Конденсаторы емкость: Электрическая емкость. Конденсаторы. Емкость конденсатора.

Содержание

Электрическая емкость. Конденсаторы. Емкость конденсатора.

Электрическая емкость. Конденсаторы.

Емкость уединенного проводника.

Уединенным будем называть проводник, размеры которого много меньше расстояний до окружающих тел. Пусть это будет шар радиусом r. Если потенциал на бесконечности принять за 0, то потенциал заряженного уединенного шара равен:  , где e — диэлектрическая проницаемость окружающей среды.  Следовательно: 

эта величина не зависит ни от заряда, ни от потенциала и определяется только размерами шара (радиусом) и диэлектрической проницаемостью среды. Этот вывод справедлив для проводника любой формы.

 

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу: .

Емкость определяется геометрической формой, размерами проводника и свойствами среды (от материала проводника не зависит). Чем больше емкость проводника, тем меньше меняется потенциал при изменении заряда.

Емкость шара в СИ:

  —

Единицы емкости.

Емкостью (фарад) обладает такой проводник, у которого потенциал возрастает на 1 В при сообщении ему заряда в 1 Кл.

Емкостью   обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца.

Емкость Земли  700 мкФ

Если проводник не уединенный, то потенциалы складываются по правилу суперпозиции и емкость проводника меняется.

1 мкФ=10-6Ф

1нФ=10

-9Ф

1пФ=10-12Ф

Конденсаторы (condensare — сгущение) .

Можно создать систему проводников, емкость которой не зависит от окружающих тел. Первые конденсаторы — лейденская банка (Мушенбрук, сер. XVII в.).

 

Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.  Проводники наз.  обкладками  конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то  под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

На рисунке — плоский и сферический конденсаторы. Поле плоского конденсатора почти все сосредоточено внутри (у идеального — все). Усферического — все поле сосредоточено между обкладками.

 

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками: .

При подключении конденсатора к батарее аккумуляторов происходит поляризация диэлектрика внутри конденсатора и на обкладках появляютсязаряды — конденсатор заряжается. Электрические поля окружающих тел почти не проникают через металлические обкладки и не влияют на разность потенциалов между ними.

 

Емкость плоского конденсатора.

, т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой емкости необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика.

Емкость сферического конденсатора .

Если зазор между обкладками мал по сравнению с радиусами, то формула переходит в формулу емкости плоского конденсатора.

Виды конденсаторов

При подключении электролитического конденсатора необходимо соблюдать полярность.

Назначение конденсаторов

  1. Накапливать на короткое время заряд или энергию для быстрого изменения потенциала.
  2. Не пропускать постоянный ток.
  3. В радиотехнике: колебательный контур, выпрямитель.
  4. Фотовспышка.

 

Емкость конденсаторов: определение, формулы, примеры.

Определение 1

Конденсатор – это совокупность двух любых проводников, заряды которых одинаковы по значению и противоположны по знаку.

Его конфигурация говорит о том, что поле, созданное зарядами, локализовано между обкладками. Тогда можно записать формулу электроемкости конденсатора:

C=qφ1-φ2=qU.

Значением φ1-φ2=U обозначают разность потенциалов, называемую напряжением, то есть U. По определению емкость положительна. Она зависит только от размерностей обкладок конденсатора их взаиморасположения и диэлектрика. Ее форма и место должны минимизировать воздействие внешнего поля на внутреннее. Силовые линии конденсатора начинаются на проводнике с положительным зарядом, а заканчиваются с отрицательным. Конденсатор может являться проводником, помещенным в полость, окруженным замкнутой оболочкой.

Выделяют три большие группы: плоские, сферические, цилиндрические. Чтобы найти емкость, необходимо обратиться к определению напряжения конденсатора с известными значениями зарядов на обкладках.

Плоский конденсатор

Определение 2

Плоский конденсатор – это две противоположно заряженные пластины, которые разделены тонким слоем диэлектрика, как показано на рисунке 1.

Формула для расчета электроемкости записывается как

C=εε0Sd, где S является площадью обкладки, d – расстоянием между ними, ε — диэлектрической проницаемостью вещества. Меньшее значение d способствует большему совпадению расчетной емкости конденсатора с реальной.

Рисунок 1

При известной электроемкости конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равняется di, вычисление диэлектрической проницаемости этого слоя εi выполняется, исходя из формулы:

C=ε0Sd1ε1+d2ε2+…+dNεN.

Сферический конденсатор

Определение 3

Когда проводник имеет форму шара или сферы, тогда внешняя замкнутая оболочка является концентрической сферой, это означает, что конденсатор сферический.

Он состоит из двух концентрических проводящих сферических поверхностей с пространством между обкладками, заполненным диэлектриком, как показано на рисунке 2. Емкость рассчитывается по формуле:

C=4πεε0R1R2R2-R1, где R1 и R2 являются радиусами обкладок.

Рисунок 2

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Цилиндрический конденсатор

Емкость цилиндрического конденсатора равняется:

C=2πεε0llnR2R1, где l — высота цилиндров, R1 и R2 — радиусы обкладок. Данный вид конденсатора имеет две соосные поверхности проводящих цилиндрических поверхности, как показано на рисунке 3.

Рисунок 3

Определение 4

Важной характеристикой конденсаторов считается пробивное напряжение — напряжение, при котором происходит электрический разряд через слой диэлектрика.

Umax находится от зависимости от толщины слоя и свойств диэлектрика, конфигурации конденсатора.

Электроемкость плоского конденсатора. Формулы

Кроме отдельных конденсаторов используются их соединения. Наличие параллельного соединения конденсаторов применяют для увеличения его емкости. Тогда поиск результирующей емкости соединения сводится к записи суммы Ci, где Ci- это емкость конденсатора с номером i:

C=∑i=1NCi.

При последовательном соединении конденсаторов суммарная емкость соединения всегда будет по значению меньше, чем минимальная любого конденсатора, входящего в систему. Для расчета результирующей емкости следует сложить величины, обратные к емкостям отдельных конденсаторов:

Пример 1

Произвести вычисление емкости плоского конденсатора при известной площади обкладок
1 см2 с расстоянием между ними 1 мм. Пространство между обкладками находится в вакууме.

Решение

Чтобы рассчитать электроемкость конденсатора, применяется формула:

C=εε0Sd.

Значения:

ε=1, ε0=8,85·10-12 Фм;S=1 см2=10-4 м2;d=1 мм=10-3 м.

Подставим числовые выражения и вычислим:

C=8,85·10-12·10-410-3=8,85·10-13 (Ф).

Ответ: C≈0,9 пФ.

Пример 2

Найти напряженность электростатического поля у сферического конденсатора на расстоянии x=1 см=10-2 м от поверхности внутренней обкладки при внутреннем радиусе обкладки, равном R1=1 см=10-2 м, внешнем – R2=3 см=3·10-2 м. Значение напряжения — 103 В.

Решение

Производящая заряженная сфера создает напряженность поля. Его значение вычисляется по формуле:

E=14πεε0qr2, где q обозначают заряд внутренней сферы, r=R1+x — расстояние от центра сферы.

Нахождение заряда предполагает применение определения емкости конденсатора С:

q=CU.

Для сферического конденсатора предусмотрена формула вида

C=4πεε0R1R2R2-R1 с радиусами обкладок R1 и R2.

Производим подстановку выражений для получения искомой напряженности:

E=14πεε0U(x+R1)24πεε0R1R2R2-R1=U(x+R1)2R1R2R2-R1.

Данные представлены в системе СИ, поэтому достаточно заменить буквы числовыми выражениями:

E=103(1+1)2·10-4·10-2·3·10-23·10-2-10-2=3·10-18·10-6=3,45·104 Вм.

Ответ: E=3,45·104 Вм.

Все о конденсаторах

Конденсатор — двухполюсник с постоянным или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от лейденской банки, которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой – станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

Как устроен конденсатор

Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

Рисунок 1. Устройство плоского конденсатора

Здесь S – площадь пластин в квадратных метрах, d – расстояние между пластинами в метрах, C — емкость в фарадах, ε – диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или электрического кабеля. Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод–лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC – цепочка, показанная на рисунке 2.

Рисунок 2.

На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

Исторический факт

Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки – тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

Немножко о диэлектриках

Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

Электролитический конденсатор

Наибольшей удельной емкостью (соотношение емкость / объем) обладают электролитические конденсаторы. Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

На рисунке 3 показан один из таких конденсаторов.

Рисунок 3. Электролитический конденсатор

Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

Конденсатор может накапливать энергию

Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

Рисунок 4. Схема с конденсатором

Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда – разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

Итак, схема собрана. Как она работает?

В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

Рисунок 5. Процесс заряда конденсатора

На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

Постоянная времени «тау» τ = R*C

В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

Рисунок 6. График разряда конденсатора

Конденсатор не пропускает постоянный ток

Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

Рисунок 7. Схема с конденсатором в цепи постоянного тока

Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

Конденсатор в фильтрах питания

Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

Рисунок 8. Схемы выпрямителей

Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

C = 1000000 * Po / U*f*dU,

а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

Суперконденсатор – ионистор

В последнее время появился новый класс электролитических конденсаторов, так называемый ионистор. По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе – изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока.

