Моп транзисторы. МОП-транзисторы: устройство, принцип работы и применение

Что такое МОП-транзистор. Как устроен полевой МОП-транзистор. Какие бывают типы МОП-транзисторов. Как работает МОП-транзистор. Где применяются МОП-транзисторы. Каковы преимущества и недостатки МОП-транзисторов.

Содержание

Что такое МОП-транзистор и его устройство

МОП-транзистор (MOSFET) — это полупроводниковый прибор, относящийся к классу полевых транзисторов с изолированным затвором. Аббревиатура МОП расшифровывается как «металл-оксид-полупроводник» и отражает структуру этого элемента.

Основные компоненты МОП-транзистора:

  • Подложка из полупроводникового материала (обычно кремния)
  • Два сильнолегированных области — исток и сток
  • Затвор, изолированный от подложки слоем диэлектрика (оксида)
  • Канал между истоком и стоком, образующийся при подаче напряжения на затвор

Чем отличается МОП-транзистор от биполярного? В МОП-транзисторе управление током осуществляется электрическим полем, а не током базы, как в биполярных приборах. Это обеспечивает очень высокое входное сопротивление устройства.


Типы МОП-транзисторов

Существует несколько основных типов МОП-транзисторов:

По типу проводимости канала:

  • n-канальные — канал образован электронами
  • p-канальные — канал образован дырками

По режиму работы:

  • С встроенным каналом — канал существует без приложения напряжения к затвору
  • С индуцированным каналом — канал формируется только при подаче напряжения на затвор

Какой тип МОП-транзистора выбрать? Это зависит от конкретной схемы и требований к параметрам. N-канальные обычно имеют лучшую проводимость, а p-канальные проще в изготовлении.

Принцип работы МОП-транзистора

Как работает МОП-транзистор? Рассмотрим принцип действия на примере n-канального транзистора с индуцированным каналом:

  1. При отсутствии напряжения на затворе ток между истоком и стоком не течет
  2. При подаче положительного напряжения на затвор, электроны из подложки притягиваются к поверхности под затвором
  3. При достижении порогового напряжения формируется проводящий канал между истоком и стоком
  4. Дальнейшее увеличение напряжения на затворе усиливает проводимость канала

Таким образом, изменяя напряжение на затворе, можно управлять током между истоком и стоком транзистора. Это позволяет использовать МОП-транзисторы как усилительные элементы и электронные ключи.


Основные характеристики МОП-транзисторов

Важнейшие параметры МОП-транзисторов, которые необходимо учитывать при их выборе и применении:

  • Пороговое напряжение — минимальное напряжение на затворе для открытия канала
  • Крутизна характеристики — отношение изменения тока стока к изменению напряжения на затворе
  • Максимальный ток стока
  • Максимальное напряжение сток-исток
  • Входная емкость
  • Время переключения

Как определить эти параметры? Они указываются в технической документации на конкретные модели транзисторов. Также некоторые характеристики можно измерить экспериментально.

Применение МОП-транзисторов

Где используются МОП-транзисторы? Основные области их применения:

  • Цифровые интегральные схемы (процессоры, память)
  • Усилители мощности
  • Импульсные источники питания
  • Драйверы электродвигателей
  • Аналоговые ключи
  • Преобразователи уровня

Почему МОП-транзисторы так широко используются? Их главные преимущества — высокое быстродействие, малое энергопотребление и простота управления. Это делает их идеальными для применения в современной электронике.


Преимущества МОП-транзисторов

МОП-транзисторы обладают рядом важных достоинств по сравнению с другими типами полупроводниковых приборов:

  • Очень высокое входное сопротивление (практически не потребляют ток управления)
  • Возможность работы при низких напряжениях питания
  • Высокая плотность размещения в интегральных схемах
  • Хорошая температурная стабильность
  • Низкий уровень шума
  • Возможность работы как с положительным, так и с отрицательным напряжением на затворе

Эти преимущества обеспечили МОП-транзисторам доминирующее положение в современной цифровой электронике. Практически все современные процессоры и микросхемы памяти построены на их основе.

Недостатки МОП-транзисторов

Несмотря на множество достоинств, МОП-транзисторы имеют и некоторые недостатки:

  • Чувствительность к статическому электричеству
  • Сложность изготовления высоковольтных приборов
  • Наличие паразитных емкостей, ограничивающих быстродействие
  • Эффект защелкивания в КМОП-структурах

Как решаются эти проблемы? Производители применяют специальные схемы защиты от статики, совершенствуют технологии изготовления и разрабатывают новые конструкции транзисторов для минимизации паразитных эффектов.


Перспективы развития МОП-транзисторов

Какое будущее ждет МОП-транзисторы? Основные направления их развития:

  • Дальнейшее уменьшение размеров (переход к нанометровым технологиям)
  • Применение новых материалов (графен, нанотрубки)
  • Создание трехмерных структур
  • Разработка транзисторов на основе квантовых эффектов

Эти инновации позволят создавать еще более быстрые и энергоэффективные электронные устройства. МОП-транзисторы, вероятно, еще долго будут оставаться основой микроэлектроники.

Заключение

МОП-транзисторы — ключевой элемент современной электроники. Их уникальные свойства обеспечили им широчайшее применение в различных областях техники. Понимание принципов работы и характеристик МОП-транзисторов необходимо каждому специалисту, работающему с электронными устройствами.


Полевой МОП транзистор – устройство и принцип работы

Содержание статьи

  • Устройство и основные характеристики МОП-транзисторов
  • Отличие униполярных транзисторов от биполярных
  • Типы МОП-транзисторов
  • Принцип работы МОП-транзисторов на примере прибора с n-проводимостью
  • Преимущества и недостатки МОП-транзисторов

Устройство и основные характеристики МОП-транзисторов

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем). Другое название МОП-транзистора – униполярный. Основные области применения таких приборов – выполнение функций электронного переключателя и усилителя электронных сигналов в старой и современной системотехнике.

Практически все типы MOSFET имеют три вывода:

Исток – источник носителей зарядов. Является аналогом эмиттера в биполярном приборе.

Сток. Служит для приема носителей заряда от истока. Аналог коллектора биполярного транзистора.

Затвор. Выполняет функции управляющего электрода. Аналог в биполярном устройстве – база.

Особая категория – транзисторы с несколькими затворами. Они применяются в цифровой технике для организации логических элементов или в качестве ячеек памяти EEPROM.

 

Основные характеристики униполярных транзисторов, учитываемые при выборе нужного прибора:

управляющее напряжение;

в открытом состоянии – внутреннее сопротивление и наибольшее значение допустимого постоянного тока;

в закрытом состоянии – максимально допустимое напряжение прямого типа.

Отличие униполярных транзисторов от биполярных

МОП-транзистор управляется электрополем, которое создается напряжением, приложенным к затвору относительно истока. Полярность прилагаемого напряжения определяется видом канала транзистора (p или n).

В отличие униполярных биполярные транзисторы управляются электрическим током. Ток во всех типах этих полупроводников формируется двумя типами зарядов – электронами и дырками.

Полевые (униполярные) транзисторы в отличие от биполярных обладают меньшими собственными шумами в низкочастотном диапазоне. Это свойство обеспечивает их эффективную работу в звукоусилительных устройствах. MOSFET применяют в микросхемах низкочастотных усилителей в автомобильных проигрывателях.

Типы МОП-транзисторов

Униполярные транзисторы делятся на p-канальные или n-канальные. Они могут иметь:

Собственный (встроенный) канал. Без напряжения канал открыт. Для закрытия канала необходимо подать ток определенной полярности.

Индуцированный (инверсный) канал. При отсутствии приложенного электротока он закрыт. Для его открытия прикладывают напряжение нужной полярности. Для n-канальных транзисторов отпирающим является напряжение, положительное относительно истока.

Его величина должна быть больше порогового значения, установленного для данного транзистора. Для p-канальных моделей отпирающим будет отрицательное относительно истока напряжение, приложенное к затвору.

Принцип работы МОП-транзисторов на примере прибора с n-проводимостью

В схему униполярного транзистора с изолированным затвором и n-проводимостью входят:

Кремниевая подложка. В подложке n-типа в узлах кристаллической решетки кремния присутствуют отрицательно заряженные атомы и свободные электроны, что достигается введением специальных примесей.

Диэлектрик. Служит для изоляции кремниевой подложки от электрода затвора. В качестве диэлектрика используется оксид кремния.

В большинстве MOSFET исток транзистора подключается к полупроводниковой подложке. Между стоком и истоком формируется «паразитный» диод. Ликвидировать отрицательные последствия появления такого диода и даже использовать в положительных целях позволяет его подключение анодом к истоку в n-канальных полевых транзисторах, анодом к стоку – в p-канальных приборах.

Принцип работы:

  1. Между затвором и истоком прикладывается плюсовое напряжение к затвору.
  2. Между металлическим выводом затвора и подложкой появляется электрическое поле.
  3. Электрическое поле притягивает к приповерхностному слою диэлектрика свободные электроны, ранее распределенные в кремниевой подложке.
  4. В приповерхностном слое появляется область проводимости (канал) n-типа, состоящая из свободных электронов.
  5. Между выводами стока и истока появляется «мост», проводящий электрический ток.
  6. Проводимость полевого транзистора регулируется величиной внешнего управляющего напряжения. При его снятии проводящий «мостик» исчезнет и прибор закроется.

Аналогично работает МОП-транзистор p-типа. Показанный выше принцип работы является упрощенным. Приборы, используемые на практике в схемотехнике, имеют более сложное устройство и, следовательно, более сложный принцип работы.

Преимущества и недостатки МОП-транзисторов

Униполярные транзисторы имеют довольно широкое распространение в современной системотехнике благодаря ряду преимуществ, среди которых:

  • возможность мгновенного переключения;
  • отсутствие вторичного пробоя;
  • хорошая эффективность работы при низких напряжениях;
  • стабильность при температурных колебаниях;
  • низкий уровень шума при работе;
  • большой коэффициент усиления сигнала;
  • экономичность в плане энергопотребления;
  • меньшее количество технологических операций при построении схем с использованием МОП-транзисторов по сравнению с применением биполярных приборов.

Применение этих приборов ограничивают следующие недостатки:

Важнейший минус – повышенная чувствительность к статическому электричеству. Тонкий слой оксида кремния легко повреждается электростатическими зарядами, поэтому МОП-приборы могут выйти из строя даже при прикосновении к прибору наэлектризованными руками. Современные устройства практически лишены этого недостатка благодаря корпусам, способным минимизировать воздействие статики. Также в них могут интегрироваться защитные устройства по типу стабилитронов.

Появление нестабильности работы при напряжении перегрузки.

Разрушение структуры, начиная от температуры +150 °C. У биполярных приборов критической является температура +200 °C.

Постоянный поиск по получению хороших эксплуатационных свойств высокомощных униполярных транзисторов привел к изобретению гибридного IGBT-транзистора. Эти устройства объединили лучшие качества биполярного и полевых транзисторов.


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Радиоэлектроника для начинающих — статьи по основам радиоэлектроники для новичка

Переменный резистор: типы, устройство и принцип работы

20 Сентября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью265

#резистор

Тумблеры

25 Мая 2022 — Анатолий Мельник

Конструктивные особенности тумблеров. Типы, виды. Какие характеристики нужно учитывать при выборе. Как правильно подключить тумблер. Инструкция и советы в одной статье.

Читать полностью 298

Как проверять транзисторы тестером – отвечаем

14 Апреля 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью 38

Как пользоваться мультиметром

21 Марта 2022 — Анатолий Мельник

Что такое и как устроен мультиметр. Как правильно пользоваться мультиметром: как измерить напряжение, силу тока и напряжение. Как проверить емкость и индуктивность

Читать полностью 657

Выпрямитель напряжения: принцип работы и разновидности

24 Февраля 2022 — Анатолий Мельник

Выпрямитель напряжения электрической сети: как устроен, применение, обозначение на схемах. Как работает и для чего предназначается выпрямитель напряжения.

Читать полностью 921

Переключатель фаз (напряжения): устройство, принцип действия, виды

20 Января 2022 — Анатолий Мельник

Подробная статья о переключателях фаз: устройство и разновидности. Рекомендации по подключению и настройке. Рекомендации по выбору: популярные модели.

Читать полностью 365

Как выбрать паяльник для проводов и микросхем

23 Декабря 2021 — Анатолий Мельник

Особенности выбора хорошего паяльника для проводов и микросхем: разновидности конструкций, требования. Какие существуют нагреватели и жала. Дополнительные возможности.

Читать полностью 569

Что такое защитный диод и как он применяется

20 Декабря 2021 — Анатолий Мельник

В статье разбираются особенности защитных диодов, их устройство и маркировка, а также применения в реальных условиях. Даны рекомендации по проверке и подбору супрессоров.

Читать полностью 2316

Варистор: устройство, принцип действия и применение

20 Сентября 2022 — Анатолий Мельник

В статье разбирается устройство варисторов: маркировка, основные параметры. Вы узнаете в чем заключаются достоинства и недостатки варисторов, а также как выбрать и проверить компоненты.

Читать полностью816

#варистор

Виды отверток по назначению и применению

21 Сентября 2021 — Анатолий Мельник

Виды отверток по сферам применения. В статье рассматриваются простые, ударные, диэлектрические и другие отвертки.

Читать полностью 628

Виды шлицов у отверток

14 Августа 2021 — Анатолий Мельник

В статье рассматривается, что такое шлицы и какие бывают виды, их маркировка, основные размеры: крестообразные, прямые, звездочки, наружные, комбинированные и другие виды шлицов.

Читать полностью 1131

Виды и типы батареек

14 Августа 2021 — Анатолий Мельник

Подробная статья о батарейках: виды и типы батереек, как различаются батарейки. Как обозначаются батарейки (маркировка)

Читать полностью 1096

Для чего нужен контактор и как его подключить

20 Сентября 2022 — Анатолий Мельник

Для чего нужен контактор и как он устроен. Как правильно выбрать и подключить контактор для управления в автоматическом режиме электрическими приборами.

Читать полностью2151

#контрактор

Как проверить тиристор: способы проверки

20 Сентября 2022 — Анатолий Мельник

Как самому проверить тиристор? Способы проверки тиристора мультиметром, тестером. Проверка тиристора без выпаивания. Пошаговые инструкции с фото.

Читать полностью874

#тиристор

Как правильно выбрать акустический кабель для колонок

20 Апреля 2021 — Анатолий Мельник

Статья про выбор акустического кабеля: типы и виды акустического кабеля. Как маркируется кабель. Как рассчитать сечение кабеля. Правила эксплуатации и советы по выбору.

Читать полностью 1086

Что такое цифровой осциллограф и как он работает

20 Сентября 2022 — Анатолий Мельник

Обзор принципа работы цифровых осциллографов. Виды осциллографов, их отличия от аналоговых. Применение цифрового осциллографа

Читать полностью1258

#осциллограф

Как проверить варистор: используем мультиметр и другие способы

20 Сентября 2022 — Анатолий Мельник

Статья-инструкция о том, как проверить варистор на исправность мультиметром или тестором. Принцип работы варистора и основные параметры варисторов, обнозначение на схеме.

Читать полностью2923

#варистор

Герконовые реле: что это такое, чем отличается, как работает

23 Января 2021 — Анатолий Мельник

Статья об устройстве герконовых реле: обзор конструкции, характеристик и принципа работы. Преимущества и недостатки. Назначение герконовых реле, где используются компоненты.

Читать полностью 4303

Диоды Шоттки: что это такое, чем отличается, как работает

17 Декабря 2020 — Анатолий Мельник

Статья ответит на вопросы: что такое диоды Шоттки, как они устроены, плюсы и минусы данного вида диодов. Обозначение диодов на схемах. Сферы применения.

Читать полностью 5016

Как правильно заряжать конденсаторы

13 Ноября 2020 — Анатолий Мельник

Способы зарядки и разрядки конденсаторов. Виды конденсаторов: основные параметры, принципы работы и области применения.

Читать полностью 2400

Светодиоды: виды и схема подключения

20 Июля 2022 — Анатолий Мельник

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode). На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер.

Читать полностью 3827

Микросборка

25 Мая 2022 — Анатолий Мельник

Микросборка (МСБ) – конструктивная составляющая радиоэлектронной аппаратуры микроминиатюрного исполнения, предназначенная для реализации определенной функции. МСБ обычно не выпускаются в качестве самостоятельных изделий, предназначенных для широкого применения.

Читать полностью 2752

Применение, принцип действия и конструкция фототиристора

20 Сентября 2022 — Анатолий Мельник

Фототиристор (ТФ) – полупроводниковое устройство со структурой, сходной с обычным тиристором, но с одним существенным отличием. Он включается не подачей напряжения, а с помощью света, падающего на него. Этот прибор сочетает функции управляемого тиристора и фотоприемника, преобразующего световую энергию в электрический управляющий импульс. Изготавливается обычно из кремния, имеет спектральную характеристику, аналогичную другим фоточувствительным элементам с кремниевой полупроводниковой структурой.

Читать полностью149

#тиристор #фототиристор

Схема подключения теплового реле – принцип работы, регулировки и маркировка

17 Мая 2022 — Анатолий Мельник

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключение в схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Читать полностью 5702

Динисторы – принцип работы, как проверить, технические характеристики

17 Мая 2022 — Анатолий Мельник

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Читать полностью 1370

Маркировка керамических конденсаторов

17 Мая 2022 — Анатолий Мельник

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Читать полностью 987

Компактные источники питания на печатную плату

17 Мая 2022 — Анатолий Мельник

Выбор ИП печатной платы напрямую влияет на ее работоспособность. Главная задача такого прибора – получить переменное напряжение от питающей сети, преобразовать его в постоянное и подать на оборудование. Если компонент выбран неверно или неисправен, он может перегореть или не справиться с входным напряжением. В худшем случае пострадает и плата – ее придется либо ремонтировать, либо выбрасывать и покупать новую.

Читать полностью 792

SMD-резисторы: устройство и назначение

17 Мая 2022 — Анатолий Мельник

SMD-резисторы – это мелкие электронные компоненты, разработанные для поверхностного монтажа на печатную плату. Ранее при сборке радиоэлектронной аппаратуры осуществлялся навесной монтаж элементов или их продевание в печатную плату через предусмотренные отверстия.

Читать полностью 2745

Принцип работы полевого МОП-транзистора

17 Мая 2022 — Анатолий Мельник

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем).

Читать полностью 2513

Проверка микросхем мультиметром: инструкция и советы

29 Октября 2021 — Анатолий Мельник

Как проверить микросхему? Рассмотрим как проверить микросхему на исправность и работоспособность мультиметром, влияние разновидности микросхем на способы проверки.

Читать полностью 8198

Характеристики, маркировка и принцип работы стабилитрона

28 Июля 2022 — Анатолий Мельник

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении.

Читать полностью 6593

Что такое реле: виды, принцип действия и устройство

14 Октября 2020 — Анатолий Мельник

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. В этой статье мы подробно разберем, что такое реле, какие виды реле существуют и для чего они применяются.

Читать полностью 6751

Конденсатор: что это такое и для чего он нужен

20 Июля 2022 — Анатолий Мельник

Конденсатор – это устройство, способное накапливать и моментально отдавать электрический заряд. В статье подробно разберем, в чем суть конденсатора, что он делает, из чего состоит и какие его основные параметры.

Читать полностью 8280

Все о танталовых конденсаторах — максимально подробно

29 Октября 2021 — Анатолий Мельник

В этой статье я максимально подробно расскажу о назначении, видах, области применения танталовых конденсаторов. Покажу как они выглядят в живую и на схеме, объясню, как считать буквенную маркировку конденсаторов.

Читать полностью 13003

Как проверить резистор мультиметром

14 Октября 2020 — Анатолий Мельник

Рассказываем как правильно проверить резистор мультиметром на плате, как узнать его сопротивление и определить работоспособность не выпаивая. Узнайте, как настроить тестер для проверки резисторов.

Читать полностью 2184

Что такое резистор

14 Октября 2020 — Анатолий Мельник

Резистор (от латинского «resisto» — сопротивляюсь) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. Резисторы предназначены для линейного преобразования силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Читать полностью 1610

Как проверить диодный мост мультиметром

14 Октября 2020 — Анатолий Мельник

Подробная инструкция по проверке работоспособности диодного моста с помощью мультиметра или лампы.

Читать полностью 13547

Что такое диодный мост

05 Августа 2022 — Анатолий Мельник

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Читать полностью 664

Виды и принцип работы термодатчиков

17 Мая 2022 — Анатолий Мельник

Принцип работы и виды термодатчиков. Особенности различных типов датчиков.

Читать полностью 4149

Заземление: виды, схемы

17 Мая 2022 — Анатолий Мельник

Заземление – соединение проводящих элементов промышленного или бытового оборудования с грунтом или общим проводом электрической системы, относительно которого производят измерения электрического потенциала. Из нашей статьи вы узнаете о видах заземления и их изображении на схемах.

Читать полностью 2356

Как определить выводы транзистора

29 Октября 2021 — Анатолий Мельник

Способы определения выводов от базы, эмиттера и коллектора полупроводникового транзистора.

Читать полностью 1243

Назначение и области применения транзисторов

14 Октября 2020 — Анатолий Мельник

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. В этой статье мы кратко перечислим области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов.

Читать полностью 1901

Как работает транзистор: принцип и устройство

20 Февраля 2021 — Анатолий Мельник

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Читать полностью 6095

Виды электронных и электромеханических переключателей

17 Мая 2022 — Анатолий Мельник

Переключатель (свитчер) – устройство, служащее в радиоэлектронике для коммутации электроцепей постоянного и переменного тока и обеспечивающее требуемый рабочий режим. От функциональности этого компонента часто зависит работоспособность всего аппарата. В этой статье мы расскажем об основных видах переключателей

Читать полностью 698

Как устроен туннельный диод

20 Июля 2022 — Анатолий Мельник

Рассказываем про устройство туннельных диодов, их отличия от обычных, цветовую маркировку и обозначение туннельных диодов на схемах. Также из этой статьи вы узнаете об истории создания данного типа диодов.

Читать полностью 3555

Виды и аналоги конденсаторов

21 Мая 2020 — Анатолий Мельник

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

Читать полностью 5240

Твердотельные реле: подробное описание устройства

25 Мая 2022 — Анатолий Мельник

Твердотельное реле (ТТР) – полупроводниковое устройство, применяемое для создания контакта между низковольтными и высоковольтными цепями, является современной альтернативой традиционным пускателям и контакторам. Применяется в бытовой технике, промавтоматике, автомобильной электронике.

Читать полностью 3564

Конвертер единиц емкости конденсатора

29 Октября 2021 — Анатолий Мельник

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Читать полностью 1830

Графическое обозначение радиодеталей на схемах

14 Октября 2020 — Анатолий Мельник

Радиодетали – электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты. Если ранее детали изображались приближенно к их натуральному виду, то сегодня используются условные графические обозначения радиодеталей на схеме, разработанные и утвержденные Международной электротехнической комиссией.

Читать полностью 228

Биполярные транзисторы: принцип работы, характеристики и параметры

17 Мая 2022 — Анатолий Мельник

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Читать полностью 3009

Как подобрать резистор по назначению и принципу работы

17 Мая 2022 — Анатолий Мельник

Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.

Читать полностью 262

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

20 Сентября 2022 — Анатолий Мельник

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т. е. ток пропускается только в одну сторону). Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока.

Читать полностью1242

#тиристор

Зарубежные и отечественные транзисторы

20 Января 2021 — Анатолий Мельник

Как подобрать отечественный аналог зарубежному транзистору? Читайте в нашей статье!

Читать полностью 1907

Исчерпывающая информация о фотодиодах

20 Июля 2022 — Анатолий Мельник

Обзор фотодиодной технологии с подробным описанием основ, принципа работы, а также различных типов фотодиодов и их применения.

Читать полностью 3417

Калькулятор цветовой маркировки резисторов

14 Октября 2020 — Анатолий Мельник

Резисторы – это элементы для построения электрических схем, предназначенные для контроля и регулирования величины силы тока. Разделяют на постоянные, переменные, подстроечные. Для идентификации постоянных резисторов SMD – устройств, монтируемых на поверхность, – все производители разработали буквенно-цифровые обозначения для крупных элементов и цветовой код для деталей очень маленьких размеров.

Читать полностью 2280

Область применения и принцип работы варикапа

14 Октября 2020 — Анатолий Мельник

Варикап – полупроводниковый диод, главным параметром которого является изменяемая под напряжением емкость. В устройстве применяется зависимость емкости p-n перехода и приложенного обратного напряжения.

Читать полностью 5406

Маркировка конденсаторов

14 Октября 2020 — Анатолий Мельник

Выбор конденсаторов по маркировке – процесс достаточно сложный, поскольку разные производители используют различные системы кодирования. Особенно трудно прочесть зашифрованную информацию на незначительной поверхности маленьких конденсаторов.

Читать полностью 6400

Виды и классификация диодов

14 Октября 2020 — Анатолий Мельник

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. В этой статье вы найдёте подробную классификацию диодов по видам, характеристикам, материалам изготовления и сфере использования.

Читать полностью 4157


Радиоэлектроника для начинающих — статьи по основам радиоэлектроники для новичка

Переменный резистор: типы, устройство и принцип работы

20 Сентября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью265

#резистор

Тумблеры

25 Мая 2022 — Анатолий Мельник

Конструктивные особенности тумблеров. Типы, виды. Какие характеристики нужно учитывать при выборе. Как правильно подключить тумблер. Инструкция и советы в одной статье.

Читать полностью 298

Как проверять транзисторы тестером – отвечаем

14 Апреля 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью 38

Как пользоваться мультиметром

21 Марта 2022 — Анатолий Мельник

Что такое и как устроен мультиметр. Как правильно пользоваться мультиметром: как измерить напряжение, силу тока и напряжение. Как проверить емкость и индуктивность

Читать полностью 657

Выпрямитель напряжения: принцип работы и разновидности

24 Февраля 2022 — Анатолий Мельник

Выпрямитель напряжения электрической сети: как устроен, применение, обозначение на схемах. Как работает и для чего предназначается выпрямитель напряжения.

Читать полностью 921

Переключатель фаз (напряжения): устройство, принцип действия, виды

20 Января 2022 — Анатолий Мельник

Подробная статья о переключателях фаз: устройство и разновидности. Рекомендации по подключению и настройке. Рекомендации по выбору: популярные модели.

Читать полностью 365

Как выбрать паяльник для проводов и микросхем

23 Декабря 2021 — Анатолий Мельник

Особенности выбора хорошего паяльника для проводов и микросхем: разновидности конструкций, требования. Какие существуют нагреватели и жала. Дополнительные возможности.

Читать полностью 569

Что такое защитный диод и как он применяется

20 Декабря 2021 — Анатолий Мельник

В статье разбираются особенности защитных диодов, их устройство и маркировка, а также применения в реальных условиях. Даны рекомендации по проверке и подбору супрессоров.

Читать полностью 2316

Варистор: устройство, принцип действия и применение

20 Сентября 2022 — Анатолий Мельник

В статье разбирается устройство варисторов: маркировка, основные параметры. Вы узнаете в чем заключаются достоинства и недостатки варисторов, а также как выбрать и проверить компоненты.

Читать полностью816

#варистор

Виды отверток по назначению и применению

21 Сентября 2021 — Анатолий Мельник

Виды отверток по сферам применения. В статье рассматриваются простые, ударные, диэлектрические и другие отвертки.

Читать полностью 628

Виды шлицов у отверток

14 Августа 2021 — Анатолий Мельник

В статье рассматривается, что такое шлицы и какие бывают виды, их маркировка, основные размеры: крестообразные, прямые, звездочки, наружные, комбинированные и другие виды шлицов.

Читать полностью 1131

Виды и типы батареек

14 Августа 2021 — Анатолий Мельник

Подробная статья о батарейках: виды и типы батереек, как различаются батарейки. Как обозначаются батарейки (маркировка)

Читать полностью 1096

Для чего нужен контактор и как его подключить

20 Сентября 2022 — Анатолий Мельник

Для чего нужен контактор и как он устроен. Как правильно выбрать и подключить контактор для управления в автоматическом режиме электрическими приборами.

Читать полностью2151

#контрактор

Как проверить тиристор: способы проверки

20 Сентября 2022 — Анатолий Мельник

Как самому проверить тиристор? Способы проверки тиристора мультиметром, тестером. Проверка тиристора без выпаивания. Пошаговые инструкции с фото.

Читать полностью874

#тиристор

Как правильно выбрать акустический кабель для колонок

20 Апреля 2021 — Анатолий Мельник

Статья про выбор акустического кабеля: типы и виды акустического кабеля. Как маркируется кабель. Как рассчитать сечение кабеля. Правила эксплуатации и советы по выбору.

Читать полностью 1086

Что такое цифровой осциллограф и как он работает

20 Сентября 2022 — Анатолий Мельник

Обзор принципа работы цифровых осциллографов. Виды осциллографов, их отличия от аналоговых. Применение цифрового осциллографа

Читать полностью1258

#осциллограф

Как проверить варистор: используем мультиметр и другие способы

20 Сентября 2022 — Анатолий Мельник

Статья-инструкция о том, как проверить варистор на исправность мультиметром или тестором. Принцип работы варистора и основные параметры варисторов, обнозначение на схеме.

Читать полностью2923

#варистор

Герконовые реле: что это такое, чем отличается, как работает

23 Января 2021 — Анатолий Мельник

Статья об устройстве герконовых реле: обзор конструкции, характеристик и принципа работы. Преимущества и недостатки. Назначение герконовых реле, где используются компоненты.

Читать полностью 4303

Диоды Шоттки: что это такое, чем отличается, как работает

17 Декабря 2020 — Анатолий Мельник

Статья ответит на вопросы: что такое диоды Шоттки, как они устроены, плюсы и минусы данного вида диодов. Обозначение диодов на схемах. Сферы применения.

Читать полностью 5016

Как правильно заряжать конденсаторы

13 Ноября 2020 — Анатолий Мельник

Способы зарядки и разрядки конденсаторов. Виды конденсаторов: основные параметры, принципы работы и области применения.

Читать полностью 2400

Светодиоды: виды и схема подключения

20 Июля 2022 — Анатолий Мельник

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode). На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер.

Читать полностью 3827

Микросборка

25 Мая 2022 — Анатолий Мельник

Микросборка (МСБ) – конструктивная составляющая радиоэлектронной аппаратуры микроминиатюрного исполнения, предназначенная для реализации определенной функции. МСБ обычно не выпускаются в качестве самостоятельных изделий, предназначенных для широкого применения.

Читать полностью 2752

Применение, принцип действия и конструкция фототиристора

20 Сентября 2022 — Анатолий Мельник

Фототиристор (ТФ) – полупроводниковое устройство со структурой, сходной с обычным тиристором, но с одним существенным отличием. Он включается не подачей напряжения, а с помощью света, падающего на него. Этот прибор сочетает функции управляемого тиристора и фотоприемника, преобразующего световую энергию в электрический управляющий импульс. Изготавливается обычно из кремния, имеет спектральную характеристику, аналогичную другим фоточувствительным элементам с кремниевой полупроводниковой структурой.

Читать полностью149

#тиристор #фототиристор

Схема подключения теплового реле – принцип работы, регулировки и маркировка

17 Мая 2022 — Анатолий Мельник

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключение в схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Читать полностью 5702

Динисторы – принцип работы, как проверить, технические характеристики

17 Мая 2022 — Анатолий Мельник

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Читать полностью 1370

Маркировка керамических конденсаторов

17 Мая 2022 — Анатолий Мельник

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Читать полностью 987

Компактные источники питания на печатную плату

17 Мая 2022 — Анатолий Мельник

Выбор ИП печатной платы напрямую влияет на ее работоспособность. Главная задача такого прибора – получить переменное напряжение от питающей сети, преобразовать его в постоянное и подать на оборудование. Если компонент выбран неверно или неисправен, он может перегореть или не справиться с входным напряжением. В худшем случае пострадает и плата – ее придется либо ремонтировать, либо выбрасывать и покупать новую.

Читать полностью 792

SMD-резисторы: устройство и назначение

17 Мая 2022 — Анатолий Мельник

SMD-резисторы – это мелкие электронные компоненты, разработанные для поверхностного монтажа на печатную плату. Ранее при сборке радиоэлектронной аппаратуры осуществлялся навесной монтаж элементов или их продевание в печатную плату через предусмотренные отверстия.

Читать полностью 2745

Принцип работы полевого МОП-транзистора

17 Мая 2022 — Анатолий Мельник

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем).

Читать полностью 2513

Проверка микросхем мультиметром: инструкция и советы

29 Октября 2021 — Анатолий Мельник

Как проверить микросхему? Рассмотрим как проверить микросхему на исправность и работоспособность мультиметром, влияние разновидности микросхем на способы проверки.

Читать полностью 8198

Характеристики, маркировка и принцип работы стабилитрона

28 Июля 2022 — Анатолий Мельник

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении.

Читать полностью 6593

Что такое реле: виды, принцип действия и устройство

14 Октября 2020 — Анатолий Мельник

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. В этой статье мы подробно разберем, что такое реле, какие виды реле существуют и для чего они применяются.

Читать полностью 6751

Конденсатор: что это такое и для чего он нужен

20 Июля 2022 — Анатолий Мельник

Конденсатор – это устройство, способное накапливать и моментально отдавать электрический заряд. В статье подробно разберем, в чем суть конденсатора, что он делает, из чего состоит и какие его основные параметры.

Читать полностью 8280

Все о танталовых конденсаторах — максимально подробно

29 Октября 2021 — Анатолий Мельник

В этой статье я максимально подробно расскажу о назначении, видах, области применения танталовых конденсаторов. Покажу как они выглядят в живую и на схеме, объясню, как считать буквенную маркировку конденсаторов.

Читать полностью 13003

Как проверить резистор мультиметром

14 Октября 2020 — Анатолий Мельник

Рассказываем как правильно проверить резистор мультиметром на плате, как узнать его сопротивление и определить работоспособность не выпаивая. Узнайте, как настроить тестер для проверки резисторов.

Читать полностью 2184

Что такое резистор

14 Октября 2020 — Анатолий Мельник

Резистор (от латинского «resisto» — сопротивляюсь) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. Резисторы предназначены для линейного преобразования силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Читать полностью 1610

Как проверить диодный мост мультиметром

14 Октября 2020 — Анатолий Мельник

Подробная инструкция по проверке работоспособности диодного моста с помощью мультиметра или лампы.

Читать полностью 13547

Что такое диодный мост

05 Августа 2022 — Анатолий Мельник

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Читать полностью 664

Виды и принцип работы термодатчиков

17 Мая 2022 — Анатолий Мельник

Принцип работы и виды термодатчиков. Особенности различных типов датчиков.

Читать полностью 4149

Заземление: виды, схемы

17 Мая 2022 — Анатолий Мельник

Заземление – соединение проводящих элементов промышленного или бытового оборудования с грунтом или общим проводом электрической системы, относительно которого производят измерения электрического потенциала. Из нашей статьи вы узнаете о видах заземления и их изображении на схемах.

Читать полностью 2356

Как определить выводы транзистора

29 Октября 2021 — Анатолий Мельник

Способы определения выводов от базы, эмиттера и коллектора полупроводникового транзистора.

Читать полностью 1243

Назначение и области применения транзисторов

14 Октября 2020 — Анатолий Мельник

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. В этой статье мы кратко перечислим области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов.

Читать полностью 1901

Как работает транзистор: принцип и устройство

20 Февраля 2021 — Анатолий Мельник

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Читать полностью 6095

Виды электронных и электромеханических переключателей

17 Мая 2022 — Анатолий Мельник

Переключатель (свитчер) – устройство, служащее в радиоэлектронике для коммутации электроцепей постоянного и переменного тока и обеспечивающее требуемый рабочий режим. От функциональности этого компонента часто зависит работоспособность всего аппарата. В этой статье мы расскажем об основных видах переключателей

Читать полностью 698

Как устроен туннельный диод

20 Июля 2022 — Анатолий Мельник

Рассказываем про устройство туннельных диодов, их отличия от обычных, цветовую маркировку и обозначение туннельных диодов на схемах. Также из этой статьи вы узнаете об истории создания данного типа диодов.

Читать полностью 3555

Виды и аналоги конденсаторов

21 Мая 2020 — Анатолий Мельник

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

Читать полностью 5240

Твердотельные реле: подробное описание устройства

25 Мая 2022 — Анатолий Мельник

Твердотельное реле (ТТР) – полупроводниковое устройство, применяемое для создания контакта между низковольтными и высоковольтными цепями, является современной альтернативой традиционным пускателям и контакторам. Применяется в бытовой технике, промавтоматике, автомобильной электронике.

Читать полностью 3564

Конвертер единиц емкости конденсатора

29 Октября 2021 — Анатолий Мельник

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Читать полностью 1830

Графическое обозначение радиодеталей на схемах

14 Октября 2020 — Анатолий Мельник

Радиодетали – электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты. Если ранее детали изображались приближенно к их натуральному виду, то сегодня используются условные графические обозначения радиодеталей на схеме, разработанные и утвержденные Международной электротехнической комиссией.

Читать полностью 228

Биполярные транзисторы: принцип работы, характеристики и параметры

17 Мая 2022 — Анатолий Мельник

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Читать полностью 3009

Как подобрать резистор по назначению и принципу работы

17 Мая 2022 — Анатолий Мельник

Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.

Читать полностью 262

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

20 Сентября 2022 — Анатолий Мельник

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т. е. ток пропускается только в одну сторону). Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока.

Читать полностью1242

#тиристор

Зарубежные и отечественные транзисторы

20 Января 2021 — Анатолий Мельник

Как подобрать отечественный аналог зарубежному транзистору? Читайте в нашей статье!

Читать полностью 1907

Исчерпывающая информация о фотодиодах

20 Июля 2022 — Анатолий Мельник

Обзор фотодиодной технологии с подробным описанием основ, принципа работы, а также различных типов фотодиодов и их применения.

Читать полностью 3417

Калькулятор цветовой маркировки резисторов

14 Октября 2020 — Анатолий Мельник

Резисторы – это элементы для построения электрических схем, предназначенные для контроля и регулирования величины силы тока. Разделяют на постоянные, переменные, подстроечные. Для идентификации постоянных резисторов SMD – устройств, монтируемых на поверхность, – все производители разработали буквенно-цифровые обозначения для крупных элементов и цветовой код для деталей очень маленьких размеров.

Читать полностью 2280

Область применения и принцип работы варикапа

14 Октября 2020 — Анатолий Мельник

Варикап – полупроводниковый диод, главным параметром которого является изменяемая под напряжением емкость. В устройстве применяется зависимость емкости p-n перехода и приложенного обратного напряжения.

Читать полностью 5406

Маркировка конденсаторов

14 Октября 2020 — Анатолий Мельник

Выбор конденсаторов по маркировке – процесс достаточно сложный, поскольку разные производители используют различные системы кодирования. Особенно трудно прочесть зашифрованную информацию на незначительной поверхности маленьких конденсаторов.

Читать полностью 6400

Виды и классификация диодов

14 Октября 2020 — Анатолий Мельник

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. В этой статье вы найдёте подробную классификацию диодов по видам, характеристикам, материалам изготовления и сфере использования.

Читать полностью 4157


MOSFET транзисторы. Устройство, принцип работы и разновидности.

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n – переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).

Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел – полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).

Еще одно, довольно распространенное название – МДП (металл – диэлектрик – полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Внешний вид одного из широко распространённых мосфетов – IRFZ44N.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Упрощённая модель полевого транзистора с изолированным затвором.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.


Упрощённая модель полевого транзистора с изолированным затвором

Основу МДП-транзистора составляет:

  • Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

  • Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому «+»), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

  • Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом (+) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.

Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись «Power MOSFET» или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому – напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Биполярный транзистор.

  • Устройство и принцип работы геркона.

 

Транзистор МОП-принцип работы, структура, основные характеристики

Мощный МОП-транзистор или как его еще называют «металлоокисный полупроводник». Трехслойная структура транзистора Металл – Оксид – Полупроводник. Он обладает рядом достоинств перед транзисторами биполярного типа. Эти свойства выражается и при действии транзистора в линейном режиме и в режиме переключения.

Основные преимущества МОП-транзисторов

  • Мгновенное переключение;
  • Нет вторичного пробоя;
  • Безопасная работа характеризуется широкой областью;
  • Высокий коэффициент усиления.
  • Более высокое входное сопротивление.
  • Небольшое потребление электроэнергии.
  • При компоновке интегральных схем с использованием МОП-транзисторов задействуется относительно небольшое количество операций, чем с применением биполярных транзисторов.

Применение МОП-транзисторов

Использование в конструкции импульсных источников питания высокой частоты в качестве дискретных компонентов, в устройствах инверторного преобразования и регуляторах скорости электродвигателей различного типа. Использование их в конструкции высокочастотных генераторов применяемых для индукционного нагрева, в ультразвуковых генераторах, усилителях звука и устройствах периферийного назначения для компьютеров. Использование транзисторов в регуляторах скорости ограниченно низким напряжением (подключением к аккумуляторам) и небольшой мощностью, потому как кремниевая поверхность способна выдержать высокое напряжение в закрытом состоянии и низкое падение в открытом состоянии.

Работа МОП-транзистора

Принцип действия прибора зависит от изменения в полупроводнике электрического поля, происходит поляризация изолированного затвора. Такое действие вызвало название элемента, как « металлоокисный полупроводник».  Он представляет собой прибор, в котором для изготовления затвора использовалась двуокись кремния SiO2, для современных МОП-транзисторов в качестве материала для затвора применяют поликристаллический кремний. Существует два типа МОП-транзисторов. Первые имеют дырочную проводимость – р-канальные. Транзисторы с электронной проводимостью называются n-канальными. Канал в этих полупроводниковых приборах может быть обедненным или наоборот обогащенным носителями.

Рис. №1. Базовая структура МОП-транзистора с гексагональной топологией. Положительный вывод истока по отношению к стоку создает протекание тока через середину ячейки истока посредством прямо смещенного pn-перехода. Обратное направление транзистора характерно для работы выпрямителя на на  pn-переходе.

Основные характеристики транзистора

  • Напряжение управления: обеспечение проводимости и блокировки компонента;
  • В открытом состоянии (проводящем) характеризуется внутренним сопротивлением и максимально допустимым постоянным током.
  • В закрытом состоянии (не проводящем) транзистор характеризуется максимально допустимым напряжением прямого типа (более 1000В).
  • Использование подобных транзисторов в регуляторах скорости позволяет работать на частоте в границах до нескольких сотен кГц.

Главные типы МОП-транзисторов

 

  1. Транзистор с индуцированным каналом, считающимся доминирующим элементом в новейших интегральных схемах. Прибор характеризуется положительным пороговым напряжением, от 0,5 до 1 В.
  2. МОП-транзистор со встроенным каналом

МОП-транзистор с индуцированным затвором

Рис. №2. а) структура МОП ПТ с индуцированным каналом. б) графическое изображение.

МОП-транзистор со встроенным каналом

Подобный прибор  обладает ненулевым значением тока, называемым начальным, при этом напряжение имеет нулевое значение. Действует в режиме обеднения и обогащения.

Рис.№3. МОП ПТ с встроенным каналом: а) транзисторная структура; б) графическое изображение.

Меры безопасности при работе с МОП-транзисторами большой мощности

Тестировать МОП-транзисторы и монтировать их в схему необходимо с осторожностью. Хотя большая емкость и позволяет поглощать статический разряд, он все равно может повредить их. При проведении рабочих операций с  МОП-транзисторами большой мощности необходимо следовать определенным правилам.

Избыточное напряжение может пробить слой окисла затвор-исток, что приведет к выходу из строя элемента.

Переходное напряжение затвор – исток, обладающее отрицательным направлением появляется при наличии индуктивности изолирующего трансформатора запуска, индуктивность хорошо отделяет затвор от запускающей схемы в процессе перехода. Напряжение перехода при этих условиях превышает напряжение затвора, что также ведет к отказу. Для решения подобной проблемы рекомендуется использовать диод Зенера, он предотвращает превышение допустимых значений напряжения затвор-исток. Еще одним эффективным решением для противодействия отказу будет снижение импеданса схемы затвора до самой малой величины, лишь бы сохранить номинал напряжения затвор-исток и поддерживать переходные процессы на уровне, при котором не возникает случайное включение.

Диод Зенера фиксирует уровень положительных процессов перехода, он в автоматическом режиме фиксирует переходные процессы, действующие в отрицательном направлении, ограничивает их своим падением напряжения обладающим прямой проводимостью.

Основные правила при использовании мощных МОП ПТ

  1. Необходимо остерегаться выбросов напряжения сток-исток, которые появляются при переключениях.
  2. Нельзя превышать параметры пикового тока
  3. Не рекомендуется работать на среднем значении тока, выше нормированного значения.
  4. Желательно оставаться в заданных температурных пределах.
  5. Обязательно нужно обращать внимание на топология схемы.
  6. Необходимо соблюдать осторожность, применяя интегральный диод тело-сток.
  7. Нужно соблюдать предельную внимательность, сравнивая нормы токовых значений.

Обладая огромными преимуществами, мощные полевые транзисторы МОП при правильном применении служат для улучшения конструкции системы, которая при обладании меньшим количеством элементом может быть лучше, компактнее, функциональнее, чем аналогичные приборы, но другой компоновки и типа.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Mosfet транзисторы принцип работы

МОП-транзистор (полевой транзистор на основе оксидов металлов и полупроводников) является наиболее широко используемым типом полевых транзисторов с изолированным затвором. Они используются в различных приложениях благодаря простым рабочим явлениям и преимуществам по сравнению с другими полевыми транзисторами. 

  • Что такое МОП-транзистор
  • Принцип работы МОП-транзистора (MOSFET)
  • Типы МОП-транзистора (MOSFET)
  • Символ на схеме разных типов МОП-транзистора (MOSFET)
  • Применение МОП-транзистора
  • Преимущества МОП-транзистора
  • Базовая структура MOSFET транзистора
  • Режим истощения МОП-транзистора
  • N-канальный МОП-транзистор в режиме истощения
  • Режим усиления МОП-транзистора
  • Особенности режима усиления
  • Режим усиления N-канального МОП-транзистора
  • Транзистор полевой

Что такое МОП-транзистор

Metal Oxide Silicon Field Effect Transistor (Металлооксидные полевые транзисторы) сокращается как МОП-транзистор. Это униполярный транзистор, используемый в качестве электронного переключателя и для усиления электронных сигналов. Устройство имеет три терминала, состоящих из истока, затвора и стока. Помимо этих клемм имеется подложка, обычно называемая корпусом, которая всегда подключается к клемме источника для практических применений.

В последние годы его открытие привело к доминирующему использованию этих устройств в цифровых интегральных схемах из-за его структуры. Слой диоксида кремния (SiO2) действует как изолятор и обеспечивает электрическую изоляцию между затвором и активным каналом между истоком и стоком, что обеспечивает высокий входной импеданс, который почти бесконечен, таким образом захватывая весь входной сигнал.

Принцип работы МОП-транзистора (MOSFET)

Он изготовлен путем окисления кремниевых подложек. Он работает путем изменения ширины канала, через который происходит движение носителей заряда (электронов для N-канала и дырок для P-канала) от источника к стоку.  Терминал затвора изолирован, напряжение которого регулирует проводимость устройства.

Типы МОП-транзистора (MOSFET)

На основе режима эксплуатации МОП-транзисторы можно разделить на два типа.

  • Режим насыщения
  • Режим истощения

Режим насыщения

В этом режиме отсутствует проводимость при нулевом напряжении, что означает, что оно по умолчанию закрыто или «ВЫКЛ», так как канал отсутствует. Когда напряжение затвора увеличивается больше, чем напряжение источника, носители заряда (дырки) смещаются, оставляя позади электроны, и, таким образом, устанавливается более широкий канал.

Напряжение на затворе прямо пропорционально току, то есть с увеличением напряжения на затворе ток увеличивается и наоборот.

Классификация режима насыщения МОП- транзисторов

Усовершенствованные МОП-транзисторы можно классифицировать на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).

  • N-канальный тип насыщения MOSFET
  • P-канальный тип насыщения MOSFET

N-канальный тип насыщения MOSFET

  • Слегка легированная субстрат P-типа образует корпус устройства, а исток и сток сильно легированы примесями N-типа.
  • N-канал имеет электроны в качестве основных носителей.
  • Подаваемое напряжение затвора положительно для включения устройства.
  • Он имеет более низкую собственную емкость и меньшую площадь соединения из-за высокой подвижности электронов, что позволяет ему работать на высоких скоростях переключения.
  • Он содержит положительно заряженные примеси, что делает преждевременным включение полевых МОП-транзисторов с N-каналом.
  • Сопротивление дренажу низкое по сравнению с P-типом.

P-канальный тип насыщения MOSFET

  • Слегка легированная подложка N-типа образует корпус устройства, а исток и сток сильно легированы примесями P-типа.
  • P-канал имеет отверстия в качестве основных носителей.
  • Он имеет более высокую внутреннюю емкость и малую подвижность отверстий, что делает его работающим при низкой скорости переключения по сравнению с N-типом.
  • Подаваемое напряжение затвора является отрицательным для включения устройства.
  • Водостойкость выше по сравнению с N-типом.

Режим истощения

В этом типе канал уже установлен, и очевидно, что проводимость происходит даже при нулевом напряжении, и он открыт или включен по умолчанию. В отличие от типа насыщения, здесь канал лишен носителей заряда, чтобы уменьшить ширину канала.

Напряжение на затворе обратно пропорционально току, т. Е. С увеличением напряжения на затворе ток уменьшается.

Классификация режима истощения МОП-транзисторов

Истощающие МОП-транзисторы могут быть классифицированы на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).

  • Тип истощения канала N МОП-транзистор
  • Тип истощения канала P МОП-транзистор
Тип истощения канала N МОП-транзистор

  • Полупроводник P-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
  • Применяемое напряжение на затворе отрицательное.
  • Канал обеднен свободными электронами.
Тип канала истощения канала MOSFET

  • Полупроводник N-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
  • Поданное напряжение затвора положительное.
  • Канал обеднен свободными отверстиями.

Символ на схеме разных типов МОП-транзистора (MOSFET)

Символы различных типов МОП-транзисторов изображены ниже.

Применение МОП-транзистора

  • Усилители MOSFET широко используются в радиочастотных приложениях.
  • Он действует как пассивный элемент, такой как резистор, конденсатор и индуктор.
  • Двигатели постоянного тока могут регулироваться силовыми полевыми МОП-транзисторами.
  • Высокая скорость переключения MOSFET делает его идеальным выбором при проектировании цепей прерывателей.

Преимущества МОП-транзистора

  • МОП-транзисторы обеспечивают большую эффективность при работе при более низких напряжениях.
  • Отсутствие тока затвора приводит к высокому входному импедансу и высокой скорости переключения.
  • Они работают при меньшей мощности и не потребляют ток.

Базовая структура MOSFET транзистора

Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.

При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.

Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.

Режим истощения МОП-транзистора

Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор «нормально закрыт». На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.

Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.

Другими словами, для режима истощения п-канального МОП-транзистора:

  1. Положительное напряжение на стоке означает большее количество электронов и тока.
  2. Отрицательное напряжение означает меньше электронов и ток.

Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно «нормально разомкнутому» переключателю.

N-канальный МОП-транзистор в режиме истощения

Режим истощения МОП-транзистора построен таким же образом, как и у полевых транзисторов. Причем канал сток-исток – это проводящий слой с электронами и дырками, который присутствует в п-типа или р-типа каналах. Такое легирование канала создает проводящий путь низкого сопротивления между стоком и источника с нулевым напряжением. Используя тестер транзисторов, можно провести замеры токов и напряжений на его выходе и входе.

Режим усиления МОП-транзистора

Более распространенным у транзисторов MOSFET является режим усиления, он обратный для режима истощения. Здесь проводящий канал слаболегированный или даже нелегированный, что делает его непроводящим. Это приводит к тому, что устройство в режиме покоя не проводит ток (когда напряжение смещения затвора равно нулю). На схемах для обозначения МОП-транзисторов такого типа используют ломаную линию, чтобы обозначить нормально открытый токоизолирующий канал.

Для повышения N-канального МОП-транзистора ток стока будет течь только тогда, когда напряжение на затворе прикладывается к затвору больше, чем пороговое напряжение. При подаче положительного напряжения на затвор к п-типа MOSFET (что это, режимы работы, схемы включения, описаны в статье) привлекает большее количество электронов в направлении оксидного слоя вокруг затвора, тем самым увеличивая усиление (отсюда название) толщины канала, позволяя свободнее протекать току.

Особенности режима усиления

Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:

  1. Положительный сигнал транзистор переводит в проводящий режим.
  2. Отсутствие сигнала или же его отрицательное значение переводит в непроводящий режим транзистор. Следовательно, в режиме усиления МОП-транзистор эквивалентен «нормально разомкнутому» переключателю.

Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:

  1. Положительный сигнал переводит транзистор «Выкл».
  2. Отрицательный включает транзистор в режим «Вкл».

Режим усиления N-канального МОП-транзистора

В режиме усиления МОП-транзисторы имеют низкое входное сопротивление в проводящем режиме и чрезвычайно высокое в непроводящем. Также их бесконечно высокое входное сопротивление из-за их изолированного затвора. Режима усиления транзисторов используется в интегральных схемах для получения типа КМОП логических вентилей и коммутации силовых цепей в форме, как PMOS (P-канал) и NMOS (N-канал) входов. CMOS – это комплементарный МОП в том смысле, что это логическое устройство имеет как PMOS, так и NMOS в своей конструкции.

Транзистор полевой

В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от «электрическое поле». Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. «Полевики» по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.

исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.

сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.

затвор (gate) —  управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.

Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис. 1  изображены типы полевых транзисторов и их обозначения на схемах.

Рис.1. Типы полевых транзисторов и их схематическое обозначение. 

«Полевик» с изолированным затвором и индуцированным каналом

Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: «полевик», «мосфет», «ключ».

Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.

Обратный диод

Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.

Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.

В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.

Рис.2. Паразитные элементы в составе полевого транзистора. 

 Основные преимущества MOSFET 

  • меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
  • простая схема управления.  Схемы управления напряжением более просты, чем схемы управления током.
  • высокая скорость переключения. Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
  • повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.

Основные характеристики MOSFET

  • Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
  • Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В  или 2.5 В при которых сопротивление становится минимальным.
  • Vgs(th) –  пороговое напряжение при котором транзистор начнет открываться. 
  • Ids – максимальный постоянный ток через транзистор.
  • Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
  • Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
  • Qg – заряд который необходимо передать затвору для переключения.
  • Vgs(max) – максимальное допустимое напряжение затвор-исток.
  • t(on), t(of) – время переключения транзистора.
  • характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)

Что еще нужно знать про полевой транзистор?

P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте. 

МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.

МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.

Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs<0 (красный провод вольтметра на затвор, черный на исток). У силовых транзисторов управляющее напряжение, при котором будет минимальное сопротивление – 10 вольт и больше. У низковольтных «полевиков», которые управляются логическими уровнями микросхем, оно составляет 4.5 вольт или 2.5В , для разных транзисторов. Общее правило: чем выше напряжение – тем транзистор лучше откроется, но это напряжение не должно превышать масимально допустимого Vgs(max).

Схема включения MOSFET

Традиционная, классическая схема включения «мосфет», работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором.  

Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.  

Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на  затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс. 

Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).

Рис. 3. Классическая схема включения MOSFET в ключевом режиме.

МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).

МОП транзисторы, используемые в цифровой электронике, делятся на два типа. 

  1. Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания. 
  2. Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.

Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 6 чел.
Средний рейтинг: 4.7 из 5.

SCIRP Открытый доступ

Издательство научных исследований

Журналы от A до Z

Журналы по темам

  • Биомедицинские и биологические науки.
  • Бизнес и экономика
  • Химия и материаловедение.
  • Информатика. и общ.
  • Науки о Земле и окружающей среде.
  • Машиностроение
  • Медицина и здравоохранение
  • Физика и математика
  • Социальные науки. и гуманитарные науки

Журналы по тематике  

  • Биомедицина и науки о жизни
  • Бизнес и экономика
  • Химия и материаловедение
  • Информатика и связь
  • Науки о Земле и окружающей среде
  • Машиностроение
  • Медицина и здравоохранение
  • Физика и математика
  • Социальные и гуманитарные науки

Публикация у нас

  • Представление статьи
  • Информация для авторов
  • Ресурсы для экспертной оценки
  • Открытые специальные выпуски
  • Заявление об открытом доступе
  • Часто задаваемые вопросы

Публикуйте у нас  

  • Представление статьи
  • Информация для авторов
  • Ресурсы для экспертной оценки
  • Открытые специальные выпуски
  • Заявление об открытом доступе
  • Часто задаваемые вопросы

Подпишитесь на SCIRP

Свяжитесь с нами

клиент@scirp. org
+86 18163351462 (WhatsApp)
1655362766
Публикация бумаги WeChat
Недавно опубликованные статьи
Недавно опубликованные статьи
  • Синтез и характеристика аналогов амида 1,4-бензодиоксан-6-карбоновой кислоты()

    Набиль Идрис, Алан Дж. Андерсон, Оладапо Бакаре

    Международный журнал органической химии Том 12 № 3, 23 сентября 2022 г.

    DOI: 10.4236/ijoc.2022.123012 18 загрузок  95 просмотров

  • Дальнейшие разработки в области региоселективного синтеза производных 3-аройлиндола из C — Нитрозоароматические соединения и алкиноны: новый синтетический подход к правадолину, JWH-073, аналогам индотиазинона и родственным соединениям()

    Лука Скапинелло, Федерико Вавассори, Габриэлла Иеронимо, Кешав Л. Амета, Джанкарло Кравотто, Марко Симонетти, Стефано Толлари, Джованни Пальмизано, Кеннет М. Николас, Андреа Пенони, Анджело Масперо

    Международный журнал органической химии Том 12 № 3, 23 сентября 2022 г.

    DOI: 10. 4236/ijoc.2022.123011 16 загрузок  68 просмотров

  • H-CUP: повышение уровня навыков мышления более высокого порядка с помощью структуры, основанной на когнитивном обучении, универсальном дизайне и проектном обучении ()

    Джанетт Уолтерс-Уильямс

    Творческое образование Том 13 №9, 23 сентября 2022 г.

    DOI: 10.4236/ce.2022.139181 11 загрузок  53 просмотров

  • Нейронные и кинематические показатели почерка у нейротипичных взрослых ()

    Эльхам Бахшипур, Мэнди С. Пламб, Реза Койлер, Нэнси Гетчелл

    Journal of Behavioral and Brain Science Vol. 12 No.9, 23 сентября 2022 г.

    DOI: 10.4236/jbbs.2022.129025 9 загрузок  62 просмотров

  • Юридические атрибуты информации об атрибуции ИС в соответствии с PIPL Китая: разъяснение терминологии идентифицируемости и введение в действие критериев идентифицируемости ()

    Чаолинь Чжан, Гэн Ван

    Beijing Law Review Vol.13 No.3, 23 сентября 2022 г.

    DOI: 10.4236/blr.2022.133040 14 загрузок  75 просмотров

  • Кальцифицирующая уремическая артериолопатия или кальцифилаксия у пациентов, находящихся на гемодиализе: тематическое исследование и обзор литературы()

    Моду Ндонго, Нестор Нанкеу, Жозефина Нкок, Элен Мессе, Фабрис Тиако, Мамаду Муктар Диалло, Мисилиас Буауд, Аттия Хуйем, Фатиха Лахуэль, Джиллали Зиане Берруджа, Тайеб Бенсалем, Сид Али Туфик Беньягла, Кэтрин Альберт, Сиди Мохамед Сек, Эль Хаджи Фари Ка

    Открытый журнал нефрологии Том 12 № 3, 23 сентября 2022 г.

    DOI: 10.4236/ojneph.2022.123031 24 загрузки  139 просмотров

Подпишитесь на SCIRP

Свяжитесь с нами

клиент@scirp.org
+86 18163351462 (WhatsApp)
1655362766
Публикация бумаги WeChat

Бесплатные информационные бюллетени SCIRP

Copyright © 2006-2022 Scientific Research Publishing Inc. Все права защищены.

верхний

Размер транзистора для маломощных КМОП-цепей

  • Идентификатор корпуса: 43306585
  title={Размер транзистора для маломощных КМОП-цепей},
  автор = {Говин Дас Гаутам, Шьям Акаше и Санджай Шарма},
  год = {2011}
} 
  • Говин Дас Гаутам, С. Акаше, Санджай Шарма
  • Опубликовано в 2011 г.
  • Инженерное дело, Бизнес

Представлен прямой подход к выбору размера транзистора для минимизации энергопотребления КМОП-схемы при ограничении задержки. В отличие от существующего предположения о том, что потребляемая мощность статической КМОП-схемы пропорциональна активной площади схемы, показано, что потребляемая мощность является выпуклой функцией активной площади. Получена аналитическая формула для рассеиваемой мощности схемы в зависимости от размера транзистора, которая включает как емкостную, так и… 

Проектирование малой мощности с использованием сетей транзисторов

  • Герсон Скартеззини
  • Инженерное дело

  • 2014

затратная задача. Традиционно проектирование интегральных схем…

Проектирование сверхмаломощного КМОП-инвертора

  • С. Хан
  • Инженерное дело

  • 2017

В этом документе представлен КМОП-инвертор со сверхнизким рассеиванием мощности, который достигается за счет масштабирования источника питания и размеров транзисторов и разработан с использованием 180-нм технологии Tsmc CMOS.

Многокритериальная оптимизация размеров транзисторов стандартных ячеек логики КМОП с использованием численных методов, ориентированных на множества

  • М. Блескен, У. Рукерт, Д. Стенкен, К. Виттинг, М. Делнитц
  • 2009

Размер транзистора определяется с помощью MOP и решается с помощью численных методов, ориентированных на множество, и сравнение оптимальных по Парето проектов с элементами коммерческой стандартной библиотеки ячеек показывает, что для некоторых вентилей производительность может быть значительно улучшена.

Детальное стробирование мощности для снижения мощности утечки и короткого замыкания с использованием асинхронной логики

Установлено, что ≫70% снижения непроизводительной мощности (включая мощность короткого замыкания и утечки) по сравнению с традиционной асинхронной логикой Стадия трубопровода может быть достигнута со всеми конфигурациями литников.

Выбор ячеек для минимизации энергопотребления в высокопроизводительных промышленных микропроцессорах

  • Тиаго Рейманн
  • Инженерное дело

  • 2016

схемы (ИС). Предлагаемый алгоритм применяется к наборам тестов для…

Динамическое масштабирование напряжения и частоты для приложений 3D-графики на современных мобильных графических процессорах

  • Навид Фаразманд
  • Компьютерные науки

  • 2018

В этой диссертации предлагаются новые решения DVFS для современных мобильных графических процессоров, фреймворк анализа производительности рабочей нагрузки и энергопотребления для реальных сценариев использования.

Оптимизация интегральных схем с помощью эволюционной многокритериальной оптимизации

  • M. Blesken, Anouar Chebil, U. Rückert, X. Esquivel, O. Schütze
  • Информатика

    GECCO ’11

  • 2011
  • производительность двух МО 902 размерной МОП конкретной стандартной клетки и указывает на то, что эволюционные стратегии подходят для решения таких проблем и имеют преимущества перед другими довольно классическими методами.

    Оптимальная конструкция исполнительного каскада встроенных процессоров

    В этом документе представлен подход к совместному проектированию HS/SW для волнового MFU, волнового конвейера MFU (многофункционального блока), который представляет собой комбинацию многофункционализации и волнового конвейера FU (функциональных блоков), что хорошо согласуется с общей торговой практикой. вне дизайна.

    Тепловое управление трехмерных интегральных схем с микроканальным жидкостным охлаждением

    • Hanhua Qian
    • Инженерное дело, физика

    • 2014

    xi

    3

  • Energy0285
    • Mayuri Digalwar
    • Компьютерная наука

    • 2016

    , показывающие 1-10 из 20 ссылок

    Сорт Byrelevancemost, влияющий на PapersReccound

    . Borah, M. Irwin, R. Owens

  • Инженерия, информатика

    Материалы 8-й Международной конференции по проектированию СБИС

  • 1995

Новые методы снижения энергопотребления статической КМОП-схемы за счет увеличения транзисторов в затворах с большим разветвлением и переупорядочения входов в затворы представлены и включены в генератор модулей с ограниченной производительностью и мощностью PowerSizer. 32 -b содержит упреждающий сумматор, который был разработан с использованием техники, описанной здесь.

Рассеивание статической КМОП-схемы из-за короткого замыкания и его влияние на конструкцию буферных цепей рассеивание статических цепей CMOS. Подробное обсуждение рассеяния при коротком замыкании дано на основе…

Точное решение проблемы определения размера транзистора для КМОП-схем с использованием выпуклой оптимизации

Здесь используется эффективный алгоритм выпуклой оптимизации, гарантирующий точное решение задачи выпуклого программирования и улучшенный по сравнению с существующими методами вычисления задержки цепи как постоянной времени Элмора для достижения более высокой точности.

Оптимизация высокоскоростных логических схем CMOS с помощью аналитических моделей для задержки сигнала, площади кристалла и динамического рассеяния мощности Наука

IEEE Trans. вычисл. Помощь Des. интегр. Цепи Сист.

  • 1990
  • Различные методы были объединены для решения проблемы оптимизации схемы с низкими вычислительными затратами, а точные модели задержки на уровне вентилей гарантируют значимые результаты, особенно для высокоскоростных логических схем.

    Модели инверторов КМОП-элементов для оценки тока питания и задержки

    Представлено сведение моделей транзисторного уровня логических элементов КМОП к эквивалентным инверторам с целью расчета тока питания в цифровых схемах, применимых к динамическим логическим элементам также.

    Скорость схемы КМОП и оптимизация буфера

    Представлена ​​улучшенная временная модель для комбинационной логики КМОП, которая позволяет лучше понять характер переключения КМОП-инвертора, чем модель ступенчатой ​​характеристики, за счет учета наклона формы входного сигнала.

    Оптимизация размера транзистора в системе Tailor Layout

    • D. Marple
    • Инженерия, информатика

      26-я конференция ACM/IEEE Design Automation

    • 1989

    Комбинированный инструмент для определения размера и компоновки транзисторов, используемый для синтеза высокопроизводительных КМОП-схем, и его оптимизатор глобально оптимизирует площадь схемы и задержку за счет использования алгоритмов уплотнения и нелинейного программирования.

    Анализ задержки последовательно соединенных схем MOSFET

    • T. Sakurai, A. Newton
    • Инженерное дело

    • 1991

    которая включает в себя модель MOS n-го степенного закона. Задержка закрытой формы…

    TILOS: A posynomial programming approach to transistor sizing

    • J. Fishburn, A. Dunlop
    • Computer Science

      ICCAD 2003

    • 2003

    A new transistor sizing algorithm, which couples synchronous timing analysis with convex представлены методы оптимизации, которые показывают, что любая точка, признанная локально оптимальной, наверняка будет оптимальной в глобальном масштабе.

    Макао Импорт из Южной Кореи диодов, транзисторов и аналогичных полупроводниковых устройств

    Макао Импорт диодов, транзисторов и аналогичных полупроводниковых устройств из Южной Кореи в 2019 году составил 2,1 тысячи долларов США, согласно базе данных COMTRADE Организации Объединенных Наций по международной торговле.

    Импорт диодов, транзисторов и аналогичных полупроводниковых устройств из Южной Кореи в Макао — данные, исторические диаграммы и статистика — последний раз обновлялся в сентябре 2022 года.
    • 10 лет
    • 25 лет
    • 50 лет
    • МАКС
    •  Диаграмма
    •   Сравнить
    •  Экспорт
    • API
    •  Встроить

    Участники Trading Economics могут просматривать, загружать и сравнивать данные почти из 200 стран, включая более 20 миллионов экономических показателей, обменные курсы, доходность государственных облигаций, фондовые индексы и цены на товары.

    Интерфейс прикладного программирования (API) Trading Economics обеспечивает прямой доступ к нашим данным. Это позволяет клиентам API загружать миллионы строк исторических данных, запрашивать наш экономический календарь в режиме реального времени, подписываться на обновления и получать котировки валют, товаров, акций и облигаций.

    Функции API Документация Заинтересованы? Нажмите здесь, чтобы связаться с нами

    Вставьте этот код на свой сайт


    источник: tradeeconomics. com

    высота

     Предварительный просмотр

    .10
    Макао Последний Предыдущий Самый высокий Самый низкий Блок
    Баланс торговли -3797180,95 -9540216. 68 634540.00 -14558269,56 тыс. патак [+]
    Текущий аккаунт 23700,70 151513,50 161957,50 17724.30 млн патак [+]
    Текущий счет к ВВП 15.20 33,80 40,50 15.00 процент ВВП [+]
    Импорт 43. 66 10501625,93 15580972,90 781040.00 тыс. патак [+]
    Экспорт 593797,71 961409.24 2377502.00 357945,69 тыс. патак [+]
    Туристические прибытия 331397.00 9759.00 3623116.00 9759.00 [+]
    Условия торговли 99,60 99,60 110,20 89,90 очки [+]
    Доходы от туризма 4800. 00 7161.00 18419.00 0,00 млн патак [+]
    Прямые зарубежные инвестиции 70562,70 -41818.50 70562,70 -41818.50 млн патак [+]
    Потоки капитала 53216.00
    149649.00 -19459,90 В миллионах патак [+]

    Макао Экспорт диодов, транзисторов и аналогичных полупроводниковых устройств в Таиланд

    Макао Экспорт диодов, транзисторов и аналогичных полупроводниковых устройств в Таиланд в 2012 году составил 1,25 тысячи долларов США, согласно базе данных COMTRADE Организации Объединенных Наций по международной торговле.

    . Макао Экспорт диодов, транзисторов и аналогичных полупроводниковых приборов в Таиланд — данные, исторические диаграммы и статистика — последний раз обновлялся по состоянию на сентябрь 2022 г.
    • 10 лет
    • 25 лет
    • 50 лет
    • МАКС
    •  Диаграмма
    •   Сравнить
    •  Экспорт
    • API
    •  Встроить

    Участники Trading Economics могут просматривать, загружать и сравнивать данные почти из 200 стран, включая более 20 миллионов экономических показателей, обменные курсы, доходность государственных облигаций, фондовые индексы и цены на товары.

    Интерфейс прикладного программирования (API) Trading Economics обеспечивает прямой доступ к нашим данным. Это позволяет клиентам API загружать миллионы строк исторических данных, запрашивать наш экономический календарь в режиме реального времени, подписываться на обновления и получать котировки валют, товаров, акций и облигаций.

    Функции API Документация Заинтересованы? Нажмите здесь, чтобы связаться с нами

    Вставьте этот код на свой сайт


    источник: tradingeconomics. com< /а>

    высота

     Предварительный просмотр

    .10
    Макао Последний Предыдущий Самый высокий Самый низкий Блок
    Баланс торговли -3797180,95 -9540216. 68 634540.00 -14558269,56 тыс. патак [+]
    Текущий аккаунт 23700,70 151513,50 161957,50 17724.30 млн патак [+]
    Текущий счет к ВВП 15.20 33,80 40,50 15.00 процент ВВП [+]
    Импорт 43. 66 10501625,93 15580972,90 781040.00 тыс. патак [+]
    Экспорт 593797,71 961409.24 2377502.00 357945,69 тыс. патак [+]
    Туристические прибытия 331397.00 9759.00 3623116.00 9759.00 [+]
    Условия торговли 99,60 99,60 110,20 89,90 очки [+]
    Доходы от туризма 4800. 00 7161.00 18419.00 0,00 млн патак [+]
    Прямые зарубежные инвестиции 70562,70 -41818.50 70562,70 -41818.50 млн патак [+]
    Потоки капитала 53216.00
    149649.00 -19459,90 В миллионах патак [+]

    Мосрит Фузрит Германий – Catalinbread Effects

     

    Если вы чем-то похожи на меня (и давайте смотреть правде в глаза, если вы читаете это, так оно и есть), вы любите хорошую фузз-педаль. И бог знает, я написал о некоторых хороших, от странных (Zoom Ultra Fuzz, Uni-Fuzz) до традиционных (Fuzz Face, Tone Bender). Есть несколько очень отличных ароматов, которые мне еще предстоит раскрыть, и один из них — всемогущий мосритовый фузрайт. Но это не просто Fuzzrite, это тот, что с германиевыми транзисторами внутри.

     

    Простите, если вы не знали, что существует две версии. Некоторое время я тоже. Я прожил много лет, считая, что существуют только кремниевые версии. На самом деле существует более чем несколько итераций, большинство из которых чисто косметические, с тремя основными топологическими разновидностями. Самой редкой на сегодняшний день является германиевая версия, а оригинальный дизайнер Эд Саннер вспоминает, что только 250 или около того вышли за дверь.

     

    История самого Fuzzrite часто рассказывается, и в ней есть некоторые параллели с первоначальным блоком Fuzzrite. Нет, не Maestro FZ-1, а сломанная трубка внутри консоли Гленна Снодди, которая его вдохновила. Как и печально известное неисправное оборудование, рождение Fuzzrite было вдохновлено еще одним единственным в своем роде механизмом, ящиком для пуха, построенным человеком по имени Red Rhodes и используемым Ventures.

     

    Хотя неясно, использовали ли Ventures когда-либо настоящий Fuzzrite, фуззовые тона, втиснутые в альбомы, звучали достаточно похоже. А в фильме о Ventures, Walk, Don’t Run , Ноки Эдвардс сказал, что он «полагал», что Mosrite позаимствовал дизайн у подразделения Rhodes.

     

    До недавнего времени гитаристы не знали о подводных камнях некоторых транзисторных элементарных структур. Но даже в 60-е Мосрите знал толк. Как Хендрикс и Роджер Майер обнаружили годы спустя, Саннер и компания обнаружили, что германиевые транзисторы в оригинальном Fuzzrite изменяют тон гитары в зависимости от температуры окружающей среды в помещении, и от этой идеи быстро отказались. К счастью для нас, любителей фузза, другие производители педалей либо не знали об этом, либо им было все равно, и они выпустили сотни фузз-педалей, оснащенных германием.

     

    Несмотря на то, что небольшое количество германиевых фаззритов покинуло штаб-квартиру, они оказались в очень умелых руках. Среди многих других песен, записанных с помощью этого ящика, была «In-a-Gadda-Da-Vida» Iron Butterfly, вполне возможно, один из величайших риффов, когда-либо записанных. В 1966 году существовало только две другие фуззовые педали — FZ-1 и Tone Bender MKI — и импорт экзотического фузза из Англии не был проблемой (пока). С этой целью вы не можете зайти в любой магазин и купить FZ-1; он был популярен менее года после выхода «Satisfaction (I Can’t Get No)».

     

    Три самых известных риффа, использующих «звук Fuzzrite», были записаны либо в Калифорнии, либо калифорнийцами: вышеупомянутый трек Iron Butterfly, «Incense and Peppermints» Strawberry Alarm Clock и «Spirit in the Sky». Норман Гринбаум. Хотя последние два еще не подтверждены, все согласны с тем, что фузрайт делает свое дело.

     

    Если вы хотите сыграть любой из этих риффов или риффов, которые звучат так, как будто они были написаны в то время, кремниевый Fuzzrite сделает эту работу. Однако между германиевой и кремниевой версиями есть довольно заметные различия. В то время как стандартный кремниевый Fuzzrite звучит превосходно, получение германиевой версии — это не просто замена транзисторов. Например, германиевая версия звучит гораздо менее стробированно, чем оригинал, из-за совершенно других резисторов смещения. Одной из таких деталей является резистор 10M из углеродного состава, безумно высокое значение для материала такого типа. Резисторы из углеродного компаунда часто имеют допуск 10%, что означает, что они могут измерять на 10% выше или ниже заявленного значения, оставаясь при этом в спецификации. Для резистора 10 МОм, также известного как 10 миллионов Ом, 10% составляют миллион Ом. Один резистор может измерять 2 МОм отдельно от другого в том же пакете. Разве винтажный пух — это не весело?

     

    К счастью, мы использовали этот артефакт для создания идеальной копии нашего оригинала. Мы вручную протестировали как NOS-транзисторы, так и резистор 10M, чтобы убедиться, что каждое устройство звучит так же, как тот, к которому подключена Iron Butterfly. Если вы когда-либо играли на оригинальном Fuzzrite, германиуме или другом, вы быстро заметите явное отсутствие низких частот. Мы включили переключатель Vintage/Modern, который добавляет столь необходимый бас обратно в тон фузза, чтобы получить полноценный фузз со всей рип и молнией оригинала; вкус, ранее доступный только примерно 200 людям.

     


    Catalinbread Effects
    Fuzzrite Германий
     179,99 $

    Обзор транзисторов: свежий взгляд

    Впервые на Shacknews? Зарегистрируйте бесплатную учетную запись

    У вас уже есть учетная запись? Войти сейчас

    • Обзор

    Transistor — это стильное продолжение Supergiant впечатляющего дебютного альбома Bastion. Достойный ли преемник? Наш обзор.

    3

    Bastion был одним из самых сильных дебютов инди-студий за последнее время, но он также возлагал большие надежды на Supergiant Games. Ничто, кроме совершенства, не могло соответствовать этим высоким высотам. Transistor — выдающаяся работа для второкурсников, демонстрирующая взросление изящного тона и стиля, заложенных в предыдущей игре, даже если во второй раз его голос не такой уникальный.

    Голос для безмолвных

    Голос — подходящая отправная точка, потому что многое из того, что есть в «Транзисторе», озвучено актером Логаном Каннингемом. На этот раз он играет более активную роль, выступая в качестве компаньона безмолвного Рэда. Ее голос был украден богатыми городскими лидерами, известными как Камерата, и Каннингем использует свои таланты в качестве особого техно-меча под названием «Транзистор». Путешествуя с Рэдом и давая комментарии, он обеспечивает столь необходимый контекст для творческого мира Supergiant. Озвучка по всем направлениям просто фантастическая, включая краткий, но детальный поворот от главного антагониста. Но Каннингем особенно сияет ролью, которая дает ему большую широту эмоционального веса, подчеркивающего ключевые темы Транзистора.

    Близость и загробная жизнь

    Все в Transistor кажется откалиброванным, чтобы выразить определенные идеи об интимности, от анимации до искусства окружающей среды. Отношения Рэда с Транзистором не лишены борьбы. Это изображается как бремя, поскольку ее худощавое телосложение может только тащить за собой крупногабаритное оружие. Точно так же он говорит с ней с фамильярностью, которая становится более глубокой по ходу игры. Когда-то он был человеком, который знал ее, но теперь он в ловушке. Он может помочь ей, но разочарован своей неспособностью быть чем-то большим, чем просто объектом. Между тем, его собственное присутствие в подвешенном состоянии и то, как Транзистор подбирает что-то, оставленное другими людьми, вызывает вопросы о том, что с ними происходит. Они тоже в транзисторе? Что такое загробная жизнь в этом мире? Транзистор сознательно задает эти вопросы, а иногда и сам их озвучивает. Supergiant умеет изобретать свои собственные миры, которые действуют по своим собственным правилам, и часть соглашения об их игре означает принятие этих творений на их собственных условиях. Транзистор установлен в городе, Облачном банке, и поэтому, естественно, он наполнен множеством внутренней логики, персонажей и отношений, в которых нужно разобраться. Это невероятно изобретательно, но некоторые части реальности этого мира нечетко определены, что иногда делает вымысел туманным и трудным для отслеживания.

    Придержи эту мысль

    Transistor — это искусный взгляд на стратегическую RPG. Бой почти полностью сосредоточен на тщательном планировании. Вы приостановите действие и поставите в очередь список команд, а затем посмотрите, как они будут выполняться против Процесса — легиона зловещих врагов-роботов, выпущенных Камератой. Вы все еще можете наносить удары по врагам за пределами этого формата, но это явно не так, как было задумано, и, вероятно, его следует использовать для чрезвычайных ситуаций. Бой приятно напряжен в момент, когда вы выстраиваете команды в очередь и наблюдаете, как они уничтожают ваших врагов, но между ними не так много дел. Пока счетчик перезаряжается, у вас действительно нет другого выбора, кроме как убежать и выжидать. Это делает битвы несколько непоследовательными: интересно планировать свою стратегию и зачищать головорезов Процесса, но слишком много времени тратится на поиск убежища и ожидание повторного появления подсказки.

    Рыжая берет на дрочка

    Однако такой подход побуждает к экспериментам. Красный находит или зарабатывает 16 способностей в ходе прохождения Транзистора, и каждая из них имеет три разные функции: сама основная атака, сопоставленная с одной из кнопок; модификатор другой способности, которая сопоставлена; или пассивная способность. Способность «Разрыв», например, была опорой в моем арсенале, но ее можно было так же легко использовать, чтобы дать больше действий по планированию или повысить эффективность другой атаки. В конце концов, каждая сопоставленная способность может иметь два модификатора в дополнение к вашим пассивным чертам, поэтому игра со всеми ними, чтобы найти идеальную комбинацию, является обязательным условием, чтобы насладиться Transistor в полной мере. Он даже поощряет частую замену этих функций. Детали истории открываются путем размещения оборудования в разных позициях. Кроме того, если ваше здоровье истощается, один из ваших навыков ломается, пока вы не найдете определенное количество станций способностей. Было бы безрассудно продолжать работать со сломанной функцией, поэтому вам придется заменить ее на ту, которую вы, возможно, не пробовали. Я ловил себя на том, что ворчу на игру за то, что она заставила меня сделать это, но обычно обнаруживал какую-то новую идею или боевой аспект, который мне нравился еще больше. Если Transistor покажется вам слишком простым, вы можете экипировать любую комбинацию нескольких модификаторов сложности, которые дают свои собственные награды, обычно в виде увеличения опыта. Транзистор короткий, но кажется подходящим для истории, которую он рассказывает, и сразу после этого доступен второй «рекурсивный режим», который ремиксует врагов.

    Заключение

    Бастион определенно не был случайностью.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *