача данных Типография и обработка изображений Единицы расчета объема древесины Расчет молярной массы Периодическая система химических элементов Д.И. Менделеева
1 нанофарад [нФ] = 0,001 микрофарад [мкФ]
Базовый уровень
Преобразованное значение
фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарадара децифарада mdfd mdfdmd mfmd mfmad mfarad микрофарад нимфарад пикофарад фемтофарад атто фарад кулон на вольт
Общая информация
Емкость — это величина, которая характеризует способность проводника накапливать заряд, равный отношению электрических зарядов проводников.
C = Q / ∆φ
Здесь Q — электрический заряд, измеренный в подвесках (CL) — разность потенциалов, измеряемая в вольтах (В).
В системе СИ электрическая интенсивность измеряется в фарадах (Ф). Эта установка названа в честь английского физика Майкла Фарадея.
Фарад — это очень большая емкость для изолированного проводника. Таким образом, уединенный металлический шар с радиусом 13 солнечных радиусов имел бы емкость, равную 1 фараду. А емкость металлического шара размером с Землю составила бы около 710 микрофарад (мкФ).
Поскольку 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фараде; нанофарад (нФ), равный одной миллиардной; пикофарад (пф), равный одной триллионной фараде.
В системе CGSE основной единицей измерения емкости является сантиметр (см). Емкость 1 сантиметр — это электрическая емкость шара радиусом 1 сантиметр, помещенного в вакуум. CGSE — это усовершенствованная система CGS для электродинамики, то есть система единиц, в которой сантиметр, грамм и секунда используются в качестве основных единиц для расчета длины, массы и времени соответственно. В расширенных GHS, включая CGSE, некоторые физические константы взяты за единицу, чтобы упростить формулы и облегчить вычисления.
Использование емкости
Конденсаторы — устройства для накопления заряда в электронном оборудовании
Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — это система из двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (пластин). Конденсатор (от лат. Condensare — «конденсировать», «сгущать») — это двухэлектродное устройство для накопления заряда и энергии электромагнитного поля, в простейшем случае он состоит из двух проводников, разделенных каким-то изолятором.Например, иногда радиолюбители при отсутствии готовых деталей делают подстроечные конденсаторы для своих схем из лакированных проводов разного диаметра, а более тонкий провод наматывают на более толстый. Регулируя количество витков, радиолюбители точно настраивают схему оборудования на нужную частоту. Примеры изображения конденсаторов на электрических цепях показаны на рисунке.
Историческая справка
Всего 275 лет назад были известны принципы создания конденсаторов.Так, в 1745 году немецкий физик Эвальд Юрген фон Клейст и голландский физик Петер ван Мушенбрук создали в Лейдене первый конденсатор, «лейденский сосуд», стенки стеклянного сосуда которого были диэлектрическими, а пластины держателя экспериментатора. сосуд служил пластинами. Такая «банка» позволяла накапливать заряд порядка микроподвески (мкКл). После его изобретения с ним часто проводились эксперименты и публичные выступления. Для этого банку сначала заряжали статическим электричеством, натирая ее.После этого один из участников прикоснулся к банке рукой и получил небольшой удар током. Известно, что 700 парижских монахов, держась за руки, провели лейденский эксперимент. В тот момент, когда первый монах коснулся головки кувшина, все 700 монахов, скованные одной конвульсией, вскрикнули от ужаса.
«Лейден банк» появился в России благодаря русскому царю Петру I, который познакомился с Мушенбрюком во время его путешествия по Европе и узнал больше об экспериментах с «Лейденским банком».Петр I учредил Академию наук в России и заказал Мушенбрюку различные устройства для Академии наук.
В дальнейшем конденсаторы улучшились и стали меньше, а их емкость — больше. Конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который можно использовать для настройки приемника на желаемую частоту.
Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью и материалом диэлектрика.
Примеры конденсаторов
Промышленность производит большое количество типов конденсаторов различного назначения, но их основными характеристиками являются емкость и рабочее напряжение.
Типичные значения контейнеров Конденсаторы различаются от пикофарад до сотен микрофарад, за исключением ионисторов, которые имеют несколько иной характер формирования емкости — из-за двойного слоя на электродах — в этом они похожи на электрохимические батареи .Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую электродную поверхность. Для этих типов конденсаторов типичные значения емкости составляют десятки фарад, и в некоторых случаях они могут заменить обычные электрохимические батареи в качестве источников тока.
Вторым по важности параметром конденсатора является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято использовать конденсаторы с удвоенным значением рабочего напряжения.
Для увеличения значений емкости или рабочего напряжения используйте метод объединения конденсаторов в батареи. При последовательном подключении двух конденсаторов одного типа рабочее напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. При параллельном соединении двух конденсаторов одного типа рабочее напряжение остается прежним, а общая емкость увеличивается вдвое.
Третий по важности параметр конденсатора — температурный коэффициент изменения емкости (ТКЕ) .Он дает представление об изменении емкости при изменении температуры.
В зависимости от назначения конденсаторы делятся на конденсаторы общего назначения, требования к которым параметры некритичны, и конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).
Маркировка конденсатора
Подобно резисторам, в зависимости от размеров продукта, может использоваться полная этикетка с указанием номинальной емкости, класса отклонения и рабочего напряжения.Для небольших версий конденсаторов используется кодовая маркировка из трех или четырех цифр, смешанная буквенно-цифровая маркировка и цветовая маркировка.
Соответствующие таблицы пересчета маркировки на номинальное, рабочее напряжение и ТКЕ можно найти в Интернете, но наиболее эффективным и практичным методом проверки номинала и работоспособности элемента реальной схемы остается прямое измерение параметров припаянный конденсатор с помощью мультиметра.
Предупреждение: , поскольку конденсаторы могут накапливать большой заряд при очень высоком напряжении, чтобы избежать поражения электрическим током. Перед измерением параметров конденсатора необходимо разрядить конденсатор, закоротив его клеммы проводом с высоким сопротивлением. к внешней изоляции.Он лучше всего подходит для этого стандартного устройства для измерения проволоки.
Оксидные конденсаторы: Конденсаторы этого типа имеют большую удельную емкость, то есть емкость на единицу веса конденсатора. Одна пластина таких конденсаторов обычно представляет собой алюминиевую ленту, покрытую слоем оксида алюминия. Вторая пластина — электролит. Поскольку оксидные конденсаторы имеют полярность, принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.
Твердотельные конденсаторы: вместо традиционного электролита они используют органический токопроводящий полимер или полупроводник в качестве футеровки.
Переменные конденсаторы: емкость можно изменять механически, с помощью электрического напряжения или температуры.
Пленочные конденсаторы: Диапазон емкости конденсаторов этого типа составляет примерно от 5 пФ до 100 мкФ.
Есть и другие типы конденсаторов.
Ионисторы
В настоящее время все большую популярность приобретают ионисторы.Ионистор (суперконденсатор) представляет собой гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред, электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых углеродных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология была дополнена и улучшена.Ионисторы появились на рынке в начале восьмидесятых годов прошлого века.
С появлением ионисторов стало возможным использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют длительный срок службы, малый вес, высокую скорость заряда-разряда. В будущем этот тип конденсатора может заменить обычные батареи. Основными недостатками ионисторов являются их меньшая удельная энергия, чем у электрохимических батарей (низкая энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.
Ионисторы используются в автомобилях Формулы 1. В системах рекуперации энергии во время замедления вырабатывается электрическая энергия, которая накапливается в маховике, батареях или ионисторах для дальнейшего использования.
В бытовой электронике ионисторы используются для стабилизации основного источника питания и в качестве резервного источника питания для таких устройств, как плееры, фонарики, автоматические счетчики электроэнергии и других устройств с батарейным питанием и переменной нагрузкой, обеспечивая питание при повышенной нагрузке .
В общественном транспорте использование ионисторов особенно перспективно для троллейбусов, поскольку появляется возможность реализовать автономный курс и повысить маневренность; также ионисторы используются в некоторых автобусах и электромобилях.
Электромобили в настоящее время производятся многими компаниями, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто в сотрудничестве с Toronto Electric разработал полностью канадский электромобиль A2B.В нем используются ионисторы и химические источники энергии, так называемые гибридные накопители электроэнергии. Двигатели этого автомобиля питаются от аккумуляторов весом 380 килограммов. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.
Емкостные сенсорные экраны
В современных устройствах все чаще используются сенсорные экраны, которые позволяют управлять устройствами, касаясь панелей с индикаторами или экранами. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие.Они могут реагировать на одно или несколько одновременных прикосновений. Принцип работы емкостных экранов основан на том, что объект большой емкости проводит переменный ток. В данном случае предметом является человеческое тело.
Поверхностная емкость
Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно используют с высокой прозрачностью и низким поверхностным сопротивлением сплав оксида индия и оксида олова.Электроды, прикладывающие к проводящему слою небольшое переменное напряжение, расположены по углам экрана. Когда вы касаетесь этого экрана пальцем, появляется ток утечки, который регистрируется датчиками в четырех углах и передается на контроллер, который определяет координаты точки касания.
Преимущество таких экранов в долговечности (около 6,5 лет нажатия с интервалом в одну секунду или около 200 миллионов нажатий). У них высокая прозрачность (около 90%).Благодаря этим преимуществам емкостные экраны с 2009 года начали активно вытеснять резистивные экраны.
Недостаток емкостных экранов в том, что они плохо работают при низких температурах, возникают трудности с использованием таких экранов в перчатках. Если токопроводящее покрытие расположено на внешней поверхности, то экран достаточно уязвим, поэтому емкостные экраны используются только в тех устройствах, которые защищены от непогоды.
Проекционные емкостные экраны
В дополнение к поверхностно емкостным экранам существуют проекционные емкостные экраны.Их отличие состоит в том, что с внутренней стороны экрана нанесена сетка электродов. Электрод, к которому они прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке можно получить точные координаты касания. Проекционный емкостный экран реагирует на прикосновения в тонких перчатках.
Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они достаточно прочные и прочные, поэтому широко используются не только в персональной электронике, но и в автоматах, в том числе устанавливаемых на улице.
Есть ли у вас трудности с переводом единиц измерения с одного языка на другой? Коллеги готовы вам помочь. Задайте свой вопрос TCTerms , и через несколько минут вы получите ответ.
Самый простой состоит из двух металлических пластин (пластин), разделенных тонким слоем диэлектрика (изолятора), которым может служить воздух, фарфор, слюда, керамика, бумага или другой материал с достаточно высоким сопротивлением.Электрический блок Емкость конденсатора фарад (ф) — дань уважения великому английскому ученому Майклу Фарадею.
В электронике используются конденсаторы, емкость которых измеряется дробными единицами фарада: пикофарад (пФ), нанофарад (нФ), микрофарад (микрофарад).
1 Ф (фарад) = 1000000 мкФ (микрофарад)
1 мкФ (микрофарад) = 1000 нФ (нанофарад) = 1000000 пФ (пикофарад)
1 нФ (нанофарад) = 1000 пФ (пикофарад)
Конденсаторы керамические |
Наиболее распространены керамические конденсаторы. Емкость керамических конденсаторов одна — тысячи пикофарад.
Имеют наибольшую емкость электролитические конденсаторы , в которых тончайший оксидный слой, полученный электролитическим методом, используется в качестве изолятора. Емкость электролитических конденсаторов может достигать тысяч микрофарад. Электролитические конденсаторы обычно полярные, то есть имеют положительный и отрицательный полюса. Нарушение правильной полярности при включении электролитического конденсатора в цепь недопустимо, так как может вывести его из строя.
На корпусе конденсаторов, наряду с величиной их емкости и величиной ее возможного отклонения от номинала, значение рабочего электрического напряжения. Конденсаторы в основном показывают номинальное рабочее напряжение при постоянном токе. Включение в схему конденсатора, напряжение в котором превышает его рабочее, не допускается, так как изолятор разрушается, в результате чего конденсатор выходит из строя.
Конденсаторы, емкость которых можно изменять с заданными интервалами, называются переменными конденсаторами и подстроечниками.
Для конденсаторов постоянной емкости на схеме рядом с условным графическим обозначением указывают значение емкости. При емкости менее 0,01 мкФ (10 000 пФ) устанавливается количество пикофарад без измерения, например 15, 220, 9100. Для емкости 0,01 мкФ и более задается количество микрофарад.
В электролитических конденсаторах возле одной из пластин ставят плюс. Такой же знак обычно стоит на корпусе конденсатора возле соответствующего вывода. Также чаще всего указывают номинальное напряжение.
Для переменных конденсаторов и подстроечных резисторов указать пределы изменения емкости при крайних положениях ротора, например 6 … 30, 10 … 180, 6 … 470.
Маркировка конденсатора
При маркировке номинала на зарубежных керамических конденсаторах часто используется специальная кодировка, в которой последняя цифра в номере указывает количество нулей (емкость в пикофарадах). Например:
Заряд конденсатора
Рассмотрим процесс накопления конденсаторной электрической мощности.Подключите пластины конденсатора к полюсам источника тока. В момент замыкания цепи на обкладках конденсатора начнется накопление заряда. Как только напряжение на конденсаторе уравняется с напряжением источника, процесс заряда конденсатора завершится, и ток в цепи станет нулевым. Таким образом, по окончании заряда цепь постоянного тока будет разомкнута. Если теперь немного увеличить напряжение источника, конденсатор накопит еще немного заряда.Чем больше емкость конденсатора, тем больший заряд будет на его пластинах при заданном значении напряжения между пластинами.
При разрыве цепи конденсатора и источника постоянного тока конденсатор остается заряженным. Заряженный конденсатор можно использовать в качестве источника энергии, которая хранится в нем в виде энергии электрического поля зарядов на пластинах. Так конденсатор используется в солнечных двигателях BEAM-роботов. Источником электричества в данном случае является солнечная батарея.
Посмотрим, что будет, если теперь подключить заряженный конденсатор, например, к светодиоду (с учетом полярности). В полученной цепи снова течет ток (ток разряда конденсатора). Этот ток имеет направление, противоположное зарядному току, то есть он вытекает из положительно заряженной пластины конденсатора в качестве положительного полюса источника. По мере того как напряжение разряда на конденсаторе уменьшается, и ток в цепи начинает уменьшаться. В момент прекращения разряда энергия конденсатора будет полностью израсходована, и ток в цепи исчезнет.
1. Маркировка тремя цифрами .
В данном случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, чтобы получить номинал в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость меньше 1 пФ (010 = 1,0 пФ).
код | пикофарад, пФ, пФ | нанофарад, нФ, нФ | микрофарад, мкФ, мкФ |
109 | 1.0 пФ | ||
159 | 1,5 пФ | ||
229 | 2,2 пФ | ||
339 | 3,3 пФ | ||
479 | 4,7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0,01 нФ | |
150 | 15 пФ | 0,015 нФ | |
220 | 22 пФ | 0,022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0,047 нФ | |
680 | 68 пФ | 0,068 нФ | |
101 | 100 пФ | 0,1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0,22 нФ | |
331 | 330 пФ | 0,33 нФ | |
471 | 470 пФ | 0,47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1,5 нФ | |
222 | 2200 пФ | 2,2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4,7 нФ | |
682 | 6800 пФ | 6,8 нФ | |
103 | 10000 пФ | 10 нФ | 0,01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0,022 мкФ |
333 | 33000 пФ | 33 нФ | 0,033 мкФ |
473 | 47000 пФ | 47 нФ | 0,047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0,1 мкФ |
154 | 150000 пФ | 150 нФ | 0,15 мкФ |
224 | 220000 пФ | 220 нФ | 0,22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0,47 мкФ |
684 | 680000 пФ | 680 нФ | 0,68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Четырехзначная маркировка .
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя указывает показатель степени по основанию 10, чтобы получить емкость в пикофарадах. Например:
1622 = 162 * 10 2 пФ = 16200 пФ = 16,2 нФ .
3. Буквенно-цифровая маркировка .
При этой маркировке буква обозначает десятичную точку и обозначение (мкФ, нФ, пФ), а цифры обозначают значение емкости:
15p = 15 пФ, 22p = 22 пФ, 2n2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0,33 мкФ
Часто бывает сложно отличить русскую букву «п» от английской «н».
Иногда для обозначения десятичной точки используется буква R. Обычно это маркированные емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ
4. Плоские керамические конденсаторы .
Керамические SMD конденсаторы обычно или вообще не маркируются, кроме цвета (цветную маркировку не знаю, если кто подскажет — буду рад, знаю только, что чем светлее, тем меньше емкость) либо маркируются единицей или две буквы и цифра.Первая буква, если она указывает производителя, вторая буква указывает мантиссу в соответствии с таблицей ниже, цифра представляет собой показатель степени по основанию 10, чтобы получить емкость в пикофарадах. Пример:
N1 / по таблице определяем мантиссу: N = 3,3 / = 3,3 * 10 1 пФ = 33 пФ
S3 / по таблице S = 4,7 / = 4,7 * 10 3 пФ = 4700 пФ = 4,7 нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
А | 1.0 | Дж | 2,2 | S | 4,7 | а | 2,5 |
B | 1,1 | К | 2,4 | т | 5,1 | б | 3,5 |
С | 1.2 | л | 2,7 | U | 5,6 | г | 4,0 |
D | 1,3 | M | 3,0 | В | 6,2 | и | 4,5 |
E | 1.5 | N | 3,3 | Вт | 6,8 | f | 5,0 |
Ф | 1,6 | -п. | 3,6 | X | 7,5 | м | 6,0 |
G | 1.8 | Q | 3,9 | Y | 8,2 | п. | 7,0 |
H | 2,0 | R | 4,3 | Z | 9,1 | т | 8,0 |
5. Плоские электролитические конденсаторы .
Электролитические конденсаторы SMD маркируются двумя способами:
1) Емкость в микрофарадах и рабочее напряжение, например: 10 6,3 В = 10 мкФ при 6,3 В.
2) Буква и три цифры, при этом буква обозначает рабочее напряжение в соответствии с таблицей ниже, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, чтобы получить емкость в пикофарадах. Полоска на таких конденсаторах указывает на положительный вывод.Пример:
По таблице «А» — напряжение 10В, 105 — это 10 * 10 5 пФ = 1 мкФ, т.е. это конденсатор на 1 мкФ на 10В
Конденсатор можно сравнить с маленькой батареей, он может быстро накапливать и так же быстро отдавать. Основным параметром конденсатора является его емкость (Кл) . Важным свойством конденсатора является то, что он обеспечивает сопротивление переменному току, чем больше частота переменного тока, тем меньше сопротивление.D.C конденсатор не проходит.
Также конденсаторы бывают постоянной и переменной емкости. Конденсаторы используются в колебательных цепях, различных фильтрах, для разделения цепей постоянного и переменного тока, а также в качестве элементов блокировки.
Базовая единица измерения емкости — фарад (ф) — это очень большое значение, которое на практике не применяется. В электронике конденсаторы емкостью от пикофарад (пФ) до десятков тысяч мкФ (мкФ) .1 мкФ составляет одну миллионную долю фарада, а 1 пФ — одну миллионную долю микрофарада.
В электрических концепциях конденсатор отображается в виде двух параллельных линий, символизирующих его основные части: две пластины и диэлектрик между ними. Рядом с обозначением конденсатора обычно указывают его номинальную емкость, а иногда и его номинальное напряжение.
Номинальное напряжение — значение напряжения, указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора.Если напряжение в цепи превышает номинальное напряжение конденсатора, он быстро выйдет из строя и даже может взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи 9 Вольт необходимо устанавливать конденсатор с номинальным напряжением 16 Вольт и более.
Температурный коэффициент емкости конденсатора (ТКЕ)
TKE показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы делятся на группы, которым на корпусе присвоены соответствующие буквы.
Маркировка конденсатора
Емкость от 0 до 9999 пФ может быть указана без единицы измерения:
22 = 22p = 22P = 22pF
Если емкость меньше 10 пФ, то обозначение может быть следующим:
1R5 = 1P5 = 1,5 пФ
Также конденсаторы промаркированы в нанофарад (нФ) , 1 нанофарад соответствует 1000 пФ и мкФ (мкФ) :
10n = 10H = 10nF = 0,01 мкФ = 10000 пФ
ч28 = 0,18 нФ = 180 пФ
1н0 = 1Н0 = 1нФ = 1000пФ
330N = 330n = M33 = m33 = 330nF = 0.33 мкФ = 330000 пФ
100H = 100n = M10 = m10 = 100nF = 0,1 мкФ = 100000 пФ
1H5 = 1n5 = 1,5 нФ = 1500 пФ
4н7 = 4Н7 = 0,0047 мкФ = 4700 пФ
6M8 = 6,8 мкФ
Цифровая маркировка конденсатора
Если код трехзначный, то первые две цифры указывают значение, третья — количество нулей, результат в пикофарадах.
Например: код 104, первым двум цифрам присваиваем четыре нуля, получаем 100000пФ = 100нФ = 0,1 мкФ.
Если код четырехзначный, первые три цифры указывают значение, четвертая — количество нулей, результат также в пикофарадах.
4722 = 47200 пФ = 47,2 нФ
Конденсаторы электролитические
Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы большой емкости. Такие конденсаторы называют электролитическими. В отличие от других типов электролитических конденсаторов полярные, это означает, что их можно включать только в цепи постоянного или импульсного напряжения и только с полярностью, указанной на корпусе конденсатора. Несоблюдение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.
Пленочный конденсатор, электронные пленочные конденсаторы, пленочный колпачок 4
Пленочные конденсаторы — одна из наиболее распространенных форм конденсаторов, используемых в схемах, особенно любителями электроники. Это неполяризованные конденсаторы, которые невероятно универсальны и экономичны, что делает их важным компонентом при построении цепей.
Вы можете просмотреть весь наш ассортимент от различных производителей металлизированных и неметаллических пленочных конденсаторов, так что вы можете получить доступ к высококачественным компонентам от ведущих производителей.Если вы ищете конденсаторы Vishay, Panasonic, KEMET, Genteq или что-то еще, у нас есть компоненты, которые будут соответствовать практически любым вашим спецификациям.
Что такое пленочный конденсатор?
Пленочные конденсаторы — это обычные пассивные электрические компоненты, состоящие из двух частей пластиковой пленки, покрытых металлическими электродами. Они намотаны в цилиндрическую форму, имеют присоединенные клеммы и заключены в защитное покрытие.
Все пленочные конденсаторы неполяризованы, что означает, что эти две клеммы взаимозаменяемы в цепи.Вы также можете приобрести металлизированные пленочные конденсаторы, которые различаются по диэлектрику:
- Неметаллические пленочные конденсаторы или конденсаторы из металлической фольги состоят из двух пластиковых пленок в качестве диэлектрика. Это слои с некоторой формой тонкой металлической фольги в качестве электрода, которая обеспечивает простое электрическое соединение и способность выдерживать высокие скачки напряжения.
- Металлизированные пленочные конденсаторы изготавливаются из двух пленок, на которые нанесена металлизация из алюминия методом вакуумного напыления, при этом пластиковые пленки по-прежнему действуют как диэлектрик.Эта конструкция может иметь дополнительные преимущества, такие как свойство «самовосстановления», которое позволяет избежать разрушения компонента в случае короткого замыкания.
Типы материалов пленочных конденсаторов
На рынке можно найти широкий спектр полимерных пленочных конденсаторов с различными типами изоляционных материалов, которые добавляют полезные свойства. Эти свойства, в частности низкий коэффициент искажения и отличные частотные характеристики, могут сделать некоторые пленочные конденсаторы более подходящими для конкретных применений.
Конденсаторы с пластиковой пленкой, а не их металлизированные аналоги, могут хорошо подходить для обработки больших скачков тока, что может быть полезно в определенных конфигурациях схем.
Конденсатор из полиэфирной пленки
Это конденсатор, в котором используется диэлектрик из полиэтилентерефталата (ПЭТ), что привело к альтернативному названию пленочного конденсатора из ПЭТ. Использование полиэфирных конденсаторов дает вам дешевое решение для схемных конденсаторов, обеспечивающее долгосрочную стабильность. Они могут быть популярным выбором для простых схем фильтров.
Помимо высокой прочности изоляции и рабочих температур до 125 ° C с допуском 5-10%, конденсаторы с полиэфирной пленкой также обладают высокой устойчивостью к влажности. Эти атрибуты показывают, как этот тип конденсатора может хорошо подходить к различным схемам.
Полипропиленовый конденсатор
Полипропиленовые пленочные конденсаторы изготовлены из полипропиленового (ПП) полимера, который действует как диэлектрик. Одна из ключевых характеристик этих конденсаторов — низкие электрические потери при включении в цепь.Это может иметь решающее значение, когда требуется стабильная выходная мощность.
Они также демонстрируют поведение, близкое к линейному в очень широком диапазоне частот. Это делает их пригодными для применения в резонансных цепях класса стабильности 1, и единственным жизнеспособным вариантом являются керамические конденсаторы.
Конденсатор из полистирола
Конденсаторы из полистирола, использующие полистирол в качестве основного пластикового диэлектрика, отлично подходят для приложений, где пространство ограничено. Это потому, что они физически меньше, чем многие другие типы конденсаторов.
Пленочные конденсаторы из полистирола обладают хорошей температурной стабильностью и изоляцией, а также имеют низкие утечки и диэлектрическое поглощение. Эти характеристики могут сделать их подходящей альтернативой керамическим конденсаторам.
Пленочный конденсатор из полифениленсульфида
Эти конденсаторы имеют изолятор / диэлектрик из полифениленсульфида (PPS), который выдерживает высокие температуры и скачки тока. Будучи легкими и компактными конденсаторами, они могут быть ценными компонентами для устройств поверхностного монтажа (SMD) и подходят для пайки оплавлением.
Для чего используются пленочные конденсаторы?
Пленочные конденсаторы используются в схемах для самых разных применений, в зависимости от того, металлизированные они или нет:
- Пленочные конденсаторы из полиэстера часто используются для связи, развязки и байпаса. Их можно использовать как для переменного, так и для постоянного тока.
- Полипропиленовые конденсаторы используются для импульсных источников питания, цепей высокого напряжения и балластных систем освещения.
- Металлизированные пленочные конденсаторы (как из ПЭТ, так и из полипропилена) широко используются в силовых электронных схемах, например в цепях промежуточного контура и импульсных цепях, а варианты с низким энергопотреблением могут быть полезны в фильтрах.
- Наиболее распространенной формой конденсаторов двигателя являются металлизированные полипропиленовые конденсаторы. Конденсаторы работы двигателя предназначены для поддержки однофазных электродвигателей переменного тока, запитывая обмотку второй фазы. Поскольку они работают в цепи непрерывно, предпочтительны полимерные конденсаторы с малыми потерями, такие как полипропилен.
Независимо от типа контура, который вы разрабатываете, вы, скорее всего, найдете пленочный конденсатор, который будет соответствовать вашим предполагаемым целям.
Найдите свои пленочные конденсаторы с Allied Electronics
Наш обширный ассортимент пленочных конденсаторов охватывает все различные материалы и варианты, которые могут вам потенциально понадобиться для ваших схемотехнических решений.Мы распространяем высококачественные электрические компоненты и электромеханическую продукцию по всей Северной Америке уже более 90 лет, обеспечивая наших клиентов конденсаторами, компонентами схем и многим другим.
Если вы хотите оптовый заказ ряда компонентов, вы можете заполнить нашу форму расчета стоимости запасных частей, чтобы один из наших сотрудников обсудил с вами. По любым другим вопросам, которые могут у вас возникнуть, вы можете связаться с одним из наших региональных офисов продаж для получения поддержки или обратиться в наш центр консультаций с экспертами.
Типы конденсаторов, которые указывают на этикетках.Маркировка конденсатора
Самый простой состоит из двух металлических пластин (пластин), разделенных тонким слоем диэлектрика (изолятора), которым может служить воздух, фарфор, слюда, керамика, бумага или другой материал с достаточно большим сопротивлением.Единица электрической емкости Емкость конденсатора Фарада (Ф) — дань уважения великому английскому ученому Майклу Фарадею.
В радиоэлектронике используются конденсаторы, емкость которых измеряется дробными единицами фарад: пикофарады (пФ), нанофарады (нФ), микрофарады (микрофарады).
1 Ф (фарад) = 1000000 мкФ (микрофарад)
1 мкФ (микрофарад) = 1000 нФ (нанофарад) = 1000000 пФ (пикофарад)
1 нФ (нанофарад) = 1000 пФ (пикофарад)
43
Конденсаторы керамические
Наиболее распространены керамические конденсаторы.Емкость керамических конденсаторов составляет единицы — тысячи пикофарад.
Наибольшей емкостью обладают электролитические конденсаторы , в котором тончайший оксидный слой, полученный электролитическим методом, используется в качестве изолятора. Емкость электролитических конденсаторов может достигать тысяч микрофарад. Электролитические конденсаторы, как правило, полярные, то есть имеют положительный и отрицательный полюса. Нарушение правильной полярности при включении электролитического конденсатора в схему недопустимо, так как может вывести его из строя.
На корпусе конденсаторов наряду с величиной их емкости и величиной ее возможного отклонения от номинала обычно указывается значение рабочего электрического напряжения. На конденсаторах в основном указывается номинальное рабочее напряжение при постоянном токе. Включение конденсатора в цепь, напряжение которой превышает его рабочее, не допускается, так как изолятор разрушается, в результате чего конденсатор выходит из строя.
Конденсаторы, емкость которых можно изменять с заданными интервалами, называются конденсаторами.переменная мощность и тюнинг.
Для конденсаторов постоянной емкости значение емкости указано на схеме рядом с условным графическим обозначением. При емкости менее 0,01 мкФ (10000 пФ) количество пикофарад устанавливается без обозначения размеров, например 15, 220, 9100. Для емкости 0,01 мкФ и более задается количество микрофарад.
Для электролитических конденсаторов возле одной из пластин ставим плюс. Такой же знак обычно появляется на корпусе конденсатора возле соответствующего выхода.Также чаще всего указывают номинальное напряжение.
Для конденсаторов переменной емкости и настройки указать пределы изменения емкости при крайних положениях ротора, например, 6 … 30, 10 … 180, 6 … 470.
Конденсатор Маркировка
При обозначении номинала в зарубежных керамических конденсаторах часто используется специальная кодировка, в которой последняя цифра в номере указывает количество нулей (емкость в пикофарадах). Например:
Заряд конденсатора
Рассмотрим процесс накопления конденсатором электрической энергии.Подключите пластины конденсатора к полюсам источника тока. В момент замыкания цепи на обкладках конденсатора начнет накапливаться заряд. Как только напряжение на конденсаторе выравнивается с напряжением источника, процесс зарядки конденсатора заканчивается, и ток в цепи становится равным нулю. Таким образом, по окончании заряда цепь постоянного тока будет разомкнута. Если сейчас немного увеличить напряжение источника, конденсатор накопит еще немного заряда. Чем больше конденсатор, тем больший заряд будет на его пластинах при заданном значении напряжения между пластинами.
При разрыве цепи конденсатора и источника постоянного тока конденсатор остается заряженным. Заряженный конденсатор можно использовать как источник энергии, которая накапливается в нем в виде энергии электрического поля, заряжающегося на пластинах. Таким образом, конденсатор используется в солнечных двигателях роботов BEAM. Источником электричества в данном случае является солнечная батарея.
Посмотрим, что будет, если теперь подключить заряженный конденсатор, например, к светодиоду (с учетом полярности). В получившейся цепи снова будет течь ток (ток разряда конденсатора).Этот ток имеет направление, противоположное зарядному току, то есть следует из положительно заряженной пластины конденсатора, как и из положительного полюса источника. По мере развития разряда напряжение на конденсаторе уменьшается, и ток в цепи начинает уменьшаться. По окончании разряда энергия конденсатора будет полностью израсходована, и ток в цепи исчезнет.
Длина и расстояние Масса Измерения объема сыпучих продуктов и пищевых продуктов Площадь Объем и единицы измерения в рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловой КПД и экономия топлива Числа Единицы измерения количества информация Обмен валюты Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и скорость Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент крутящего момента Крутящий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива ( по объему) Разница температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоемкость Энергетическое воздействие, мощность теплового излучения Плотность теплового потока Коэффициент теплопередачи Объемный расход массовый расход молярный расход массовый расход плотность молярная концентрация массовая концентрация в растворе Динамический (абсолютный) вязкость Kine матическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость парообмена Уровень звука Чувствительность микрофона Уровень звукового давления (SPL) Яркость Интенсивность света Освещенность Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличенные линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность Линейная плотность электрического тока Плотность поверхностного тока Напряженность электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электропроводность Электропроводность Электрическая емкость Индуктивность Американский калибр проводов Уровни в дБм (дБм или дБмВт), дБВ (дБВ), ватты и другие единицы Магнитодвижущая сила Напряжение магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность.Радиоактивный распад Радиация. Доза облучения Радиация. Поглощенная доза Десятичные префиксы Передача данных Типография и обработка изображений Единицы расчета объема древесины Расчет молярной массы Периодическая система химических элементов Д. И. Менделеев
1 микрофарад [мкФ] = 1000000 пикофарад [пФ]
Начальное значение
Конвертированное значение
фарад Эсафарад Петафарад Терафарад Гигафарад Мегафарад Килофарад Хектофдара Декафарада Декафарада Пикофарада Декафарада unit SGS statist unit
Микрофоны и их характеристики
Общая информация
Электрическая емкость — это величина, которая характеризует способность проводника накапливать заряд, равный отношению электрического заряда к разности потенциалов между проводниками:
C = Q / Δφ
Здесь Q — электрический заряд, измеренный в подвесках (C), — разность потенциалов, измеряемая в вольтах (В).
В системе СИ электрическая емкость измеряется в фарадах (Ф). Эта установка названа в честь английского физика Майкла Фарадея.
Фарад — очень большая емкость для изолированного проводника. Итак, уединенный металлический шар с радиусом 13 радиусов Солнца имел бы емкость, равную 1 фараду. А емкость металлического шара размером с Землю составила бы примерно 710 микрофарад (мкФ).
Поскольку 1 фарад — это очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фараде.
В системе GHS основной единицей измерения емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара радиусом 1 сантиметр, помещенного в вакуум. GHSE — это расширенная система GHS для электродинамики, то есть система единиц, в которой сантиметр, грамм и секунда используются в качестве основных единиц для расчета длины, массы и времени соответственно. В расширенных GHS, включая GHS, некоторые физические константы взяты за единицу, чтобы упростить формулы и облегчить вычисления.
Использование емкости
Конденсаторы — устройства для накопления заряда в электронном оборудовании
Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — это система из двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (пластин). Конденсатор (от лат. Condensare — «компактный», «сгущающий») — это двухэлектродное устройство для накопления заряда и энергии электромагнитного поля, в простейшем случае это два проводника, разделенных изолятором.Например, иногда радиолюбители при отсутствии готовых деталей изготавливают настроечные конденсаторы для своих схем из отрезков проводов разного диаметра, заизолированных лаком, а более тонкий провод наматывается на более толстый. Регулируя количество витков, энтузиасты радиолюбителей точно настраивают схему оборудования на желаемую частоту. Примеры изображения конденсаторов на электрических цепях показаны на рисунке.
Историческая справка
Еще 275 лет назад принципы создания конденсаторов были известны.Так, в 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Петер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — стенки стеклянной банки были в ней изолятором, а вода в ней. Пластинами служили сосуд и ладонь экспериментатора, удерживающая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как она была изобретена, с ней часто проводились эксперименты и публичные выступления. Для этого банку сначала заряжали статическим электричеством, натирая ее.После этого один из участников дотронулся рукой до банка и получил небольшой удар током. Известно, что 700 парижских монахов, держась за руки, провели лейденский эксперимент. В тот момент, когда первый монах коснулся головки банки, все 700 монахов, объединенных одной судорогой, вскрикнули от ужаса.
«Лейденский банк» появился в России благодаря русскому царю Петру I, который познакомился с Мушенбрюком во время его путешествия по Европе и узнал больше об экспериментах с «лейденским банком».Петр I учредил Академию наук в России и заказал Мушенбрюку различные инструменты для Академии наук.
В дальнейшем конденсаторы улучшились и стали меньше, а их емкость увеличилась. Конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который можно использовать для настройки приемника на желаемую частоту.
Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью и материалом диэлектрика.
Примеры конденсаторов
Промышленность производит большое количество типов конденсаторов различного назначения, но их основными характеристиками являются емкость и рабочее напряжение.
Типичное значение Емкости конденсаторов варьируются от пикофарад до сотен микрофарад, за исключением ионисторов, которые имеют несколько иной характер формирования емкости — из-за двойного слоя электродов — в этом они похожи на электрохимические батареи.Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую электродную поверхность. Для этих типов конденсаторов типичные значения емкости составляют десятки фарад, и в некоторых случаях они способны заменить традиционные электрохимические батареи в качестве источников тока.
Вторым по важности параметром конденсатора является рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято использовать конденсаторы с удвоенным значением рабочего напряжения.
Для увеличения емкости или рабочего напряжения используйте метод объединения конденсаторов в батареях. При последовательном подключении двух однотипных конденсаторов рабочее напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. При параллельном соединении двух одинаковых конденсаторов рабочее напряжение остается прежним, а общая емкость удваивается.
Третьим по важности параметром конденсаторов является температурный коэффициент изменения емкости (ТКЕ) .Дает представление об изменении емкости при изменении температуры.
В зависимости от назначения конденсаторы делятся на конденсаторы общего назначения, требования к параметрам которых некритичны, и конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).
Маркировка конденсатора
Как и резисторы, в зависимости от габаритов изделия может использоваться полная маркировка с указанием номинальной емкости, класса отклонения от номинального и рабочего напряжения.Для небольших версий конденсаторов используется кодовая маркировка из трех или четырех цифр, смешанная буквенно-цифровая маркировка и цветовая маркировка.
Соответствующие таблицы преобразования маркировки по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но наиболее эффективным и практичным методом проверки номинала и исправности элемента реальной схемы остается непосредственное измерение параметров припаял конденсатор с помощью мультиметра.
Предупреждение: , поскольку конденсаторы могут накапливать большой заряд при очень высоком напряжении, во избежание поражения электрическим током необходимо разрядить конденсатор перед измерением параметров, закоротив его выводы проводом с большим сопротивлением. к внешней изоляции.Для этого лучше всего подходят стандартные провода измерительного прибора.
Оксидные конденсаторы: Конденсаторы этого типа имеют большую удельную емкость, то есть емкость на единицу веса конденсатора. Одна футеровка таких конденсаторов обычно представляет собой алюминиевую ленту, покрытую слоем оксида алюминия. Вторая футеровка — электролитная. Поскольку оксидные конденсаторы имеют полярность, принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.
Твердотельные конденсаторы: вместо традиционного электролита в них используется органический полимер, токопроводящий ток или полупроводник.
Переменные конденсаторы: емкость можно изменять механически, электрическим напряжением или температурой.
Пленочные конденсаторы: Диапазон емкости конденсаторов этого типа составляет приблизительно от 5 пФ до 100 мкФ.
Доступны другие типы конденсаторов.
Ионисторы
В наши дни ионисторы становятся все более популярными.Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых углеродных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология была дополнена и улучшена.Ионисторы появились на рынке в начале восьмидесятых годов прошлого века.
С появлением ионисторов стало возможным использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы обладают длительным сроком службы, малым весом, высокими скоростями заряда-разряда. В будущем этот тип конденсатора может заменить обычные батареи. Основными недостатками ионисторов являются меньшая удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд по сравнению с электрохимическими батареями.
Ионисторы используются в автомобилях Формулы 1. В системах рекуперации энергии при торможении вырабатывается электричество, которое накапливается в маховике, батареях или ионисторах для использования в будущем. Электромобиль A2B Университет Торонто. Под капотом
Электрические компании в настоящее время производятся многими компаниями, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионизаторы вместе с химическими источниками энергии, так называемые гибридные накопители электроэнергии.Двигатели этого автомобиля питаются от аккумуляторов весом 380 килограммов. Солнечные панели, установленные на крыше электромобиля, также используются для подзарядки.
Емкостные сенсорные экраны
В современных устройствах все чаще используются сенсорные экраны, которые позволяют управлять устройствами, касаясь панелей с индикаторами или экранами. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных прикосновений. Принцип работы емкостных экранов основан на том, что объект большой емкости проводит переменный ток.В данном случае этим предметом является человеческое тело.
Поверхностные емкостные экраны
Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно используется сплав оксида индия и оксида олова, обладающий высокой прозрачностью и низким поверхностным сопротивлением. Электроды, питающие небольшой проводящий слой переменного напряжения, расположены по углам экрана. При касании пальцем такого экрана появляется утечка тока, которая регистрируется датчиками по четырем углам и передается на контроллер, который определяет координаты точки касания.
Достоинством таких экранов является их долговечность (около 6,5 лет нажатий с интервалом в одну секунду или около 200 миллионов нажатий). У них высокая прозрачность (примерно 90%). Благодаря этим преимуществам емкостные экраны уже начали активно заменять резистивные экраны с 2009 года.
Недостатком емкостных экранов является то, что они плохо работают при низких температурах, возникают трудности с использованием таких экранов в перчатках. Если токопроводящее покрытие расположено на внешней поверхности, экран достаточно уязвим, поэтому емкостные экраны используются только в тех устройствах, которые защищены от погодных условий.
Проекционные емкостные экраны
В дополнение к поверхностно емкостным экранам существуют проекционные емкостные экраны. Их отличие состоит в том, что с внутренней стороны экрана нанесена сетка электродов. Электрод, к которому нужно прикоснуться, вместе с телом человека образует конденсатор. Благодаря сетке можно получить точные координаты касания. Проекционно-емкостный экран реагирует на прикосновения в тонких перчатках.
Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%).Они прочные и достаточно прочные, поэтому широко используются не только в персональной электронике, но и в машинах, в том числе устанавливаемых на улице.
У вас есть трудности с переводом единиц с одного языка на другой? Коллеги готовы вам помочь. Задайте свой вопрос TCTerms , и через несколько минут вы получите ответ.
Конденсатор можно сравнить с маленькой батареей, он может быстро накапливать и так же быстро отдавать. Основным параметром конденсатора является его емкость (Кл) .Важным свойством конденсатора является то, что он обеспечивает сопротивление переменному току, чем выше частота переменного тока, тем меньше сопротивление. Конденсатор постоянного тока не проходит.
Как, конденсаторы бывают постоянной емкости и переменной емкости. Конденсаторы используются в колебательных цепях, различных фильтрах, для разделения цепей постоянного и переменного тока и в качестве запорных элементов.
Базовая единица измерения емкости — фарад (ф) — это очень большая величина, которая на практике не применяется.В электронике используются конденсаторы емкостью долей от пикофарад (пФ) от до десятков тысяч мкФ (мкФ) . 1 мкФ равен одной миллионной доли фарада, а 1 пФ равен одной миллионной доли микрофарада.
По электрическим понятиям конденсатор изображается в виде двух параллельных линий, символизирующих его основные части: две пластины и диэлектрик между ними. Рядом с обозначением конденсатора обычно указывается его номинальная емкость, а иногда и его номинальное напряжение.
Номинальное напряжение — значение напряжения, указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи превышает номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется устанавливать конденсаторы с запасом по напряжению, например: в цепи напряжением 9 вольт — нужно установить конденсатор с номинальным напряжением 16 вольт и более.
Температурный коэффициент емкости конденсатора (ТКЕ)
TKE показывает относительное изменение емкости при изменении температуры на один градус.ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы делятся на группы, которым соответствуют буквенные обозначения на корпусе.
Маркировка конденсатора
Емкости от 0 до 9999 пФ могут указываться без обозначения единиц измерения:
22 = 22п = 22П = 22пФ
Если емкость меньше 10 пФ, то обозначение может быть следующим:
1Р5 = 1П5 = 1,5пФ
Конденсаторы также имеют маркировку нанофарад (нФ) , 1 нанофарад составляет 1000 пФ и микрофарад (микрофарад) :
10н = 10Н = 10нФ = 0.01мкФ = 10000пФ
х28 = 0,18нФ = 180пФ
1н0 = 1Н0 = 1нФ = 1000пФ
330N = 330n = M33 = m33 = 330nF = 0,33uF = 330000pF
100Н = 100н = М10 = м10 = 100нФ = 0,1мкФ = 100000пФ
1Н5 = 1н5 = 1,5нФ = 1500пФ
4н7 = 4Н7 = 0,0047мкФ = 4700пФ
6M8 = 6,8 мкФ
Цифровая маркировка конденсатора
Если код трехзначный, то первые две цифры указывают значение, третья — количество нулей, результат в пикофарадах.
Например: код 104, первым двум цифрам присваиваем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.
Если код четырехзначный, то первые три цифры указывают значение, четвертая — количество нулей, результат также в пикофарадах.
4722 = 47200пФ = 47,2нФ
Конденсаторы электролитические
Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных питающих напряжений необходимы конденсаторы большой емкости.Такие конденсаторы называются — электролитическими. В отличие от других типов, электролитические конденсаторы являются полярными, что означает, что они могут быть подключены только в цепи постоянного или пульсирующего напряжения и только с той полярностью, которая указана на корпусе конденсатора. Несоблюдение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.
При сборке самодельных электронных схем невольно сталкиваешься с выбором необходимых конденсаторов.Более того, для сборки устройства можно использовать конденсаторы, которые уже используются и какое-то время проработали в электронном оборудовании. Естественно, конденсаторы необходимо проверять перед повторным использованием, особенно на электролитическую емкость, которые более склонны к старению.
При подборе конденсаторов постоянной емкости необходимо понимать маркировку этих радиоэлементов, иначе при возникновении ошибки собранное устройство либо откажется работать корректно, либо вообще не будет работать.
Конденсатор имеет несколько важных параметров, которые следует учитывать при их использовании.
Во-первых, это номинальная емкость . Он измеряется в долях Фарады.
Второй — допуск. Или иначе допустимое отклонение номинальной мощности от заданной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре радиоэлементы используются с допуском до ± 20%, а иногда и больше. Все зависит от назначения устройства и особенностей конкретного устройства. Как правило, на принципиальных схемах этот параметр не указывается.
Третье, что указано в маркировке конденсатора — это допустимое рабочее напряжение . Это очень важный параметр, на него стоит обратить внимание, если конденсатор эксплуатируется в цепях высокого напряжения.
Итак, давайте разберемся, как маркируются постоянные конденсаторы.
Некоторые из наиболее популярных конденсаторов, которые можно использовать, это постоянные конденсаторы К73 — 17, К73 — 44, К78 — 2, керамические КМ-5, КМ-6 и т.п. Также в импортном электронном оборудовании используются аналоги этих конденсаторов.Их маркировка отличается от маркировки отечественных производителей.
Конденсаторы отечественного производства К73-17 представляют собой пленочные конденсаторы с защитой из полиэтилентерефталата. На корпусе конденсатора нанесена маркировка с буквенно-цифровым индексом, например 100 нДж, 330 нК, 220 нМ, 39 нДж, 2 н 2 м.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Номинальная емкость конденсатора.
Емкости от 100 пФ до 0.1 мкФ обозначаются в нанофарадах, обозначаются буквой H или n .
Обозначение 100 n Это значение номинальной емкости конденсатора. Для 100н — 100 нанофарад (нФ) — 0,1 мкФ (мкФ). Таким образом, конденсатор с индексом 100н имеет емкость 0,1 мкФ. В остальном обозначения аналогичны. Например:
330n — 0,33 мкФ, 10n — 0,01 мкФ. Для 2n2 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Видна маркировка 47 H C.Эта маркировка резервуара соответствует маркировке 47 n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС — 0,022 мкФ.
Чтобы легко определить емкость, необходимо знать обозначения основных дробных единиц — милли, микро, нано, пико и их числовые значения.
Также в маркировке конденсаторов К73 есть такие обозначения, как М47С, М10С.
Здесь буква M условно означает микрофарад. Значение 47 стоит после M, т.е.номинальная емкость конденсатора составляет дробную часть микрофарад, то есть 0,47 мкФ. Для M10C 0,1 мкФ. Оказывается, емкость конденсатора с маркировкой M10C равна емкости конденсатора с маркировкой 100 нДж. Только условная маркировка немного отличается.
Таким образом, емкость от 0,1 мкФ и выше указывается буквой M , m вместо десятичной точки, несущественный ноль опускается.
Номинальная емкость бытовых конденсаторов до 100 пФ указывается в пикофарадах путем установки буквы P или p после числа.Если емкость меньше 10 пФ, то ставим букву R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6) небольших размеров обычно указывается только числовой код емкости.
Керамические конденсаторы с маркированным кодом числа емкости
Например, числовая маркировка 224 соответствует 220 000 пикофарад, или 220 нанофарад и 0,22 мкФ. В этом случае 22 — это числовое значение номинальной стоимости.Цифра 4 указывает количество нулей. Получившееся число представляет собой значение емкости в пикофарадах . У 221 емкость 220 пФ, у 220 — 22 пФ. Если в маркировке конденсатора используется четырехзначный код, то первые три цифры — это числовое значение номинала, а последняя, четвертая — количество нулей. Итак, у 4722 емкость 47200 — 47,2 нФ.
Допустимое отклонение резервуара обозначается либо процентным числом (± 5%, 10%, 20%), либо латинскими буквами.Иногда можно встретить старое обозначение допуска, закодированное русской буквой. Допустимое отклонение емкости конденсатора аналогично допуску для резисторов.
Буквенный код отклонения емкости конденсатора (допуск).
Так, если конденсатор со следующей маркировкой — М47С, то его емкость 0,047 мкФ, а допуск ± 10% (по старой маркировке русской буквой).Довольно сложно встретить в бытовой технике конденсатор с допуском ± 0,25% (обозначается латинской буквой), поэтому было выбрано значение с большей погрешностью. В основном в бытовой технике широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск, указывается после значения номинальной емкости конденсатора, вот так 22n K , 220n M , 470n J .
Таблица для расшифровки условных буквенных кодов допусков конденсаторов.
D снижение в% | B обозначение | |
лат | русский | |
± 0,05p | A | |
± 0,1p | B | F |
± 0,25p | C | При |
± 0,5p | D | D |
± 1.0 | Ф | Р |
± 2,0 | G | L |
± 2,5 | H | |
± 5,0 | Дж | И |
± 10 | К | ИЗ |
± 15 | L | |
± 20 | M | IN |
± 30 | N | F |
-0… + 100 | п. | |
-10 … + 30 | К | |
± 22 | S | |
-0 … + 50 | т | |
-0 … + 75 | U | E |
-10 … + 100 | З | Ю |
-20 … + 5 | Y | B |
-20 … + 80 | Z | A |
Допустимое рабочее напряжение конденсатора.
Важным параметром конденсатора также является допустимое рабочее напряжение. Это следует учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо при замене вышедших из строя конденсаторов подбирать конденсатор на соответствующее напряжение. Не лишним будет взять конденсатор с запасом по рабочему напряжению.
Обычно значение допустимого рабочего напряжения конденсатора указывается после номинальной емкости и допуска.Он указывается в вольтах буквами B (старая маркировка) и V (новая маркировка). Например, вот так: 250В, 400В, 1600В, 200В. В некоторых случаях буква V опускается.
Иногда используется кодировка латинскими буквами. Для расшифровки следует использовать таблицу буквенного кодирования рабочего напряжения конденсаторов.
N номинальное рабочее напряжение , B | B буквенный код |
1,0 | Я |
1,6 | R |
2,5 | M |
3,2 | А |
4,0 | С |
6,3 | В |
10 | Д |
16 | E |
20 | Ф |
25 | G |
32 | H |
40 | S |
50 | Дж |
63 | К |
80 | л |
100 | N |
125 | -п. |
160 | Q |
200 | Z |
250 | Вт |
315 | Х |
350 | т |
400 | Y |
450 | U |
500 | В |
Это наиболее важные параметры конденсатора, которые вы должны знать при выборе правильного конденсатора.Маркировка импортных конденсаторов разная, но во многом соответствует вышеперечисленному.