Ранее ЭлектроВести писали, что в новом исследовании ученые создали микропленочный ультратонкий конденсатор для накопления энергии, который может приклеиваться к поверхности как стикер. Батарея прикрепляется с помощью ультракоротких лазерных импульсов, которые частично расплавляют ее, позволяя удерживаться почти на любой поверхности.

По материалам: electrik.info.

Емкость конденсатора, теория и примеры задач

Емкость в Международной системе единиц (СИ) измеряется в фарадах (Ф). Фарад – это большая емкость, поэтому на практике часто применяют пико фарады (пФ), нано фарады (нФ), микро фарады (мкФ).

   

Емкость плоского конденсатора

Получим формулу для расчета ёмкости плоского конденсатора, который состоит из двух параллельных проводящих пластин, площадь которых равна S (каждая). Пластины расположены на расстоянии d друг от друга. Одна пластина имеет заряд а другая . Будем считать, что расстояние между пластинами конденсатора много меньше, чем их линейные размеры. В таком случае краевые эффекты можно не принимать в расчет и электрическое поле между обкладками будем считать однородным. Поле (E), которое создают две бесконечные плоскости, несущие одинаковый по модулю и противоположный по знаку заряд, разделенные диэлектриком с диэлектрической проницаемостью , можно определить при помощи формулы:

   

где — плотность распределения заряда по поверхности пластины. В таком случае, разность потенциалов между рассматриваемыми обкладками конденсатора, находящимися на расстоянии d будет равна:

   

Подставим правую часть выражения (3) вместо разности потенциалов в (1) и учитывая, что , получаем:

   

Емкости цилиндрического и сферического конденсаторов получают по аналогичной схеме.

Емкости цилиндрического и сферического конденсаторов

Цилиндрическим называют конденсатор, который представляет собой две соосные цилиндрические поверхности из проводника, разного радиуса, пространство между которыми заполнено диэлектриком. Емкость такого конденсатора находят как:

   

где l – высота цилиндров; – радиус внешнего цилиндра; – радиус внутреннего цилиндра. По формуле (5) вычисляют емкость коаксиального кабеля.

Сферическим конденсатором является конденсатор, обкладки которого две концентрические сферические поверхности из проводника, пространство между ними заполняет диэлектрик. Емкость сферического конденсатора определяют как:

   

где – радиусы обкладок конденсатора.

Примеры решения задач

Конденсатор — урок. Физика, 9 класс.

Конденсатор — это устройство, предназначенное для накопления заряда и энергии электрического поля (от лат. kondensator — «уплотнять», «сгущать»).

Простейший плоский конденсатор состоит из двух одинаковых металлических пластин — обкладок — и  слоя диэлектрика, толщина которого мала по сравнению с размерами пластин.

 

 

На схемах электрических цепей  конденсатор обозначается:  .

 

Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника тока. При зарядке обе обкладки получают заряды, равные по модулю, но противоположные по знаку. Под зарядом конденсаторов понимают модуль заряда одной из его обкладок. Свойство конденсатора накапливать электрический заряд характеризуется физической величиной — электроёмкостью.

Электроёмкость  обозначается буквой \(C\) и определяется по формуле:

C=qU, где  \(q\) — заряд конденсатора, \(U\) — напряжение между обкладками конденсатора.

                

Электроёмкость конденсатора зависит от площади перекрытия пластин и расстояния между ними, а также от свойств используемого диэлектрика:

 

C∼Sd, где \(S\) — площадь каждой обкладки, \(d\) — расстояние между обкладками.

За единицу электроёмкости в СИ принимается Фарад (Ф).   

Она названа в честь Майкла Фарадея — английского физика. \(1\) Фарад равен ёмкости конденсатора, при которой заряд \(1\) Кулон создаёт между его обкладками напряжение \(1\) Вольт:  1 Фарад=1 Кулон1 Вольт.

 

 

\(1\) Ф — это очень большая ёмкость для конденсатора. Чаще всего конденсаторы имеют электроёмкость, равную дольным единицам Ф: микрофарад (мкФ) — 10−6Ф,  пикофарад (пФ) — 10−12 Ф.

 

Для получения требуемой ёмкости конденсаторы соединяют в батареи.

 

Если конденсаторы соединены параллельно, то общая ёмкость равна сумме ёмкостей: Cоб=C1+C2+C3.

 

  

Если конденсаторы соединены последовательно, то общая ёмкость будет равна: 1Cоб=1C1+1C2+1C3.

 

  

При зарядке конденсатора внешними силами совершается работа по разделению положительных и отрицательных зарядов. По закону сохранения энергии работа внешних сил равна энергии поля конденсатора. При разрядке конденсатора за счёт этой энергии может быть совершена работа. Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Энергию электрического поля конденсатора можно рассчитать по формуле: Eэл=q22C.

Из формулы видно, что энергия конденсатора данной электроёмкости тем больше, чем больше его заряд.

Источники:

Учебник А. В. Перышкин, Е. М. Гутник  «Физика. 9 класс».

https://electrosam.ru/  Виды конденсаторов.

https://elektronchic.ru/  Электронщик.

https://ru.wikipedia.org  Википедия.

Электрический конденсатор

Конденсатор — это элемент электрической цепи, способный, при небольшом размере, накапливать электрические заряды достаточно большой величины. Самой простой моделью конденсатора является два электрода, между которыми находится любой диэлектрик.  Роль диэлектрика в нем выполняют бумага, воздух, слюда и другие изолирующие материалы, задача которых не допустить соприкосновения обкладок. -12 Ф/м..

•  Полярность конденсатора;

•  Номинальное напряжение;

•  Удельная емкость и другие.

Величина емкости конденсатора зависит от

• Площадь пластин. Это понятно из формулы: емкость прямо пропорциональна заряду. Естественно, увеличив площадь обкладок, получаем большее количество заряда.

• Расстояния между обкладками. Чем они ближе расположены, тем больше напряженность получаемого электрического поля.

Устройство конденсатора


Наиболее распространенные конденсаторы —  это плоские и цилиндрические. Плоские состоят из пластин, удаленных друг от 
друга на небольшое расстояние. Цилиндрические, собираются при помощи цилиндров равной длины и разного диаметра. Все конденсаторы, в принципе, устроены одинаково. Разница, в основном, в том, какой материал используется в качестве диэлектрика. По типу диэлектрической среды и классифицируют конденсаторы, которые бывают жидкими, вакуумными, твердыми, воздушными.

Как заряжается и разряжается конденсатор?

При подключении к источнику постоянного тока, обкладки конденсатора заряжаются, одна приобретает положительный потенциал, а другая отрицательный. Между обкладками противоположные по знаку, но равные по значению, электрические заряды создают электрическое поле. Когда напряжения станут одинаковыми и на обкладках, и на источнике подаваемого тока, движение электронов прекратится и зарядка конденсатора закончится. Определенный промежуток времени конденсатор сохраняет заряды и выполняет функции автономного источника электроэнергии. В таком состоянии он может находиться достаточно долгое время. Если вместо источника, включить в цепь резистор, то конденсатор разрядится на него. 

Процессы, происходящие в конденсаторе

При подключении прибора к переменному или постоянному току в нем будут происходить разные процессы. Постоянный ток не пойдет по цепи с конденсатором. Так как между его обкладками находится диэлектрик, цепь фактически разомкнута.

Переменный ток, за счет того что периодически меняет направление, может проходить через конденсатор. При этом происходит периодический разряд и заряд конденсатора. На протяжении первой четверти периода заряд идет до максимума, в нем запасается электроэнергия, в следующую четверть конденсатор разряжается и электрическая энергия возвращается обратно в сеть.  В цепи переменного тока, конденсатор обладает кроме активного сопротивления, еще и реактивной составляющей. Кроме того, в конденсаторе, ток опережает напряжение на 90 градусов, это важно учитывать, при построении векторных диаграмм. 

Применение

Конденсаторы используются в радиотехнике, электронике, автоматике. Конденсатор –незаменимый элемент, который применяется во многих отраслях электротехники, на предприятиях, в научных разработках. Как пример, при необходимости, выступает в качестве разделителя токов: переменного и постоянного, применяется в конденсаторных установках, если необходимо компенсировать реактивную мощность, применяется как накопитель электричества в электросетях. 

Советуем прочесть — Последовательное и параллельное соединение конденсаторов

  • Просмотров:
  • Конденсатор

    Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

    Конденсатор — это устройство для накопления электрического заряда; он состоит из двух проводников (обкладок), расположенных близко друг к другу, но не соприкасающихся. Типичный плоский конденсатор представляет собой пару параллельных пластин площадью А, разделенных небольшим промежутком d (рис. 25.1, а). Часто пластины, разделяют прокладкой из бумаги или другого диэлектрика (изолятора) и сворачивают в рулон (рис. 25.1,6).

    Предположим, что конденсатор подключен к источнику напряжения, например к батарее. (Батарея — это устройство, на клеммах которого поддерживается относительно постоянная разность потенциалов). Подсоединенный к батарее конденсатор быстро заряжается: одна его обкладка приобретает положительный заряд, другая-равный по величине отрицательный (рис. 25.2).

    Заряд, приобретаемый каждой из обкладок конденсатора, пропорционален разности потенциалов Vba:

    Q = CVba (25.1)

    Коэффициент пропорциональности С называется емкостью конденсатора. Единица емкости, кулон на вольт, называется фарад (Ф). На практике чаще всего применяются конденсаторы емкостью от 1 пФ (пикофарад, 10-12Ф) до 1 мкФ (микрофарад, 10-6 Ф). Формулу (25.1) впервые вывел Вольт в конце XVIII в.

    Определение емкости конденсатора

    Емкость С служит характеристикой данного конденсатора. Величина емкости С зависит от размеров, формы и взаимного расположения обкладок, а также от вещества, заполняющего промежуток между обкладками. В этом разделе мы будем считать, что между обкладками находится вакуум или воздух.

    Емкость конденсатора, согласно (25.1), можно определить экспериментально, непосредственно измерив заряд Q пластины при известной разности потенциалов Vba.

    Если геометрическая конфигурация конденсаторов достаточно проста, то можно определить емкость С аналитически. Для иллюстрации рассчитаем емкость С конденсатора с параллельными пластинами площадью А, находящимися на расстоянии d друг от друга (плоский конденсатор) (рис. 25.3). Будем считать, что величина d мала по сравнению с размерами пластин, так что электрическое поле Е между пластинами однородно и искривлением силовых линий у краев пластин можно пренебречь. Ранее мы показали, что напряженность электрического поля между близко расположенными параллельными пластинами равна Е = σ/ε0, а силовые линии перпендикулярны пластинам.
    Поскольку плотность заряда равна σ = Q/A, то

    Напряженность электрического поля связана с разностью потенциалов соотношением

    Мы можем взять интеграл от одной пластины до другой вдоль траектории, направленной навстречу силовым линиям:

    Установив связь между Q и Vba, выразим теперь емкость С через геометрические параметры:

    Справедливость полученного вывода очевидна: чем больше площадь А, тем «свободнее» разместятся на ней заряды, отталкивание между ними будет меньше и каждая пластина сможет удерживать больший заряд. Чем больше расстояние d между пластинами, тем слабее заряды на одной пластине будут притягивать заряды на другой: на пластины от батареи поступает меньше заряда и емкость оказывается меньше.

    Обратим также внимание, что формула справедлива при использовании в качестве диэлектрика — вакуума. Для других изоляторов используется коэффициент диэлектрической проницаемости К.
    Тогда, с учётом коэффициента, ёмкость конденсатора будет равна:

    С = Кε0 A/d , либо С = εA/d

    Например, для некоторых диэлектриков коэффициент К будет равен:

    Вакуум: К = 1.0000
    Воздух (1 атм): К = 1.0006
    Парафин: К = 2.2
    Эбонит: К = 2.8
    Пластик (поливинильный): К = 2.8-4.5
    Бумага: К = 3-7
    Кварц: К = 4.3
    Стекло: К = 4-7
    Фарфор: К = 6-8
    Слюда: К = 7
    Более подробно это будет рассмотрено далее в публикации — «Диэлектрики».

    Продолжение следует. Коротко о следующей публикации:

    Последовательное и параллельное соединения конденсаторов.
    Конденсаторы можно соединять различными способами. На практике это используют очень часто, и емкость комбинации конденсаторов зависит от того, как они соединены. Два основных способа соединения — параллельное и последовательное.

    Альтернативные статьи:
    Дизель-генератор, Асинхронный генератор.


    Замечания и предложения принимаются и приветствуются!

    4.1 Конденсаторы и емкость — Введение в электричество, магнетизм и схемы

    ЦЕЛИ ОБУЧЕНИЯ

    К концу этого раздела вы сможете:
    • Объясните понятие конденсатора и его емкости
    • Опишите, как оценить емкость системы проводов

    Конденсатор — это устройство, используемое для хранения электрического заряда и электрической энергии. Он состоит как минимум из двух электрических проводников, разделенных расстоянием.(Обратите внимание, что такие электрические проводники иногда называют «электродами», но, точнее, это «обкладки конденсатора».) Пространство между конденсаторами может быть просто вакуумом, и в этом случае конденсатор называется «Вакуумный конденсатор». Однако пространство обычно заполняется изолирующим материалом, известным как диэлектрик . (Вы узнаете больше о диэлектриках в разделах, посвященных диэлектрикам, далее в этой главе.) Объем накопителя в конденсаторе определяется свойством, называемым емкостью , , о котором вы узнаете больше чуть позже в этом разделе.

    Конденсаторы

    имеют различные применения: от фильтрации статического электричества от радиоприема до накопления энергии в дефибрилляторах сердца. Обычно у промышленных конденсаторов две проводящие части расположены близко друг к другу, но не соприкасаются, как на рисунке 4.1.1. В большинстве случаев между двумя пластинами используется диэлектрик. Когда клеммы батареи подключены к первоначально незаряженному конденсатору, потенциал батареи перемещает небольшой заряд величины от положительной пластины к отрицательной.Конденсатор в целом остается нейтральным, но заряжается и находится на противоположных пластинах.

    (рисунок 4.1.1)

    Рисунок 4.1.1. Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее. Теперь у них есть заряды и (соответственно) на своих тарелках. (a) Конденсатор с параллельными пластинами состоит из двух пластин противоположного заряда с площадью A, разделенной расстоянием d. (b) Катаный конденсатор имеет диэлектрический материал между двумя проводящими листами (пластинами).

    Система, состоящая из двух идентичных параллельно проводящих пластин, разделенных расстоянием, называется конденсатором с параллельными пластинами (рисунок 4.1.2). Величина электрического поля в пространстве между параллельными пластинами равна, где обозначает поверхностную плотность заряда на одной пластине (напомним, что σσ — это заряд на площадь поверхности). Таким образом, величина поля прямо пропорциональна.

    (рисунок 4.1.2)

    Рисунок 4.1.2. Разделение зарядов в конденсаторе показывает, что заряды остаются на поверхности пластин конденсатора.Линии электрического поля в конденсаторе с параллельными пластинами начинаются с положительных зарядов и заканчиваются отрицательными зарядами. Величина электрического поля в пространстве между пластинами прямо пропорциональна количеству заряда на конденсаторе.

    Конденсаторы с разными физическими характеристиками (такими как форма и размер пластин) накапливают разное количество заряда для одного и того же приложенного напряжения на своих пластинах. Емкость конденсатора определяется как отношение максимального заряда, который может храниться в конденсаторе, к приложенному напряжению на его пластинах.Другими словами, емкость — это наибольшая величина заряда на вольт, которая может храниться на устройстве:

    (4.1.1)

    Единица измерения емкости в системе СИ — фарад (), названная в честь Майкла Фарадея (1791–1867). Поскольку емкость — это заряд на единицу напряжения, один фарад равен одному кулону на один вольт, или

    По определению, конденсатор способен накапливать заряд (очень большое количество заряда), когда разность потенциалов между его пластинами равна всего.Следовательно, одна фарада — это очень большая емкость. Типичные значения емкости варьируются от пикофарад () до миллифарад (), включая микрофарады (). Конденсаторы могут изготавливаться различных форм и размеров (рисунок 4.1.3).

    (рисунок 4.1.3)

    Рисунок 4.1.3 Это некоторые типичные конденсаторы, используемые в электронных устройствах. Размер конденсатора не обязательно зависит от его емкости.

    Расчет емкости

    Мы можем рассчитать емкость пары проводников с помощью следующего стандартного подхода.


    Стратегия решения проблем: расчет емкости

    Чтобы показать, как работает эта процедура, мы теперь вычислим емкости параллельных пластин, сферических и цилиндрических конденсаторов. Во всех случаях мы предполагаем вакуумные конденсаторы (пустые конденсаторы) без диэлектрического вещества в пространстве между проводниками.

    Конденсатор с параллельными пластинами

    Конденсатор с параллельными пластинами (рисунок 4.1.4) имеет две идентичные проводящие пластины, каждая из которых имеет площадь поверхности, разделенную расстоянием.Когда на конденсатор подается напряжение, он сохраняет заряд, как показано. Мы можем увидеть, как его емкость может зависеть от и , рассматривая характеристики кулоновской силы. Мы знаем, что сила между зарядами увеличивается с увеличением заряда и уменьшается с расстоянием между ними. Следует ожидать, что чем больше пластины, тем больше заряда они могут хранить. Таким образом, должно быть больше для большего значения. Точно так же, чем ближе пластины расположены друг к другу, тем сильнее на них притяжение противоположных зарядов.Следовательно, должно быть больше за меньшее.

    (рисунок 4.1.4)

    Рисунок 4.1.4. В конденсаторе с параллельными обкладками, разделенными между собой обкладками, каждая обкладка имеет одинаковую площадь поверхности.

    Определим поверхностную плотность заряда σσ на пластинах как

    Из предыдущих глав мы знаем, что когда оно мало, электрическое поле между пластинами довольно однородно (без учета краевых эффектов) и что его величина определяется как

    где постоянная ε0ε0 — диэлектрическая проницаемость свободного пространства,.Единица СИ эквивалентна. Поскольку электрическое поле между пластинами однородно, разность потенциалов между пластинами составляет

    Следовательно, уравнение 4.1.3 дает емкость конденсатора с параллельными пластинами как

    (4.1.3)

    Обратите внимание на это уравнение, что емкость является функцией только геометрии и того, какой материал заполняет пространство между пластинами (в данном случае вакуум) этого конденсатора. Фактически, это верно не только для конденсатора с параллельными пластинами, но и для всех конденсаторов: емкость не зависит от или.Если заряд изменяется, соответственно изменяется и потенциал, так что он остается постоянным.

    ПРИМЕР 4.1.1


    Емкость и заряд в конденсаторе с параллельными пластинами

    (a) Какова емкость пустого конденсатора с параллельными пластинами с металлическими пластинами, каждая из которых имеет площадь, разделенную на? (б) Сколько заряда хранится в этом конденсаторе, если к нему приложено напряжение?

    Стратегия

    Определение емкости — это прямое приложение уравнения 4.1.3. Как только мы найдем, мы сможем найти накопленный заряд, используя уравнение 4.1.1.

    Решение

    а. Ввод данных значений в уравнение 4.1.3 дает

    Это небольшое значение емкости указывает на то, насколько сложно сделать устройство с большой емкостью.

    г. Обращение уравнения 4.1.1 и ввод известных значений в это уравнение дает

    Значение

    Этот заряд лишь немного больше, чем в типичных приложениях статического электричества.Поскольку воздух разрушается (становится проводящим) при напряженности электрического поля около, на этом конденсаторе больше не может храниться заряд при увеличении напряжения.

    ПРОВЕРЬТЕ ПОНИМАНИЕ 4.1


    Емкость конденсатора с параллельными пластинами составляет. Если площадь каждой пластины равна, каково расстояние между пластинами?

    ПРОВЕРЬТЕ ПОНИМАНИЕ 4.2


    Убедитесь в том, что у вас такие же физические единицы.

    Сферический конденсатор

    Сферический конденсатор — это еще один набор проводников, емкость которых можно легко определить (Рисунок 4.1.5). Он состоит из двух концентрических проводящих сферических оболочек радиусов (внутренняя оболочка) и (внешняя оболочка). Снарядам придаются равные и противоположные заряды и соответственно. Из-за симметрии электрическое поле между оболочками направлено радиально наружу. Мы можем получить величину поля, применив закон Гаусса к сферической гауссовой поверхности радиусом r , концентричной оболочкам. Вложенная плата есть; следовательно, у нас есть

    Таким образом, электрическое поле между проводниками равно

    Мы подставляем это в уравнение 4.1.2 и интегрировать по радиальному пути между оболочками:

    В этом уравнении разность потенциалов между пластинами равна. Мы подставляем этот результат в уравнение 4.1.1, чтобы найти емкость сферического конденсатора:

    (4.1.4)

    (рисунок 4.1.5)

    Рисунок 4.1.5. Сферический конденсатор состоит из двух концентрических проводящих сфер. Обратите внимание, что заряды на проводнике находятся на его поверхности.

    ПРИМЕР 4.1,3


    Емкость изолированной сферы

    Рассчитайте емкость одиночной изолированной проводящей сферы радиуса и сравните ее с уравнением 4.1.4 в пределе как.

    Стратегия

    Мы предполагаем, что на сфере есть заряд, и поэтому выполняем четыре шага, описанные ранее. Мы также предполагаем, что другой проводник представляет собой концентрическую полую сферу бесконечного радиуса.

    Решение

    На внешней стороне изолированной проводящей сферы электрическое поле задается уравнением 4.1.2. Величина разности потенциалов между поверхностью изолированной сферы и бесконечностью составляет

    Следовательно, емкость изолированного шара составляет

    Значение

    Тот же результат может быть получен, если принять предел уравнения 4.1.4 как. Таким образом, одиночная изолированная сфера эквивалентна сферическому конденсатору, внешняя оболочка которого имеет бесконечно большой радиус.

    ПРОВЕРЬТЕ ПОНИМАНИЕ 4.3

    Радиус внешней сферы сферического конденсатора в пять раз превышает радиус его внутренней оболочки.Какие размеры у этого конденсатора, если его емкость?

    Цилиндрический конденсатор

    Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров (рисунок 4.1.6). Внутренний цилиндр радиуса может быть либо оболочкой, либо полностью твердым. Внешний цилиндр представляет собой оболочку внутреннего радиуса. Мы предполагаем, что длина каждого цилиндра равна и что избыточные заряды и находятся на внутреннем и внешнем цилиндрах соответственно.

    (рисунок 4.1.6)

    Рисунок 4.1.6 Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров. Здесь заряд на внешней поверхности внутреннего цилиндра положительный (обозначен), а заряд на внутренней поверхности внешнего цилиндра отрицательный (обозначен).

    Без учета краевых эффектов электрическое поле между проводниками направлено радиально наружу от общей оси цилиндров. Используя гауссову поверхность, показанную на рисунке 4.1.6, мы имеем

    Следовательно, электрическое поле между цилиндрами равно

    (4.1,5)

    Здесь \ hat {\ mathrm {r}} — единичный радиальный вектор по радиусу цилиндра. Мы можем подставить в уравнение 4.1.2 и найти разность потенциалов между цилиндрами:

    Таким образом, емкость цилиндрического конденсатора составляет

    (4.1.6)

    Как и в других случаях, эта емкость зависит только от геометрии расположения проводников. Важным применением уравнения 4.1.6 является определение емкости на единицу длины коаксиального кабеля , который обычно используется для передачи изменяющихся во времени электрических сигналов.Коаксиальный кабель состоит из двух концентрических цилиндрических проводников, разделенных изоляционным материалом. (Здесь мы предполагаем наличие вакуума между проводниками, но физика качественно почти такая же, когда пространство между проводниками заполнено диэлектриком.) Эта конфигурация экранирует электрический сигнал, распространяющийся по внутреннему проводнику, от паразитных электрических полей, внешних по отношению к проводнику. кабель. Ток течет в противоположных направлениях во внутреннем и внешнем проводниках, при этом внешний проводник обычно заземлен.Теперь из уравнения 4.1.6 емкость коаксиального кабеля на единицу длины равна

    .

    В практических приложениях важно выбрать конкретные значения. Это может быть достигнуто за счет соответствующего выбора радиусов проводников и изоляционного материала между ними.

    ПРОВЕРЬТЕ ПОНИМАНИЕ 4.4


    Когда цилиндрический конденсатор заряжается, между цилиндрами измеряется разность потенциалов.а) Какова емкость этой системы? б) Если цилиндры длинные, каково соотношение их радиусов?

    Несколько типов конденсаторов, которые можно использовать на практике, показаны на рисунке 4.1.3. Обычные конденсаторы часто состоят из двух небольших кусочков металлической фольги, разделенных двумя небольшими кусочками изоляции (см. Рисунок 4.1.1 (b)). Металлическая фольга и изоляция покрыты защитным покрытием, а два металлических вывода используются для подключения фольги к внешней цепи. Некоторые распространенные изоляционные материалы — это слюда, керамика, бумага и антипригарное покрытие Teflon ™.

    Другой популярный тип конденсатора — электролитический конденсатор . Он состоит из окисленного металла в проводящей пасте. Основным преимуществом электролитического конденсатора является его высокая емкость по сравнению с другими распространенными типами конденсаторов. Например, емкость одного типа алюминиевого электролитического конденсатора может достигать. Однако вы должны быть осторожны при использовании электролитического конденсатора в цепи, потому что он работает правильно только тогда, когда металлическая фольга находится под более высоким потенциалом, чем проводящая паста.Когда возникает обратная поляризация, электролитическое действие разрушает оксидную пленку. Этот тип конденсатора не может быть подключен к источнику переменного тока, потому что в половине случаев переменное напряжение будет иметь неправильную полярность, поскольку переменный ток меняет свою полярность (см. Схемы переменного тока в цепях переменного тока).

    Переменный воздушный конденсатор (рисунок 4.1.7) имеет два набора параллельных пластин. Один набор пластин закреплен (обозначен как «статор»), а другой набор пластин прикреплен к валу, который может вращаться (обозначается как «ротор»).Поворачивая вал, можно изменять площадь поперечного сечения в перекрытии пластин; следовательно, емкость этой системы может быть настроена на желаемое значение. Настройка конденсатора находит применение в любом типе радиопередачи и при приеме радиосигналов от электронных устройств. Каждый раз, когда вы настраиваете автомобильное радио на любимую станцию, думайте о емкости.

    (рисунок 4.1.7)

    Рисунок 4.1.7. В конденсаторе переменного тока емкость можно регулировать, изменяя эффективную площадь пластин.(кредит: модификация работы Робби Спроула)

    Обозначения, показанные на рисунке 4.1.8, представляют собой схемные изображения различных типов конденсаторов. Обычно мы используем символ, показанный на рис. 4.1.8 (а). Символ на Рисунке 4.1.8 (c) представляет конденсатор переменной емкости. Обратите внимание на сходство этих символов с симметрией конденсатора с параллельными пластинами. Электролитический конденсатор представлен символом на рис. 4.1.8 (b), где изогнутая пластина обозначает отрицательный вывод.

    (рисунок 4.1.8)

    Рисунок 4.1.8 Здесь показаны три различных схемных представления конденсаторов. Символ в (а) является наиболее часто используемым. Символ в (b) представляет собой электролитический конденсатор. Символ в (c) представляет конденсатор переменной емкости.

    Интересный прикладной пример модели конденсатора взят из клеточной биологии и имеет дело с электрическим потенциалом в плазматической мембране живой клетки (рис. 4.1.9). Клеточные мембраны отделяют клетки от их окружения, но позволяют некоторым отобранным ионам проходить внутрь или из клетки.Разность потенциалов на мембране составляет около. Клеточная мембрана может быть слишком толстой. Рассматривая клеточную мембрану как наноразмерный конденсатор, оценка наименьшей напряженности электрического поля на его «пластинах» дает значение.

    Этой величины электрического поля достаточно, чтобы вызвать электрическую искру в воздухе.

    (рисунок 4.1.9)

    Рисунок 4.1.9. Полупроницаемая мембрана биологической клетки имеет различные концентрации ионов на ее внутренней поверхности, чем на ее внешней стороне.Диффузия перемещает ионы (калия) и (хлорида) в показанных направлениях, пока кулоновская сила не остановит дальнейший перенос. Таким образом, внешняя часть мембраны приобретает положительный заряд, а ее внутренняя поверхность приобретает отрицательный заряд, создавая разность потенциалов на мембране. Мембрана обычно непроницаема для (ионов натрия).

    Цитаты Канделы

    Лицензионный контент

    CC, конкретная атрибуция

    • Загрузите бесплатно по адресу http: // cnx.org/contents/[email protected]. Получено с : http://cnx.org/contents/[email protected]. Лицензия : CC BY: Attribution

    Что такое емкость? | Fluke

    Емкость — это способность компонента или схемы собирать и накапливать энергию в виде электрического заряда.

    Конденсаторы — это устройства накопления энергии, доступные во многих размерах и формах.Они состоят из двух пластин из проводящего материала (обычно тонкого металла), зажатых между изолятором из керамики, пленки, стекла или других материалов, даже воздуха.

    Изолятор, также известный как диэлектрик , увеличивает зарядную емкость конденсатора. Конденсаторы иногда называют конденсаторами в автомобильной, морской и авиационной промышленности.

    Внутренние пластины подключены к двум внешним клеммам, которые иногда бывают длинными и тонкими и могут напоминать крошечные металлические антенны или ножки.Эти клеммы можно подключить к цепи.

    Конденсаторы и батареи накапливают энергию. В то время как батареи выделяют энергию постепенно, конденсаторы разряжают ее быстро.

    Как работает конденсатор?

    Конденсатор собирает энергию (напряжение), когда ток течет по электрической цепи. Обе пластины содержат одинаковые заряды, и когда положительная пластина накапливает заряд, равный заряд стекает с отрицательной пластины.

    Когда цепь отключена, конденсатор сохраняет собранную энергию, хотя обычно происходит небольшая утечка.

    Различные конденсаторы (показаны цветом) на печатной плате.

    Емкость выражается как отношение электрического заряда на каждом проводе к разности потенциалов (т. Е. Напряжению) между ними.

    Значение емкости конденсатора измеряется в фарадах (F), единицах, названных в честь английского физика Майкла Фарадея (1791–1867).

    Фарад — это большая емкость. Большинство бытовых электрических устройств содержат конденсаторы, которые производят только доли фарада, часто тысячные доли фарада (или микрофарады, мкФ) или даже пикофарады (триллионные доли, пФ).

    Суперконденсаторы, тем временем, могут хранить очень большие электрические заряды в тысячи фарад.

    Как увеличить емкость

    Емкость можно увеличить, если:

    • Пластины (проводники) конденсатора расположены ближе друг к другу.
    • Пластины большего размера обеспечивают большую площадь поверхности.
    • Диэлектрик — лучший изолятор для данной области применения.
    Конденсаторы бывают разных форм.

    В электрических цепях конденсаторы часто используются для блокировки постоянного тока (dc), позволяя протекать переменному току (ac).

    Некоторые цифровые мультиметры предлагают функцию измерения емкости, поэтому технические специалисты могут:

    • Определить неизвестный или немаркированный конденсатор.
    • Обнаружение обрыва или короткого замыкания конденсаторов.
    • Измеряйте конденсаторы напрямую и отображайте их значение.

    Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

    Изменение емкости и вариация конденсаторов

    ВЛАГА

    Всякий раз, когда пары влаги проникают в диэлектрик конденсатора, емкость несколько увеличивается в зависимости от величины и эффективности проникновения, процента от общего расстояния между электродами, который представлен воздухом, и процента воздуха, который насыщенный или, по сути, замененный влагой.

    Для наглядности предположим следующее:

    На этой иллюстрации мы видим увеличение емкости примерно на 27% из-за влажности.

    Конечно, вы обычно не увидите такого грубого проникновения влаги, но — увеличение до 5% не является редкостью для негерметично закрытых коммерческих единиц при испытании на ускоренные тесты влажности MIL-STD.

    НАПРЯЖЕНИЕ

    За исключением керамики общего назначения (с высоким K), напряжение очень незначительно влияет на K стандартных диэлектрических материалов.В случае керамики с высоким K напряжение переменного тока вызовет увеличение K, в то время как напряжение постоянного тока вызовет уменьшение K. Величина заряда будет зависеть от исходного значения K для этой конкретной керамической смеси.

    Например, для смеси K = 1200 нередко можно увидеть изменения, составляющие примерно + 20% при поданном напряжении 20 В переменного тока (RMS) и -30% при поданном напряжении 200 В постоянного тока.

    ЧАСТОТА

    Что касается нашей основной области применения, нас интересует в основном низкочастотный диапазон от 0 до 30 кГц.В этой области K слюды, стекла, тефлона, полистирола и керамических диэлектриков типа N PO не показывает никаких измеримых изменений. Пленка из поликарбоната покажет небольшое снижение K примерно на 0,4% при 30 кГц. Падение содержания майлара составляет от 1,5 до 2,0%, керамики с высоким содержанием K (1200) — примерно от 2,0 до 2,5%, а для блоков, пропитанных бумагой, — от 3,0 до 6,0%, в зависимости от пропитки. Эталонная частота измерения здесь составляет 1000 Гц.

    ТЕМПЕРАТУРА

    Температура влияет на K всех стандартных диэлектрических материалов.Этот эффект будет довольно небольшим для одних диэлектриков и весьма значительным для других.

    На следующих диаграммах сравниваются средние кривые различных диэлектриков в зависимости от изменения емкости в зависимости от температуры. Для некоторого изменения этих кривых можно использовать специальную обработку и другие факторы.

    Рисунок 1 Рисунок 2 Рисунок 3

    Рисунок 1 основан на единицах пленки «сухого» типа; то есть пропитки не использовались. На самом деле пленки не пропитываются, но использование пропиток в качестве «наполнителя» для достижения определенных результатов — обычное дело.Когда это будет сделано, кривые могут измениться.

    На рис. 2 наглядно показано влияние различных пропиточных материалов на результирующий K материала между электродами. И, что еще больше усложняет картину, использование различных добавок к пропиточному материалу может значительно изменить даже эти кривые.

    На рис. 3 показаны относительные кривые для других распространенных диэлектриков.

    Для случая керамических конденсаторов, график зависимости «типичной» емкости отТемпературная кривая неосуществима, так как эти блоки можно сделать так, чтобы они демонстрировали практически любую желаемую характеристику в зависимости от используемой диэлектрической смеси, обработки, метода сборки и методов стабилизации, используемых после производства.

    В этой статье мы увидели, как внешние напряжения, приложенные к конденсатору, вызывают изменение емкости. В следующих статьях будет обсуждаться, как эти же напряжения влияют на другие параметры.

    Конденсаторы

    и емкость

    Различные типы конденсаторов

    Конденсатор — электронное устройство для накопления заряда.Конденсаторы можно найти почти во всех электронных схемах, кроме самых простых. Есть много разных типов конденсаторов, но все они работают одинаково. Упрощенный вид конденсатора представляет собой пару металлических пластин, разделенных зазором, в котором находится изолирующий материал, известный как диэлектрик. Этот упрощенный конденсатор также выбран, поскольку символ электронной схемы для конденсатора представляет собой пару параллельных пластин, как показано на рисунке 1.

    Рис. 1. Обозначение неполяризованного конденсатора.

    Обычно электроны не могут войти в проводник, если не существует пути для выхода равного количества электронов. Однако лишние электроны могут быть «втиснуты» в проводник без пути для выхода, если электрическое поле может развиваться в пространстве относительно другого проводника. Количество дополнительных свободных электронов, добавленных к проводнику (или отнятых свободных электронов), прямо пропорционально величине потока поля между двумя проводниками.

    В этом упрощенном конденсаторе диэлектрик — воздух.Когда на клеммы конденсатора подается напряжение В, , электроны перетекают на одну из пластин и уносятся с другой пластины. Общее количество электронов в конденсаторе остается прежним. На одной отрицательной пластине их больше, а на положительной — меньше.

    Рисунок 2. Зарядка конденсатора от аккумулятора

    Если бы напряжение было увеличено, увеличившаяся разность потенциалов между пластинами подтолкнула бы больше электронов к отрицательно заряженной пластине.Мы могли измерить заряд, накопленный на пластине, в зависимости от различных приложенных напряжений.

    При нулевом напряжении пластины конденсатора нейтральны, поэтому заряд не сохраняется. (мы предполагаем, что мы начали с полностью разряженного конденсатора), при напряжении V заряд на пластинах равен Q, а при удвоенном напряжении заряд удваивается. Мы обнаруживаем, что с увеличением напряжения заряд увеличивается линейно. Мы можем построить это как прямую линию.

    Предположим, что мы уходим, проводим некоторые исследования и возвращаемся с более совершенным конденсатором, который хранит больше заряда для данного напряжения, мы можем построить график зависимости сохраненного заряда от приложенного напряжения.

    Это будет представлено как еще одна линия с более крутым уклоном.Если бы мы построили много графиков для разных конденсаторов, мы получили бы много прямых линий. Мы можем сказать, что мера емкости — это то, сколько заряда сохраняется при заданном напряжении. Иногда это выражается как Q = CV .

    Конечно, при зарядке конденсатора должна выполняться работа по перемещению заряда. Следовательно, необходимо подавать энергию, и эта энергия доступна, когда конденсатор разряжен.

    Выполненная работа определяется по формуле W = qV .Первоначально заряд легко перемещается на пластины конденсатора, однако по мере того, как больше заряда перемещается на пластины конденсатора, сила отталкивания между зарядами затрудняет добавление заряда, когда сила отталкивания зарядов равна мощности батареи, больше нельзя перемещать заряд на пластины. Следовательно, средняя работа составляет 1/2 qV . Если мы посмотрим на наш график зависимости заряда от напряжения, то увидим, что это то же самое, что и площадь под кривой. В общем, проделанная работа равна переданной энергии.Математически,

    Факторы, влияющие на емкость

    Как увеличить емкость конденсатора с параллельными пластинами? На емкость конденсатора с параллельными пластинами влияют три фактора.

    Площадь

    Конденсатор переменной емкости

    Увеличивая площадь пластин, мы можем направить больший заряд на пластины до того, как силы отталкивания станут проблемой. Следовательно, емкость пропорциональна площади перекрытия пластин.В переменном конденсаторе площадь перекрытия может быть увеличена или уменьшена путем вращения взаимопроникающих пластин, таким образом увеличивая или уменьшая емкость. Пластины электролитических конденсаторов протравлены для получения шероховатой поверхности, которая еще больше увеличивает площадь поверхности.

    Разделение

    Уменьшение расстояния между пластинами снижает напряжение конденсатора, поскольку электрическое поле не зависит от расстояния между пластинами. Напряжение на конденсаторе В = Ед .Следовательно, напряжение увеличивается. Для постоянного заряда Q , C = Q / V = ​​Q / Ed.

    Диэлектрическая проницаемость

    Емкость конденсатора с параллельными пластинами определяется как C = ε r A / d , где A — площадь пластин, d — расстояние между пластинами, а ε r — площадь пластин. относительная проницаемость диэлектрика между пластинами. Относительная проницаемость — это некоторый коэффициент, K , умножающий допустимость свободного пространства ε 0 0 имеет значение 8,85×10 -12 F.m -1 .

    Полный список относительных допусков можно найти практически для любого диэлектрического материала. Чем больше относительная проницаемость, тем больше емкость конденсатора. Хорошие материалы — слюда, полистирол, масло.

    ε r = K ε 0

    Конденсаторные сети

    Рисунок 3. Последовательные и параллельные конденсаторные сети

    серии

    Рассмотрим последовательную сеть конденсаторов, показанную на рисунке 3a.где положительная пластина соединена с отрицательной пластиной следующего. Какова эквивалентная емкость сети? Посмотрите на пластины посередине, эти пластины физически отключены от цепи, поэтому общий заряд на них должен оставаться постоянным. Следовательно, когда на оба конденсатора подается напряжение, заряд + Q на положительной пластине конденсатора C 1 должен уравновешиваться зарядом — Q на отрицательной пластине конденсатора C. 2 .В результате оба конденсатора имеют одинаковый заряд Q. Падение потенциала В 1 и В 2 на двух конденсаторах, как правило, различно. Однако сумма этих падений равна общему падению потенциала В , приложенному к входным и выходным проводам. В = В 1 + В 2 . Эквивалентная емкость пары снова составляет C T = Q / V .Таким образом, 1/ C T = V / Q = ( V 1 + V 2 ) / Q = V 1 / Q + V 2 / Q подача

    Обычно для конденсаторов N , соединенных последовательно, это

    Соединяя конденсаторы в сериях, вы сохраняете меньше заряда, так есть ли смысл подключать конденсаторы последовательно? Иногда это делается потому, что конденсаторы имеют максимальное рабочее напряжение, и, если последовательно соединить два конденсатора с максимальным напряжением 900 вольт, вы можете увеличить рабочее напряжение до 1800 вольт.

    Параллельный

    Для параллельной схемы, такой как на рисунке 3b. напряжения на всех компонентах одинаковы. Однако общий заряд делится между двумя конденсаторами, поскольку он должен распределяться таким образом, чтобы напряжение на них было одинаковым. Кроме того, поскольку конденсаторы могут иметь разные емкости C 1 и C 2 , заряды Q 1 и Q 2 также должны быть разными.Эквивалентная емкость C T пары конденсаторов — это просто отношение Q / V , где Q = Q 1 + Q 2 — это общий накопленный заряд. Отсюда следует, что C T = Q / V = (Q 1 + Q 2 ) / V = Q 1 / V + Q 2 / В подача

    Из предыдущего обсуждения довольно очевидно, что для конденсаторов N , подключенных параллельно, общая емкость составляет

    Общая емкость увеличивается за счет параллельного добавления конденсаторов, поэтому мы получаем емкости большего размера, чем это возможно при использовании одного конденсатора.В лабораториях физики высоких энергий часто есть большие батареи конденсаторов, которые могут хранить большое количество энергии, которая высвобождается за очень короткое время. Самая большая батарея конденсаторов в 2006 году может хранить 50 МДж энергии.

    Конденсаторы зарядные и разрядные

    Цепь, состоящая из батареи, переключателя, резистора и конденсатора в последовательном контуре, называется RC-цепью. Закон Кирхгофа по напряжению для этой схемы имеет вид

    V = IR + Q / C .Если выразить чисто в терминах заряда, это становится

    V = dQ / dt R + Q / C .

    Это дифференциальное уравнение, решение которого является экспоненциальной функцией. Когда переключатель замкнут, конденсатор со временем заряжается:

    Q = Q f (1 — e -t / RC ),

    , где Q — это заряд в момент времени t и Q f — последний заряд конденсатора.Обратите внимание, что Q никогда не равно Q f , но поскольку t становится чрезвычайно большим, Q становится произвольно близким к Q f . Произведение RC называется постоянной времени RC и является характеристической величиной RC цепи. Когда t = RC , конденсатор заряжен до доли (1 — 1/ e , около 63%) от своего окончательного значения. Необходимо использовать постоянную времени, а не какое-то конечное время, поскольку процесс асимптотический.Его значение — произвольный выбор; мы, естественно, выбираем значение в терминах экспоненциального основания (когда показатель отрицательный).

    Flash Animation 1. Измените значения резистора и конденсатора, чтобы увидеть влияние на время достижения конденсатором пикового напряжения.

    Flash Animation 2. Зарядите конденсатор, пока он не достигнет пика, а затем разрядите его. Как значения R и C влияют на процессы?

    Типы конденсаторов

    Конденсаторы электролитические

    Алюминиевые электролитические конденсаторы изготавливаются путем наложения электролитической бумаги между анодной и катодной фольгами и последующего наматывания результата.Процесс изготовления электрода, обращенного к поверхности протравленной анодной фольги, чрезвычайно сложен. Следовательно, противоположный электрод создается путем заполнения конструкции электролитом. Благодаря этому процессу электролит по существу выполняет роль катода.

    Электролитические конденсаторы пропитаны жидкостью или бумагой, пропитанной жидкостью, которая не является диэлектриком, но при приложении напряжения создает слой оксида алюминия, который действует как диэлектрик. Реакция зависит от полярности приложенного напряжения.Если полярность поменять местами, конденсатор будет выделять газ и, вероятно, взорвется или лопнет из-за давления внутри, поэтому он не подходит для применения с переменным током.

    MEMs Конденсаторы

    Микро-электромеханические системы (MEM) — это небольшие устройства, изготовленные из кремния. Могут быть изготовлены пластинчатые конденсаторы с небольшими изменениями емкости при увеличении или уменьшении расстояния между пластинами. Небольшие устройства можно использовать как датчики и гироскопы.

    Распространенными типами устройств являются конденсаторы с параллельными пластинами для определения положения. Кроме того, взаимопроникающие гребенчатые конструкции, в которых емкость может быть изменена с использованием перемещения одной гребенки относительно другой, либо в поперечном направлении, либо в продольном направлении. Из-за их небольшого размера изменение емкости очень мало, порядка 10 -15 Ф (фемто-Фарад).

    Конденсаторы танталовые

    Танталовые конденсаторы поляризованы и имеют низкое напряжение, как электролитические конденсаторы.Они дороги, но очень малы, поэтому используются там, где требуется большая емкость в небольших размерах, например, в мобильных телефонах или портативных компьютерах. Эти конденсаторы становятся все более важными, поскольку растет спрос на все меньшие электронные устройства. Колумбит-танталит — колтан , сокращенно руда, из которой очищается тантал, добывается в Австралии, г. Егпыт. Высокий спрос на руду также финансировал гражданские войны в Демократической Республике Конго. В докладе Совета безопасности ООН утверждается, что большая часть руды добывается незаконно и переправляется через восточные границы страны вооруженными формированиями из соседних Уганды, Бурунди и Руанды, обеспечивая доход для финансирования военной оккупации Конго.

    Суперконденсаторы

    Суперконденсаторы — это конденсаторы, которые способны накапливать большое количество заряда и, следовательно, энергии в очень небольшом объеме. Накопление энергии происходит за счет статического заряда, а не электрохимического процесса, присущего батарее. Применение разности напряжений на положительной и отрицательной пластинах заряжает суперконденсатор. Эта концепция похожа на электрический заряд, который накапливается при ходьбе по ковру. Впервые суперконденсатор был задуман в 1957 году, но теперь исследования сосредоточены на их использовании в качестве источников питания с малым весом в качестве альтернативы батареям.суперконденсатор переходит в аккумуляторную технологию благодаря использованию специальных электродов и небольшого количества электролита. Суперконденсаторы могут найти применение в таких случаях, как временные резервные источники питания в электросети или обеспечение начального всплеска энергии для движения электромобилей.

    Сводка

    Конденсаторы

    обладают способностью заряжать и высвобождать накопленный заряд очень быстро, что позволяет им функционировать разными способами. Они занимают важное место во всем: от схем стабилизации напряжения в чувствительной электронике до помощи в преобразовании переменного тока в постоянный для зарядки аккумуляторов во всем, от мобильных скутеров до портативных компьютеров.

    Конденсаторы — это устройства, накапливающие заряд. Емкость определяется как отношение накопленного заряда к единице напряжения. C = Q / V

    Емкость конденсатора с параллельными пластинами определяется как C = ε r A / d .

    Энергия, запасенная в конденсаторе, рассчитывается по работе, совершаемой при перемещении заряда по пластинам. dW = V dq . Накопитель энергии — это область под графиком заряда / напряжения. 1 / 2QV или из C = Q / V, 1 / 2CV 2 = 2Q 2 / C.

    Конденсаторы и емкость — AP Physics 2

    Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее то информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, он предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

    Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

    Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права. Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

    Чтобы отправить уведомление, выполните следующие действия:

    Вы должны включить следующее:

    Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например, мы требуем а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

    Отправьте жалобу нашему уполномоченному агенту по адресу:

    Чарльз Кон Varsity Tutors LLC
    101 S. Hanley Rd, Suite 300
    St. Louis, MO 63105

    Или заполните форму ниже:

    конденсаторов последовательно и параллельно

    Цели обучения

    К концу этого раздела вы сможете:

    • Выведите выражения для полной емкости последовательно и параллельно.
    • Обозначает последовательные и параллельные части при соединении конденсаторов.
    • Рассчитайте эффективную емкость последовательно и параллельно с учетом индивидуальных емкостей.

    Несколько конденсаторов могут быть соединены вместе в различных приложениях. Несколько подключений конденсаторов действуют как один эквивалентный конденсатор. Общая емкость этого эквивалентного одиночного конденсатора зависит как от отдельных конденсаторов, так и от способа их подключения.Существует два простых и распространенных типа соединений, называемых серии и параллельно , для которых мы можем легко вычислить общую емкость. Некоторые более сложные соединения также могут быть связаны с комбинациями последовательного и параллельного.

    Емкость серии

    На рис. 1а показано последовательное соединение трех конденсаторов с приложенным напряжением. Как и для любого конденсатора, емкость комбинации связана с зарядом и напряжением [латекс] C = \ frac {Q} {V} \\ [/ latex].

    Обратите внимание на рис. 1, что противоположные заряды величиной Q протекают по обе стороны от первоначально незаряженной комбинации конденсаторов при приложении напряжения В, . Для сохранения заряда необходимо, чтобы на пластинах отдельных конденсаторов создавались заряды одинаковой величины, поскольку заряд разделяется только в этих изначально нейтральных устройствах. Конечным результатом является то, что комбинация напоминает одиночный конденсатор с эффективным разделением пластин больше, чем у отдельных конденсаторов.(См. Рисунок 1b.) Чем больше расстояние между пластинами, тем меньше емкость. Общей особенностью последовательного соединения конденсаторов является то, что общая емкость меньше любой из отдельных емкостей.

    Рис. 1. (a) Конденсаторы, подключенные последовательно. Величина заряда на каждой пластине равна Q. (b) Эквивалентный конденсатор имеет большее расстояние между пластинами d. При последовательном соединении общая емкость меньше, чем у любого из отдельных конденсаторов.

    Мы можем найти выражение для общей емкости, рассматривая напряжение на отдельных конденсаторах, показанных на рисунке 1.Решение [latex] C = \ frac {Q} {V} \\ [/ latex] для V дает [latex] V = \ frac {Q} {C} \\ [/ latex]. Таким образом, напряжения на отдельных конденсаторах равны [латексному] V_1 = \ frac {Q} {C_1}, V_2 = \ frac {Q} {C_2}, \ text {и} V_3 = \ frac {Q} {C_3} \\ [/латекс].

    Общее напряжение складывается из отдельных напряжений:

    В = В 1 + В 2 + В 3 .

    Теперь, называя общую емкость C S последовательной емкостью, считайте, что

    [латекс] V = \ frac {Q} {C _ {\ text {S}}} = V_1 + V_2 + V_3 \\ [/ latex].

    Вводя выражения для V 1 , V 2 и V 3 , получаем

    [латекс] \ frac {Q} {C _ {\ text {S}}} = \ frac {Q} {C_ {1}} + \ frac {Q} {C_ {2}} + \ frac {Q} { C_ {3}} \\ [/ латекс].

    Отменяя Q s, мы получаем уравнение для полной емкости в серии C S как

    [латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} {C_ {1}} + \ frac {1} {C_ {2}} + \ frac {1} { C_ {3}} + \ точки, \\ [/ latex]

    , где «…» означает, что выражение действительно для любого количества конденсаторов, соединенных последовательно.Выражение этой формы всегда приводит к общей емкости C S , которая меньше любой из отдельных емкостей C 1 , C 2 ,…, как показано в примере 1.

    Общая емкость в серии,

    C с

    Общая емкость в серии:

    [латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} {C_ {1}} + \ frac {1} {C_ {2}} + \ frac {1} { C_ {3}} + \ dots \\ [/ latex]

    Пример 1. Что такое последовательная емкость?

    Найдите общую емкость для трех последовательно соединенных конденсаторов, учитывая, что их отдельные емкости равны 1.000, 5.000 и 8.000 мкФ.

    Стратегия

    Имея данную информацию, общую емкость можно найти, используя уравнение для емкости в серии.

    Решение

    Ввод заданных емкостей в выражение для [latex] \ frac {1} {C _ {\ text {S}}} \\ [/ latex] дает [latex] \ frac {1} {C _ {\ text {S} }} = \ frac {1} {C_ {1}} + \ frac {1} {C_ {2}} + \ frac {1} {C_ {3}} \\ [/ latex].

    [латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} {1.000 \ mu \ text {F}} + \ frac {1} {5.000 \ mu \ text {F} } + \ frac {1} {8.000 \ mu \ text {F}} = \ frac {1.325} {\ mu \ text {F}} \\ [/ latex]

    Преобразование для нахождения C S дает [латекс] C _ {\ text {S}} = \ frac {1.325} {\ mu \ text {F}} = 0,755 \ mu \ text {F} \\ [/ латекс].

    Обсуждение

    Общая последовательная емкость C с меньше наименьшей индивидуальной емкости, как было обещано. При последовательном соединении конденсаторов сумма меньше деталей. На самом деле это меньше, чем у любого человека. Обратите внимание, что иногда возможно и более удобно решить уравнение, подобное приведенному выше, путем нахождения наименьшего общего знаменателя, который в данном случае (показаны только целочисленные вычисления) равен 40.Таким образом,

    [латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {40} {40 \ mu \ text {F}} + \ frac {8} {40 \ mu \ text {F} } + \ frac {5} {40 \ mu \ text {F}} = \ frac {53} {40 \ mu \ text {F}} \\ [/ latex]

    так что

    [латекс] C _ {\ text {S}} = \ frac {40 \ mu \ text {F}} {53} = 0,755 \ mu \ text {F} \\ [/ latex]

    Параллельные конденсаторы

    На рис. 2а показано параллельное соединение трех конденсаторов с приложенным напряжением. Здесь общую емкость найти легче, чем в последовательном случае. Чтобы найти эквивалентную общую емкость C, p , сначала отметим, что напряжение на каждом конденсаторе составляет В, , то же самое, что и у источника, поскольку они подключены к нему напрямую через проводник.(Проводники являются эквипотенциальными, поэтому напряжение на конденсаторах такое же, как и на источнике напряжения.) Таким образом, конденсаторы имеют такой же заряд, как и при индивидуальном подключении к источнику напряжения. Общая сумма начислений Q представляет собой сумму отдельных начислений: Q = Q 1 + Q 2 + Q 3 .

    Рис. 2. (a) Конденсаторы, включенные параллельно. Каждый из них подключен непосредственно к источнику напряжения, как если бы он был полностью один, поэтому общая параллельная емкость — это просто сумма отдельных емкостей.(b) Эквивалентный конденсатор имеет большую площадь пластины и поэтому может удерживать больше заряда, чем отдельные конденсаторы.

    Используя соотношение Q = CV , мы видим, что общий заряд составляет Q = C p V , а отдельные расходы составляют Q 1 = C 1 V , Q 2 = C 2 V , и Q 3 = C 3 V .Ввод их в предыдущее уравнение дает

    C p V = C 1 V + C 2 V + C 3 V .

    Исключая В из уравнения, мы получаем уравнение для полной емкости параллельно

    C p : C p = C 1 + C 2 + C 3 +….

    Общая параллельная емкость — это просто сумма отдельных емкостей. (И снова «» указывает на то, что выражение действительно для любого количества конденсаторов, подключенных параллельно.) Так, например, если конденсаторы в Примере 1 были подключены параллельно, их емкость была бы

    C p = 1.000 мкФ + 5.000 мкФ + 8.000 мкФ = 14000 мкФ.

    Эквивалентный конденсатор для параллельного соединения имеет значительно большую площадь пластины и, следовательно, большую емкость, как показано на рисунке 2b.

    Общая емкость параллельно,

    C p

    Общая емкость параллельно C p = C 1 + C 2 + C 3 +…

    Более сложные соединения конденсаторов иногда могут быть последовательными и параллельными. (См. Рис. 3.) Чтобы найти общую емкость таких комбинаций, мы идентифицируем последовательные и параллельные части, вычисляем их емкости, а затем находим общую.

    Рис. 3. (a) Эта схема содержит как последовательные, так и параллельные соединения конденсаторов. См. Пример 2 для расчета общей емкости цепи. (b) C 1 и C 2 идут последовательно; их эквивалентная емкость C S меньше, чем у любого из них. (c) Обратите внимание, что C S параллельно с C 3 . Таким образом, общая емкость равна сумме C S и C 3 .

    Пример 2. Смесь последовательной и параллельной емкостей

    Найдите общую емкость комбинации конденсаторов, показанной на рисунке 3. Предположим, что емкости на рисунке 3 известны с точностью до трех десятичных знаков ( C 1 = 1.000 мкФ, C 2 = 3.000 мкФ и C 3 = 8.000 мкФ) и округлите ответ до трех десятичных знаков.

    Стратегия

    Чтобы найти общую емкость, мы сначала определяем, какие конденсаторы включены последовательно, а какие — параллельно.Конденсаторы C 1 и C 2 включены последовательно. Их комбинация, обозначенная на рисунке C S , параллельна C 3 .

    Решение

    Поскольку C 1 и C 2 включены последовательно, их общая емкость определяется как [латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} { C_ {1}} + \ frac {1} {C_ {2}} + \ frac {1} {C_ {3}} \\ [/ latex]. Ввод их значений в уравнение дает

    [латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} {C_ {1}} + \ frac {1} {C_ {2}} = \ frac {1} { 1.000 \ mu \ text {F}} + \ frac {1} {5.000 \ mu \ text {F}} = \ frac {1.200} {\ mu \ text {F}} \\ [/ latex].

    Инвертирование дает C S = 0,833 мкФ.

    Эта эквивалентная последовательная емкость подключена параллельно третьему конденсатору; Таким образом, общая сумма составляет

    [латекс] \ begin {array} {lll} C _ {\ text {tot}} & = & C _ {\ text {S}} + C _ {\ text {S}} \\\ text {} & = & 0.833 \ mu \ text {F} +8.000 \ mu \ text {F} \\\ text {} & = & 8.833 \ mu \ text {F} \ end {array} \\ [/ latex]

    Обсуждение

    Этот метод анализа комбинаций конденсаторов по частям, пока не будет получена общая сумма, может быть применен к более крупным комбинациям конденсаторов.

    Сводка раздела

    • Общая емкость последовательно [латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} {C_ {1}} + \ frac {1} {C_ {2}} + \ гидроразрыв {1} {C_ {3}} + \ dots \\ [/ latex]
    • Общая емкость параллельно C p = C 1 + C 2 + C 3 +…
    • Если схема содержит комбинацию конденсаторов, включенных последовательно и параллельно, определите последовательную и параллельную части, вычислите их емкости, а затем найдите общую сумму.

    Концептуальные вопросы

    1. Если вы хотите хранить большое количество энергии в конденсаторной батарее, подключите ли вы конденсаторы последовательно или параллельно? Объяснять.

    Задачи и упражнения

    1. Найдите общую емкость комбинации конденсаторов на рисунке 4.

      Рисунок 4. Комбинация последовательного и параллельного подключения конденсаторов.

    2. Предположим, вам нужна конденсаторная батарея с общей емкостью 0.750 Ф, и у вас есть множество конденсаторов емкостью 1,50 мФ. Какое наименьшее число вы могли бы связать вместе, чтобы достичь своей цели, и как бы вы их связали?
    3. Какую общую емкость можно получить, соединив вместе конденсатор 5,00 мкФ и конденсатор 8,00 мкФ?
    4. Найдите общую емкость комбинации конденсаторов, показанной на рисунке 5.

      Рисунок 5. Комбинация последовательного и параллельного подключения конденсаторов.

    5. Найдите общую емкость комбинации конденсаторов, показанной на рисунке 6.

      Рисунок 6. Комбинация последовательного и параллельного подключения конденсаторов.

    6. Необоснованные результаты. (a) Конденсатор емкостью 8,00 мкФ подключен параллельно другому конденсатору, что дает общую емкость 5,00 мкФ. Какая емкость у второго конденсатора? б) Что неразумного в этом результате? (c) Какие предположения необоснованны или непоследовательны?

    Избранные решения проблем и упражнения

    1. 0,293 мкФ

    3.3,08 мкФ в последовательном соединении, 13,0 мкФ в параллельном соединении

    4. 2,79 мкФ

    6. (а) –3,00 мкФ; (б) У вас не может быть отрицательного значения емкости; (c) Предположение, что конденсаторы были подключены параллельно, а не последовательно, было неверным. Параллельное соединение всегда дает большую емкость, в то время как здесь предполагалась меньшая емкость. Это могло произойти, только если конденсаторы подключены последовательно.

    Емкостное реактивное сопротивление

    — Как найти последовательные и параллельные конденсаторы

    Найдите емкостное реактивное сопротивление цепи с последовательными или параллельными конденсаторами, используя этот простой двухэтапный процесс.

    Шаг 1. Найдите общую емкость цепи

    Предположим, у нас есть три конденсатора, 12 Ф, 20 Ф и 30 Ф, подключенных к источнику с частотой 60 Гц. Каково полное емкостное реактивное сопротивление (X C ) при последовательном или параллельном подключении?

    1А. Для конденсаторов серии

    Когда конденсаторы соединены последовательно, общая емкость меньше, чем любая из отдельных емкостей последовательных конденсаторов.Если два или более конденсатора соединены последовательно, общий эффект будет таким, как у одного (эквивалентного) конденсатора, имеющего суммарное расстояние между пластинами отдельных конденсаторов.

    Конденсаторы серии

    Пример:

    1/12 = 0,083, 1/20 = 0,050, 1/30 = 0,033

    0,083 + 0,050 + 0,033 = 0,166

    1 / 0,163 = 6,02 мкФ

    Примечание: математические расчеты упрощены для целей иллюстрации. Для более точных чисел воспользуйтесь калькулятором.

    1Б. Для параллельных конденсаторов

    При параллельном подключении конденсаторов общая емкость складывается из емкостей отдельных конденсаторов. Если два или более конденсатора соединены параллельно, общий эффект будет таким, как у одного эквивалентного конденсатора, имеющего сумму площадей пластин отдельных конденсаторов.

    Параллельные конденсаторы Пример:

    12 + 20 + 30 = 62 мкФ


    Шаг 2: Найдите емкостное реактивное сопротивление

    Как и сопротивление, реактивное сопротивление измеряется в Ом, но ему присваивается символ X, чтобы отличить его от чисто резистивного значения R, и поскольку рассматриваемый компонент является конденсатором, реактивное сопротивление конденсатора называется емкостным реактивным сопротивлением (X C ) который измеряется в Ом.

    Поскольку конденсаторы заряжаются и разряжаются пропорционально скорости изменения напряжения на них, чем быстрее изменяется напряжение, тем больше тока протекает.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *