Как устроена машина постоянного тока. Какие основные части входят в ее конструкцию. Как работает машина постоянного тока в режиме генератора и двигателя. Какие виды машин постоянного тока существуют.
Устройство машины постоянного тока
Машина постоянного тока состоит из двух основных частей:
- Неподвижная часть — статор (индуктор)
- Вращающаяся часть — ротор (якорь)
Статор включает в себя следующие элементы:
- Станина — корпус машины, изготовленный из магнитомягкой стали
- Главные полюсы с обмотками возбуждения
- Дополнительные полюсы (в некоторых конструкциях)
Ротор (якорь) состоит из:
- Сердечника якоря, набранного из листов электротехнической стали
- Обмотки якоря, уложенной в пазы сердечника
- Коллектора — устройства для выпрямления переменного тока в якоре
- Вала для крепления всех частей ротора
Принцип действия машины постоянного тока в режиме генератора
В режиме генератора принцип действия машины постоянного тока основан на явлении электромагнитной индукции:
- При вращении якоря в магнитном поле статора в проводниках обмотки якоря наводится ЭДС
- Направление ЭДС в проводниках меняется при переходе из зоны одного полюса в зону другого
- Коллектор выпрямляет переменную ЭДС якоря, обеспечивая постоянное направление тока во внешней цепи
Чем выше частота вращения якоря и чем сильнее магнитное поле статора, тем большая ЭДС вырабатывается генератором.
Как работает машина постоянного тока в двигательном режиме
В режиме двигателя принцип работы машины постоянного тока следующий:
- При подаче напряжения на обмотку якоря в ней возникает ток
- Взаимодействие тока якоря с магнитным полем статора создает электромагнитный момент
- Под действием момента якорь начинает вращаться
- В проводниках обмотки якоря наводится ЭДС, направленная против приложенного напряжения
Чем больше ток в обмотке якоря и сильнее магнитное поле статора, тем выше развиваемый двигателем момент.
Виды машин постоянного тока
По способу возбуждения магнитного поля различают следующие типы машин постоянного тока:
- С независимым возбуждением
- С параллельным возбуждением
- С последовательным возбуждением
- Со смешанным возбуждением
- С возбуждением от постоянных магнитов
Каждый тип имеет свои особенности характеристик и области применения.
Преимущества и недостатки машин постоянного тока
К преимуществам машин постоянного тока можно отнести:
- Высокий пусковой момент
- Широкий диапазон регулирования частоты вращения
- Возможность точного управления скоростью и моментом
Основные недостатки:
- Наличие щеточно-коллекторного узла, требующего обслуживания
- Сложность конструкции якоря
- Относительно высокая стоимость
Области применения машин постоянного тока
Машины постоянного тока широко используются в различных отраслях:
- Электрический транспорт (электровозы, трамваи, троллейбусы)
- Металлургия (приводы прокатных станов)
- Подъемно-транспортные механизмы (лифты, краны)
- Станкостроение (приводы подач станков)
- Робототехника и автоматика
Несмотря на конкуренцию со стороны частотно-регулируемых приводов переменного тока, машины постоянного тока по-прежнему находят широкое применение благодаря своим уникальным свойствам.
Принцип обратимости машин постоянного тока
Важной особенностью машин постоянного тока является их обратимость. Это означает, что:
- Любой генератор постоянного тока может работать в качестве двигателя
- Любой двигатель постоянного тока может генерировать электроэнергию
Для перевода машины из генераторного режима в двигательный достаточно подать на ее зажимы напряжение чуть больше ЭДС якоря. При этом направление вращения якоря сохранится.
Обратимость позволяет использовать одну и ту же машину как в качестве двигателя, так и генератора. Это свойство широко применяется в системах электродинамического торможения на транспорте.
Как регулируется частота вращения двигателя постоянного тока
Регулирование скорости вращения двигателя постоянного тока может осуществляться несколькими способами:
- Изменением напряжения на якоре
- Изменением магнитного потока (тока возбуждения)
- Включением добавочного сопротивления в цепь якоря
Наиболее экономичным является регулирование напряжения на якоре. Этот способ обеспечивает плавное изменение скорости в широком диапазоне.
Регулирование магнитного потока позволяет повышать скорость выше номинальной, но сопровождается снижением момента.
Реостатное регулирование применяется в основном для ограничения пускового тока двигателей.
Характеристики генераторов постоянного тока
Основными характеристиками генераторов постоянного тока являются:
- Характеристика холостого хода — зависимость ЭДС от тока возбуждения при отсутствии нагрузки
- Внешняя характеристика — зависимость напряжения от тока нагрузки
- Регулировочная характеристика — зависимость тока возбуждения от тока нагрузки при постоянном напряжении
Вид этих характеристик зависит от способа возбуждения генератора. Например, генераторы с независимым возбуждением имеют более жесткую внешнюю характеристику по сравнению с генераторами параллельного возбуждения.
Знание характеристик позволяет правильно выбрать генератор для конкретных условий применения.
Устройство машин постоянного тока: принцип действия
Машина постоянного тока представляет собой достаточно сложный механизм, который четко должен выполнять свои функции. Для того чтобы она всегда работала стабильно, необходимо, чтобы каждая мелкая деталь идеально выполняла своё предназначение. В этом случае всё вместе будет представлять единый целостный механизм, спокойно выполняющий главную задачу.
Содержание:
Устройство всей машины
В зависимости от видов машин постоянного тока схема может немного меняться, но в целом она универсальна. В устройстве обязательно находятся:
- Коллектор. Он необходим для того, чтобы выпрямлять переменный ток в постоянный. Фактически, это сердцевина подобной машины, ее главный действующий элемент.
- Щетки. Они необходимы для лучшего контакта и коммутации. Если щётки работают правильно, то искрения не будет.
- Сердечник якоря. Он необходим для того, чтобы стать основой для обмотки.
- Главный полюс. Это основа для создания магнитного поля.
- Катушки. Эти устройства представляют собой разнополярное устройство, необходимое для возникновения постоянного тока.
- Корпус или станина. Представляет собой неподвижную часть, необходимую для подключения полюсов и создания стабильного магнитного поля.
- Подшипниковый щит. Он соединяет статор и ротор. Чем он прочнее, тем больше срок эксплуатации всей машины. К счастью, данная деталь может чиниться.
- Вентилятор. Это устройство необходимо для предотвращения перегрева всей машины.
- Обмотка якоря. Именно в ее волокнах образуется и индуцируется ЭДС.
Обязательно нужно четко понимать устройство машин постоянного тока, чтобы правильно их эксплуатировать, а также в случае необходимости произвести ремонт.
Устройство главных полюсов↑
Главный полюс представляет собой сердечник, состоящий из листов специальной электротехнической стали. На него в определенном порядке насаживаются катушки с последовательной и параллельной обмоткой. Основной функцией данной детали становится образование магнитного поля. Также, имеются такие детали, как наконечник для выравнивания поля.
Детали
- обмотка главного полюса
- сердечник
- наконечник
- болт крепления
- станина
- якорь
Если все эти детали хорошо работают, то в результате образуется магнитное поле. Принцип действия машин постоянного тока не обходится без него.
Для создания магнитного поля и его надежности также используются дополнительные полюса. Они изготавливаются по тому же принципу, но немного проще.
Устройство катушек↑
Катушки, про которые постоянно упоминают при устройстве машины постоянного тока, на самом деле представляют собой классические устройства. Они могут предназначаться для главных и побочных полюсов. Катушкой подобное устройство называется за то, что это обмотка определенным образом добавленная на основу. На одной её стороне находится плюс, а на другой — минус. За счет этого можно «играть» с полярностью, добиваясь возникновения поля и настраивая его.
Устройство сердечника и якоря↑
Якорь представляет собой центральную вращающую часть, которая задаёт движение всему агрегату. Сердечник также является центром всего якоря, на котором в дальнейшем будет находиться обмотка и крепится другие детали.
Внешне он напоминает цилиндр, но вовсе не является простой цельной фигурой, скорее – это наборной элемент. На центральную ось набираются кольца или сегменты листовой стали, которые чередуются между собой в определенной направленности. Основным отличием является тот факт, что на внешней их части присутствует огромное количество специальных пазов, которые обеспечивают дальнейшее крепление. В конце они фиксируются с коллектором и становятся единым целым с ним, образуя замкнутую обмотку.
Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения испытания машин постоянного тока, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!
Если хотите заказать испытание машин постоянного тока или задать вопрос, звоните по телефону: +7 (495) 181-50-34.
Устройство якорных катушек↑
Якорные катушки иными словами называют полукатушками. Обусловлено это небольшим количеством витков (от двух до шести). Также, они имеют маленькую толщину. Основное предназначение и принцип работы их схож с обычными катушками, однако есть и некоторые отличия.
В первую очередь – это двойная головка, на которой отсутствуют выводные концы. В якоре они соединяются с коллекторными пластинами, поэтому конструкция устройства довольно необычная. Катушки могут состоять из нескольких секций, каждая из которых соединяется с коллектором при помощи припаивания.
Устройство коллектора↑
Коллектор по внешнему виду напоминает небольшой цилиндр. Он сделан из меди. Между слоями металла располагается слюда или миканит. В зависимости от необходимой мощности машины может меняться и сам состав материалов коллектора.
К этому цилиндру в дальнейшем крепятся щетки, а также обмотка различной полярности. Основная сложность в его конструкции заключается в том, что это не цельный цилиндр, а собранное особым образом устройство. Данную деталь формируют огромное количество клиновидных медных пластин. Между собой они не должны соприкасаться, поэтому обязательно имеются прослойки и прокладки из другого материала.
Готовый цилиндр надежно крепится на валу якоря при помощи специального болта и становится центром всей машины, преобразующей переменный ток в постоянный. Он может быть практически любого размера, но от этого будет изменяться мощность всего устройства.
Устройство щеткодержателей↑
Держатели для щеток обеспечивают их плотное прижатие и идеальное движение. Именно они делают так, чтобы контакты не тёрлись с коллектором. Обязательно просчитывается так, чтобы относительно полюсов машины щетки не меняли свое положение. Они максимально прочно соприкасаются с коллектором, благодаря пружинам, имеющимся в держателях. Также, обеспечивается вращение для идеальной работы.
В зависимости от конкретной машины, держатели могут быть разными по форме и материалам. Однако принцип действия их остается неизменным в любом случае.
Устройство щеток↑
Сами щетки представляют собой прямоугольные бруски. Они находятся на внешней стороне устройства и их легко можно увидеть, не разбирая машину. Иногда, в случае возникновения неисправности, именно тут возникает само искрение, символизирующее о необходимости принимать меры. Основными материалами, из которых изготавливаются щётки, являются графит, кокс, а также некоторые другие компоненты.
Принцип действия↑
Принцип действия машин постоянного тока непосредственно соединен с понятием назначения. Подобные технологии применяются, как в электродвигателях, так и в генераторах. В зависимости от мощности и характеристик их можно использовать в любых отраслях, от промышленности до различных автоматических систем.
Подобные двигатели достаточно дороги и сложны, поэтому они пока не вошли в широкое обращение и используются только лишь при необходимости. Особую популярность такие машины обрели в натуральном хозяйстве, в любых передвижных установках, а также выступают в качестве источника энергии, если её тяжело получить другим способом.
История
У подобного устройства достаточно богатая история. Еще в 19 веке, в 1821 году подобная идея появилась у Фарадея, который и начал ее продвигать. Первый же двигатель был создан русским ученым Якоби. Он же и старался его развивать.
В начале 20 века огромное количество ученый пробовали усовершенствовать данную машину и увеличивать её мощность. Это получалось все лучше и лучше с каждым годом. Единственной проблемой оставалось искрение и ненадежность, но затем и она снялась с улучшением коммутации.
Принцип
Работу двигателя можно объяснить достаточно легко. В обмотке возбуждения, которая надежно соединяется с полюсами, начинает образовываться ток. За счёт стабильного вращения и одного направления ЭДС он становится постоянным. Когда постепенно проводники перемещаются от одного полюса к другому, ЭДС меняет знак своей полярности. Но количество проводников неизменно, а значит, и сила тока остается постоянной по своей величине и характеристикам.
Сердцевиной для выполнения подобных работ становится коллектор. Машиной постоянного тока фактически можно назвать абсолютно любую технику, которая имеет коллектор, якорь с обмоткой, а также внешнюю электрическую цепь. В результате всё это даёт возможность преобразовывать переменный ток в постоянный. В нынешнее время присутствует огромное количество разнообразных машин, которые различаются по мощности, размерам и материалам, однако основа у них одна, начиная с 19 века, которая была открыта Фарадеем.
Принцип действия машины постоянного тока — Студопедия
Электрические машины постоянного тока
Устройство электрической машины постоянного тока
Электрическая машина постоянного тока состоит из двух основных частей: неподвижной части ( индуктора) и вращающейся части ( якоря с барабанной обмоткой).
На рис. 1 изображена конструктивная схема машины постоянного тока
Индуктор состоит из станины 1 цилиндрической формы, изготовленной из ферромагнитного материала, и полюсов с обмоткой возбуждения 2, закрепленных на станине. Обмотка возбуждения создает основной магнитный поток.
Магнитный поток может создаваться постоянными магнитами, укрепленными на станине.
Якорь состоит из следующих элементов: сердечника 3, обмотки 4, уложенной в пазы сердечника, коллектора 5.
Рис. 1
Сердечник якоря для уменьшения потерь на вихревые точки набирается из изолированных друг от друга листов электротехнической стали.
Принцип действия машины постоянного тока
Рассмотрим работу машины постоянного тока в режиме генератора на модели рис.2,
где 1 — полюсы индуктора, 2 — якорь, 3 — проводники, 4 — контактные щетки.
Проводники якорной обмотки расположены на поверхности якоря. Внешние поверхности проводников очищены от изоляции, а на эти поверхности проводников наложены неподвижные контактные щетки.
Контактные щетки размещены на линии геометрической нейтрали, проведенной посредине между полюсами.
Приведем якорь машины во вращение в направлении, указанном стрелкой.
Рис. 2
Определим направление ЭДС, индуктированных в проводниках якорной обмотки по правилу правой руки.
На рис.2 крестиком обозначены ЭДС, направленные от нас, точками — ЭДС, направленные к нам. Соединим проводники между собой так, чтобы ЭДС в них складывались. Для этого соединяют последовательно конец проводника, расположенного в зоне одного полюса с концом проводника, расположенного в зоне полюса противоположной полярности (рис. 3)
Два проводника, соединенные последовательно, образуют один виток или одну катушку. ЭДС проводников, расположенных в зоне одного полюса, различны по величине. Наибольшая ЭДС индуктируется в проводнике, расположенном под срединой полюса, ЭДС, равная нулю, — в проводнике, расположенном на линии геометрической нейтрали.
Рис. 3
Если соединить все проводники обмотки по определенному правилу последовательно, то результирующая ЭДС якорной обмотки равна нулю, ток в обмотке отсутствует. Контактные щетки делят якорную обмотку на две параллельные ветви. В верхней параллельной ветви индуктируется ЭДС одного направления, в нижней параллельной ветви — противоположного направления. ЭДС, снимаемая контактными щетками, равна сумме электродвижущих сил проводников, расположенных между щетками.
На рис. 4 представлена схема замещения якорной обмотки.
В параллельных ветвях действуют одинаковые ЭДС, направленные встречно друг другу. При подключении к якорной обмотке сопротивления в параллельных ветвях возникают одинаковые токи , через сопротивление RH протекает ток IЯ.
Рис. 4
ЭДС якорной обмотки пропорциональна частоте вращения якоря n2 и магнитному потоку индуктора Ф
(1)
где Се — константа.
В реальных электрических машинах постоянного тока используется специальное контактное устройство — коллектор. Коллектор устанавливается на одном валу с сердечником якоря и состоит из отдельных изолированных друг от друга и от вала якоря медных пластин. Каждая из пластин соединена с одним или несколькими проводниками якорной обмотки. На коллектор накладываются неподвижные контактные щетки. С помощью контактных щеток вращающаяся якорная обмотка соединяется с сетью постоянного тока или с нагрузкой.
Якорь электродвигателя
3. Работа электрической машины постоянного тока
в режиме генератора
Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток
где U — напряжение на зажимах генератора;
Rя — сопротивление обмотки якоря.
(2)
Уравнение (2) называется основным уравнением генератора. С появлением тока в проводниках обмотки возникнут электромагнитные силы.
На рис. 5 схематично изображен генератор постоянного тока, показаны направления токов в проводниках якорной обмотки.
Воспользовавшись правилом левой руки, видим, что электромагнитные силы создают электромагнитный момент Мэм, препятствующий вращению якоря генератора.
Чтобы машина работала в качестве генератора, необходимо первичным двигателем вращать ее якорь, преодолевая тормозной электромагнитный момент, возникающий по правилу Ленца.
Рис. 5
4. Генераторы с независимым возбуждением.
Характеристики генераторов
Магнитное поле генератора с независимым возбуждением создается током, подаваемым от постороннего источника энергии в обмотку возбуждения полюсов.
Схема генератора с независимым возбуждением показана на рис. 6.
Магнитное поле генераторов с независимым возбуждением может создаваться
от постоянных магнитов (рис. 7).
Рис. 6 Рис. 7
Зависимость ЭДС генератора от тока возбуждения называется характеристикой холостого хода E = Uхх = f (Iв).
Характеристику холостого хода получают при разомкнутой внешней цепи (Iя) и при постоянной частоте вращения (n2 = const)
Характеристика холостого хода генератора показана на рис. 8.
Из-за остаточного магнитного потока ЭДС генератора не равна нулю при токе возбуждения, равном нулю.
При увеличении тока возбуждения ЭДС генератора сначала возрастает пропорционально.
Соответствующая часть характеристики холостого хода будет прямолинейна. Но при дальнейшем увеличении тока возбуждения происходит магнитное насыщение машины, отчего кривая будет иметь изгиб. При последующем возрастании тока возбуждения ЭДС генератора почти не меняется. Если уменьшать ток возбуждения, кривая размагничивания не совпадает с кривой намагничивания из-за явления гистерезиса.
Зависимость напряжения на внешних зажимах машины от величины тока нагрузки
U = f (I) при токе возбуждения Iв = const называют внешней характеристикой генератора.
Внешняя характеристика генератора изображена на рис. 9.
Рис. 8 Рис. 9
С ростом тока нагрузки напряжение на зажимах генератора уменьшается из-за увеличения падения напряжения в якорной обмотке.
5. Генераторы с самовозбуждением.
Принцип самовозбуждения генератора
с параллельным возбуждением
Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.
Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 10 изображен генератор с параллельным возбуждением.
Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат Rв. Генератор работает в режиме холостого хода.
Чтобы генератор самовозбудился, необходимо выполнение определенных условий.
Первым из этих условий является наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС.
Рис. 10
Вторым условием является согласное включение обмотки возбуждения. Обмотки возбуждения и якоря должны быть соединены таким образом, чтобы ЭДС якоря создавала ток, усиливающий остаточный магнитный поток. Усиление магнитного потока приведет к увеличению ЭДС. Машина самовозбуждается и начинает устойчиво работать с каким-то током возбуждения Iв = const и ЭДС Е = const, зависящими от сопротивления Rв в цепи возбуждения.
Третьим условием является то, что сопротивление цепи возбуждения при данной частоте вращения должно быть меньше критического. Изобразим на рис. 11 характеристику холостого хода генератора E = f (Iв) (кривая 1) и вольт — амперную характеристику сопротивления цепи возбуждения Uв = Rв·Iв, где Uв — падение напряжения в цепи возбуждения. Эта характеристика представляет собой прямую линию 2, наклоненную к оси абсцисс под углом γ (tg γ ~ Rв).
Ток обмотки возбуждения увеличивает магнитный поток полюсов при согласном включении обмотки возбуждения. ЭДС, индуцированная в якоре, возрастает, что приводит к дальнейшему увеличению тока обмотки возбуждения, магнитного потока и ЭДС. Рост ЭДС от тока возбуждения замедляется при насыщении магнитной цепи машины.
Рис. 11
Падение напряжения в цепи возбуждения пропорционально росту тока. В точке пересечения характеристики холостого хода машины 1 с прямой 2 процесс самовозбуждения заканчивается. Машина работает в устойчивом режиме.
Если увеличим сопротивление цепи обмотки возбуждения, угол наклона прямой 2 к оси тока возрастает. Точка пересечения прямой с характеристикой холостого хода смещается к началу координат. При некотором значении сопротивления цепи возбуждения Rкр, когда
γ = γкр, самовозбуждение становится невозможным. При критическом сопротивлении вольт — амперная характеристика цепи возбуждения становится касательной к прямолинейной части характеристики холостого хода, а в якоре появляется небольшая ЭДС.
6. Работа электрической машины постоянного тока
в режиме двигателя. Основные уравнения
Под действием напряжения, подведенного к якорю двигателя, в обмотке якоря появится ток Iя. При взаимодействии тока с магнитным полем индуктора возникает электромагнитный вращающий момент
где CM — коэффициент, зависящий от конструкции двигателя.
На рис. 12 изображен схематично двигатель постоянного тока, выделен проводник якорной обмотки.
Ток в проводнике направлен от нас. Направление электромагнитного вращающего момента определится по правилу левой руки. Якорь вращается против часовой стрелки. В проводниках якорной обмотки индуцируется ЭДС, направление которой определяется правилом правой руки. Эта ЭДС направлена встречно току якоря, ее называют противо-ЭДС.
Рис. 12
В установившемся режиме электромагнитный вращающий момент Мэм уравновешивается противодействующим тормозным моментом М2 механизма, приводимого во вращение.
На рис. 13 показана схема замещения якорной обмотки двигателя. ЭДС направлена встречно току якоря. В соответствии со вторым законом Кирхгофа , откуда
. (3)
Рис.13 Уравнение (3) называется основным уравнением двигателя.
Из уравнения (3) можно получить формулы:
(4)
(5)
Магнитный поток Ф зависит от тока возбуждения Iв, создаваемого в обмотке возбуждения. Из формулы (5) видно, что частоту вращения двигателя постоянного тока n2 можно регулировать следующими способами:
- изменением тока возбуждения с помощью реостата в цепи обмотки возбуждения;
- изменением тока якоря с помощью реостата в цепи обмотки якоря;
- изменением напряжения U на зажимах якорной обмотки.
Чтобы изменить направление вращения двигателя на обратное (реверсировать двигатель), необходимо изменить направление тока в обмотке якоря или индуктора.
7. Механические характеристики электродвигателей
постоянного тока
Рассмотрим двигатель с параллельным возбуждением в установившемся режиме работы (рис. 14). Обмотка возбуждения подключена параллельно якорной обмотке.
, откуда
(6)
Механической характеристикой двигателя называется зависимость частоты вращения якоря n2 от момента на валу M2 при U = const и Iв = const.
Уравнение (6) является уравнением механической характеристики двигателя с параллельным возбуждением.
Рис. 14
Эта характеристика является жесткой. С увеличением нагрузки частота вращения такого двигателя уменьшается в небольшой степени (рис. 15).
На рисунке 16 изображен двигатель последовательного возбуждения. Якорная обмотка и обмотка возбуждения включены последовательно.
Рис. 15 | Рис. 16 |
Ток возбуждения двигателя одновременно является током якоря. Магнитный поток индуктора пропорционален току якоря.
где k — коэффициент пропорциональности.
Момент на валу двигателя пропорционален квадрату тока якоря.
откуда
Механическая характеристика двигателя последовательного возбуждения является мягкой (рис. 17).
Рис. 17 | Уравнение механической характеристики двигателя последовательного возбуждения выглядит следующим образом: |
С увеличением нагрузки скорость двигателя резко падает.
С уменьшением нагрузки на валу двигатель развивает очень большую частоту вращения. Говорят, что двигатель идет вразнос. Работа двигателя последовательного возбуждения без нагрузки недопустима.
Двигатель смешанного возбуждения имеет механическую характеристику, представляющую собой нечто среднее между механическими характеристиками двигателя параллельного и последовательного возбуждения.
Двигатели с параллельным возбуждением применяются для привода станков и различных механизмов, требующих широкой, но жесткой регулировки скорости.
Двигатели с последовательным возбуждением применяются в качестве тяговых двигателей электровозов, трамваев и т.д., когда жесткость, то есть рывки момента недопустимы.
назначение, конструкция, устройство и принцип действия :: SYL.ru
Машины постоянного тока (МПТ) – это общий термин, объединяющий генераторы (ГПТ) и двигатели (ДПТ). Как правило, говоря об МПТ, имеют в виду биполярные машины, у которых имеются чередующиеся «северные» и «южные» магнитные полюсы возбуждения и механический или электронный коммутатор тока вращающейся обмотки якоря с одним единственным кольцевым полюсом (в отличие от униполярных машин). Мы также будем придерживаться этого принципа.
Классификация МПТ
В электромашиностроении и теории электромашин принято разделять МПТ на устройства с явно и с неявно выраженными полюсами возбуждения, с цилиндрической или многогранной станиной, с возбуждением постоянным током или постоянными магнитами, с механическим коммутатором-коллектором на якоре или бесконтактные. Назначение машин постоянного тока разделяет их на общепромышленные и специализированные. Среди последних можно назвать, например, тяговые ДПТ, используемые в рельсовом транспорте. Выделяются также металлургические ДПТ, в особенности двигатели для прокатных станов и т. д.
Как известно, обмотки машин постоянного тока разделяются на обмотки возбуждения (ОВ) и якоря (ОЯ). Первые служат для возбуждения магнитного поля устройства, а вторые — для отбора мощности от питающей электросети в режиме двигателя или для питания электрической нагрузки в режиме генератора. Существуют еще и обмотки дополнительных полюсов, используемые для облегчения процесса коммутации.
Электрические машины постоянного тока независимо от того, являются ли они генераторами или двигателями, могут быть классифицированы на основе схем соединения их обмоток возбуждения и якоря. Они могут составлять единую электрическую цепь или же вообще не иметь электрической связи (независимое возбуждение). Этот принцип классификации делит МПТ на два основных типа. Вы поймете дальнейшую их классификацию из представленной ниже схемы.
Устройство машины постоянного тока
ГПТ может использоваться как ДПТ без каких-либо конструктивных изменений. Конечно, промышленностью выпускаются машины, предназначенные для работы в качестве двигателей, и машины, являющиеся генераторами. Однако отличия между ними состоят в конструкции отдельных частей, и на этапе общего ознакомления могут быть проигнорированы. Следовательно, далее будем рассматривать устройство машины постоянного тока в общем, без привязки к режиму ее работы.
Ниже на рисунке показан поперечный разрез простой МПТ с двумя парами явно выраженных полюсов. Конструкция ее содержит две основные части: статор и якорь. Рассмотрим, из каких деталей они состоят.
Статор содержит станину, а также главные и находящиеся между ними дополнительные полюсы (на рисунке не показаны).
Станина – это внешняя конструктивная оболочка МПТ. Она бывает литой из чугуна (у машин старых конструкций) или сварной из толстого листа стали. Станина механически прочно скрепляет всю сборку МПТ. Кроме того, она служит магнитопроводом для магнитного потока, производимого главными полюсами.
Последние прикреплены к станине с помощью винтов или сварки. Основное их назначение – нести катушки обмотки возбуждения, намотанные на них и соединенные последовательно между собой таким образом, чтобы магнитная полярность полюсов чередовалась, т. е. после «северного» полюса следовал бы «южный» и т. д.
Полюсные наконечники (башмаки), являющиеся расширением главных полюсов, служат двум целям: для предотвращения соскальзывания катушек и для равномерного распределения поля возбуждения на большей части окружности воздушного зазора.
Якорь машины постоянного тока состоит из сердечника с обмоткой, втулки и вала. Сердечник – это стальной каркас цилиндрической формы, сложенный из тонких электрических листов стали, покрытых с обеих сторон электроизоляционным лаком. Это делается для предотвращения появления вихревых токов, стремящихся замкнуться в толще сердечника. В пазах его уложены секции петлевой или волновой обмотки якоря, коллектор машины постоянного тока и щетки. Обмотку якоря нужно присоединить к внешней электросети постоянного тока. Но нельзя непосредственно соединить выводы обмотки с сетевым вводом, потому что она вращается. Поэтому между сетью и обмоткой якоря установлен коммутатор-коллектор, представляющий собой множество изолированных друг от друга пластин из меди, образующих внешнюю цилиндрическую поверхность, разделенную изоляционными дорожками. Неподвижные контактные щетки скользят по ней, когда якорь с коллектором вращаются. Таким образом неподвижные щетки физически соприкасаются с вращающейся обмоткой якоря, а с их помощью уже можно выполнить подключение к внешней сети машины постоянного тока.
Развитие конструкций МПТ
Первые промышленные образцы МПТ появились в 70-х гг. 19 в. Поначалу они имели кольцевой якорь с тороидальной (граммовской) обмоткой. После изобретения барабанного якоря они приобрели законченный вид, примерно соответствующий вышеприведенному рисунку. Однако конструкция машин постоянного тока во второй половине 20 в. претерпела довольно сильные изменения. Прежде всего они коснулись статора. Вместо явно выраженных главных полюсов стали применять неявнополюсную конструкцию. В ней сосредоточенную катушку возбуждения каждого главного полюса заменили несколько меньшие по размерам катушки, расположенные в пазах шихтованного статора, который имеет прямоугольную или многогранную форму, как на рисунке ниже. В тех же пазах статора размещают и компенсационную обмотку, о которой будет сказано далее. В результате конструкция машин постоянного тока стала намного легче.
В связи с развитием управляемого асинхронного электропривода некоторые специалисты высказывают мнение о скором вытеснении асинхронными двигателями ДПТ из традиционных для них областей применения, таких как тяговый электропривод или привод металлургических механизмов. Однако пока еще рано говорить об этом как о свершившемся факте.
Общий принцип образования обмотки якоря
Любая из обмоток якоря является замкнутой сама на себя непрерывной электрической цепью, состоящей из последовательно соединенных секций (катушек). В простейшем случае секция может представлять просто один виток с двумя пазовыми проводниками или же быть многовитковой. Пазовые стороны секции всегда разнесены на расстояние, чуть меньшее полюсного деления – части окружности якоря, приходящейся на один главный полюс. Поэтому они в каждой из секций всегда находятся под главными полюсами противоположной полярности. В единую замкнутую цепь секции соединяются на пластинах коллектора. Способ же этого соединения и определяет тип обмотки. Рисунок ниже поясняет принцип образования обмотки якоря машины постоянного тока из шести многовитковых секций, соединяемых на пластинах коллектора.
В положении, показанном на рисунке, щетки разделяют обмотку якоря на две параллельные ветви: верхнюю, в которую входят секции L1, L2, L3, и нижнюю, состоящую из секций L4, L5, L6. Число таких ветвей зависит от типа обмотки якоря, но оно всегда четное и не может быть меньше двух.
Петлевые и волновые обмотки якоря
Это два основных типа обмоток, каждый из которых имеет несколько разновидностей. Мы рассмотрим их простейшие варианты. Слева на рисунке ниже показана форма секций, из которых состоит простая петлевая обмотка якоря машин постоянного тока. Как можно увидеть, такая же форма секций характерна для волновой обмотки.
В первом варианте один (начальный, стартовый) вывод каждой двухвитковой секции подключен к i-й пластине коллектора, а второй (конечный, завершающий) вывод соединен на соседней (i+1)-й пластине коллектора с начальным выводом следующей секции (см. рисунок выше). Таким образом, выводы каждой секции присоединены к двум рядом расположенным пластинам, а сама секция, состоящая из двух пазовых сторон и двух лобовых частей по форме напоминает петлю (отсюда и название обмотки).
Секция волновой обмотки имеет выводы, присоединенные не к соседним пластинам коллектора, а к разнесенным на определенный шаг, называемый шагом обмотки по коллектору ук. Для простой петлевой обмотки ук=1, а для простой волновой — ук=(К±1)/р, где К – число пластин коллектора, р- число пар главных полюсов. Как видно из рисунка, вследствие такого способа соединения секции приобретают форму, похожую на полуволну синусоиды, что и обусловило название обмотки.
Принцип действия в режиме генератора
Согласно первоначальной трактовке явления электромагнитной индукции в движущемся проводнике, данной еще Фарадеем, когда он пересекает при движении силовые линии магнитного поля, в нем наводится ЭДС. Следуя этому принципу, можно объяснить причину наведения ЭДС в активных проводниках (тех, что уложены в пазы) обмотки якоря МПТ. Действительно, они движутся под главными полюсами, пересекая при этом линии поля. Поскольку последние непрерывны, каждый проводник якоря независимо от того, расположен ли он на его поверхности (так было в первых конструкциях МПТ) или в пазах, пройдя под полюсом, пересечет все исходящие из его наконечника линии поля. Направление действия индуцированной в проводнике ЭДС можно определить, применяя правило правой руки, которое иллюстрирует рисунок ниже.
Пазовые проводники якоря попарно входят в состав витков катушек его обмотки. Сумма ЭДС витков дает ЭДС катушки. Неподвижные щетки делят всю обмотку якоря на несколько (минимум две) параллельных ветвей. Сумма ЭДС всех катушек, входящих в параллельную ветвь, дает ЭДС всей обмотки якоря МПТ. Таким образом, принцип действия машин постоянного тока при работе генератором можно сформулировать так: якорь возбужденной машины вращается приводным двигателем, в его обмотке наводится ЭДС, которая вызывает протекание постоянного тока якоря в замкнутой электроцепи, включающей обмотку, коллектор, щетки и внешнюю сеть с нагрузкой.
При наличии тока якоря на него начинает действовать тормозящий электромагнитный момент. Он создает нагрузку для приводного двигателя. Чем больше электрическая мощность нагрузки генератора, тем сильнее тормозится его якорь и тем выше нагрузка приводного двигателя. При этом согласно закона сохранения энергии в последнем расходуется столько топлива на приведение якоря генератора во вращение, чтобы высвобожденная при его сгорании химическая энергия за вычетом энергетических потерь в двигателе и генераторе равнялась бы энергии, отбираемой электрической нагрузкой от машины постоянного тока.
Устройство и принцип действия в режиме двигателя
В этом режиме ток якоря подается в его обмотку от питающей электросети при пуске. На пазовые проводники якоря с током, находящиеся под главными полюсами, действуют силы Ампера. Направление их определяется по правилу левой руки, которое иллюстрирует рисунок ниже. Их сумма создает вращающий электромагнитный момент якоря (в отличие от тормозящего в режиме генератора), и он приходит во вращение.
Но во вращающихся пазовых проводниках, как и в генераторном режиме, наводятся ЭДС, которые дают суммарную ЭДС обмотки якоря. Она действует встречно напряжению питающей сети, частично уравновешивая его. Так выглядит принцип действия машин постоянного тока при работе двигателя. При этом согласно закона сохранения энергии от питающей электросети двигателем отбирается столько электроэнергии, сколько требуется механической энергии для приведения в движение присоединенного механизма с учетом энергетических потерь (электрических и механических). Иначе говоря, чем сильнее нагружен двигатель механически, т. е. чем больше вес и момент инерции приводимых им в движение механизмов или чем больше момент сопротивления среды, препятствующий их движению, тем большее количество электроэнергии потребляется двигателем от сети.
О физическом механизме наведения ЭДС в проводниках обмотки якоря МПТ
Следует отметить, что физикам-теоретикам не нравится вышеприведенный (и популярный в технической литературе) физический механизм наведения ЭДС, т. к. силовые линии магнитного поля – это всего лишь умозрительный образ, придуманный Фарадеем для его описания. Никаких подтверждений действительного существования их как реальных физических объектов не существует.
Альтернативным механизмом наведения ЭДС в движущемся пазовом проводнике обмотки якоря МПТ является воздействие на электроны внутри него силы Лоренца, пропорциональной магнитной индукции в месте расположения проводника. Однако и здесь имеется противоречие, заключающееся в том, что внутри пазов якоря магнитная индукция исчезающе мала, а на величине ЭДС проводников это не сказывается. Поэтому вместо индукции в пазе в формулу подставляют индукцию в воздушном зазоре, что, конечно же, неправильно, но дает результат, близкий к наблюдаемому на практике.
Выходом из данной коллизии является переход к описанию магнитного поля не посредством вектора магнитной индукции, а при помощи векторного магнитного потенциала. Активным сторонником такого подхода был выдающийся русский электротехник К. М. Поливанов. Более подробно с этой проблемой можно познакомиться в работах автора.
Магнитное поле МПТ при нагрузке
В нагруженной МПТ имеется два вида магнитных потоков: поток ОВ и поток ОЯ, создаваемые токами этих обмоток. Силовые линии первого из них направлены вдоль осей пары полюсов, через которые он замыкается, как это показано на фигуре 1 на рисунке ниже. Такой поток возбуждения называется продольным. Если полюсов в МПТ больше двух, то в воздушном зазоре под наконечником каждого из них это поле также является продольным.
Силовые линии потока ОЯ замыкаются поперек оси полюсов, поэтому применительно к МПТ говорят о поперечном поле якоря, которое показано на фигуре 2 на том же рисунке.
Поток якоря суммируется с потоком возбуждения, образуя результирующий поток. В этом проявляется реакция якоря машины постоянного тока, заключающаяся в воздействии поперечного поля на продольное поле возбуждения, силовые линии которого при этом искажаются, сгущаясь возле одного края полюса и разреживаясь возле другого. В ГПТ сгущение силовых линий поля, т. е. его усиление относительно поля возбуждения, происходит под набегающим на якорь краем полюса, а в ДПТ — под сбегающим, как показано на фигуре 3.
Побочные следствия реакции якоря
Вследствие явления магнитного насыщения стали результирующее поле под краем полюса, где оно усиливается, не может увеличиться в той же степени, в которой ослабляется под противоположным краем. Поэтому результатом данного эффекта является общее снижение магнитного поля нагруженной машины. В случае генератора ослабление поля уменьшает генерируемое напряжение.
Реакция якоря машины постоянного тока искажает пространственную картину силовых линий поля, следовательно, изменяется положение магнитной нейтрали (МН) — в двухполюсной МПТ она перпендикулярна силовым линиям потока возбуждения и совпадает с геометрической нейтралью ГН. Щетки должны быть размещены на МН, в противном случае это приведет к искрению под ними. Таким образом, в связи с реакцией якоря трудно определить точное положение МН. Впрочем, для этого существуют апробированные на практике способы.
Вторым негативным следствием данного эффекта, которое существенно ухудшает эксплуатационные характеристики машины постоянного тока, является повышение максимального напряжения между рядом расположенными пластинами. Посмотрите еще раз на схему простой петлевой обмотки. Если стороны некоторой ее секции находятся одновременно под краями двух соседних разноименных главных полюсов с увеличенным из-за реакции якоря полем, то индуктируемое в этой секции напряжение, а следовательно, и напряжение между парой соседних пластин коллектора может существенно превысить его величину, когда реакция якоря отсутствует, т. е. при холостом ходе. Причем такое превышение наступает обычно сразу на нескольких участках коллектора, расположенных в зонах увеличенного поля. В результате может возникнуть такое явление, как круговой огонь на коллекторе, которое может его полностью разрушить. Поэтому без специальных конструктивных способов подавления реакции якоря работа машины постоянного тока, имеющей среднюю и большую мощность, практически невозможна.
Способы борьбы с реакцией якоря
Наиболее простым и первым из появившихся способов стало увеличение воздушного зазора от середины к краям наконечников полюсов, т. е. выполнение расходящегося зазора. При этом увеличивалось магнитное сопротивление потоку реакции якоря, и воздействие его на поле возбуждения уменьшалось. Но сопротивление росло и для потока возбуждения, что вынуждало увеличивать габариты катушек на главных полюсах.
Для ослабления потока якоря при изготовлении главных полюсов используется электротехническая сталь с магнитной анизотропией ее свойств (магнитной проницаемости) вдоль и поперек оси полюсов. Полюсы из такой стали хорошо проводят продольный поток возбуждения и плохо — поперечный поток якоря. Однако такая сталь очень дорога, а ее свойства сильно зависят от температуры и изменяются с течением времени.
Наконец был найден радикальный способ борьбы с реакцией якоря машины постоянного тока. Устройство и принцип действия ее при этом почти не изменились, но добавилась еще одна обмотка – компенсационная. Она размещается в пазах, выполняемых в наконечниках главных полюсов (или в пазах статора вместе с обмоткой возбуждения при неявнополюсной конструкции), как показано на рисунке ниже, и присоединяется последовательно к обмотке якоря, т. е. по ним проходит одинаковый ток.
Однако направление обтекания им витков компенсационной обмотки выбрано таким образом, что возбуждаемый ею магнитный поток направлен навстречу потоку реакции якоря и компенсирует его.
Все современные электрические машины постоянного тока, имеющие среднюю и большую мощность, оснащаются такой обмоткой.
Принцип действия машин постоянного тока
Принцип действия машин постоянного тока.
Принцип действия генератора. Простейший генератор можно представить в виде витка, вращающегося в магнитном поле (рис. 1.4, а, б). Концы витка выведены на две пластины коллектора. К коллекторным пластинам прижимаются неподвижные щетки, к которым подключается внешняя цепь.
Принцип работы генератора основан на явлении электромагнитной индукции. Пусть виток приводится во вращение от внешнего приводного двигателя ПД. Проводники активной части витка пересекают магнитное поле и в них по закону электромагнитной индукции наводятся ЭДС e1 и e2, направление которых определяется по правилу правой руки. При вращении витка по направлению движения часовой стрелки в верхнем проводнике, находящемся под северным полюсом, ЭДС направлена от нас, а в нижнем, находящемся под южным полюсом, – к нам. По ходу витка ЭДС складываются, результирующая ЭДС е = е1 – е2.
Если внешняя цепь замкнута, то по ней потечет ток, направленный от нижней щетки к потребителю и от него – к верхней щетке. Нижняя щетка оказывается положительным выводом генератора, а верхняя – отрицательным. При повороте витка на 180° проводники из зоны одного полюса переходят в зону другого полюса и направление ЭДС в них изменяется на обратное. Одновременно верхняя коллекторная пластина входит в контакт с нижней щеткой, а нижняя – с верхней, направление тока во внешней цепи не изменяется. Таким образом, коллекторные пластины не только обеспечивают соединение вращающего витка с внешней цепью, но и выполняют роль переключающегося устройства, т. е. являются простейшим механическим выпрямителем.
Принцип действия двигателя. То же устройство работает в режиме электрического двигателя (рис. 1.5), если к щеткам подвести постоянное напряжение. Под действием напряжения U через щетки, пластины коллектора и виток потечет ток i. По закону электромагнитной силы (закон Ампера) взаимодействие тока и магнитного поля В создает силу f, которая направлена перпендикулярно i. Направление силы f определяется правилом левой руки (рис. 1.5): на верхний проводник сила действует вправо, на нижний – влево. Эта пара сил создает вращающий момент Мвр, поворачивающий виток по часовой стрелке. При переходе верхнего проводника в зону южного полюса, а нижнего – в зону северного полюса концы проводников и соединенные с ними коллекторные пластины вступают в контакт со щетками другой полярности.
Рис.1.5
Направление тока в проводниках витка изменяется на противоположное, а направление сил f, момента Мвр и тока во внешней цепи не изменяется. Виток непрерывно будет вращаться в магнитном поле и может приводить во вращение вал рабочего механизма (РМ).
Таким образом, коллектор в режиме двигателя не только обеспечивает контакт внешней цепи с витком, но и выполняет функцию механического инвертора, т.е. преобразует постоянный ток во внешней цепи в переменный ток в витке.
Рассмотрение принципа действия показывает, что машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя, т. е. обладает свойством обратимости.
Противодействующий момент и противо-ЭДС. При работе машины в режиме генератора по замкнутой внешней цепи и витку обмотки якоря протекает ток, направление которого совпадает с направлением ЭДС (рис. 1.4,6), взаимодействие тока с магнитным полем полюсов создает момент М, направленный в рассматриваемом случае против часовой стрелки. Так как приложенный к витку вращающий момент приводного двигателя Мвр направлен по часовой стрелке, то возникающий при работе генератора момент называется противодействующим моментом Мnp. По существу возникновение Мпр — это реакция машины на воздействие внешнего момента Мвр, а физическая природа противодействующего момента та же, что и вращающего момента у двигателя. В установившемся режиме работы генератора между Мвр и Мпр устанавливается равновесие и Мвр=Мпр.
При работе машины в режиме двигателя проводники якоря пересекают магнитное поле и в них наводится ЭДС (рис. 1.5,б). Ее направление определяется по правилу правой руки. В рассматриваемом случае она направлена против тока и, следовательно, навстречу приложенному напряжению сети U и поэтому называется противо-ЭДС Enp. Физическая природа противо-ЭДС та же, что и ЭДС генератора. В установившемся режиме работы двигателя между Enp и U устанавливается равновесие и можно считать, что Enp ≈ U .
Таким образом, при работе машины постоянного тока в любом режиме во вращающихся проводниках наводится ЭДС Е и возникает момент М, но роль их в разных режимах различная.
Машины постоянного тока устройство и принцип действия
Дата публикации: .
Категория: Машины постоянного тока.
В статье рассмотрено устройство простейшей машины постоянного тока, описан ее принцип действия. Дано определение принципа обратимости электрических машин и электромагнитной мощности.
Устройство простейшей машины
На рисунке 1 представлена простейшая машина постоянного тока, а на рисунке 2 дано схематическое изображение этой машины в осевом направлении. Неподвижная часть машины, называемая индуктором, состоит из полюсов и стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в машине основного магнитного потока. Индуктор изображенной на рисунке 1 простейшей машины имеет два полюса 1 (ярмо индуктора на рисунке 1 не показано).
Вращающаяся часть машины состоит из укрепленных на валу цилиндрического якоря 2 и коллектора 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанной на рисунке 1 и рисунке 2 простейшей машине имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор наложены две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.
Основной магнитный поток в нормальных машинах постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов.
Видео 1. Устройство и принцип действия простейшей машины постоянного тока в режиме двигателя
Режим генератора
Рассмотрим сначала работу машины в режиме генератора.
Рисунок 1. Простейшая машина постоянного тока | Рисунок 2. Работа простейшей машины постоянного тока в режиме генератора (а) и двигателя (б) |
Предположим, что якорь машины (рисунки 1 и 2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется э. д. с., направление которой может быть определено по правилу правой руки (рисунок 3, а) и показано на рисунках 1 и 2, а. Поскольку поток полюсов предполагается неизменным, то эта э. д. с. индуктируется только вследствие вращения якоря и называется э. д. с. вращения.
Рисунок 3. Правила правой (а) и левой (б) руки
Значения индуктируемой в проводнике обмотки якоря э. д. с.
eпр = B × l × v,
где B – магнитная индукция в воздушном зазоре между полюсом и якорем в месте расположения проводника; l – активная длина проводника, то есть та длина, на протяжении которой он расположен в магнитном поле; v – линейная скорость движения проводника.
В обоих проводниках вследствие симметрии индуктируются одинаковые э. д. с., которые по контуру витка складываются, и поэтому полная э. д. с. якоря рассматриваемой машины
Eа = 2 × eпр = 2 × B × l × v. | (1) |
Э. д. с. Eа является переменной, так как проводники обмотки якоря проходят попеременно под северным и южным полюсами, в результате чего направление э. д. с. в проводниках меняется. По форме кривая э. д. с. проводника в зависимости от времени t повторяет кривую распределения индукции B вдоль воздушного зазора (рисунок 4, а).
Частота э. д. с. f в двухполюсной машине равна скорости вращения якоря n, выраженной в оборотах в секунду:
f = n,
а в общем случае, когда машина имеет p пар полюсов с чередующейся полярностью,
Если обмотка якоря с помощью щеток замкнута через внешнюю цепь, то в этой цепи, а также в обмотке якоря возникает ток Iа. В обмотке якоря этот ток будет переменным, и кривая его по форме аналогична кривой э. д. с. (рисунок 4, а). Однако во внешней цепи направление тока будет постоянным, что объясняется действием коллектора. Действительно, при повороте якоря и коллектора (рисунок 1) на 90° и изменении направления э. д. с. в проводниках одновременно происходит также смена коллекторных пластин под щетками. Вследствие этого под верхней щеткой всегда будет находиться пластина, соединенная с проводником, расположенным под северным полюсом, а под нижней щеткой – пластина, соединенная с проводником, расположенным под южным полюсом. В результате этого полярность щеток и направление тока во внешней цепи остаются неизменными.
Рисунок 4. Кривые э. д. с. и тока простейшей машины в якоре (а) и во внешней цепи (б)
Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.
Изменив знак второго полупериода кривой на рисунке 4, а, получим форму кривой тока и напряжения внешней цепи (рисунок 4, б). Образуемый во внешней цепи пульсирующий по значению ток малопригоден для практических целей. Для получения практически свободных от пульсаций тока и напряжения применяют более сложные по устройству обмотку якоря и коллектор. Однако основные свойства машины постоянного тока могут быть установлены на примере рассматриваемой здесь простейшей машины.
Напряжение постоянного тока на зажимах якоря генератора будет меньше Eа на величину падения напряжения в сопротивлении обмотки якоря rа:
Uа = Eа – Iа × rа. | (3) |
Проводники обмотки якоря Iа с током находятся в магнитном поле, и поэтому на них будут действовать электромагнитные силы (рисунок 2, а)
Fпр = B × l × Iа, | (4) |
направление которых определяется по правилу левой руки (рисунок 3, б). Эти силы создают механический момент , который называется электромагнитным моментом и на рисунке 2, а равен
Mэм = Fпр × Dа = B × l × Dа × Iа, | (5) |
где Dа – диаметр якоря. Как видно из рисунка 2, а, в режиме генератора этот момент действует против направления вращения якоря и является тормозящим.
Режим двигателя
Рассматриваемая простейшая машина может работать также двигателем, если обмотке ее якоря подвести постоянный ток от внешнего источника. При этом на проводники обмотки якоря будут действовать электромагнитные силы Fпр и возникнет электромагнитный момент Mэм. Величины Fпр и Mэм, как и для генератора, определяются равенствами (4) и (5). При достаточном значении Mэм якорь машины придет во вращение и будет развивать механическую мощность. Момент Mэм при этом является движущим и действует в направлении вращения.
Если мы желаем, чтобы при той же полярности полюсов направление вращения генератора (рисунок 2, а) и двигателя (рисунок 2, б) были одинаковы, то направление действия , а следовательно, и направление тока Iа у двигателя должны быть обратными по сравнению с генератором (рисунок 2, б).
В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве инвертора тока.
Проводники обмотки якоря двигателя также вращаются в магнитном поле, и поэтому в обмотке якоря двигателя тоже индуктируется э. д. с. Eа, значение которой определяется равенством (1).
Направление этой э. д. с. в двигателе (рисунок 2, б) такое же, как и в генераторе (рисунок 2, а). Таким образом, в двигателе э. д. с. якоря Eа направлена против тока Iа и приложенного к зажимам якоря напряжения Uа. Поэтому э. д. с. якоря двигателя называется также противоэлектродвижущей силой.
Приложенное к якорю двигателя напряжение уравновешивается э. д. с. Eа и падением напряжения в обмотке якоря:
Uа = Eа + Iа × rа. | (6) |
Из сравнения равенств (3) и (6) видно, что в генераторе Uа < Eа , а в двигателе Uа > Eа.
Принцип обратимости
Из изложенного выше следует, что каждая машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя. Такое свойство присуще всем типам вращающихся электрических машин и называется обратимостью.
Для перехода машины постоянного тока из режима генератора в режим двигателя и обратно при неизменной полярности полюсов и щеток и при неизменном направлении вращения требуется только изменение направления тока в обмотке якоря.
Поэтому такой переход может осуществляться весьма просто и в определенных условиях даже автоматически.
Аналогичным образом может происходить изменение режима работы также в машинах переменного тока.
Преобразование энергии
На рисунке 5 показаны направления действия механических и электрических величин в якоре генератора и двигателя постоянного тока.
Рисунок 5. Направление э. д. с., тока и моментов в генераторе (а) и двигателе (б) постоянного тока
Согласно первому закону Ньютона в применении к вращающемуся телу, действующие на это тело движущие и тормозные вращающие моменты уравновешивают друг друга. Поэтому в генераторе при установившемся режиме работы электромагнитный момент
Mэм = Mв — Mтр — Mс, | (7а) |
где Mв – момент на валу генератора, развиваемый первичным двигателем, Mтр – момент сил трения в подшипниках, о воздух и на коллекторе электрической машины, Mс – тормозной момент, вызываемый потерями на гистерезис и вихревые токи в сердечнике якоря. Эти потери мощности появляются в результате вращения сердечника якоря в неподвижном магнитном поле полюсов. Возникающие при этом электромагнитные силы оказывают на якорь тормозящее действие и в этом отношении проявляют себя подобно силам трения.
В двигателе при установившемся режиме работы
Mэм = Mв + Mтр + Mс, | (7б) |
где Mв – тормозной момент на валу двигателя, развиваемый рабочей машиной (станок, насос и т. п.).
В генераторе Mэм является тормозным, а в двигателе – вращающим моментом, причем в обоих случаях Mв и Mэм противоположны по направлению.
Развиваемая электромагнитным моментом Mэм мощность Pэм называется электромагнитной мощностью и равна
где
представляет собой угловую скорость вращения.
Подставим в выражение (8) значение Mэм и Ω из равенств (5) и (9) и учтем, что линейная скорость на окружности якоря
|
Тогда получим
Pэм = 2 × B × l × Dа × Iа × π × n = 2 × B × l × v × Iа |
|
или на основании выражения (1)
В обмотке якоря под действием э. д. с. Eа и тока Iа развивается внутренняя электрическая мощность якоря
Согласно равенствам (10) и (11), Pэм = Pа, т. е. внутренняя электрическая мощность якоря равна электромагнитной мощности, развиваемой электромагнитным моментом, что отражает процесс преобразования механической энергии в электрическую в генераторе и обратный процесс в двигателе.
Умножим соотношения (3) и (6) на Iа. Тогда для генератора будем иметь
Uа × Iа = Eа × Iа – Iа2 × rа | (12) |
и для двигателя
Uа × Iа = Eа × Iа + Iа2 × rа. | (13) |
Левые части этих выражений представляют собой электрические мощности на зажимах якоря, первые члены правых частей – электромагнитную мощность якоря и последние члены – электрические потери мощности в якоре.
Хотя приведенные соотношения получены для простейшей машины постоянного тока (рисунок 1), они действительны и в общем случае при более сложной обмотке якоря, так как э. д. с. и моменты отдельных проводников складываются. Эти соотношения являются выражением закона сохранения энергии и отражают процесс преобразования энергии в машине постоянного тока.
Согласно им, механическая мощность, развиваемая на валу генератора первичным двигателем, за вычетом механических и магнитных потерь, превращается в электрическую мощность в обмотке якоря, а электрическая мощность за вычетом потерь в этой обмотке выдается во внешнюю цепь. В двигателе электрическая мощность, подводимая к якорю из внешней цепи, частично расходуется на потери в обмотке якоря, а остальная часть этой мощности превращается в мощность электромагнитного поля и последняя – в механическую мощность, которая за вычетом потерь на трение и потерь в стали якоря передается рабочей машине.
Установленные выше применимо к машине постоянного тока общие закономерности превращения энергии в равной степени относятся также к машинам переменного тока.
Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.
Машины постоянного тока: принцип действия
Электрические машины – это устройства для преобразования электрической энергии в энергию механическую (и наоборот). Работа машины постоянного тока основана на законе электромагнитной индукции.
Как правило, эти агрегаты используются в промышленности для тяговых механизмов, таких как подъёмные краны и лебёдки. Существенным недостатком двигателя является образование на коллекторе нагара от щёток. Чтобы избежать чрезмерного искрения, необходимо периодически делать осмотр и проводить профилактические работы. Устройство машин постоянного тока отличается от асинхронных и синхронных двигателей.
Между полюсами, создающими постоянный магнитный поток, располагается якорь, выполненный в виде стального цилиндра. В его пазы уложены витки медного проводника, а концы проводника соединяются с полукольцами, которые изолируются от других деталей машины – это и есть коллектор, по которому скользят щётки. Они соединяются с внешней цепью.
Так как в витках возникает электродвижущая сила, то якорь машины постоянного тока начинает вращаться при пересечении полем его витков.
В силу того, что магнитная индукция распределяется по стальному цилиндру неравномерно, скорость создаваемой ЭДС зависит от плотности тока в зазорах между витками. Таким образом, под полюсами магнитная индукция максимальна, а в центре якоря (на продольной оси) – равна нулю.
При вращении якоря машины постоянного тока каждые пол-оборота проводники меняют полярность, так как попадают под влияние противоположных полюсов, следовательно, и направление электродвижущей силы меняется на противоположное, а если ЭДС изменяется по времени и направлению, то её следует отнести к переменной величине. Чтобы во внешнюю цепь поступала постоянная составляющая, в устройство машины постоянного тока включен коллектор. Это — своего рода переключатель. Неподвижные щётки, которые соединены с внешней цепью, скользят по полукольцам, жёстко закреплённым на якоре.
Вращаясь, якорь соприкасается лишь с той щёткой, которая находится под конкретной полярностью. В то время, когда направление электродвижущей силы меняется, происходит переключение колец, то есть для внешней цепи изменений в направлении ЭДС не происходит. Таким образом, коллектор – это некий выпрямитель, который не даёт измениться генерируемому току.
Чтобы исключить пульсацию электродвижущей силы, на якоре имеются витки, которые присоединяют к парам коллекторных пластин. Витки сдвинуты друг от друга на незначительный угол, это позволяет компенсировать искажения в гармониках и ток поступает в цепь без пульсаций.
Если машины постоянного тока работают в режиме двигателя, тогда, наоборот, к щёткам прикладывается напряжение. Таким образом, проходя через коллектор, в витках появляется ток, который создаёт своё магнитное поле. Взаимодействуя с полем полюсов, якорь начинает вращаться, однако, в то время, когда направление вращения при переходе проводников через противоположный полюс должно бы было измениться, коллектор по-прежнему переключает полярность. Таким образом, изменяется направление тока и, соответственно, его магнитного поля. В этом случае коллектор – это инвертор, преобразователь постоянного тока в переменный.
НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ МАШИНЫ ПОСТОЯННОГО ТОКА — Студопедия
Назначение. Машины постоянного тока применяют в качестве электродвигателей и генераторов. Электродвигатели постоянного тока имеют хорошие регулировочные свойства, значительную перегрузочную способность и позволяют получать как жесткие, так и мягкие механические характеристики. Поэтому их широко используют для привода различных механизмов в черной металлургии (прокатные станы, кантователи, роликовые транспортеры), на транспорте (электровозы, тепловозы, электропоезда, электромобили), в грузоподъемных и землеройных устройствах (краны, шахтные подъемники, экскаваторы), на морских и речных судах, в металлообрабатывающей, бумажной, текстильной, полиграфической промышленности и др. Двигатели небольшой мощности применяют во многих системах автоматики.
Конструкция двигателей постоянного тока сложнее и их стоимость выше, чем асинхронных двигателей. Однако в связи с широким применением автоматизированного электропривода и тиристорных преобразователей, позволяющих питать электродвигатели постоянного тока регулируемым напряжением от сети переменного тока, эти электродвигатели широко используют в различных отраслях народного хозяйства.
Генераторы постоянного тока ранее широко использовались для питания электродвигателей постоянного тока в стационарных и передвижных установках, а также как источники Электрической энергии для заряда аккумуляторных батарей, питания электролизных и гальванических ванн, для электроснабжения различных электрических потребителей на автомобилях, самолетах, пассажирских вагонах, электровозах, тепловозах и др.
Недостатком машин постоянного тока является наличие щеточноколлекторного аппарата, который требует тщательного ухода в эксплуатации и снижает надежность работы машины. Поэтому в последнее время генераторы постоянного тока в стационарных установках вытесняются полупроводниковыми преобразователями, а на транспорте — синхронными генераторами, работающими совместно с полупроводниковыми выпрямителями.
Принципиальная возможность создания электродвигателя постоянного тока была впервые показана М. Фарадеем в 1821 г.; в созданном им приборе проводник, по которому пропускали постоянный ток, вращался вокруг магнита.
Двигатель постоянного тока с электромагнитным возбуждением был создан в России акад. Б. С. Якоби в 1834 г., который назвал его магнитной машиной. В 1838 г. им был построен более мощный электродвигатель, который использовался для привода гребного винта речного катера. Принцип обратимости электрических машин был также впервые сформулирован русским физиком акад. Э. X. Ленцем. В дальнейшем ряд коллекторных машин постоянного тока был созданГ. Феррарисом, В. Сименсом и др. Значительное развитие теория электрических машин постоянного тока получила в трудах Д. А. Лачинова. В 1880 г. он опубликовал труд «Электромеханическая работа», в котором рассмотрел вопросы, создания вращающего момента электродвигателя, КПД электрических машин, условия питания электродвигателя от генератора и дал классификацию машин постоянного тока по способу возбуждения.
В XX столетии продолжалось развитие теории и совершенствование конструкции машин постоянного тока. Большое внимание обращалось на повышение надежности этих машин путем устранения причин, вызывающих возникновения искрения под щетками (улучшения коммутации) и образования кругового огня на коллекторе.
Важное значение в решении всех теоретических и практических вопросов работы машин постоянного тока имели в трудах советских ученых: А. Е. Алексеева, Д. А. Завалишина, Г. А. Люста, А. Б. Иоффе, В. Т. Касьянова, М. П. Костенко, В. С. Кулебакина, С. И. Курбатова, Л. М. Пиотровского, Е. М. Синельникова, В. А. Толвинского, К. И. Шенфера, венгер-ского электротехника О. В. Бенедикта и др.
В настоящее время в рамках Интерэлектро разработана серия электродвигателей постоянного тока типа ПИ мощностью от 0,25 до 750 кВт, которая выпускается электропромышленностью всех стран — членов СЭВ. Эти двигатели Предназначены для регулируемых электроприводов и рассчитаны на питание от полупроводниковых преобразователей. Кроме того, электропромышленность выпускает ряд двигателей постоянного тока специального исполнения — для электротяги, экскаваторов, металлургического оборудования, шахтных подъемников, буровых установок, морских и речных судов и других приводов мощностью от нескольких сотен до нескольких тысяч кВт.
Рис. 8.1. Электромагнитная схема двухполюсной машины постоянного тока (а) и эквивалентная схема ее обмотки якоря (б): 1 — обмотка возбуждения; 2 — главные полюсы; 3 — якорь; 4 — обмотка якоря; 5 — щетки; 6 — корпус (станина) |
Принцип действия. Машина постоянного тока (рис. 8.1, а) имеет обмотку возбуждения, расположенную на явно выраженных полюсах статора. По этой обмотке проходит постоянный ток Iв , который создает магнитное поле возбуждения Фв . На роторе расположена двухслойная обмотка, в которой при вращении ротора индуцируется ЭДС. Таким образом, ротор машины постоянного тока является якорем, а конструкция машины сходна с конструкцией обращенной синхронной машины.
При заданном направлении вращения якоря направление ЭДС, индуцируемой в его проводниках, зависит только от того, под каким полюсом находится проводник. Поэтому во всех проводниках, расположенных под одним полюсом, направление ЭДС одинаковое и сохраняется таким независимо от частоты вращения. Иными словами, характер, отображающий направление ЭДС на рис. 8.1, а, неподвижен во времени: в проводниках, расположенных выше горизонтальной оси симметрии, которая разделяет полюсы (геометрическая нейтраль), ЭДС всегда направлена в одну сторону; в проводниках, лежащих ниже геометрической нейтрали, ЭДС направлена в противоположную сторону.
При вращении якоря проводники обмотки перемещаются от одного полюса к другому; ЭДС, индуцируемая в них, изменяет знак, т. е. в каждом проводнике наводится переменная ЭДС. Однако количество проводников, находящихся под каждым полюсом, остается неизменным. При этом суммарная ЭДС, индуцируемая в проводниках, находящихся под одним полюсом, также неизменна по направлению и приблизительно постоянна по величине. Эта ЭДС снимается с обмотки якоря с помощью скользящего контакта, включенного между обмоткой и внешней цепью.
Обмотка якоря выполняется замкнутой, симметричной (рис. 8.1,б). При отсутствии внешней нагрузки ток по обмотке не проходит, так как ЭДС, индуцируемые в различных частях обмотки, взаимно компенсируются.
Если щетки, осуществляющие скользящий контакт с обмоткой якоря, расположить на геометрической нейтрали, то при отсутствии внешней нагрузки к щеткам прикладывается напряжение U, равное ЭДС Е, индуцированной в каждой из половин обмоток. Это напряжение практически неизменно, хотя и имеет некоторую переменную составляющую, обусловленную изменением положения проводников в пространстве. При большом количестве проводников пульсации напряжения весьма незначительны.
При подключении к щеткам сопротивления нагрузки Rн через обмотку якоря проходит постоянный ток Iа, направление которого определяется направлением ЭДС Е. В обмотке якоря ток Iа разветвляется и проходит по двум параллельным ветвям (токи ia ).
Для обеспечения надежного токосъема щетки скользят не по проводникам обмотки якоря (как это было вначале развития электромашиностроения), а по коллектору, выполняемому в виде цилиндра, который набирается из медных пластин, изолированных одна от другой. К каждой паре соседних коллекторных пластин присоединяют часть обмотки якоря, состоящую из одного или нескольких витков; эту часть называют секцией обмотки якоря.
Если машина работает в генераторном режиме, то коллектор вместе со скользящими по его поверхности щетками является выпрямителем. В двигательном режиме, когда к якорю подводится питание от источника постоянного тока и он преобразует электрическую энергию в механическую, коллектор со щетками можно рассматривать как преобразователь частоты, связывающий сеть постоянного тока с обмоткой, по проводникам которой проходит переменный ток.
Таким образом, главной особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью.
Двигатели постоянного тока| Принцип работы | Ресурсы для инженеров
Электродвигатели, работающие на электромагнетизме. Однако существуют и другие типы двигателей, в которых используются электростатические силы или пьезоэлектрический эффект. В случае двигателя PMDC (постоянного магнита постоянного тока) движение создается электромагнитом (якорем), взаимодействующим с магнитом с фиксированным полем (корпус в сборе).
В щеточном двигателе электрический ток протекает через клеммы двигателя в узле торцевой крышки, который входит в контакт с коммутатором в узле якоря через угольные щетки или щеточные листы.Электрический ток питает катушки, создавая магнитное поле, заставляющее якорь вращаться, когда он взаимодействует с магнитами, заключенными в корпус в сборе. Правило левой руки Флемминга помогает определить направление силы, тока и магнитного потока.
В бесщеточном двигателе, когда электричество подается на вывод двигателя, ток проходит через фиксированное поле статора и взаимодействует с движущимся постоянным магнитом или движущимся индуцированным магнитным полем внутри ротора / якоря.После того, как движение и силовая нагрузка будут удовлетворены доступным источником тока, он возвращается обратно к источнику, выходящему из двигателя.
Ключевые элементы, взаимодействующие для создания движения
Магнитный поток — Двигатель может иметь катушку с фиксированной обмоткой или статор с постоянным магнитом и якорь с подвижной обмоткой или ротор с постоянными магнитами, которые будут иметь взаимодействующие поля магнитного потока для создания силы и движения.
Сила — Величина тока, протекающего через электромагнитное поле, пропорциональна величине силы взаимодействующего электромагнитного поля, необходимой для достижения противоположной рабочей нагрузки.Помимо силы и движения, необходимых для устройства, необходимо учитывать любую потерю эффективности при преобразовании электроэнергии в механическую работу (ватты).
Обзор шагового двигателя
Что такое шаговый двигатель
Шаговые двигатели работают иначе, чем другие двигатели постоянного тока, которые просто вращаются при подаче напряжения. Вращательный шаговый двигатель — это электромеханическое устройство, которое может разделить один полный оборот (360 °) на большое количество шагов вращения. Шаговые двигатели управляются электроникой и не требуют дорогостоящих устройств обратной связи.Линейный шаговый двигатель похож на вращательный двигатель, за исключением того, что вал движется линейно или продольно. Оба типа имеют две схемы обмотки электромагнитных катушек: униполярную и биполярную. Униполярный означает, что каждый конец катушки имеет одну полярность. Рекомендуемый стабилитрон используется для обеспечения быстрого спада тока в отключенной катушке. Это приведет к увеличению крутящего момента двигателя, особенно на более высоких частотах.
Биполярный означает, что каждый конец катушки имеет обе полярности.Катушка будет положительной и отрицательной во время каждого цикла движения. Поскольку каждая катушка используется полностью, двигатель имеет более высокий крутящий момент по сравнению с униполярной катушкой. Биполярный драйвер может включать в себя возможность управления постоянным током, называемую приводом прерывателя. Это обеспечит увеличенный выходной крутящий момент на более высоких частотах и снизит влияние колебаний температуры и напряжения питания.
Основы шагового двигателя
Шаговый двигатель PM или «консервная банка» — недорогое решение для ваших приложений позиционирования с типичным углом шага 7.5 ° — 15 °. Меньшие углы шага могут быть получены с помощью Microstepping. Вал двигателя перемещается с определенным шагом при подаче электрических управляющих импульсов. Текущая полярность и частота подаваемых импульсов определяют направление и скорость движения вала.
Одним из наиболее значительных преимуществ шагового двигателя является его способность точно регулироваться в системе без обратной связи. Управление разомкнутым контуром означает, что обратная связь о положении вала не требуется.Этот тип управления устраняет необходимость в дорогостоящих устройствах обратной связи, просто отслеживая входные ступенчатые импульсы. Шаговый двигатель — хороший выбор, когда требуется контролируемое движение. Они рекомендуются в приложениях, где необходимо контролировать угол поворота, скорость, положение и синхронизм. Возможности фиксации, удержания, втягивания и извлечения крутящего момента, скорости (об / мин) и шагов на оборот (угол шага) характеризуют шаговый двигатель.
Момент фиксации — определяет максимальный крутящий момент, который может быть приложен к обесточенному двигателю, не вызывая вращения двигателя.
Удерживающий момент — определяет максимальный крутящий момент, с которым двигатель, находящийся под напряжением, может быть нагружен, не вызывая вращательного движения.
Pull-In — производительность определяет способность двигателя запускаться или останавливаться. Это максимальная частота, при которой двигатель может запускаться или останавливаться мгновенно с приложенной нагрузкой без потери синхронизации.
Pull-Out определяет максимальный крутящий момент при применении рампы ускорения / замедления без потери шагов.Он определяет максимальную частоту, на которой двигатель может работать без потери синхронизма.
Наш шаговый двигатель можно комбинировать с полной линейкой редукторов для увеличения крутящего момента и снижения скорости.
.Применения машин постоянного тока — двигатели и генераторы
В современном мире электрическая энергия вырабатывается в больших количествах в форме переменного тока. Следовательно, использование машин постоянного тока, то есть генераторов и двигателей постоянного тока, очень ограничено. В основном они используются для возбуждения генераторов переменного тока малой и средней мощности. Промышленные Приложения машин постоянного тока находятся в электролитических процессах, сварочных процессах и приводах двигателей с регулируемой скоростью.
В комплекте:
В настоящее время сначала вырабатывается переменный ток, а затем он преобразуется в постоянный ток выпрямителями.Таким образом, генератор постоянного тока обычно подавляется выпрямленным источником переменного тока для многих приложений.
Двигатели постоянного тока очень часто используются в качестве приводов с регулируемой скоростью и в приложениях, где происходят сильные колебания крутящего момента.
Применение двигателей постоянного тока
Ниже приведены основные области применения трех типов двигателей постоянного тока.
Моторы серииДвигатели постоянного тока этой серии используются там, где требуется высокий пусковой момент и возможны изменения скорости.Например — моторы серии используются в тяговых системах, кранах, воздушных компрессорах, пылесосах, швейных машинах и т. Д.
Параллельные двигатели
Параллельные двигатели используются там, где требуется постоянная скорость и нетяжелые условия запуска. Шунтирующие двигатели постоянного тока используются в токарных станках, центробежных насосах, вентиляторах, нагнетателях, конвейерах, лифтах, ткацких станках, прядильных машинах и т. Д.
Составные двигатели
Составные двигатели используются там, где требуется более высокий пусковой момент и достаточно постоянная скорость.Примеры использования составных двигателей в прессах, ножницах, конвейерах, лифтах, прокатных станах, тяжелых проектировщиках и т. Д.
Небольшие машины постоянного тока, номинальные значения которых выражаются в долях киловатт, в основном используются в качестве устройства управления, например, в техногенераторах для измерения скорости и в серводвигателях для позиционирования и отслеживания.
Применение генераторов постоянного тока
Применения различных типов генераторов постоянного тока следующие: —
Генераторы постоянного тока с раздельным возбуждением
- Генераторы постоянного тока с отдельным возбуждением используются в лабораториях для испытаний, поскольку они имеют широкий диапазон выходного напряжения.
- Используется как источник питания двигателей постоянного тока.
Генераторы шунтирующие обмотки
- Генераторы постоянного тока с параллельной обмоткой используются для освещения.
- Используется для зарядки аккумулятора.
- Обеспечивает возбуждение генераторов переменного тока.
- Генераторы с обмоткой постоянного тока используются в локомотивах постоянного тока для рекуперативного торможения для обеспечения тока возбуждения.
- Используется как усилитель в торговых сетях.
- Кумулятивные генераторы с избыточным составом используются в осветительных приборах и в системах электроснабжения.
- Генераторы плоского компаунда используются в офисах, гостиницах, домах, школах и т. Д.
- Генераторы дифференциальной компаунды используются в основном для дуговой сварки.
Это все о применении машин постоянного тока.
.Двигатель постоянного тока (DC)
Двигатель постоянного тока с постоянными магнитами — NEMA Корпуса, полностью закрытые, без вентиляции, с C-образной поверхностью и основанием Двигатели постоянного токауже много лет используются в промышленности. В сочетании с приводом постоянного тока, двигатели постоянного тока обеспечивают очень точное управление Двигатели постоянного тока могут использоваться с конвейерами, элеваторами, экструдерами, морскими приборами, погрузочно-разгрузочными работами, бумагой, пластмассой, резиной, сталью и текстилем, и это лишь некоторые из них.
Двигатели постоянного тока состоят из нескольких основных компонентов, в том числе следующих: • Рама
• Вал
• Подшипники
• Главный.Поле. Обмотки. (Статор)
• Якорь. (Ротор)
• Коммутатор
• Щетка. Узел
Базовая конструкция двигателя постоянного тока показана на Рисунок 1 . Стандартные двигатели постоянного тока доступны в одной из двух основных форм:
- Обмотка , где магнитный поток в двигателе управляется током, протекающим в обмотке возбуждения или обмотки возбуждения, обычно расположенной на статоре.
. - Постоянный магнит , где магнитный поток в двигателе создается постоянными магнитами, имеющими изогнутую поверхность для создания постоянного воздушного зазора с обычным якорем, расположенным на роторе.Они обычно используются при мощности примерно до 3 кВт.
Крутящий момент в двигателе постоянного тока создается продуктом магнитного поля , создаваемого обмоткой возбуждения или магнитов, и тока, протекающего в обмотке якоря. Действие механического коммутатора переключает ток якоря с одной обмотки на другую, чтобы поддерживать положение тока относительно поля, тем самым создавая крутящий момент независимо от положения ротора.
Схема двигателя постоянного тока с параллельной обмоткой ( рис.2 ) показаны якорь M , сопротивление якоря R a и обмотка возбуждения. Напряжение питания якоря В, , , обычно подается от управляемой тиристорной системы, а напряжение возбуждения В, , , — от отдельного мостового выпрямителя.
Рисунок 1 — Схема двигателя постоянного токаРисунок 2 — Двигатель постоянного тока с обмоткой
При вращении якоря электродвижущая сила (ЭДС) E a индуцируется в цепи якоря и называется задней частью . ЭДС , поскольку она противостоит приложенному напряжению В, и (согласно закону Ленца).Ea связано со скоростью вращения якоря и потоком основного поля следующим образом:
E a = k 1 nφ (1)
, где n — скорость вращения, φ — поток поля и k 1 — постоянная двигателя. Из Рисунок 1 видно, что напряжение якоря на клеммах В, и определяется по формуле:
В a = E a + I a R a (2)
Умножение каждой стороны eqn 2 на I a дает:
V a I a = E a I a + I a 2 R a (3)
(или общая потребляемая мощность = выходная мощность + потери якоря).Взаимодействие потока поля и потока якоря создает крутящий момент якоря, как указано в уравнение 4 .
Крутящий момент M = k 2 I f I a (4)
где k 2 — постоянная двигателя, а I f — ток возбуждения. Это подтверждает прямолинейную и линейную характеристику двигателя постоянного тока, и рассмотрение этих простых уравнений покажет его управляемость и внутреннюю стабильность.Характеристика скорости двигателя обычно представлена кривыми зависимости скорости от входного тока или крутящего момента, и ее форма может быть получена из eqns 1 и 2 :
k 1 nφ = V a — (I a R a ) (5)
Если поток поддерживается постоянным, поддерживая постоянным ток возбуждения в правильно скомпенсированном двигателе, то:
n = k 2 [V a — (I a R a )] (6)
Из eqns 4 и 6 , следует, что полный контроль над двигателем постоянного тока может быть достигнут посредством управления полем ток и ток якоря.В двигателе с шунтирующей обмоткой постоянного тока, показанном на рис. 2 , эти токи можно регулировать независимо.
Большинство промышленных контроллеров двигателей постоянного тока или приводов питаются напряжением; то есть подается напряжение, и ток регулируется путем измерения тока и регулирования напряжения для получения желаемого тока.
Рисунок 3 — Структура управления для двигателя постоянного тока с шунтовой обмоткойЭта базовая схема показана на Рисунок 3 .
Двигатели постоянного тока существуют и в других форматах. В серийном двигателе постоянного тока, показанном на рис. 4 , обмотки возбуждения и якоря соединены последовательно. В этом случае ток возбуждения и ток якоря равны и показывают характерно разные результаты работы, хотя по-прежнему определяются уравнениями 4 и 6 .
В параллельном двигателе магнитный поток поля φ лишь незначительно зависит от тока якоря, а значение IaRa при полной нагрузке редко превышает 5 процентов от В a , давая кривую крутящий момент-скорость, обычно показываемую как a в Рисунок 6 , где скорость остается практически постоянной в широком диапазоне крутящего момента нагрузки.
Рисунок 4 — Схема последовательного электродвигателя постоянного токаРисунок 5 — Составной электродвигатель постоянного тока
Электродвигатель постоянного тока с комбинированной обмоткой, показанный на Рисунок 5 сочетает в себе как параллельные, так и последовательные характеристики. Форма характеристики момент-скорость определяется значениями сопротивления шунтирующего и последовательного полей.
Характеристика небольшого спада ( кривая b на рисунке 6 ) имеет преимущество во многих приложениях, заключающееся в снижении механических эффектов ударной нагрузки.
Рисунок 6 — Характеристика крутящего момента-скорости (a — двигатель постоянного тока с параллельной обмоткой, b — комбинированный двигатель постоянного тока, c — последовательный двигатель постоянного тока)Кривая последовательного двигателя постоянного тока ( c на рисунке 6 ) показывает, что начальный магнитный поток увеличивается пропорционально току, спадая из-за магнитного насыщения. Кроме того, в цепь якоря входит сопротивление обмотки возбуждения, и скорость становится примерно обратно пропорциональной току. Если нагрузка падает до низкого значения, скорость резко возрастает, что может быть опасно, поэтому обычно не следует использовать серийный двигатель там, где есть вероятность потери нагрузки.
Но поскольку он обеспечивает высокие значения крутящего момента на низкой скорости и его характеристика — скорость падения с увеличением нагрузки, он полезен в таких приложениях, как тяга и подъем, а также в некоторых смешивающих режимах, где преобладает начальное прилипание.
При управлении полупроводниковым преобразователем с обратной связью по скорости от тахогенератора форма кривой скорость-нагрузка в значительной степени определяется внутри контроллера. Стало стандартом использовать шунтирующий двигатель постоянного тока с преобразователем, даже несмотря на кривую скорость-нагрузка, когда при управлении с разомкнутым контуром часто наблюдается небольшой спад.
Предел мощности-скорости для двигателя постоянного тока составляет приблизительно 3 × 106 кВт об / мин из-за ограничений, накладываемых коммутатором.
Ссылки:
• D.F.Warne — Справочник инженера-энергетика Newnes
• Siemens — Основы двигателей постоянного тока
Принципы и работа машин постоянного и переменного тока
ГЕНЕРАТОРЫ ПРЯМОГО ТОКА
ГЕНЕРАТОРЫ ПРЯМОГО ТОКА Редакция 12:50 14 ноября 2005 г. ВВЕДЕНИЕ Генератор — это машина, которая преобразует механическую энергию в электрическую, используя принцип магнитной индукции.Этот принцип
Дополнительная информацияОсновы моторики. Двигатель постоянного тока
Основы работы двигателя Прежде чем мы сможем исследовать функцию привода, мы должны понять основные принципы работы двигателя. Он используется для преобразования электрической энергии, подаваемой контроллером, в механическую
. Дополнительная информацияДвигатели и генераторы
Двигатели и генераторы Электромеханические устройства: преобразуют электрическую энергию в механическое движение / работу и наоборот. Работают на связи между токонесущими проводниками и магнитными полями. Дополнительная информация
Индуктивность.Моторы. Генераторы
Индуктивные двигатели Генераторы Самоиндуктивность Самоиндукция возникает, когда изменяющийся поток через цепь возникает из самой цепи. По мере увеличения тока магнитный поток через петлю из-за
Дополнительная информацияЛаборатория 14: Трехфазный генератор переменного тока.
Лаборатория 14: Трехфазный генератор переменного тока. Цель: получить кривую насыщения генератора без нагрузки; для определения характеристики регулирования напряжения генератора с резистивной, емкостной и индуктивной
Дополнительная информацияДвигатели постоянного тока
Двигатели постоянного тока ДВИГАТЕЛИ постоянного тока Машина постоянного тока может работать как генератор и как двигатель.Глава 5. Электрические машины Вилди, 6 e Лектор: Р. Альба-Флорес Государственный колледж Альфреда Весна 2008 г. Когда машина постоянного тока
Дополнительная информацияЭЛЕКТРОДИНАМИКА 05 АВГУСТА 2014
ЭЛЕКТРОДИНАМИКА 05 АВГУСТА 2014 В этом уроке мы: Описание урока Обсудим моторный эффект Обсудим, как работают генераторы и моторы. Резюме Моторный эффект Чтобы реализовать моторный эффект,
Дополнительная информацияСИНХРОННЫЕ МАШИНЫ
СИНХРОННЫЕ МАШИНЫ Геометрия синхронной машины очень похожа на геометрию индукционной машины.Сердечник статора и обмотки трехфазной синхронной машины практически идентичны
Дополнительная информацияНаведенные напряжения и закон Фарадея индуктивности
Наведенные напряжения и индуктивность Закон Фарадея Концепция # 1, 4, 5, 8, 13 Задача # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 В прошлой главе мы видели, что ток производит магнитное
Дополнительная информацияТеория асинхронного двигателя
Курс PDHonline E176 (3 PDH) Инструктор по теории асинхронных двигателей: Джерри Р.Беднарчик, П. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Телефон и факс: 703-988-0088 www.pdhonline.org
Дополнительная информацияНаправление наведенного тока
Направление индуцированного тока Стержневой магнит движется через катушку Ток, индуцированный в катушке A S N v Обратный полюс Индуцированный ток меняет знак B N S v v Катушка движется мимо фиксированного стержневого магнита Ток, индуцированный в катушке как
Дополнительная информацияПонимание генератора переменного тока
http: // www.autoshop101.com ЭТА СЕРИЯ АВТОМОБИЛЕЙ НА ГЕНЕРАТОРАХ РАЗРАБОТАЛА ПРОФЕССОРОМ АВТОМОБИЛЬНЫХ ТЕХНОЛОГИЙ КЕВИНОМ Р. САЛЛИВАНОМ В SKYLINE COLLEGE SAN BRUNO, КАЛИФОРНИЯ ВСЕ ПРАВА ЗАЩИЩЕНЫ
Дополнительная информацияГенераторы переменного тока и двигатели
Курс по генераторам переменного тока и двигателям №: E03-008 Кредит: 3 PDH A. Bhatia Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 info @cedengineering.com
Дополнительная информацияУстановка 33 Трехфазные двигатели
Модуль 33 Трехфазные двигатели Цели: Обсудить работу двигателей с фазным ротором. Обсудите работу сельсиновых моторов. Обсудите работу синхронных двигателей. Определить направление вращения
Дополнительная информацияОсновы электричества
Основы теории генераторов электроэнергии PJM State & Member Training Dept.PJM 2014 8/6/2013 Цели Студент сможет: Описать процесс электромагнитной индукции Определить основные компоненты
Дополнительная информацияИНДУКЦИОННЫЙ РЕГУЛЯТОР. Задача:
ИНДУКЦИОННЫЙ РЕГУЛЯТОР Цель: Используя асинхронный двигатель с фазным ротором и индукционный регулятор, изучить влияние положения ротора на выходное напряжение регулятора. Также изучите его поведение под нагрузкой
Дополнительная информацияИнформация о приложении
Moog Components Group производит обширную линейку щеточных и бесщеточных двигателей, а также бесщеточные контроллеры.Цель этого документа — предоставить руководство по выбору и применению
. Дополнительная информацияГлава 6. Синхронные машины
48550 Электроэнергетика Глава 6. Синхронные машины Темы для обсуждения: 1) Введение 2) Структуры синхронных машин 3) Вращающееся магнитное поле 4) Модель эквивалентной схемы 5) Характеристики
Дополнительная информацияКлючевые слова: синхронный генератор, синхронный двигатель, автоматический регулятор напряжения, V-образные кривые, синхронизирующая мощность, охота, система возбуждения.
СИНХРОННЫЕ МАШИНЫ Tze-Fun Chan Гонконгский политехнический университет, Гонконг, Китай Ключевые слова: синхронный генератор, синхронный двигатель, автоматический регулятор напряжения, V-образные кривые, синхронизирующая мощность, охота,
Дополнительная информацияГЛАВА 5 СИНХРОННЫЙ ГЕНЕРАТОР
ГЛАВА 5 СИНХРОННЫЙ ГЕНЕРАТОР Резюме: 1.Конструкция синхронного генератора 2. Скорость вращения синхронного генератора 3. Внутреннее генерируемое напряжение синхронного генератора 4. Эквивалент
Дополнительная информацияПРИВОД ПЕРЕМЕННОГО ТОКА С ЧАСТОТНЫМ УПРАВЛЕНИЕМ
ПРИВОД ПЕРЕМЕННОГО ТОКА С ЧАСТОТНЫМ УПРАВЛЕНИЕМ 1.0 Характеристики стандартных электродвигателей переменного тока Асинхронный двигатель с короткозамкнутым ротором — это тип электродвигателя, наиболее широко используемый в промышленности. Эта лидирующая позиция приводит в основном к
Дополнительная информация104 Практический экзамен 2–3 / 21/02
104 Практический экзамен 2–3 / 21/02 1.Два электрона находятся в области пространства, где магнитное поле равно нулю. Электрон А покоится; и электрон B движется на запад с постоянной скоростью. Ненулевой
Дополнительная информацияБЛОК 3 АВТОМОБИЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СИСТЕМЫ
БЛОК 3 АВТОМОБИЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СИСТЕМЫ Электрическая конструкция автомобиля 3.1 Введение Цели 3.2 Система зажигания 3.3 Требования к системе зажигания 3.4 Типы зажигания 3.4.1 Зажигание от батареи или катушки
Дополнительная информация3. Технология трехфазной обмотки
3. Технология трехфазной обмотки VATech Hydro, Австрия Проф. А. Биндер 3/1 Однослойная обмотка На один паз размещается только одна сторона катушки. Катушки изготавливаются как: а) Катушки с одинаковым размахом катушки: W = τ p
Дополнительная информацияТрехфазный асинхронный двигатель
ЭКСПЕРИМЕНТ Асинхронный двигатель Трехфазные асинхронные двигатели 208 В LL ЦЕЛЬ Этот эксперимент демонстрирует характеристики асинхронных двигателей с короткозамкнутым ротором и метод получения электрического эквивалента
Дополнительная информацияБЛОК II: СИНХРОННЫЕ ДВИГАТЕЛИ
БЛОК II: СИНХРОННЫЕ ДВИГАТЕЛИ Известно, что генератор постоянного тока удовлетворительно работает как двигатель.Причем разницы в конструкции генератора постоянного тока и
практически нет. Дополнительная информацияАНАЛИЗ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ
АНАЛИЗ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ Дон Шоу Оценка состояния двигателей постоянного тока требует базового понимания конструкции и рабочих характеристик различных доступных типов: серийный двигатель,
Дополнительная информацияГлава 3 АВТОМАТИЧЕСКИЙ КОНТРОЛЬ НАПРЯЖЕНИЯ
Глава 3 АВТОМАТИЧЕСКИЙ КОНТРОЛЬ НАПРЯЖЕНИЯ.ВВЕДЕНИЕ В СИСТЕМУ ВОЗБУЖДЕНИЯ Основная функция системы возбуждения — подача необходимого постоянного тока на обмотку возбуждения синхронного генератора.
Дополнительная информацияБлок управления станком с ЧПУ
Оборудование ЧПУ и Оборудование ЧПУ Блок управления станком с ЧПУ Управление сервоприводом Гидравлический сервопривод Гидравлический блок питания Сервоклапан Сервоусилители Гидравлический двигатель Гидравлический сервоклапан Гидравлический сервопривод
Дополнительная информация .