Крен5: Схема регулятора напряжения 12в на крен 5. Что за микросхема крен5? Схема типичного блока питания на интегральном стабилизаторе напряжения типа крен

Содержание

Стабилизатор напряжения КР142ЕН5А, КРЕН5А, КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Помню в начале 90-х годов стабилизаторы КР142ЕН5А (или как их ещё называли КРЕН5А) были очень популярны: их ставили и в клоны спектрумов и в АОНы, везде где работала ТТЛ и 5-вольтовая К-МОП логика. На сегодняшний день КРЕН5А может показаться монстром в большом корпусе TO-220, с большим падением напряжения (2,5 В), относительно небольшим током (2 А). Сейчас того место которое раньше занимал КРЕН5А на плате, хватит на более мощный импульсный преобразователь. А если поставить современный линейный преобразователь аналогичный старичку, то освободим достаточно пространства. Но на тот момент интегральный линейный стабилизатор обладал несомненными преимуществами по сравнению стабилизаторами на дискретных элементах.

Я не призываю использовать КР142ЕН5А в новых разработках, но информация по стабилизатору может понадобиться для ремонта старого оборудования.

Стабилизатор КР142ЕН5А цоколевка

Раньше при использовании КР142ЕН5А часто пользовались нумерацией выводов от военного аналога 142ЕН5А в металлокерамическом корпусе 4116.

4-3. Выводы обозначались так Вход – 17, Общий – 8, Выход – 2. Правильно нумеровать выводы по стандарту для корпусов КТ-28-2 (ТО-220), т.е. так Вход – 1, Общий – 2, Выход – 3.

Схема включения КР142ЕН5А

Минимальные емкости конденсаторов:

ПараметрВходной С1Выходной С2
Минимальная емкость для керамического или танталового, мкФ2,21
Минимальная емкость для электролитического, мкФ1010

Стабилизатор КР142ЕН5А характеристики

  • Полярность напряжения — положительная;
  • Выходное напряжение — 5 В;
  • Выходной ток — 2 А;
  • Максимальное входное напряжение — 15 В;
  • Разность напряжения вход-выход — 2,5 В;
  • Мощность рассеивания (без теплоотвода) — 1,5 Вт;
  • Мощность рассеивания (с теплоотводом) — 10 Вт;
  • Точность выходного напряжения — ±0,1 В;
  • Диапазон рабочих температур — -45…+70 °C;

Модификации стабилизатора: КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Удивительно, но последняя буква в обозначении стабилизатора напряжения КР142ЕН5 определяет не только второстепенные параметра, но такой важный параметр как напряжение стабилизации: ЕН5Б и ЕН5Г стабилизируют на уровне 6В ! В то время как ЕН5А и ЕН5B – 5В. Отличия ЕН5В и ЕН5Г от ЕН5А и ЕН5Б в худшей стабильности поддержания выходного напряжения: ±4% против ±2% .

Тип
Выходное напряжение, В4,9…5,15,88…6,124,82…5,185,79…6,21
Температурный коэффициент напряжений,0,020,020,030,03
Максимальный выходной ток, А221,51,5

Аналоги

Прототипом для отечественной разработки КР142ЕН5А был стабилизатор А7805Т фирмы «Fairchild Semiconductor». И конечно выпускалось большое количество аналогичных стабилизаторов другими фирмами. В обозначении обычно присутствует код 7805,перед ним может быть буквенное обозначение характеризующее изготовителя.

Микросхема кр142ен5а характеристики, схема подключения, аналог, цоколевка

По своим техническим характеристикам отечественная КР142ЕН5А является трехвыводным линейным стабилизатором постоянного напряжения положительной полярности, на вход которого можно подать до +15 В и получить на выходе фиксированные +5 В. Это микросхема времен СССР, производится с 80-х годов по настоящее время. Добавив к ней небольшое количество других элементов, можно получить регулируемый выход.

Её использовали в различных бытовых приборах для стабилизации напряжения. Например, в стабилизированных блоках питания домашних миникомпьютеров ZX Spectrum, автоматических определителях номера телефона, измерительной технике и всюду, где появлялась необходимость в пятивольтовом питании.

Сегодня, советская КР142ЕН5А морально устарела. Её место, в современных электронных приборах, занимают более компактные и технически совершенные интегральные схемы (ИС). Несмотря на это, она про востребована для ремонта старого оборудования и применяется в учебных целях для изучения принципов работы микросхем в российских технических ВУЗах.

Распиновка

КР142ЕН5А имеет следующую цоколевку. Первые подобные микросхемы выпускались в прямоугольном металлополимерном КТ-28-2. Для отвода тепла и крепления к монтажной плате он оснащался фланцем c крепежным отверстием диаметром 3.6 мм. В настоящее время устройство продолжают выпускать в зарубежном корпусе ТО-220, который имеет три пластичных вывода: 1 – вход, 2 – общий, 3 – выход. Их расположение показано на рисунке ниже.

Металлизированный фланец физически соединен с общим выводом — 2.

Характеристики

Предельно допустимые характеристики КР142ЕН5А, сильно зависят от температуры её корпуса (ТКОРП.) и приводятся в даташит производителей отдельно от остальных. Перечислим их:

  • максимальное напряжение на входе (UВХ.) до 15 В, при ТКОРП. = — 45 …+ 70 °C;

при ТКОРП. = — 45 …+ 100 °C:

  • выходное напряжение (UВЫХ.) находится в диапазоне 4.9 … 5.1 В;
  • рассеиваемая мощность (РМАКC.) без радиатора не более 1.5 Вт., с теплоотводом до 10 Вт;
  • предельный выходной ток (при Р ≤ РМАКC.) IМАКC. до 1.5 А.

Электрические параметры

Кроме максимально допустимых значений у КР142ЕН5А есть электрические параметры. Они приводятся совместно с дополнительными условиями их измерения. Все значения в этом перечне справедливы только при условии температуры окружающей среды Т

ОКР. = + 25ОС.

Аналоги

Линейный стабилизатор напряжения КР142ЕН5А является аналогом зарубежных микросхем первого поколения серии LM7805, впервые представленных в 70-х годах американской компанией  Fairchild Semiconductor. Это популярная импортная ИС из серии 78xx, так как имеет на выходе наиболее распространенные для питания различных приборов +5 В. Современными аналогами микросхемы являются: А7805Т, KIA7805, L7805CV, LM7805. Отечественную КР142ЕН5В можно так же рассмотреть в качестве полноценной замены.

Особенности маркировки

Не все экземпляры КР142ЕН5А имеют полную маркировку на корпусе. Вместо неё указывается условный код, по которому и узнают “кренку”. В этом случае на корпус наносится следующая информация: марка завода-изготовителя, тип микросхемы, год и неделя выпуска. 

Встречается так же и другое сокращенное обозначение данного устройства – КРЕН 5А.

КР142ЕН5А из-за крайне малого содержания драгметаллов не представляет интереса для скупщиков. А вот другие 142ЕН5 и К142ЕН5 – её аналоги, выпускавшиеся в специальном металлокерамическом корпусе 4116.4-3, имели позолоченные контакты. Они предназначались для нужд военной промышленности и экспериментальных работах. Содержат следующее количество драгметаллов в граммах: золото — 0,0246; серебро —  0,046; платина – 0; МПГ -0.

Типовая схема включения

В техническом описании приводится типовая схема включения КР142ЕН5А. В ней минимальная емкость керамического или танталового конденсатора С1 = 2,2 мкФ, а для С2 = 1 мкФ. При использовании электролитических конденсаторов, их емкость должна быть больше 10 мкФ, это касается как С1, так и С2.

Регулируемый блок питания

Довольно часто, с применением КР142ЕН5А, делают регулируемый блок питания. На выходе приведенной ниже схеме, можно настроить положительное напряжение в диапазоне от 5.6 до 13 вольт.

Напряжение +15 В подается на вход стабилизатора. С выхода микросхемы (ножка 3), через транзистор VT1 КТ502А, оно поступает на общий вывод микросхемы (ножка 2). Его величина регулируется переменным резистором R2. При изменении сопротивления на R2, на выходе стабилизатора можно добиться 5.6 В. Оно получаются из суммы напряжений: на выходе (5 В) и между выводами коллектором-эмиттером транзистора VT1. Так как VT1 в данном случае полностью открыт, напряжение на нем равно 0.6 В.  Емкость С1 нужна для предотвращения возбуждения микросхемы, а С2 для сглаживания пульсаций.

Рекомендуем также посмотреть видео со схемой регулируемого блока питания, с помощью можно менять полярность напряжения на выходе от +5В до -5В  и наоборот.

Производители

Основным отечественным производителем КР142ЕН5А, в настоящее время, является ЗАО «Группа Кремний Эл». Предприятие является правопреемником Брянского завода полупроводниковых приборов, основанного ещё в Советском Союзе. Кроме него, такую же микросхему выпускает Белорусский  УП «Завод Транзистор» , г.Минск. Это предприятие является филиалом ОАО «Интеграл». Кликнув по наименованию производителя, можно скачать datasheet на устройство.

Схема и описание мощного стабилизатора напряжения на МС КРЕН5А с ограничением тока | ASUTPP

Микросхемы-стабилизаторы напряжения типа КРЕН (К142ЕН…) широко применяются в радиотехнике, различной бытовой аппаратуре. Эти микросхемы (МС) выпускаются на различные значения напряжения стабилизации, среди них есть регулируемые варианты и с фиксированными значениями выходного напряжения.

Схема стабилизатора напряжения на МС КРЕН5А с ограничением тока

Схема стабилизатора напряжения на МС КРЕН5А с ограничением тока

Ток нагрузки схем стабилизации на таких МС обычно составляет 1,5...3 ампера.

В случаях же, когда нагрузка требует гораздо больших токов, подобные схемы дополняются отдельным узлом на мощном транзисторе, который называется «регулирующим». Этот транзистор управляется непосредственно МС (в данном случае - КРЕН5А) и позволяет пропускать на выход устройства стабилизации токи в несколько раз большие, чем способна обеспечить сама микросхема.

При этом все основные характеристики стабилизатора в целом, например - коэффициент стабилизации, остаются на уровне, который обеспечивает МС.

Но недостаток таких схем состоит в том, что ток через регулирующий транзистор никак не ограничен и, при слишком высоких его значениях, транзистор может быть «пробит». Чтобы этого не случилось, следует каким-то образом ограничить максимально возможную величину тока через транзистор. Сделать это можно так, как показано на схеме.

Параллельно эмиттерному переходу VT1 включаются последовательно два диода D1, D2. Если ток нагрузки превысит 8 ампер, эти диоды открываются, отчего сработает внутренняя (встроенная) система защиты микросхемы от перегрузки. Напряжение на выходе стабилизатора упадёт до нуля и он, таким образом, будет «выключен» до момента снижения тока ниже допустимого уровня (7-8 ампер).

Сама микросхема, а также управляющий мощный транзистор, могут быть заменены на аналогичные отечественные или импортные. Их следует установить на теплоотводы с достаточной площадью охлаждающей поверхности.

Данная схема относится к «простым» вариантам и не лишена, поэтому, отдельных недостатков. Например, значение тока срабатывания системы защиты сильно зависит от параметров применяемых транзисторов и диодов. Но этот недостаток можно исправить, если обеспечить хороший тепловой контакт между их корпусами.

Для того можно диоды закрепить непосредственно на теплоотводе транзистора, исключив при этом электрический контакт (использовать изолирующие прокладки из слюды или специальные теплопроводные прокладки).

Применение микросхемных стабилизаторов серий 142, К142 и КР142

Применение микросхемных стабилизаторов серий 142, К142 и КР142

142ЕН5, 142ЕН8, 142ЕН9

Как известно [Л], эти стабилизаторы идентичны по схеме, каждый из них содержит устройство защиты от замыкания цепи нагрузки. Различаются они только максимальным выходным током и номинальным выходным напряжением, которое имеет одно из следующих значений: 5, 6, 9, 12, 15, 20, 24 и 27 В.

Стабилизатор напряжения (СН), защищенный от повреждения разрядным током конденсаторов. При наличии в выходной цепи СН конденсатора большой емкости иногда необходимо принимать меры по защите микросхемы, то есть по предотвращению разрядки конденсатора через ее цепи. Дело в том, что обычно используемые в цепях питания устройств конденсаторы емкостью до 10 мкФ и более обладают малым внутренним (емкостным) сопротивлением, поэтому при аварийном замыкании той или иной цепи устройства возникает импульс тока, значение которого может достигать десятков ампер. И хотя этот импульс очень кратковременен, его энергии может оказаться достаточно для разрушения микросхемы. Энергия импульса зависит от емкости конденсатора, выходного напряжения и скорости его уменьшения.

Для защиты микросхемы от повреждения в подобных случаях используют диоды. В устройстве, выполненном по схеме на рис. 1, диод VD1 защищает микросхему DA1 от разрядного тока конденсатора С2, а диод VD2 — от разрядного тока конденсатора C3 при замыкании на входе СН.

Выходное напряжение устройства Uвых. = Uвыx.cт. + Ir2R2, где Uвых.ст. — выходное напряжение микросхемы, Ir2 — ток через резистор R2.

Сопротивление резисторов R1 и R2 рассчитывают по формулам: R1 = Uвых.ст./Ir2 + Iп; R2 = Uвых - Uвых.ст./Ir2 ,где Iп - ток потерь в микросхеме, равный 5...10 мА. Для нормальной работы устройства ток Ir2 должен быть, как минимум, вдвое больше тока Iп.

Приняв Ir2=20 мА, в рассматриваемом случае (Uвых=10В Uвых.ст.=5 В) получаем Rl=5/(0,02+0,01)=333 Ом, R2=(10—5)/0,02=250 Ом.

Поскольку выбор сопротивлений этих резисторов из стандартного ряда номиналов приводит к отклонению выходного напряжения от расчетного значения, резистор R2 рекомендуется выбирать подстроечным. Это позволит в определенных пределах регулировать выходное напряжение.

Мощность Ррас., рассеиваемую микросхемой при максимальной нагрузке, определяют по формуле: Pрас. = Iвых.(Uвх - Uвых.) + IпUвх.

Конденсатор С1 необходим только в том случае, если длина проводов, соединяющих СН с конденсатором фильтра выпрямителя, больше 100 мм;

С2 сглаживает переходные процессы, и его рекомендуется устанавливать при наличии длинных соединительных проводов (печатных проводников) и в тех случаях, когда недопустимы броски напряжения и тока в Цепи питания нагрузки. Что касается конденсатора С3, то он служит для дополнительного уменьшения пульсаций напряжения на выводе 8 микросхемы DA1.

Наиболее подходят для использования в стабилизаторах танталовые оксидные конденсаторы, обладающие (конечно, при необходимой емкости) малым полным сопротивлением даже на высоких частотах: здесь танталовый конденсатор емкостью 1 мкФ эквивалентен алюминиевому оксидному конденсатору емкостью примерно 25 мкФ.

При соответствующем выборе микросхемы и сопротивления резисторов R1, R2 выходное напряжение может быть более 25 В (в любом случае оно не должно превышать разности Uвых.max. - Uпд ,где Uпд — минимально допустимое падение напряжения на микросхеме). Емкость конденсаторов С2, С3 — не Менее 25 мкФ.

СН со ступенчатым включением (рис.2)


Функции «коммутирующего» элемента в этом устройстве выполняет транзистор VT1. В момент включения питания начинает заряжаться конденсатор СЗ, поэтому транзистор открыт и шунтирует нижнее плечо делителя R1R2.

При этом напряжение на выводе 8 микросхемы DA1 близко к 0 (оно равно напряжению насыщения Uкэ.нас. транзистора VTl), и выходное напряжение СН лишь ненамного превышает напряжение Uвых.ст. По мере зарядки конденсатора через резистор R3 транзистор закрывается, напряжение на выводе 8 DA1, а следовательно, и на выходе устройства возрастает, и спустя некоторое время выходное напряжение достигает заданного уровня. Длительность установления выходного напряжения зависит от постоянной времени цепи R3C3.

Назначение конденсаторов С1 и С2 - то же, что и в СН по схеме на рис.1.

СН с выходным напряжением повышенной стабильности (рис.3)


Как видно из схемы, отличие этого СН от устройства по схеме на рис. 1 (кроме отсутствия защитных диодов и конденсатора С3) заключается в замене резистора R2 стабилитроном VD1. Последний поддерживает более стабильное напряжение на выводе 8 микросхемы DA1 и тем самым дополнительно уменьшает колебания напряжения на нагрузке.

Недостаток устройства — невозможность плавной регулировки выходного напряжения (его можно изменять только подбором стабилитрона VD1).

СН с выходным напряжением, регулируемым от 0 В


На рис.4 изображена схема устройства, выходное напряжение которого можно регулировать от 0 до 10 В. Требуемое значение устанавливают переменным резистором R2. При установке его движка в нижнее (по схеме) положение (резистор полностью выведен из цепи) напряжение на выводе 8 DA1 имеет отрицательную полярность и равно разности Uvd1 — Uвых.ст. (Uvd1 — напряжение стабилизации стабилитрона VD1), поэтому выходное напряжение СН равно 0. По мере перемещения движка этого резистора вверх отрицательное напряжение на выводе 8 уменьшается и при некотором его сопротивлении становится равным напряжению Uвых.ст. При дальнейшем увеличении сопротивления резистора выходное напряжение СН возрастает от 0 до максимального значения.

СН с внешними регулирующими транзисторами

Микросхемы 142ЕН5, 142ЕН8, 142ЕН9 в зависимости от типа могут отдавать в нагрузку ток до 1,5...3 А. Однако эксплуатация их с предельным током нагрузки нежелательна, так как требует применения эффективных теплоотводов (допустимая рабочая температура кристалла ниже, чем у большинства мощных транзисторов).

Облегчить режим работы микросхемы в подобных случаях можно, подключив к ней внешний регулирующий транзистор.

Принципиальная схема базового варианта СН с внешним регулирующим транзистором показана на рис.5. При токе нагрузки до 180...190 мА падение напряжения на резисторе R1 невелико, и устройство работает так же, как и без транзистора. При большем токе это падение напряжения достигает 0,6...0,7 В, и транзистор VT1 начинает открываться, ограничивая тем самым дальнейшее увеличение тока через микросхему DA1. Она поддерживает выходное напряжение на заданном уровне, как и в типовом включении: при повышении входного напряжения снижается входной ток, а следовательно, и напряжение управляющего сигнала на эмиттерном переходе транзистора VT1, и наоборот.

Применяя такой СН, следует иметь в виду, что минимальная разность напряжений Uвх. и Uвых. должна быть равна сумме минимального падения напряжения на используемой микросхеме и напряжения Uэб регулирующего транзистора.

Необходимо также позаботиться об ограничении тока через этот транзистор, так как при замыкании в нагрузке он может превысить ток через микросхему в число раз, равное статическому коэффициенту передачи тока h31э, и достичь 20А и даже более. Такого тока в большинстве случаев достаточно для вывода из строя не только регулирующего транзистора, но и нагрузки.

Схемы возможных вариантов СН с ограничением тока через регулирующий транзистор показаны на рис.6-8. В первом из них (рис.6) эта задача решается включением параллельно эмиттерному переходу транзистора VT1 двух соединенных последовательно диодов VD1, VD2, которые открываются, если ток нагрузки превышает 7 А. СН продолжает работать и при некото ом дальнейшем увеличении тока, но как только он достигает 8 А, срабатывает система защиты микросхемы от перегрузки.

Недостаток рассмотренного варианта — сильная зависимость тока срабатывания системы защиты от параметров транзистора и диодов, (ее можно значительно ослабить, если обеспечить тепловой контакт между корпусами этих элементов).

Значительно меньше этот недостаток проявляется в СН по схеме на рис.7.

Если исходить из того, что напряжение на эмиттерном переходе транзистора VT1 и пр мое напряжение диода VD1 примерно одинаковы, то распределение тока ме ду микросхемой DA1 и регулирующим транзистором зависит от отношения значений сопротивления резисторов R2 и R1. При малом выходном токе падение напряжения на резисторе R2 и диоде VD1 мало, поэтому транзистор VT1 закрыт и работает только микросхема. По мере увеличения выходного тока это падение напряжения возрастает, и когда оно достигает 0,6...0,7 В, транзистор начинает открываться, и все большая часть тока начинает течь через него. При этом микросхема поддерживает выходное напряжение на уровне, определяемом ее типом: при увеличении напряжения ее регулирующий элемент закрывается, снижая тем самым протекающий через нее ток, и падение напряжения на цепи R2VD2 уменьшается. В результате падение напряжения на регулирующем транзисторе VT1 возрастает и выходное напряжение понижается. Если же напряжение на выходе СН увеличивается, процесс регулирования протекает в противоположном направлении.

Введение в эмиттерную цепь транзистора VT1 резистора R1, Повышающего устойчивость работы СН (он предотвращает его самовозбуждение) требует увеличения входного напряжения.

В то же время, чем больше сопротивление этого резистора, тем меньше ток срабатывания по перегрузке зависит от параметров транзистора VT1 и диода VD1. Однако с увеличением сопротивления резистора возрастает рассеиваемая на нем мощность, в результате чего снижается КПД и ухудшается тепловой режим устройства.

В СН по схеме на рис.8 транзистор VT1 также выполняет функции регулирующего элемента.

Сопротивление резистора R1 выбирают таким образом, чтобы он открывался при токе нагрузки около 100 мА.

Транзистор VT2 реагирует на изменение (под действием тока нагрузки) падения напряжения на резисторе R2 и открывается, когда оно достигает 0,6...0,7 В, защищая тем самым регулирующий транзистор VT1.

Элементы этого СН рассчитывают и выбирают следующим образом. Предположим, необходим СН с выходным напряжением Uвых. = 5В при токе нагрузки Iвыx. = 5А Входное напряжение Uвх. = 15В. Микросхема 142ЕН5В (Iвых.max. = 2А).

Сначала выбирают транзистор VT1, способный при замыкании выходной цепи рассеять мощность Ррас = Uвх.Iвых.max. = 15*5 = 75Вт. С учетом некоторого запаса для повышения надежности желательно выбрать транзистор с Ррас. = 90...100 Вт. Его статический коэффициент передачи тока h31э при токе коллектора Iк = 5А должен быть не менее 10. Этим требованиям в полной мере отвечает транзистор КТ818АМ - его Pрас.= 100 Вт, h31э = 15 при токе Iк = 5А, Iк.max. = 15А, ток базы Iб = Iк/h31э = 0.33А. Uбэ = 0.9В при токе Iк=5А.

Ток Iвых. микросхемы 142ЕН5В выбирают с таким избытком, чтобы он перекрывал возможные отклонения параметров элементов и напряжения Uбэ.vt1 если этот запас взять равным 20%, то ток Iвых. будет равен 1,2*Iб.vt1 а ток через резистор R1 Ir1 = 0.2*Iб.vt1.

Поэтому сопротивление резистора R1 =Uбэ.vt1/0.2*Iб.vt1 = 13.4 Ом.

Сопротивление резистора R2 рассчитывают по формуле:

R2 = Uбэ.vt2.откр./Iвых. = 0.14 Ом,

где напряжение открывания транзистора Uбэ.vt2.откр. = 0.7В

Транзистор VT2 выбирают из условий Iк.vt2 > Iб.vt1 и Pрас. = Uвх.*Iб.vt1 = 15*0.33 = 5Вт

Этим требованиям отвечает транзистор КТ814А.

У рассматриваемого устройства два недостатка:

Во-первых, довольно большая рассеиваемая мощность (при максимальном токе входное напряжение должно превосходить выходное на величину, равную сумме минимального падения напряжения на микросхеме и значений напряжения на эмиттерном переходе транзисторов VT1 и VT2).

Во-вторых, очень жесткие требования к регулирующему транзистору, который должен выдерживать максимальный ток стабилизатора при большом напряжении Uкэ.

Мощный СН


Его можно выполнить по схеме на рис.9. Представленный вариант обеспечивает выходное напряжение в пределах 5...30В при токе нагрузки до 5А. Кроме микросхемы DA1 и регулирующего транзистора VT1, он содержит измерительный мост, образованный резисторами R2 — R5, R7, и компаратор на ОУ DA2. Особенность моста в том, что через входящий в него резистор R7 протекает большая часть тока нагрузки. Требуемое выходное напряжение устанавливают подстроечным резистором R6, значение тока (в данном случае 5А), при превышении которого СН становится стабилизатором тока, — резистором R2

При токе нагрузки, меньшем 5А, падение напряжения на резисторе R7 таково, что входное напряжение ОУ DA2 больше 0, поэтому его выходное напряжение положительно, диод VD1 закрыт и компаратор не оказывает на работу СН никакого влияния. Увеличение тока нагрузки до 5А и соответствующее повышение падения напряжения на резисторе R7 приводят к тому, что входное напряжение ОУ DA2 вначале уменьшается до 0, а затем меняет знак.

В результате его выходное напряжение также становится отрицательным, диод VD1 и светодиод HL1 открываются и напряжение на выводе 8 микросхемы DA1 устанавливается на уровне, соответствующем току нагрузки 5А. Свечение светодиода HL1 сигнализирует о том, что устройство перешло в режим стабилизации тока. Колебания сопротивления нагрузки теперь вызывают только изменение выходного напряжения, ток же нагрузки остается неизменным — 5А.

При восстановлении номинальной нагрузки выходное напряжение возрастает до заданного значения. Дальнейшее уменьшение выходного тока приводит к тому, что входное, а за ним и выходное напряжения ОУ DA2 вновь становятся положительными, диод VD1 закрывается и устройство возвращается в режим стабилизации напряжения.

Вместо К140УД7 в описанном СН (как, впрочем, и во всех последующих), можно использовать ОУ К140УД6, К153УД6, К157УД2 и т.п.

СН с высоким коэффициентом стабилизации


Устройство, выполненное по схеме на рис.10, обеспечивает коэффициент нестабильности напряжения менее 0,001% в широком интервале температуры и тока наг узки.

Повышение точности поддержания выходного напряжения достигнуто введением цепи отрицательной обратной связи, состоящей из измерительного моста R1—R3 VD1, ОУ DA2 и полевого транзистора VT1. Таким образом, напряжение на выводе 8 микросхемы DA1 здесь определяется напряжением стабилизации Uvd1 стабилитрона VD1 и напряжением рассогласования моста, усиленным ОУ DA2. Выходное напряжение Uвых.= Uвых.ст. + Uvd1-

Ток через стабилитрон VD1 устанавливают подбором резистора R3. Его сопротивление должно быть таким, чтобы обеспечивался минимальный температурный дрейф напряжения стабилизации.

СН с параллельно включенными микросхемами


Увеличения выходного тока можно добиться не только введением внешнего регулирующего транзистора, но и параллельным соединением микросхем. Например, включив две 142ЕН5А, как показано на рис.11, можно получить выходной ток до 6А. Здесь ОУ DA1 сравнивает падения напряжения на резисторах R1 и R2. Его выходное напряжение так воздействует на микросхему DA2, что текущий через нее ток оказывается в точности равным току через DA3. Для предотвращения нежелательного повышения выходного напряжения в отсутствие нагрузки выход устройства нагружен резистором R6.

Следует отметить, что при максимальном токе нагрузки на резисторах R1 и R2 рассеивается мощность более 2 Вт, поэтому использовать такой СН целесообразно лишь в тех случаях, если нагрузку нельзя разделить на две части (например, на две группы микросхем) с потребляемым током до 3А и питать каждую из них от отдельного СН.

Двуполярный СН на основе однополярной микросхемы


Можно выполнить его по схеме, изображенной на рис.12. Как видно, микросхема DA1 включена по типовой схеме в плюсовое плечо СН. Минусовое плечо содержит делитель напряжения из резисторов одинакового сопротивления R1, R2, инвертирующий усилитель на ОУ DA2 и регулирующий транзистор VT1.

ОУ сравнивает выходное напряжение плеч по абсолютной величине, усиливает сигнал ошибки и подает его в цепь базы транзистора VT1. Если напряжение минусового плеча по какой-либо причине становится меньше, чем плюсового (по абсолютной величине), напряжение на инвертирующем входе ОУ DA1 становится больше 0, и его выходное напряжение понижается, открывая регулирующий транзистор VT1 в большей мере и, тем самым, компенсируя снижение напряжения минусового плеча. Если же это напряжение, наоборот, возрастает, процесс протекает в противоположном направлении и равенство выходных напряжений также восстанавливается.

СН с регулируемым выходным напряжением


Можно собрать его по схеме на рис.13. Здесь ОУ DA2 выполняет функции повторителя напряжения, снимаемого с движка переменного резистора R2. ОУ питается нестабилизированным напряжением, но на его выходной сигнал это практически не влияет, так как напряжение смещения нуля не превышает нескольких милливольт. Благодаря большому входному сопротивлению ОУ становится возможным увеличить сопротивление делителя R1R2 в десятки раз (по сравнению с СН с типовым включением микросхемы DA1) и, тем самым, значительно уменьшить потребляемый им ток.

Введение в цепь обратной связи СН усилителя на ОУ DA2 (рис.14) позволяет снизить коэффициенты нестабильности Кu и Кi. Коэффициент усиления усилителя определяется сопротивлением резисторов делителя R3R4 и при указанных на схеме номиналах равен 10. Требуемое выходное напряжение устанавливают переменным резистором R2.

Литература

Щербина А., Благий С. Микросхемные стабилизаторы серий 142, К142, КР142. — Радио. 1990, №8. с.89\90; №9. c. 73,74.

А. Щербина, С. Благий, В. Иванов г. Москва (РАДИО № 3, 1991 г.)


SoftRos

Стабилизатор напряжения 9 В на одном транзисторе.

Очень простой стабилизатор, однако весьма эффективный поскольку используемый транзистор является мощным и способен пропускать большой ток, который у КТ805 может достигать 5А, а у КТ819 до 10 А.
Но это характеристический потолок, естественно, что предельную нагрузку ему давать не стоит.
Так же сам транзистор необходимо устанавливать на теплоотвод в случае подачи нагрузки более 0.5 А.

Элемент Значение
VT1 КТ805(819)
D1 Д814
R1 1 КОм

Стабилизатор напряжения на имс КРЕН.

Cтабилизатор, что называется, проще некуда.
Здесь используются микросхемы стабилизаторов серии КР142ЕН или попросту КРЕН.
Даже конденсатор на выходе, ёмкость которого должна состовлять 10-50 мкФ, можно опустить и использовать одну только ИМС.
Максимальный ток нагрузки такой схемы состовляет 1.5 А.
Данную ИМС необходимо устанавливать на теплоотвод, поскольку микросхема при большой нагрузке довольно сильно греется, без теплоотвода ИМС можно включать в нагрузку не более 100 мА.

КР142ЕН Вых. напряжение (В)
5
6
9
12

Регулируемый стабилизатор напряжения 1.6-36 В 1.5 А на имс КР142ЕН12А.

Еще один стабилизатор с использованием ИМС серии КР142. Здесь используется КР142ЕН12А.
Данный стабилизатор позволяет изменять выходное напряжение в пределах от 1.6 В до 36 В.
От номинала сопротивления реостата зависит чувствительность, чем меньше номинал, тем меньше чувствительность, тем больше шаг напряжения. Вообще документация к ИМС предлагает ставить реостат 4.7 КОм, но по опыту скажу, что регулировка напряжения с таким регулятором будет неточной, слишком большой шаг, я рекомендую ставить не менее 10 КОм.
Микросхему можно заменить на LM317 - это её полный аналог.
В случае, если фильтрующий конденсатор выпрямителя находится на некотором отдалении от схемы, рекомендуется поставить на входе конденсатор 100-1000 мкФ для стабилизации входного напряжения, на выходе тоже можно поставить конденсатор, но роль его незначительна.
Еще один немаловажный факт это то, что микросхема при нагрузке в свои предельные 1.5 жутко греется, так, что на эту имс нужен весьма не слабый радиатор.
Реально стабилизатору нагрузку более 1 А давать не стоит.

Элемент Значение
DD1 КР142ЕН12А
R1 240 Ом
R2 4.7-100 КОм

Регулируемый стабилизатор напряжения 1.6-36 В на имс КР142ЕН12А и мощном транзисторе.

А вот другой вариант предыдущей схемы, но с добавлением мощного транзистора, который позволяет увеличить ток нагрузки в зависимости от применяемого транзистора до 10-15 А, стоит лишь учесть, что стабилизатор линеен и с такой нагрузкой транзистор будет очень сильно греться.
В данном случае необходимо будет установить на теплоотвод и ИМС и транзистор, но в случае установки их обоих на 1 радиатор необходимо сделать гальваническую развязку, дело в том что пластина вывода тепла ИМС соответствует ноге регулятора, а на транзисторе соответствует коллектору, поэтому чтобы не произошло КЗ их нельзя соединять вместе.
Важно, что резистор R3 должен быть мощностью не менее 5 Вт иначе он просто выгорит от большой на него нагрузки.
Увеличение тока нагрузки по сравнению со стандартным подключением ИМС это безусловно плюс, но есть и обратная сторона данной схемы:
в случае пробоя транзистора, через него потечёт полное напряжение, что может привести к выходу из строя подключенным к этому стабилизатору устройств.
Важно ещё то, что данная схема очень боится КЗ на выходе, в случае замыкания практически стопроцентно вылетит транзистор, будьте осторожны.

Элемент Значение
DD1 КР142ЕН12А
VT1 КТ8102(818Г)
C1 1 мкФ
C2 10 мкФ
R1 62 Ом
R2 4.7-100 КОм
R3 1 Ом 5 Вт
R4 240 Ом

L7805 datasheet на русском - Вместе мастерим

Форум по AVR

— стабилизатор напряжения, по моему самый дешевый (китайские производители) и полный аналог отечественной КРЕН5.

На выходе выдает ровные 5 Вольт, выдерживает хороший ток, особенно микросхемы в корпусе TO220 при монтаже на радиатор.

В продаже так же есть микросхемы LM7803 — выполняет те же функции что и LM7805, единственная разница что на выходе микросхемы напряжение в 3 Вольта. Я лично использовал для питания мобильного телефона.

Технические параметры и характеристики регулятора:

Корпус — to220
Максимальный ток нагрузки, А — 1.5
Диапазон допустимых входных напряжений, В — 40
Выходное напряжение, В — 5

Недостаток микросхемы LM7805 в том, что нет смысла её применять в системах, которые питаются от аккумуляторных батарей. Так как эта микросхема при понижении напряжения например с 12В до 5В остальные 7В рассеивает в виде тепла, установка радиатора на микросхему LM7805 обязательна. То есть LM7805 не подходит для экономичных с точки зрения питания систем.

Советую ставить данный стабилизатор напряжения на все без исключения устройства, тем более, когда отдельные модули питаются от разного по величине напряжения. Так перестрахуетесь от выгорания модулей рассчитанных на более низкое напряжение чем то, которое случайно подали.

L7805-CV линейный стабилизатор постоянного напряжения

L7805-CV — практически для любого радиолюбителя собрать источник питания со стабилизирующим выходным напряжением на микросхеме 7805 и аналогичных из этой серии, не представляет никакой сложности. Именно об этом линейном регуляторе входного постоянного напряжения пойдет речь в данном материале.

На рисунке выше, представлена типичная схема линейного стабилизатора L7805 с положительной полярностью 5v и номинальным рабочим током 1.5А. Данные микросхемы приобрели такую известность, что за их производство взялись большинство мировых компаний. А вот на снимке ниже, представлена схема немного усовершенствованная, за счет увеличения емкости конденсаторов С1-С2.

Как правило, между радиотехниками и электронщиками этот чип называют сокращенно, не называя впереди стоящих буквенных обозначений указывающих на производителя. Ведь и так понятно для каждого, что это — стабилизатор, последняя цифра, которого указывает его напряжение на выходе.

Кто еще не сталкивался с данными электронными компонентами на практике и мало, что о них знает, то вот вам для наглядности небольшое видео по сборке схемы:

Стабилизатор напряжения 5v! На микросхеме L7805CV

Одно из важных условий — высокое качество компонентов

На самом деле при покупке комплектующих изготовитель играет значительную роль. Когда вы приобретаете любые электронные компоненты, всегда обращайте внимание на бренд детали, а также поинтересуйтесь кто их поставляет. Лично меня устраивает продукция компании «STMicroelectronics», производителя микроэлектронных компонентов.

Безымянные стабилизаторы или от мало известных фирм, как правило всегда стоят дешевле, чем аналогичные от известных брендов. Но и качество таких деталей не всегда на должном уровне, особенно сказывается в их работе существенный разброс напряжения на выходе.

Практически мне много раз попадались микросхемы L7805 выдававшие выходное напряжение в пределах 4,6v, вместо 5v, а другие из этой же серии давали наоборот больше — 5,3v. К тому же, такие образцы частенько могут создавать приличный фон и повышенное потребление мощности.

Схема источника тока выполненная на микросхемах из серии L78xx

Значение выходного тока обусловлено постоянным резистором R*, включенным параллельно с конденсатором 0,1uF, именно это сопротивление в свою очередь создает нагрузку для L7805. Причем, стабилизатор не имеет заземления. На «землю» идет только один вывод сопротивления нагрузки Rн. Принцип действия такой схемы включения обязывает L7805-CV выдавать в нагрузку определенную величину тока, посредством регулирования выходного напряжения.

Величина тока на выходе источника L78хх

Неприятный момент, который можно наблюдать в схеме, это суммирование тока покоя Id с током на выходе. Параметры тока покоя обозначены в документации на микросхему. В основном такие стабилизаторы имеют постоянную величину тока покоя, составляющую 8мА. Это значение является наименьшим током выходной цепи чипа. Следовательно, при попытке создать источник тока, у которого значение будет меньше, чем 8мА, никак не получится.

Здесь можно скачать документацию на микросхему L78xx L78_DataSheet.pdf

В лучшем случае от L7805 можно получить выходные токи в пределах от 8мА до 1А. Впрочем, при работе на токах превышающие значение 750-850 мА, категорически рекомендуем устанавливать микросхему на радиатор. Но и работать на таких токах все же не оправдано. Обозначенный в документации ток в 1А — это его максимальное значение. В фактических условиях чип наверняка выйдет из строя из-за перегрева. Поэтому, оптимальный выходной рабочий ток должен находится в пределах от 20 мА до 750 мА.

Корректность выходного тока и величина напряжения

В тоже время не постоянность тока покоя формируется как Δ >

Оптимальное сопротивление нагрузки

Одновременно с этим нужно принять во внимание значение сопротивления нагрузки. Здесь все просто, то есть используя закон Ома можно все высчитать. Например:

Исходя их таких несложных расчетов мы выяснили, какое должно быть напряжение на нагрузке с сопротивлением 100 Ом, чтобы создать выходной ток 100 мА. Согласно эти расчетам получается, что оптимальным вариантом будет использовать микросхему 7812 либо 7815, рассчитанную на 12v и 15v в соответствии, с целью иметь запас.

Заключение

Естественно, в такой схеме источника тока присутствуют ограничительные моменты. Хотя она может быть полезна для большого количества решений, в которых высокая точность не играет особой роли. Отсутствие какой либо сложности в схеме, дает возможность изготовить источник тока практически в любых условиях, тем более комплектующие для нее приобрести не составит труда.

Устройства, которые входят в схему блока питания, и поддерживают стабильное выходное напряжение, называются стабилизаторами напряжения. Эти устройства рассчитаны на фиксированные значения напряжения выхода: 5, 9 или 12 вольт. Но существуют устройства с наличием регулировки. В них можно установить желаемое напряжение в определенных доступных пределах.

Большинство стабилизаторов предназначены на определенный наибольший ток, который они выдерживают. Если превысить эту величину, то стабилизатор выйдет из строя. Инновационные стабилизаторы оснащены блокировкой по току, обеспечивающей выключение устройства при достижении наибольшего тока в нагрузке и защищены от перегрева. Вместе со стабилизаторами, которые поддерживают положительное значение напряжения, есть и устройства, действующие с отрицательным напряжением. Они применяются в двухполярных блоках питания.

Стабилизатор 7805 изготовлен в корпусе, подобном транзистору. На рисунке видны три вывода. Он рассчитан на напряжение 5 вольт и ток 1 ампер. В корпусе есть отверстие для фиксации стабилизатора к радиатору. Модель 7805 является устройством положительного напряжения.

Зеркальное отображение этого стабилизатора — это его аналог 7905, предназначенный для отрицательного напряжения. На корпусе будет положительное напряжение, на вход поступит отрицательное значение. С выхода снимается -5 В. Чтобы стабилизаторы работали в нормальном режиме, нужно подавать на вход 10 вольт.

Распиновка

Стабилизатор 7805 имеет распиновку, которая показана на рисунке. Общий вывод соединен с корпусом. Во время установки устройства это играет важную роль. Две последние цифры обозначают выдаваемое микросхемой напряжение.

Стабилизаторы для питания микросхем

Рассмотрим методы подключения к питанию цифровых приборов, сделанных самостоятельно, на микроконтроллерах. Любое электронное устройство требует для нормальной работы правильное подключение питания. Блок питания рассчитывается на определенную мощность. На его выходе устанавливается конденсатор значительной величины емкости для выравнивания импульсов напряжения.

Блоки питания без стабилизации, применяемые для роутеров, сотовых телефонов и другой техники, не сочетаются с питанием микроконтроллеров напрямую. Выходное напряжение этих блоков изменяется, и зависит от подключенной мощности. Исключением из этого правила являются зарядные блоки для смартфонов с USB портом, на котором выходит 5 В.

Схема работы стабилизатора, сочетающаяся со всеми микросхемами этого типа:

Если разобрать стабилизатор и посмотреть его внутренности, то схема выглядела бы следующим образом:

Для электронных устройств не чувствительных к точности напряжения, такой прибор подойдет. Но для точной аппаратуры нужна качественная схема. В нашем случае стабилизатор 7805 выдает напряжение в интервале 4,75-5,25 В, но нагрузка по току не должна быть больше 1 А. Нестабильное входное напряжение колеблется в интервале 7,5-20 В. При этом выходное значение будет постоянно равно 5 В. Это является достоинством стабилизаторов.

При возрастании нагрузки, которую может выдать микросхема (до 15 Вт), прибор лучше обеспечить охлаждением вентилятором с установленным радиатором.

Работоспособная схема стабилизатора:

  • Наибольший ток 1,5 А.
  • Интервал входного напряжения – до 40 вольт.
  • Выход – 5 В.

Во избежание перегрева стабилизатора, необходимо поддерживать наименьшее входное напряжение микросхемы. В нашем случае входное напряжение 7 вольт.

Лишнюю величину мощности микросхема рассеивает на себе. Чем выше входное напряжение на микросхеме, тем выше потребляемая мощность, которая преобразуется в нагревание корпуса. В итоге микросхема перегреется и сработает защита, устройство отключится.

Стабилизатор напряжения 5 вольт

Такое устройство имеет отличие от аналогичных приборов в своей простоте и приемлемой стабилизации. В нем использована микросхема К155J1А3. Этот стабилизатор использовался для цифровых устройств.

Устройство состоит из рабочих узлов: запуска, источника образцового напряжения, схемы сравнения, усилителя тока, ключа на транзисторах, накопителя индуктивной энергии с коммутатором на диодах, фильтров входа и выхода.

После подключения питания начинает действовать узел запуска, который выполнен в виде стабилизатора напряжения. На эмиттере транзистора возникает напряжение 4 В. Диод VD3 закрыт. В итоге включается образцовое напряжение и усилитель тока.

Ключ на транзисторах закрыт. На выходе усилителя образуется импульс напряжения, который открывает ключ, пропускающий ток на накопитель энергии. В стабилизаторе включается схема отрицательной связи, устройство переходит в режим работы.

Все применяемые детали тщательно проверяются. Перед установкой на плату резистора, его значение делают равным 3,3 кОм. Стабилизатор вначале подключают на 8 вольт с нагрузкой 10 Ом, далее, при необходимости устанавливают его на 5 вольт.

Резервное питание борта авиамодели

 

После установки аппаратуры на бензиновый Як-54 размахом 2,16м задумался о питании борта. До этого использовал регулятор БК двигателя в качестве БЕКа на ток 4А, но оказалось что борт потребляет немного больше чем может обеспечить этот регулятор.
Проехав по магазинам купил ni-mh аккумулятор ёмкостью 1700ма/ч, при заряде и разряде оказалось, что китайцы сделали аккумулятор как и написано на нём 1700ма/ч (наверно этикетки на 2200 кончились 🙂 ).

 

Где то слышал о резервном питании для борта, это когда при просадке или выходе из строя основного источника в работу вступает дополнительный резервный. Вот и решил сконструировать нечто подобное из подручных радиодеталей, при чём все радиодетали отечественные. Я ориентировался на простоту и надежность устройства резервного питания, по этому о КПД не задумывался.

За основу взял схему линейного стабилизатора, КПД около 70%, максимальный ток ограничен только мощностями выходных элементов, в данном случае до 10А!

Стабилизатор напряжения выполнен на микросхеме КРЕН5, при классическом включении (средняя нога на землю) выходное напряжение равно 5v, но с учётом падения напряжения на силовом транзисторе и диоде шотки было поднято до 5,5v включением двух диодов между средней ногой и землёй, диоды не знаю какие, маленькие какие то типа кд522.

 

 

Принцип работы устройства такой:
Основной источник - 5 банок nimh.
Резервный источник 2 банки lipo с понижающим линейным стабилизатором.

При полностью заряженном nimh 7,2v борт питается от него через диод, при этом диод стабилизатора закрыт. При просадке nimh до 5v или обрыве диод стабилизатора открывается и на борт подается питание с него. Какое то время оба диода открыты и когда напряжение nimh опускается ниже 5v его диод закрывается при этом борт начинает питаться только от lipo через стабилизатор. Проверить работоспособность устройства просто, достаточно отключить основной источник, при этом активно работая рулями. При отключении должна упасть скорость отработки рулевых машинок, в работу вступает резервный источник, а у него напряжение ниже чем у основного.

При первом включении и отладке устройства за место борта лучше использовать нагрузочный резистор, рассчитанный на требуемый ток.
Микросхема - КРЕН5, транзистор кт863, мощные ключевые диоды шотки кд2999в.

Транзистор и ключевые диоды устанавливаются на радиатор с учётом потребляемого бортом тока. Я взял ребристый радиатор со старого мафона и на нем смонтировал всё устройство.

 

Самодельный блок резервного питания авиамодели был испытан в домашних и полевых условиях, сбоев, помех и вообще каких то аномалий не замечено. 

Отмечу, что при активной работе рулями напряжение nimh может проседать до 5v хотя аккумулятор и заряженный, при этом периодически подключается резервный блок, тем самым немного помогая основному источнику деля с ним потребляемый бортом ток в пике, об этом говорит не большое повышение температуры радиатора.

В режиме покоя радиатор должен быть холодный, при полном питании от резервного блока и активной работой всеми рулями радиатор горячий в меру.

Резервное питание для авиамодели.

 

Play Roll 5 онлайн бесплатно

Классическая игра в кости

Бросок 5 - любимая классическая игра в кости, в которую играют несколько игроков. Roll 5 - это игра на ловкость, в которой игроки пытаются добиться наилучшего результата при каждом броске кубиков. Игра Roll 5 требует, чтобы игроки набирали очки на столе, разумно выбирая группы игральных костей. Элемент случайности и совпадения комбинаций придает новый смысл стратегической игре.В игре 15 раундов, в которых игроки 3 раза бросают кости, чтобы зафиксировать наилучшие результаты убийственных комбинаций. Игра «Бросок 5» отличается от обычной игры «Бросок 5», в которой победитель имеет шанс, но побеждает игрок с лучшим выбором, поскольку все игроки бросают одинаковые значения кубиков. Лучшая стратегия в ролике 5 всегда приносит победителей.

Как играть в Roll 5

Игра Roll 5 требует умения и стратегического подхода на всех 15 раундах, поскольку игрокам необходимо завершить все раунды, чтобы набрать наибольшее количество очков и определить победителя.Игроки могут играть в обе версии игры Roll 5 онлайн, где они могут играть против других игроков в реальном времени.

Чтобы бросить кости, участникам нужно щелкнуть или перетащить кубок по столу. Чтобы бросить, все, что нужно сделать игроку, - это щелкнуть выбранный кубик; они могут выбрать другие кости в следующем раунде. После третьего броска кубиков каждый игрок должен записать счет в таблице очков и терпеливо ждать, пока оставшиеся игроки завершат свои раунды. Этот процесс продолжается до финального 15 раунда.

В Броске 5 игроки должны стратегически сохранять различные комбинации кубиков для каждой строки в таблице очков. В верхней части таблицы записываются очки, определяемые общей стоимостью игральных костей, которые должны соответствовать значению игральных костей. В нижней части таблицы очков при броске 5 игроки должны выполнить определенные условия, чтобы заработать очки.

Хаски Ролл 5-1 в день старшего

Сюжетные ссылки

Следующая игра:

в Стэнфорде

17.04.2021 | 15:00

СЕТИ PAC-12

SEATTLE - Вашингтонские хаски №7 забрали домой свой самый большой Pac-12 в сезоне, победив UCLA Bruins 5-1 в старшем дне. Кендалл Бёркс, и Ник Скардина, , оба имели фигурные скобки в игре. Чарли Острем сделал три передачи, это вторая игра Вашингтона с тремя голевыми передачами в сезоне. Дилан Тевес, , забил гол и сделал результативную передачу, а Кристиан Сото и Коул Гримсби также сделали голевые передачи. У Вашингтона в целом 10-2-0 и 7-2-0 в игре Pac-12 перед финалом сезона в Стэнфорде на следующей неделе.

Скардина - первый хаски со времен Хандваллы Бваны в 2017 году, сделавший хет-трик и дубль в том же сезоне после сегодняшнего выступления.Острем присоединяется к Тевесу как единственный хаски с тремя голевыми передачами за последние 20 лет. Острем стал девятым Хаски с тремя и более передачами за игру.

Вашингтон вышел из ворот в огне, обогнав UCLA 13: 3 только в первом тайме и повел 4: 0. Хаски забили три гола за семь минут, чтобы начать игру, и забили все четыре гола в первом тайме за первые 26 минут. Это был первый тайм с четырьмя голами Хаски с 2016 года. Вашингтон не забивал больше половины с 2000 года, когда они забили шесть голов Кэлу во втором тайме.

Сэм Фаулер и Эндрю Моррисон объединились в сетке, пропустив всего один гол. Фаулер сделал два сейва, а Моррисон отработал 13 минут без счета, чтобы довести до конца крупную победу.

20 '| Просто прекрасно.

UCLA 0
UW 3

?? Сеть Pac-12
?? https://t.co/MTuP7OHWtl#GoHuskies pic.twitter.com/ChGDGqowia

- Вашингтонский мужской футбол (@UW_MSoccer) 8 апреля 2021 г.
ОЦЕНКА
  • 13 '| Бёркс поднялся высоко в воздух, чтобы ударить головой при вводе углового Тевеса.Бёркс пробил по воротам в правую стойку, и Хаски повел.
  • 16 '| Следующий угловой удар Вашингтона буквально через три минуты увеличил преимущество команды. Бёркс снова прыгнул, чтобы поймать мяч головой, на этот раз прыгнув над защитником на дальней штанге, чтобы толкнуть мяч точно.
  • 20 '| Острем послал точный пас атакующей Скардине почти от центральной линии, найдя голову Скардины для красивого третьего гола.
  • 26 '| После того, как Сото выиграл свободный мяч, Тевес выпустил слабый лазер и сделал счет 4: 0.
  • 69 '| UCLA поднялся на доску, забив на ходу с низкой подачей в штрафную.
  • 77 '| Хаски быстро построили атаку: Острем одним касанием отдал пас Гримсби, который немедленно отправил его в штрафную Скардине, чтобы добить его и сделать счет 5-1.
ПРИМЕЧАНИЯ
  • Беркс - первый защитник Хаски, забивший дубль после Итана Бартлоу , забившего Маршаллу 1 декабря 2019 года.
  • Острем - первый Хаски, сделавший десять передач после Майкла Харриса в 2013 году. Последним Хаски, сделавшим больше передач за один сезон, был Уэс Харт, у которого в 1998 году был рекорд программы 15 передач.
  • Острем стал пятым Хаски, когда-либо сделавшим десять передач в сезоне.
  • Острем сделал семь результативных передач в последних пяти матчах.
  • Тевес теперь второй в Pac-12 по очкам с 19.
  • Тевес набрал 16 очков в десяти играх Пак-12.
  • Сото забил гол и сделал четыре передачи в четырех играх против UCLA.
  • Скардина сделает хет-трик и дубль в этом сезоне из шести стартов этого сезона.
ВВЕРХ ДАЛЕЕ
Регулярный чемпионат завершится в субботу, 17 апреля, в Стэнфорде в 12:30. Если хаски выиграют эту игру, они впервые в истории программы выиграют подряд чемпионаты Pac-12.Эта игра будет транслироваться в прямом эфире в сети Pac-12. Любые изменения в расписании будут публиковаться в социальных сетях и на GoHuskies.com.

Обязательно следите за лайками в социальных сетях: @UW_MSoccer.

Острый рулет из коричневого риса и авокадо с тунцом - 5 унций

Рулет из коричневого риса и авокадо с пряным тунцом - 5 унций | Бристольские фермы купить онлайн Перейти к содержанию Перейти к нижнему колонтитулу

Мое избранное:

Щелкните сердечко, чтобы добавить в избранное

Стоимость доставки *:

$ 9.99

для продуктовых заказов $ 99,99 и менее

БЕСПЛАТНО

для продуктовых заказов от 100 $ и более

* Эти сборы не распространяются на доставку подарочной корзины

БЕСПЛАТНАЯ Доставка продуктовых заказов на сумму от 100 долларов США

Из-за колебаний в поставках некоторые товары могут быть недоступны для доставки. Кроме того, некоторые товары с высоким спросом будут иметь ограничения по количеству, чтобы мы могли обслуживать большую часть нашего сообщества.В случае, если мы не сможем выполнить какой-либо элемент в вашем заказе, вы можете подписаться на замену, выбрав опцию «разрешить все замены» при оформлении заказа. Спасибо за Ваше понимание.

Поиск

Поиск по отделу Все отделы Сыпучие продуктыСыры - деликатесыКофеМолочные продуктыДеликатесыЦветочныеПодарочные открыткиБакалеЗдоровье и красотаХозяйственные товарыХозяйственная утварьМясоНатуральный образ жизниПродуктыМорепродуктыСушиВино и спиртные напитки

Введите ключевое слово

Просмотр по отделам Просмотр по DepartmentBakery Сыпучие продуктыСыры - деликатесыКофеМолочные продуктыДеликатесыЦветочныеПодарочные открыткиБакалеЗдоровье и красотаХозяйственные товарыХозяйственная утварьМясоНатуральный образ жизниПродуктыМорепродуктыСушиВино и спиртные напитки

Пожалуйста, введите почтовый индекс доставки, чтобы заказать:

Количество:

Количество: 1 шт.2 шт. 3 шт. 4 шт. 5 шт. 6 шт. 7 шт. 8 шт. 9 шт. 10 шт.

Добавить

Пожалуйста, введите свой почтовый индекс перед заказом

Пожалуйста, выберите количество единиц, которое вы хотите заказать:

КОЛ-ВО:

Количество: 1 шт.2 шт. 3 шт. 4 шт. 5 шт. 6 шт. 7 шт. 8 шт. 9 шт. 10 шт.

Добавить

Добавить примечание

Добавить примечание:



БЕСПЛАТНАЯ Доставка продуктовых заказов на сумму от 100 долларов США и более

0 руб.00

Проверить

БЕСПЛАТНАЯ Доставка продуктовых заказов на сумму от 100 долларов США и более

0,00 руб.

Проверить

Онлайн-заказ

Делайте покупки, не выходя из дома, и мы вам доставим! Bristol Farms предлагает услуги доставки продуктов на дом, доставляя наши вкусные и изысканные блюда прямо к вам домой. Вы можете выбрать дату и время, наиболее удобные для вашего расписания.Закажите до 11:00 для доставки в тот же день. Чтобы начать делать покупки, введите свой почтовый индекс или войдите в существующую учетную запись.

х

Мы используем файлы cookie на нашем веб-сайте для поддержки наших предложений.

Но если вы еще не пробовали, «Печенье» просто неотразимо. Из тех, от которых вы можете отказаться, но мы хотели бы, чтобы вы попробовали.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *