Напряжение электрического тока: Электрическое напряжение: определение, виды, единицы измерения

Содержание

9.2 Электрическое напряжение — fizikalexcras

Интерактивное изложение материала по теме

Электрическое напряжение. Измерение напряжения  Подборка заданий «Электрическое напряжение, сила электрического тока»

Слайд-шоу «Солнечные батареи»
Слайд-шоу «Электрическое напряжение в природе»
Рисунок «Вольтметр» 
Подборка заданий «Электрическое напряжение, сила электрического тока»
Слайд-шоу «Опасное напряжение»
Слайд-шоу «Подключение приборов к электрической сети»

Напряжение электрического тока

 Электрический ток – это проходящие через проводник электроны, несущие отрицательный заряд. Объем этого заряда или, иными словами, количество электричества характеризует силу тока. Сила тока одинакова на всех участках цепи. Электроны не могут исчезать или «спрыгивать» с проводов. Поэтому, силу тока мы можем измерить в любом месте электрической цепи. Однако, будет ли одинаковым действие тока на разные участки этой цепи? Проходя по проводам, ток лишь слегка их нагревает, не совершая при этом большой работы. Проходя же через спираль электрической лампочки, ток не просто сильно нагревает ее, он нагревает ее до такой степени, что она, раскаляясь, начинает светиться. То есть в данном случае ток совершает большую работу.

Определение электрического напряжения

Определение: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током.

Напряжение  – это физическая величина, характеризующая действие электрического поля на заряженные частицы.

Напряжение показывает, какую работу совершает электрическое поле по перемещению единицы заряда на данном участке цепи.  Постоянный ток: Напряжение.

Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула:
где U — напряжение,
A – работа, совершенная током по перемещению заряда q  на некий участок цепи.  Электрическое напряжение

Напряжение на полюсах источника тока


Напряжение на полюсах источника тока означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии,

которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

Вольтметр

Для измерения напряжения существует прибор, называемый вольтметром. В отличие от амперметра, он подключается  параллельно нагрузке. В таком случае вольтметр показывает величину напряжения, приложенного к нагрузке. Для измерения напряжения на полюсах источника тока, вольтметр подключают непосредственно к полюсам прибора.

Электрическое напряжение

Электрическое напряжение – это такое понятие, которое не может существовать отдельно от остальных электрических величин. И, в первую очередь, необходимо начать с понятия электрического тока. Всем известно, что электротоком называется упорядоченное движение в проводнике заряженных частиц. Для его возникновения, предварительно создается электрическое поле, действие которого и приводит в движение данные заряженные частицы.

Понятие электрического напряжения

Возникновение электрических зарядов в случае тесного контакта различных веществ между собой. В проводниках происходит свободное перемещение зарядов между различными частями, а в изоляторах, это совершенно невозможно. Однако, все тела разделяются на проводники и изоляторы достаточно условно, поскольку все вещества в той или иной степени проводят электроток. Обычный ток существует очень недолго, до тех пор, пока в наэлектризованном теле не закончится заряд. Для того, чтобы ток поддерживался в течение длительного времени, в проводнике должно поддерживаться электрическое поле с помощью какого-либо источника тока.

Действие тока может быть сильным или слабым. На этот показатель влияет величина заряда, протекающего по цепи за определенный период времени. Отсюда получается показатель, называемый силой тока и представляющий собой величину заряда, проходящего через поперечное сечение проводника за единицу времени.

Работа электрического поля

Электрическое поле, перемещая заряженные частицы, производит своего рода работу, называемую работой электрического тока. Работа заключается в перемещении определенного количества зарядов в течение одной секунды. Таким образом, работа находится в зависимости от силы тока. Однако,есть еще одна величина, которая влияет на значение электротока, называемая напряжением. Электрическое напряжение – это величина, которая показывает, какую работу необходимо произвести для перемещения заряда на определенном участке цепи.

Единицей измерения тока является джоуль, а единицей измерения заряда – кулон. Значение напряжения выражается отношением джоуля к кулону и получило общее название вольт. Для возникновения напряжения в цепи, обязательно необходим источник тока. Если цепь разомкнута, то напряжение остается лишь в источнике, на его клеммах. Когда источник включается в общую цепь, напряжение образуется на ее отдельных участках, то есть в цепи появляется ток. Получается, что при отсутствии в цепи напряжения, отсутствует и электроток. Напряжение тока измеряется с помощью вольтметра, параллельно включаемого в электрическую цепь.

В чём измеряется напряжение

Электрическое напряжение

Вспомним, что назначение любого источника электроэнергии – долговременное поддержание неодинаковых зарядов его полюсов, чтобы между ними существовало электрическое поле (см. § 8-ж). Только оно может двигать заряженные частицы в проводах и потребителях, приводя к возниковению электротока с нужной нам мощностью.

Обратимся к опыту (см. рисунок). Через обе лампы проходит ток одинаковой силы: 0,4 А. Но большая лампа светит ярче, то есть работает с большей мощностью, чем маленькая. Получается, что мощность может быть различной при одинаковой силе тока.

Кроме силы тока, на мощность тока в проводнике влияет и вторая физическая величина – электрическое напряжение. Известно, что напряжение, создаваемое «батарейкой», меньше напряжения, создаваемого электросетью. Это значит, что поле между полюсами батарейки, двигая электроны по проводам и лампе слева, создаёт ток меньшей мощности, чем поле между контактами в розетке, двигающее электроны по проводам и лампе справа. Поэтому яркость ламп различна.

В физике зависимость электрической мощности одновременно от силы тока и электрического напряжения представляют произведением:

      P  =  I · U P – мощность электрического тока, Вт
I – сила электрического тока, А
U – электрическое напряжение, В
     

Для измерения электрического напряжения используют прибор вольтметр (см. рисунок). Его всегда присоединяют параллельно тому участку цепи, на котором измеряют напряжение. Единица электрического напряжения – 1 вольт (1 В). Это такое напряжение, которое при силе тока 1 А создаёт ток мощностью 1 Вт. Примечание: физический смысл электрического напряжения мы изучим в следующем параграфе.

Познакомимся теперь с законами распределения напряжений в цепях с различными соединениями проводников. Проведём опыты.

На схемах а-б-в лампа и реостат соединены последовательно. Сначала вольтметр подключён к крайним точкам соединения лампы и реостата (схема а), и напряжение обозначено символом Uобщ. Затем вольтметр присоединён только к лампе (схема б), и напряжение обозначено символом U1. После вольтметр присоединён только к реостату (схема в), и напряжение обозначено символом U2.

Многократные измерения в этом и аналогичных опытах показывают, что в цепи с последовательным соединением проводников напряжение на всём соединении равно сумме напряжений на отдельных проводниках:

  Uобщ  =  U1  +  U2  +  …  

На схемах г-д-е две лампы соединены параллельно. Сначала вольтметр подключён к крайним точкам соединения ламп (схема а), и напряжение обозначено Uобщ. Затем вольтметр присоединён к первой лампе (схема б), и напряжение обозначено U1. После вольтметр присоединён ко второй лампе (схема в), и напряжение обозначено U2.

Многократные измерения в этом и аналогичных опытах показывают, что в цепи с параллельным соединением проводников напряжение на каждом из проводников равно напряжению на всём соединении:

  Uобщ  =  U1  =  U2  =  …

Урок з електробезпеки для старших класів

ЗАНЯТИЕ В ОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЯХ ПО ТЕМЕ «ЭЛЕКТРОБЕЗОПАСНОСТЬ»

(для средних и старших классов)

 

 

 

План проведения занятия

  1. Введение: электричество друг или враг?
  2. Представление об опасности электрического тока.
  3. Электричество в быту.
  4. Правила поведения вблизи энергообъектов.
  5. Действие электрического тока на организм человека.
  6. Помощь пострадавшему от электрического тока.
  7. Противозаконные действия на энергообъектах и их последствия.
  8. Предупреждающие знаки по электробезопасности.
  9. Вывод: берегите свою жизнь и жизнь своих друзей!

 

1. Введение

Ребята! Вы хорошо знаете, какую важную роль играет электроэнергия в народном хозяйстве, быту и учебе. Она дает нам свет, тепло, приводит в движение различные механизмы, облегчающие труд человека. Электроэнергия заняла настолько прочное место в нашей жизни, что сейчас обойтись без нее просто невозможно. Она наш незаменимый помощник. Но, оказывая огромную помощь людям, электроэнергия таит в себе смертельную опасность для тех, кто не знает или пренебрегает правилами электробезопасности, не умеет обращаться с бытовыми приборами, нарушает правила поведения вблизи энергообъектов.

 

2. Представление об опасности электрического тока

Опасность для жизни человека представляют электроустановки любого напряжения. Запомните: безопасного тока не существует! 

Электроустановки – это оборудование, которое используется энергетиками для передачи электрической энергии, а также все бытовые приборы, окружающие нас в повседневной жизни.

Человек, коснувшись токоведущих частей электроустановок и неизолированных проводов, находящихся под напряжением, оказывается включенным в электрическую цепь. Под воздействием напряжения через его тело протекает электрический ток, который нарушает нормальную работу организма, из-за чего возникают судороги, прекращается дыхание и останавливается сердце, возникают тяжелые ожоги. Человек может погибнуть или стать инвалидом.

Чем больше величина тока, протекающего через тело, тем он опаснее! 

Величина тока тем больше, чем выше напряжение, под которым оказался человек.

Безопасным считается напряжение 12 вольт. Наибольшее распространение в промышленности и сельском хозяйстве и быту получили электрические сети, напряжением 220 — 380 вольт

(220 вольт — для освещения и бытовых приборов, 380 вольт — для трехфазных электродвигателей и других промышленных потребителей). Но это напряжение очень опасно для человека.

Наибольшее количество смертельных электротравм происходит с людьми, попавшими под напряжение 220 — 380 вольт.

Электрические приборы, которыми вы пользуетесь дома и в школе, электрические сети и подстанции, мимо которых вы проходите во дворе, на улице и в поле, при нормальной работе безопасны. Конструкторы и энергетики позаботились о том, чтобы исключить случайное прикосновение к токоведущим частям.

Однако, при различных повреждениях изоляции, обрыве проводов, подъеме на опоры, проникновении в подстанции и электрические щитовые, играх вблизи электрооборудования возникает реальная угроза для жизни.

Вот почему так важно всем знать правила обращения с электрическими приборами и другими электроустановками, во время предупредить товарища об опасности шалости вблизи электрических линий и подстанций, уметь обезопасить себя и других людей при обнаружении повреждения в электрической сети.

 

3. Электричество в быту

Правила обращения с электрическими приборами не сложны, и их легко запомнить:

1). Вы не должны самостоятельно заменять электролампы и предохранители, производить ремонт электропроводки и бытовых приборов, открывать задние крышки телевизоров и радиоприемников, устанавливать звонки, выключатели и штепсельные розетки. Пусть это сделают взрослые или специалист-электрик!

 

2). Нельзя пользоваться выключателями, штепсельными розетками, вилками, кнопками звонков с разбитыми крышками, а также бытовыми приборами с поврежденными, обуглившимися и перекрученными шнурами. Это очень опасно!

Вы не должны проходить мимо подобных фактов. Своевременно сообщайте взрослым о повреждениях!

Запомните, разбивая ради боловства крышки выключателей, звонков, штепсельных розеток, повреждая электропроводку, вы, тем самым, совершаете проступок равный преступлению, так как это может привести к гибели людей.

 

3). Опасность поражения людей электрическим током очень велика в помещениях с земляными, цементными и бетонными полами, хорошо проводящими электрический ток (это ванные комнаты, бани, сараи, гаражи, подвалы). В этих помещениях должны применяться электроприборы и переносные электролампынапряжением 12 вольт, включенные через специальный понижающий трансформатор. Такое же напряжение должно применяться для переносных приборов и ламп, применяемых в саду, огороде и во дворе.

Некоторые люди пренебрегают этим и присоединяют непосредственно к сети напряжением 220 вольт бытовые электроприборы в ванных комнатах, пользуются переносными электролампами в гаражах и подвалах, устанавливают электроплитки в сырых помещениях и сараях, а подобные нарушения приводят к печальным последствиям.

Примеры: 

— Мальчик решил приготовить уроки вечером в саду. Взяв включенную через удлинитель напряжением 220 вольт настольную лампу, в которой была повреждена изоляция внутренних проводов, он стал выходить из дома. В комнате по его телу, очевидно, проходил небольшой электрический ток, который он не ощущал, так как сухой деревянный пол оказывал большое сопротивление. Но как только мальчик коснулся земли, сопротивление резко снизилось, ток увеличился, и мальчик был смертельно поражен электрическим током.

 

— Юноша 16 лет самовольно провел проводку напряжением 220 В в погреб и при ввертывании лампы коснулся пальцем цоколя и погиб.

Имеются случаи гибели людей, которые производили замену электроламп и ремонт электропроводок под напряжением, стоя на батареях отопления, водопроводных трубах, ваннах, газовых плитах и других хорошо заземленных предметах или касаясь их.

 

Запомните! 

Запрещается пользоваться электрическими приборами и переносными электролампами напряжением 220 вольт в помещениях и на открытом воздухе при наличии земляных, цементных, бетонных и других полов, хорошо проводящих электрический ток, а также в сухих помещениях, в которых не исключена возможность одновременного прикосновения к электроприбору и хорошо заземленным предметам.

 

4). Если вы, прикоснувшись к корпусу электроприбора, трубам и кранам водопровода, газа, отопления, ванне и другим металлическим предметам почувствуете «покалывание» или вас «затрясет», то это значит, что данный предмет находится под напряжением в результате какого-то повреждения электрической сети. Это сигнал серьезной опасности!

В других, более худших условиях (например, стоя босиком на мокром полу), повторное прикосновение к этому же предмету, находящемуся под напряжением, может привести к смертельному поражению электрическим током.

Что необходимо сделать в этих случаях:

— немедленно отключить поврежденный электроприбор от сети;

— если появилось напряжение на трубах, ванне и т. д., немедленно отключить электросеть при помощи автоматических выключателей или выкручивания предохранителей у электросчетчика;

— предупредить окружающих об опасности и немедленно сообщить о случившемся взрослым!

 

4. Правила поведения вблизи энергообъектов

Энергообъекты – это воздушные и кабельные линии электропередачи, подстанции, трансформаторные подстанции, распределительные пункты. 

Воздушные линии электропередачи напряжением 35, 110 тысяч вольт или киловольт и выше отвечают за электроснабжение городов и поселков. Воздушные и кабельные линии электропередачи напряжением 6, 10 киловольт отвечают за электроснабжение внутри городов и поселков, а также сельских населенных пунктов. Линии электропередачи напряжением 380 вольт обеспечивают электроэнергией многоквартирные жилые дома или улицы, а 220 вольт — отдельные квартиры и дома. 

Подстанции делятся на подстанции высокого класса напряжения — 35 киловольт и выше и трансформаторные подстанции напряжением 6, 10 киловольт. Подстанции предназначены для понижения напряжения в сети переменного тока и для распределения электроэнергии. Трансформаторные подстанции расположены в каждом населенном пункте и в силу их повсеместности представляют особую опасность для населения!

Все электроэнергетические объекты несут в себе реальную опасность для жизни!

 

1). Самое большое количество тяжелых несчастных случаев, связанных с поражением электрическим током, происходит в результате прикосновения к провисшим проводам и приближении или прикосновении к оборванным проводам, лежащим на земле. 

 

 

Примеры:

— На одной из воздушных линий напряжением 6 киловольт из-за сильного ветра произошло повреждение, которое привело к провисанию провода над дорогой. Четырнадцатилетний мальчик, проезжая на велосипеде под линией, поднял руку и коснулся провода. В результате он получил тяжелые ожоги ног и руки.

— Пятнадцатилетний мальчик, проезжая на лошади под провисшими проводами воздушной линии 6 киловольт, коснулся головой провода. Он погиб, была убита и лошадь.

— Подросток близко подошел к оборванному проводу воздушной линии электропередачи напряжением 10 киловольт, лежащему на земле. Не коснувшись провода, он попал под «шаговое» напряжение, потерял сознание и упал.

— Во время сильного ветра был сорван провод с изоляторов воздушной линии электропередачи, который упал на землю, продолжая находиться под напряжением. Шел дождь, провод лежал в луже. Проходившие мимо школьники решили убрать провод, и в момент прикосновения к нему два мальчика были поражены током, один из них погиб. 

Большую опасность таит в себе оборванный провод воздушной линии электропередачи 0,4, 6, 10 и 35 киловольт, лежащий на земле. Особенность электрической сети с таким напряжением состоит в том, что даже после обрыва провод может находиться под напряжением. Электрический ток при этом начинает «стекать» в землю, и участок земли вокруг провода оказывается под электрическим потенциалом, причем, чем ближе до точки контакта провода с землей, тем больше потенциал. Если человек будет проходить по такому участку, его ноги за счет шага могут оказаться на различном удалении от точки замыкания провода на землю, а значит, под разными электрическими потенциалами. Разность потенциалов, под которыми находятся ноги человека, создает электрическое напряжение, называемое шаговое напряжение. Под действием тока в ногах возникают судороги, человек падает, и цепь тока замыкается вдоль его тела через дыхательные мышцы и сердце. Поэтому, увидев оборванный провод, лежащий на земле, ни в коем случае не приближайтесь к нему на расстояние ближе 8 метров. Попавшему в зону «шагового напряжения» нельзя отрывать подошвы от поверхности земли. Передвигаться следует в сторону удаления от провода «гусиным шагом» — пятка шагающей ноги, не отрываясь от земли, приставляется к носку другой ноги.

 

Чтобы избежать беды нужно твердо помнить!

— к провисшим и оборванным проводам воздушных линий электропередачи, радиотрансляции и связи прикасаться нельзя;

— опасно подходить к проводу, лежащему на земле ближе, чем на 8 метров;

— подходя к воздушной линии электропередачи, необходимо убедиться, что на вашем пути нет провисших и оборванных проводов.

 

Обнаружив поваленные опоры, оборванные и провисшие провода немедленно организуйте охрану места повреждения, чтобы другие люди и животные не коснулись проводов. Охрану прерывать нельзя! Постарайтесь криком привлечь внимание людей, сообщите о случившемся кому-нибудь из взрослых или позвоните по телефону в РЭС (желательно в этом месте беседы указывать телефон диспетчера РЭС). Если вокруг длительное время нет людей и у вас нет с собой телефона, сделайте ограждение места повреждения из имеющегося под рукой материала: палок, веток деревьев и т. д., при этом помня, что к месту обрыва провода нельзя приближаться ближе чем на 8 метров, после этого можно пойти к ближайшему телефону для сообщения об аварии.

 

2).Каждый должен знать, что земля, бетонный или кирпичный пол могут проводить через себя электрический ток. Поэтому, стоя на таком основании и коснувшись любыми частями тела оголенного или поврежденного провода, человек попадает под напряжение, через его тело проходит электрический ток и он может погибнуть.

Примеры: 

— При переходе с поднятым вверх удилищем под воздушной линией коснулся провода удилищем и погиб 18-летний юноша.

— 6-летний мальчик погиб от электротравмы, которую он получил, коснувшись провода на крыше одноэтажного дома, где он играл с друзьями.

3).Большую опасность представляют провода воздушных линий, расположенные в кроне деревьев или кустарников или вблизи от них. Не прикасайтесь к таким деревьям и не раскачивайте их, особенно в сырую погоду! Они служат проводником электрического тока.

Пример:

— 7-летний мальчик, играя во дворе дома, залез на высокую березу и, раскачиваясь на ветвях, приблизился к проводам линии напряжением 10 киловольт и был поражен электрическим током. 

 

4).К печальным последствиям приводят игры вблизи воздушных линий электропередачи и трансформаторных подстанций, а нередко озорство и лихачество отдельных ребят.

Пример:

— Ребята из озорства сделали наброс тонкой проволоки на один из проводов воздушной линии электропередачи и погибли от удара электрическим током.

 

5). Важно знать, что попасть под напряжение можно и не касаясь токоведущих частей, а только приблизившись к ним. В воздушном промежутке между электроустановкой и телом человека возникнет электрическая дуга и нанесет несовместимые с жизнью ожоги.

Примеры:

— Подросток влез на металлическую опору воздушной линии напряжением 110 киловольт, чтобы палкой спугнуть с нее голубя. Приблизившись к проводу, он был смертельно поражен электрическим током. 

— 5-классник, игравший со своими сверстниками рядом с электроустановкой, несмотря на предупредительные плакаты, поднялся по дверцам ячейки на крышу электроустановки, приблизился к токоведущим частям и был поражён током. 

— подросток 14 лет сломал вентиляционную решетку трансформаторной подстанции и залез в нее с целью хищения цветного металла. Случайно прикоснувшись к токоведущим частям попал под напряжение и погиб.

— два мальчика с насыпи полезли на крышу трансформаторной подстанции чтобы поиграть. Приблизились к высоковольтным проводам и получили удар током. Один из них остался инвалидом.

    

 

Запомните, категорически запрещается:

— играть вблизи воздушных линий электропередачи и подстанций; 

— делать набросы на провода воздушных линий и запускать «воздушного змея» вблизи них;

— влезать на опоры воздушных линий, приставлять к ним лестницы и другие предметы;

— проникать за ограждение, внутрь или на крышу подстанций, открывать дверцы электрических щитков;

— залезать на крыши домов и сооружений, а также деревья, если вблизи проходят линии электропередачи.

 

6). Летом, находясь в походе, опасно останавливаться на отдых вблизи воздушных линий электропередачи, либо подстанций.

 

Пример: 

— семья отдыхала па берегу реки, поставив палатку в уютном уголке под проводами воздушной линии электропередач. От порыва ветра дерево упало на провода, оборвав провод, и он упал на землю вблизи 15-летней девушки, которая в это время загорала около палатки. Девушка была смертельно поражена электрическим током. Ее мать, пытаясь оказать помощь, приблизилась к телу дочери и тоже погибла.

 

Запомните!

Категорически запрещается вблизи воздушных линий электропередачи и подстанций устраивать стоянки, устанавливать палатки, разводить костры, делать причалы для лодок, удить рыбу.

 

5. Действие электрического тока на организм человека

Опасность электрического тока состоит в том, что у человека нет органов чувств для обнаружения на расстоянии электрического тока. Электрический ток не имеет запаха, цвета и действует бесшумно. Невозможно без специальных приборов узнать, находится ли данная часть электроустановки под напряжением или нет. Это приводит к тому, что люди часто не осознают реально имеющейся опасности и не принимают необходимых защитных мер. 

Электрический ток, проходя через тело человека, оказывает биологическое, электролитическое, механическое и термическое действие.

Термическое действие проявляется в виде ожогов участков кожи тела, перегрева различных органов, а также возникающих в результате перегрева разрывов кровеносных сосудов и нервных волокон. 

Электролитическое действиевыражается в разложении органической жидкости, в том числе крови, что сопровождается значительными нарушениями их физико-химического состава.

Биологическое действие проявляется в раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биоэлектрических процессов, что приводит к непроизвольным судорожным сокращениям мышц, нарушению нервной системы, органов дыхания и кровообращения. При этом могут наблюдаться обмороки, потеря сознания, расстройство речи, судороги, нарушение дыхания (вплоть до остановки). 

Механическое действиепроявляется в возникновении давления в кровеносных сосудах и тканях организма при нагреве крови и другой жидкости, а также механическом напряжении и разрыве тканей в результате непроизвольного сокращения мышц при воздействии электрического тока.

Большое значение в исходе поражения имеет путь, проходимый током в теле человека, и время воздействия тока на человека. Поражение будет более тяжелым, если на пути тока оказываются сердце, грудная клетка, головной и спинной мозг. Наиболее опасными путями прохождения тока через человека являются: рука-ноги, рука-рука, голова-ноги, голова-рука.

Непосредственными причинами смерти человека, пораженного электрическим током, является прекращение работы сердца и остановка дыхания вследствие паралича мышц грудной клетки. Наиболее неблагоприятный исход поражения человека электрическим током будет в случаях, когда прикосновение произошло влажными руками или в сыром помещении.

 

6. Помощь пострадавшему от электрического тока

Необходимо помнить, человека, пораженного электрическим током можно спасти, вернуть к жизни, если правильно и главное, быстро оказать ему помощь.

Нельзя отказываться от оказания помощи, если человек неподвижен, не дышит, у него нет пульса. Заключение о наступлении смерти может сделать только врач.

Если человек попал под действие электрического тока необходимо, прежде всего, быстро (дорога каждая секунда!) освободить пострадавшего от действия электрического тока, так как человек, находящийся под напряжением, не может из-за судорог или потери сознания самостоятельно оторваться от провода, корпуса прибора. Если это произошло в помещении, отключите провод или прибор, выключив выключатель, выдернув вилку из розетки, выключив автоматические выключатели у электросчетчика, выкрутив предохранители у электросчетчика;

Но в реальных условиях это сделать достаточно сложно. 

Лучше это сделают взрослые, специалисты электрики. Позовите их на помощь! 

Оказать эффективную помощь пострадавшему от электрического тока может человек, хорошо знающий «Правила освобождения пострадавшего от электрического тока и оказания первой помощи».

Необходимо запомнить: нельзя приближаться к пострадавшему, так как сам можешь попасть под напряжение. Если это случится, то кто окажет помощь вам и пострадавшему?

Соблюдение техники безопасности – это не лишняя предосторожность и не проявление трусости. Это обязательное условие, которым нельзя пренебрегать.

Ни в коем случае нельзя позволять пострадавшему, освобожденному от действия электрического тока, двигаться, а тем более продолжать работу или игру, так как отсутствие видимых тяжелых повреждений от электрического тока или других причин (падения и т. п.) еще не исключает возможности последующего ухудшения его состояния.

Только врач может решить вопрос о состоянии здоровья пострадавшего.

Переносить пострадавшего в другое место следует только в тех случаях, когда ему или лицу, оказывающему помощь, продолжает угрожать опасность или когда оказание помощи на месте невозможно.

В случае невозможности вызова врача на место происшествия необходимо обеспечить транспортировку пострадавшего в ближайшее лечебное учреждение. 

 

7. Противозаконные действия и их последствия

Особо стоит сказать о кражах проводов, цветных и черных металлов с энергообъектов. Эти противозаконные действия провоцируют аварийные ситуации и ставят под угрозу надежность электроснабжения учреждений здравоохранения, детских садов, школ. При этом воры подвергают свое здоровье, а подчас и жизнь, серьезной опасности. Очень часто, проникновение злоумышленников на энергообъекты приводит к гибели, среди погибших есть дети и подростки.

Представьте себе оставленный без света населенный пункт, в котором помимо жилых домов есть еще и больница, родильный дом, детский сад, школа, объекты теплоснабжения. Перед глазами возникают страшные картины внезапно гаснущей операционной, отключения аппаратов искусственного дыхания. Видимо охотников за «легкой наживой» это не особо волнует. 

Подвергая опасности свою жизнь, жизнь и здоровье других людей, злоумышленники не задумываются и о собственной безопасности. Они порой просто не понимают всей той угрозы, которую несёт электрический ток, а если и осознают, то корысть берёт верх над всем остальным. Порой, украденный провод может стоить самого ценного на земле – человеческой жизни. К таким же тяжелым последствиям может привести намеренное или случайное повреждение электрооборудования.

Лица, виновные в повреждении электрических сетей возмещают причиненный ущерб, а также привлекаются к ответственности в установленном Законом порядке.

Пример:

— юноша проник в трансформаторную подстанцию, открыл дверцу и при попытке открутить гайку прикоснулся ключом, зажатым в руке, к оборудованию, находящемуся под напряжением и был смертельно травмирован.

— два человека срубили дерево вблизи от охранной зоны воздушной линии электропередачи, дерево, падая, коснулось проводов воздушной линии электропередачи напряжением 110 кВ, оба человека получили электротравму не совместимую с жизнью.

— человек ради воровства электроэнергии попытался сделать наброс на провода домового ввода. Случайно прикоснулся к проводам рукой и был смертельно поражен электротоком.

— отец с 14-летним сыном собрались похитить провода линии электропередачи. Поднявшись на опору мальчик прикоснулся к проводу и погиб.

      

8. Предупреждающие знаки по электробезопасности

Для предотвращения случайного проникновения в электроустановки, и тем самым предотвращения поражения электрическим током людей, существуют специальные предупреждающие знаки и плакаты. Они вывешиваются или наносятся на опоры воздушных линий электропередачи любого напряжения, двери различных электрощитов, в которых находится электрооборудование, на ограждениях и заборах, огораживающих электроустановки. Наличие таких знаков подразумевает запрет проникновения со стороны населения в электроустановки или подъем на опору линий электропередачи.

Знаки предупреждают человека об опасности поражения электрическим током. Пренебрегать ими, а тем более снимать и срывать их — недопустимо.

  

9. Вывод

Ребята, не огорчайте родителей своими необдуманными действиями! Остановите, предостерегите товарища от опасной шалости вблизи энергообъектов! Этим вы спасете ему жизнь!

При обнаружении обрыва проводов, искрения, повреждения опор, изоляторов, незакрытых или повреждённых дверей трансформаторных подстанций или электрических щитов, обнаружении сорванных знаков и плакатов по электробезопасности во избежание несчастных случаев необходимо незамедлительно сообщить взрослым и в РЭС.

 

Порой кажется, что беда может произойти с кем угодно, только не с нами. Это обманчивое впечатление!

Будьте осторожны ребята! Берегите свою жизнь и жизнь своих друзей!

Напряжение: формулы, единицы измерения, природа явления

Электричество воспринимается нами как данность и вряд ли кто задумывается над тем, что такое электрическое напряжение и какова его физическая сущность, когда включает свет, компьютер или стиральную машину. На самом же деле оно заслуживает гораздо большего внимания, и не только потому, что может быть смертельно опасным, но и из-за того, что Человечество, овладев этим видом энергии, совершило качественный цивилизационный скачок.

Природа электрического напряжения

Вспомним один из наиболее интересных моментов на школьном уроке физики, когда преподаватель вращал диск электрической машины, а между металлическими шариками проскакивала искра. Это и есть видимое отражение природного феномена под названием электрический ток. Он возникает из-за того, что на одном шарике отрицательно заряженных ионов больше, а на другом меньше, из-за чего возникает разность потенциалов, то есть факт, нарушающий основной закон Природы – сохранения энергии.

Отрицательно заряженные частицы стремятся переместиться туда, где их меньше, тем самым обнулив разницу. Конечно же, электроны не проходят весь путь между заряженными шариками, называемых полюсами. Их пробег ограничивает кристаллическая решетка, узлов которой они не могут покинуть. Зато способны удариться о соседние частицы и передать импульс по цепочке дальше, создавая эффект домино. Каждое такое соударение порождает выплеск энергии, из-за чего система переходит из состояния покоя в возбужденное, которое и принято называть электрическим напряжением.

Сила, движущая заряженные частицы

Чтобы поставить себе на службу электрическое напряжение и ток, человеку надо было найти силу, которая могла возобновлять разницу потенциалов между полюсами, порождая непрерывное соударение частиц кристаллической решетки. Их оказалось целых три:

  1. Электромагнитная индукция – возникновение тока в результате взаимозависимого перемещения металлов в магнитном поле. Используется в генераторах постоянного и переменного тока.
  2. Электрохимическое взаимодействие, порождаемая разностью потенциалов кристаллических решеток веществ. Используется в аккумуляторах, батареях питания постоянного тока.
  3. Термохимическая реакция, повышающая активность электронов в результате нагрева.

Сила, порождающее движение заряженных частиц, получила наименование «электродвижущая» (аббревиатура ЭДС) и обозначается на схемах буквой «Е», обычно сопутствующей мнемосимволам разъемов, к которым подключается источник питания.

Вольты и амперы

ЭДС и напряжение измеряются в вольтах – условной единице, названной в честь итальянца Алессандро Вольты, официально признанного изобретателя гальванической батареи – источника постоянного тока. Это количество работы, которая совершается при перемещении единицы заряда (кулона), если при этом был потрачен 1 джоуль условной энергии.

Однако существует и вторая единица измерения электрического тока – ампер, названная в честь французского физика Андре-Мари Ампера. Традиционно ее называют силой тока, хотя правильнее применять термин «магнитодвижущая сила», что наиболее полно отражает двуединую физическую сущность заряженной частицы.

Магнитное и электрическое поля электрона стремятся к взаимной компенсации, а их зависимость определяется законом Ома, описываемого формулой I = U / R. Если сопротивление среды резко падает (например, при коротком замыкании), то сила тока растет по экспоненте. Это вызывает ответное падение напряжения, в результате чего система приходит в равновесное состояние. Подобный эффект можно заметить во время работы сварочного трансформатора, когда при возникновении дуги лампы накаливания почти гаснут.

Существует и другой эффект: при большом сопротивлении среды заряд одного знака копится на какой-либо поверхности до тех пор, пока напряжение не достигнет критического уровня, после чего происходит пробой (возникновение тока) в направлении поверхности с наибольшей разницей потенциала. Статическое напряжение чрезвычайно опасно, поскольку в момент разряда оно может порождать токи силой в сотни ампер. Поэтому металлические конструкции, длительное время находящиеся в магнитном поле, обязательно заземляются.

Постоянный или переменный?

Напряжение – это статическая составляющая электричества, а сила тока – динамическая, ведь его направление меняется вместе с полярностью на концах проводника. И это свойство оказалось очень полезным для распространения электричества по Миру. Дело в том, что любой ток затухает из-за внутреннего сопротивления среды, согласно всё тому же закону сохранения энергии. Но оказалось, что двигающийся в одну сторону поток электронов усилить очень сложно, а циклически изменяющий направление – просто, для этого применяется трансформатор с двумя обмотками на одном сердечнике.

Чтобы получить переменный ток, надо вывернуть наизнанку принцип, открытый Фарадеем, который в своем прообразе электрического генератора вращал медный диск в поле действия постоянного магнита. Никола Тесла сделал наоборот – поместил вращающийся электромагнит внутрь неподвижной обмотки, получив неожиданный эффект: в момент прохождения полюсов через нейтраль магнитного поля амплитуда напряжения падает до нуля, а потом снова растет, но уже с другим знаком. За один оборот направление движения электронов в проводнике меняется два раза, составляя рабочую фазу. Поэтому переменный ток называют еще и фазным. А порождающее его напряжение – синусоидальным.

Никола Тесла создал генератор с двумя обмотками, расположенными под углом в 900 друг к другу, а русский инженер М.О. Доливо-Добровольский усовершенствовал его, расположив на статоре три, что увеличило стабильность работы электрической машины. В результате этого промышленный переменный ток стал трехфазным.

Почему 220 вольт 50 Гц?

В нашей стране бытовая однофазная сеть имеет номиналы 220 вольт и 50 герц. Причина появления именно этих цифр весьма интересна.

Пальма первенства в бытовом освоении электричества принадлежит Томасу Эдисону. Он использовал исключительно постоянный ток, поскольку гениального изобретения Николой Тесла переменного еще не произошло.

Первым электрическим прибором оказалась лампа накаливания с угольной нитью. Опытным путем было установлено, что лучше всего она работает при напряжении в 45 вольт и включенном в цепь балластном сопротивлении, обеспечивающим рассеивание еще двадцати. Приемлемая длительность работы обеспечивалась последовательным включением двух ламп. Итого в бытовой сети, по мнению Эдисона, должно было быть 110 вольт.

Однако передача постоянного тока от электростанций к потребителям сопровождалась большими трудностями: через одну-две мили он затухал полностью. По Закон Джоуля — Ленца количество тепла, рассеиваемое проводником при прохождении тока, вычисляется по следующей формуле: Q = R . I2. Чтобы снизить потери вчетверо, напряжение увеличили до 220 вольт, а силовую линию построили из трех проводников – с двумя «плюсами» и одним «минусом». Потребитель получал все те же 110 вольт.

Противостояние Николы Теслы и Томаса Эдисона, названное «Войной токов», решилось в пользу переменного, поскольку его можно было передавать на большие расстояния с минимальными потерями. Тем не менее напряжение между силовыми проводниками осталось 220, а линейное, поступающее к потребителю – 127 вольт, поскольку из-за сдвига фаз на 120 градусов амплитуды напряжения не складываются арифметически, а умножаются на 1,73 – корень квадратный из трех.

В СССР сетевым номиналом 127 вольт в одной фазе пользовались до начала 60-х годов. В ходе усовершенствования электрических линий, проводимого с целью увеличения передаваемой мощности, конструкторы пошли по тому же пути, что и Эдисон – повысили напряжение.

За точку отсчета приняли 220 вольт, которые измерялись между фазами. Оно стало бытовым. А промышленное межфазное напряжение 380 вольт получилось умножением 220 на 1,73. Частота 50 Гц – это 3 тыс. колебаний в минуту, то есть, оптимальное количество оборотов коленвала дизеля или другого двигателя внутреннего сгорания, который приводит в действие машину переменного тока.

Теперь вы знаете, что такое напряжение и электрический ток, в каких единицах они измеряются и как зависят друг от друга, а также почему в вашей розетке именно 220 вольт. Приведенные факты не носят академического характера и не претендуют на истину в последней инстанции. Более подробно ознакомиться с природой этого феномена вы можете в учебниках по электротехнике.

Электрический ток и его плотность

Электрическим током называют направленное движение свободно заряженных частиц под действием электрического поля.

Как правило движение зарядов происходит в некоторой среде (веществе или вакууме), являющейся проводником для электрического тока. Движущимися в среде заряженными частицами могут быть электроны (в металлах, полупроводниках) или ионы (в жидкостях и газах).

Рис. 1 Электрический ток

Для возникновения и протекания электрического тока в любой токопроводящей среде необходимо выполнение двух условий:

  1. Наличие в среде свободных носителей заряда;
  2. Наличие электрического поля.

Для поддержания электрического поля, например в проводнике, к его концам необходимо подключить какой-либо источник электрической энергии (батарейку или аккумулятор). Поле в проводнике создается зарядами, которые накопились на электродах источника тока под действием сил (химических, механических и т.д.).

За направление тока условно принято принимать направление движения положительных зарядов. Следовательно, условно принятое направление тока обратно направлению движения электронов – основных отрицательных электрических носителей заряда в металлах и полупроводниках.

Понять явление электрического тока достаточно сложно так как его невозможно увидеть глазами. Для лучшего понимания процессов в электронике проведем аналогию между электрическим током в проводнике и водой в тонкой трубочке. В трубочке есть вода (носители заряда в проводнике), но она неподвижна, если трубочка лежит на горизонтальной поверхности и уровень высот ее концов (значения потенциалов электрического поля) одинаковый. Если трубочку наклонить так, что один конец станет выше другого (появится разность потенциалов), вода потечет по трубочке (электроны придут в движение).

Способность вещества проводить электрический ток под действием электрического поля называется электропроводностью. Каждому веществу соответствует определенная степень электропроводности. Ее значение зависит от концентрации в веществе носителей заряда – чем она выше, тем больше электропроводность. В зависимости от электропроводности все вещества делятся на три большие группы: проводники, полупроводники и диэлектрики.

Электрический ток может менять направление и величину во времени (переменный ток) или оставаться неизменным (постоянный) (рисунок 2).

Рис. 2. Постоянный и переменный электрические токи

Количественной мерой электрического тока служит сила тока I, которая определяется числом электронов (зарядов) q, проходящих через импровизированное поперечное сечение проводника в единицу времени t (рисунок 3).

Рис. 3. Сила тока в проводнике

Для постоянного тока представленное выше выражение можно записать в виде

Ток в системе СИ измеряется в амперах, [А]. Току в 1 А соответствует ток, при котором через поперечное сечение за 1 секунду проходит электрический заряд, равный 1 Кл.

1 A = 1 Кл/1 сек.

Плотность электрического тока

Под плотностью тока j понимается физическая величина, равная отношению тока I к площади поперечного сечения S проводника. При равномерном распределении тока по поперечному сечению проводника.

J = I/S 

Плотность тока в системе СИ измеряется в амперах на миллиметр квадратный, [А/мм2].

Рассмотрим плотность тока в проводнике с разным поперечным сечением. Например, соединены два проводника с различными сечениями: первый толстый провод с большим поперечным сечением S1 второй тонкий провод с сечением S2. К концам которых приложено постоянное напряжение (рисунок 5) в следствии чего через них протекает постоянный ток с одинаковой силой тока.

Рис.5 Плотность тока в проводниках с различными сечениями.

Предположим, что сила тока через поперечное сечение толстого проводника S1 и тонкого провода S2 различная. Из этого предположения вытекает, что за каждую единицу времени через сечения S1 и S2 протекают различные значения электрического заряда. Следовательно, в объёме провода, расположенного между двумя указанными сечениям происходит непрерывное скапливание зарядов, и напряженность электрического поля изменялась бы, чего не может быть, так как при изменении электрического поля ток был бы непостоянен. В проводах с различным сечением при одном и том же токе плотность тока обратно пропорциональна площади поперечного сечения.

I = J1S1 = J2S2

Плотность тока — векторная величина.

Рис. 4. Графическая интерпретация плотности тока j

Направление вектора  совпадает с направлением положительно заряженных зарядов и, следовательно, с направлением самого тока I.

Если концентрация носителей тока равна n, каждый носитель имеет заряд e и скорость его движения в проводнике равна v (рисунок 3), то за время dt через поперечное сечение S проводника переносится заряд

В этом случае величину силы тока I можно представить в виде зависимости

а плотность тока

 

Сила тока через произвольную поверхность определяется через поток вектора плотности тока, как интеграл по произвольной (в общем случае) поверхности S (рисунок 6)

Рис. 6. Сила тока через произвольную поверхность S

От величины плотности тока зависит важный показатель – качество электропередачи. Фактически этот показатель зависит от степени нагрузки проводника (хотя и не только от нее). В зависимости от значения плотности тока принято выбирать сечение проводов – это связано с наличием у проводников сопротивления, в результате которого происходит нагрев жил проводника вплоть до его расплавления и выхода из строя.

#1. … — направленное движение свободно заряженных частиц под действием электрического поля.

#2. Как направлен ток в металлическом проводе?

#3. В каком проводнике плотность тока выше?

Плотность тока для каждого проводника:

J1 = I/S J2 = I/S

Так как сила тока в проводах одинакова:

J1 < J2

 

Результат

Отлично!

Попытайтесь снова(

100 ballov.kz образовательный портал для подготовки к ЕНТ и КТА

Код и классификация направлений подготовки Код группы образовательной программы Наименование групп образовательных программ Количество мест
8D01 Педагогические науки   
8D011 Педагогика и психология D001 Педагогика и психология 45
8D012 Педагогика дошкольного воспитания и обучения D002 Дошкольное обучение и воспитание 5
8D013 Подготовка педагогов без предметной специализации D003 Подготовка педагогов без предметной специализации 22
8D014 Подготовка педагогов с предметной специализацией общего развития D005 Подготовка педагогов физической культуры 7
8D015 Подготовка педагогов по естественнонаучным предметам D010 Подготовка педагогов математики 30
D011 Подготовка педагогов физики (казахский, русский, английский языки) 23
D012 Подготовка педагогов информатики (казахский, русский, английский языки) 35
D013 Подготовка педагогов химии (казахский, русский, английский языки) 22
D014 Подготовка педагогов биологии (казахский, русский, английский языки) 18
D015 Подготовка педагогов географии 18
8D016 Подготовка педагогов по гуманитарным предметам D016 Подготовка педагогов истории 17
8D017 Подготовка педагогов по языкам и литературе D017 Подготовка педагогов казахского языка и литературы 37
D018 Подготовка педагогов русского языка и литературы 24
D019 Подготовка педагогов иностранного языка 37
8D018 Подготовка специалистов по социальной педагогике и самопознанию D020 Подготовка кадров по социальной педагогике и самопознанию 10
8D019 Cпециальная педагогика D021 Cпециальная педагогика 20
    Всего 370
8D02 Искусство и гуманитарные науки   
8D022 Гуманитарные науки D050 Философия и этика 20
D051 Религия и теология 11
D052 Исламоведение 6
D053 История и археология 33
D054 Тюркология 7
D055 Востоковедение 10
8D023 Языки и литература D056 Переводческое дело, синхронный перевод 16
D057 Лингвистика 15
D058 Литература 26
D059 Иностранная филология 19
D060 Филология 42
    Всего 205
8D03 Социальные науки, журналистика и информация   
8D031 Социальные науки D061 Социология 20
D062 Культурология 12
D063 Политология и конфликтология 25
D064 Международные отношения 13
D065 Регионоведение 16
D066 Психология 17
8D032 Журналистика и информация D067 Журналистика и репортерское дело 12
D069 Библиотечное дело, обработка информации и архивное дело 3
    Всего 118
8D04 Бизнес, управление и право   
8D041 Бизнес и управление D070 Экономика 39
D071 Государственное и местное управление 28
D072 Менеджмент и управление 12
D073 Аудит и налогообложение 8
D074 Финансы, банковское и страховое дело 21
D075 Маркетинг и реклама 7
8D042 Право D078 Право 30
    Всего 145
8D05 Естественные науки, математика и статистика      
8D051 Биологические и смежные науки D080 Биология 40
D081 Генетика 4
D082 Биотехнология 19
D083 Геоботаника 10
8D052 Окружающая среда D084 География 10
D085 Гидрология 8
D086 Метеорология 5
D087 Технология охраны окружающей среды 15
D088 Гидрогеология и инженерная геология 7
8D053 Физические и химические науки D089 Химия 50
D090 Физика 70
8D054 Математика и статистика D092 Математика и статистика 50
D093 Механика 4
    Всего 292
8D06 Информационно-коммуникационные технологии   
8D061 Информационно-коммуникационные технологии D094 Информационные технологии 80
8D062 Телекоммуникации D096 Коммуникации и коммуникационные технологии 14
8D063 Информационная безопасность D095 Информационная безопасность 26
    Всего 120
8D07 Инженерные, обрабатывающие и строительные отрасли   
8D071 Инженерия и инженерное дело D097 Химическая инженерия и процессы 46
D098 Теплоэнергетика 22
D099 Энергетика и электротехника 28
D100 Автоматизация и управление 32
D101 Материаловедение и технология новых материалов 10
D102 Робототехника и мехатроника 13
D103 Механика и металлообработка 35
D104 Транспорт, транспортная техника и технологии 18
D105 Авиационная техника и технологии 3
D107 Космическая инженерия 6
D108 Наноматериалы и нанотехнологии 21
D109 Нефтяная и рудная геофизика 6
8D072 Производственные и обрабатывающие отрасли D111 Производство продуктов питания 20
D114 Текстиль: одежда, обувь и кожаные изделия 9
D115 Нефтяная инженерия 15
D116 Горная инженерия 19
D117 Металлургическая инженерия 20
D119 Технология фармацевтического производства 13
D121 Геология 24
8D073 Архитектура и строительство D122 Архитектура 15
D123 Геодезия 16
D124 Строительство 12
D125 Производство строительных материалов, изделий и конструкций 13
D128 Землеустройство 14
8D074 Водное хозяйство D129 Гидротехническое строительство 5
8D075 Стандартизация, сертификация и метрология (по отраслям) D130 Стандартизация, сертификация и метрология (по отраслям) 11
    Всего 446
8D08 Сельское хозяйство и биоресурсы   
8D081 Агрономия D131 Растениеводство 22
8D082 Животноводство D132 Животноводство 12
8D083 Лесное хозяйство D133 Лесное хозяйство 6
8D084 Рыбное хозяйство D134 Рыбное хозяйство 4
8D087 Агроинженерия D135 Энергообеспечение сельского хозяйства 5
D136 Автотранспортные средства 3
8D086 Водные ресурсы и водопользование D137 Водные ресурсы и водопользования 11
    Всего 63
8D09 Ветеринария   
8D091 Ветеринария D138 Ветеринария 21
    Всего 21
8D11 Услуги   
8D111 Сфера обслуживания D143 Туризм 11
8D112 Гигиена и охрана труда на производстве D146 Санитарно-профилактические мероприятия 5
8D113 Транспортные услуги D147 Транспортные услуги 5
D148 Логистика (по отраслям) 4
8D114 Социальное обеспечение D142 Социальная работа 10
    Всего 35
    Итого 1815
    АОО «Назарбаев Университет» 65
    Стипендиальная программа на обучение иностранных граждан, в том числе лиц казахской национальности, не являющихся гражданами Республики Казахстан 10
    Всего 1890

В чем разница между электрическим полем, напряжением и током?

Я надеюсь, что вы никогда не окажетесь в ситуации, когда вам угрожает обрушенная, но находящаяся под напряжением линия электропередачи. Однако, если это когда-либо произойдет, рекомендуемая процедура безопасности — уйти крошечными, перемешанными шагами. Этот тип движения поможет вам избежать шока.

Конечно, лучший вариант — просто избежать такой опасной ситуации, но это также возможность поговорить о важной физике того, почему маленькие шаги лучше всего.Мы поговорим о трех больших идеях: разнице электрических потенциалов (напряжении), электрическом токе и электрическом поле. Да, все они связаны, и я покажу вам, как это сделать с водой и светодиодом. Это отличная демонстрация физики, но сначала мне нужно рассмотреть самые простые вещи.

Электрический ток

Пожалуй, лучше всего начать с электрического тока. Возможно, это легче всего понять. Все начинается с электрических зарядов. Практически для каждого электрического взаимодействия в реальной жизни есть только два заряда.Эти два заряда — положительно заряженный протон и отрицательно заряженный электрон. Хотя эти частицы имеют разные массы, они имеют прямо противоположный заряд. Обе частицы имеют заряд 1,6 x 10 19 Кулонов (единица заряда). Это значение появляется в других ситуациях, поэтому мы называем это фундаментальным зарядом и представляем его как «e» (сокращение от электронного заряда). Допустим, у вас есть длинный цилиндр, сделанный из такого металла, как медь (a w). Каждый атом в этом металле имеет 29 протонов и 29 электронов, так что весь провод имеет нулевой общий заряд.Все эти атомы меди в материале взаимодействуют с соседними атомами таким образом, что позволяет одному электрону легко перемещаться от одного атома меди к другому (мы называем их свободными электронами). Когда материал делает это, мы называем его электрическим проводником. Практически все металлы — проводники.

Хорошая модель — подумать об этой металлической проволоке как о связке положительных зарядов (протонов), которые застряли на месте, вместе с равным количеством отрицательных зарядов (электронов), которые могут двигаться. Но все равно общий провод нейтральный.Теперь представьте, что все эти свободные электроны движутся в одном направлении — это электрический ток. Это поток электрических зарядов.

Иллюстрация: Rhett Allain

Напряжение в зависимости от силы тока: в чем сходства и различия?

Если вы новичок в физике электричества, такие термины, как напряжение , и ампер, , могут показаться почти взаимозаменяемыми в зависимости от способа их использования. Но на самом деле это очень разные величины, хотя они тесно связаны тем, как они работают вместе в электрической цепи, как это описано в законе Ома.

На самом деле, «амперы» — это мера электрического тока (который измеряется в ампер, ), а напряжение — это термин, означающий электрический потенциал (измеряется в вольт, ), но если вы не усвоили детали, понятно, что вы могли спутать их друг с другом.

Чтобы понять разницу — и никогда больше не путать их — вам просто понадобится базовый учебник о том, что они означают и как они относятся к электрической цепи.

Что такое напряжение?

Напряжение — это еще один термин, обозначающий разность электрических потенциалов между двумя точками, и его можно просто определить как электрическую потенциальную энергию на единицу заряда.

Точно так же, как гравитационный потенциал — это потенциальная энергия, которую объект имеет в силу своего положения в гравитационном поле, электрический потенциал — это потенциальная энергия, которую заряженный объект имеет в силу своего положения в электрическом поле. Напряжение конкретно описывает это на единицу электрического заряда, и поэтому его можно записать:

В = \ frac {E_ {el}} {q}

Где В — это напряжение, E el — это электрическая потенциальная энергия, а q — электрический заряд.Поскольку единицей измерения электрической потенциальной энергии является джоуль (Дж), а единицей измерения электрического заряда является кулон (Кл), единицей измерения напряжения является вольт (В), где 1 В = 1 Дж / Кл, или, говоря словами, один вольт равен одному джоулю на кулон.

Это говорит о том, что если вы позволите заряду в 1 кулон пройти через разность потенциалов (т.е. напряжение) в 1 В, он получит 1 Дж энергии, или, наоборот, для перемещения потребуется один джоуль энергии. кулон заряда через разность потенциалов 1 В.Напряжение также иногда называют электродвижущей силой , (ЭДС).

Разность напряжений (или разность потенциалов) между двумя точками, например, с обеих сторон элемента в электрической цепи, можно измерить, подключив вольтметр параллельно с интересующим вас элементом. Как следует из названия, вольтметр измеряет напряжение между двумя точками в цепи, но когда вы используете одну, он должен быть подключен параллельно , чтобы избежать помех при считывании напряжения или повреждения устройства.

Что сейчас?

Электрический ток, который иногда называют силой тока (поскольку он измеряется в амперах), представляет собой скорость прохождения электрического заряда через точку в цепи. Электрический заряд переносится электронами, отрицательно заряженными частицами, которые окружают ядро ​​атома, поэтому величина тока действительно говорит вам о скорости потока электронов. Простое математическое определение электрического тока:

I = \ frac {q} {t}

Где I — ток (в амперах), q — электрический заряд (в кулонах). и t — истекшее время (в секундах).Как показывает это уравнение, определение ампера (А): 1 А = 1 Кл / с, или поток электрического заряда 1 кулон в секунду. Что касается электронов, это примерно 6,2 × 10 18 электронов (около шести миллиардов миллиардов), проходящих мимо контрольной точки в секунду для тока, протекающего всего в 1 А.

Ток можно измерить в электрической цепи, подключив Амперметр включен последовательно — то есть на пути основного тока — с участком цепи, через который вы хотите измерить количество тока.

Поток воды: аналогия

Если вы все еще пытаетесь понять, какую роль играют разность напряжений и электрический ток в электрической цепи, широко применяемая аналогия между электричеством и водой должна помочь прояснить ситуацию. Для представления напряжения в электрической цепи можно использовать два разных сценария: либо водопровод, спускающийся с холма, либо резервуар для воды, заполненный выпускным патрубком внизу.

Для водопровода, у которого один конец находится на вершине холма, а другой конец — внизу, ваша интуиция должна подсказывать вам, что вода будет течь по ней быстрее, если холм будет выше, и медленнее, если холм будет ниже.В примере с резервуаром для воды, если было два резервуара для воды, заполненных до разных уровней, можно было бы ожидать, что более заполненный резервуар будет выпускать воду из выпускного отверстия с большей скоростью, чем резервуар, заполненный до более низкого уровня.

Будь то потенциал с высоты холма (из-за гравитационного потенциала) или потенциал, создаваемый давлением воды в резервуаре, оба этих примера передают ключевой факт о разнице напряжений. Чем больше потенциал, тем быстрее будет течь вода (то есть ток).

Сам поток воды аналогичен электрическому току. Если вы измерили поток воды, протекающей через одну точку трубы в секунду, это похоже на протекание тока в цепи, за исключением того, что вода заменяет электрический заряд в форме электронов. Таким образом, если все остальное равно, высокое напряжение приводит к сильному току, и наоборот. Заключительная часть рисунка — это сопротивление, которое аналогично трению между стенками трубы и водой, или физическому препятствию, помещенному в трубу, частично блокирующему поток воды.

Сходства и различия

\ def \ arraystretch {1.5} \ begin {array} {c: c} \ text {Сходства} & \ text {Различия} \\ \ hline \ hline \ text {Оба относятся к электрическому схемы} & \ text {В разных единицах измерения, напряжение измеряется в вольтах, где 1 В = 1 Дж / Кл} \\ & \ text {, а ток измеряется в амперах, где 1 А = 1 Кл / с} \\ \ hline \ text {Оба влияют на то, сколько мощности рассеивается на элементе схемы} & \ text {Ток равномерно распределяется по всем компонентам, когда они соединены последовательно} \\ & \ text {, в то время как падение напряжения на компонентах может отличаться} \\ \ hline \ text {Могут быть оба с чередующейся полярностью (например,грамм. чередующийся} & \ text {Падение напряжения одинаково для всех} \\ \ text {тока или переменного напряжения) или прямой полярности} & \ text {компонентов, подключенных параллельно, в то время как ток отличается} \\ \ hline \ text {Они напрямую пропорциональны друг другу в соответствии с законом Ома} & \ text {Напряжение создает электрическое поле, а ток создает магнитное поле} \\ \ hline & \ text {Напряжение вызывает ток, а ток — эффект напряжения} \\ \ hline & \ text {Ток течет только тогда, когда цепь замкнута, но разница напряжений остается} \ end {array}

Как видно из таблицы, электрический ток и напряжение имеют больше различий, чем сходства, но есть и некоторые сходства.Самая большая разница между ними заключается в том, что они полностью описывают разные величины, поэтому, как только вы поймете основы того, что собой представляет, вы вряд ли перепутаете их друг с другом.

Взаимосвязь между напряжением и током

Разность напряжений и электрический ток прямо пропорциональны друг другу в соответствии с законом Ома, одним из важнейших уравнений физики электрических цепей. Уравнение связывает напряжение (т.е.е., разность потенциалов, создаваемая батареей или другим источником питания) по отношению к току в цепи и сопротивление потоку тока, создаваемое компонентами цепи.

В = IR

Где В, — напряжение, I — электрический ток, а R — сопротивление (измеренное в омах, Ом). По этой причине закон Ома иногда называют уравнением напряжения, тока и сопротивления. Если вам известны какие-либо две величины в этом уравнении, вы можете перестроить уравнение, чтобы найти другую величину, что делает его полезным при решении большинства проблем электроники, с которыми вы столкнетесь на уроках физики.

Стоит отметить, что закон Ома не всегда действителен , и как таковой это не «истинный» закон физики, а полезное приближение для так называемых омических материалов . Линейная зависимость, которую он подразумевает между током и напряжением, неприменима для таких вещей, как лампа накаливания, где повышение температуры вызывает увеличение сопротивления и, таким образом, влияет на линейную зависимость. Однако в большинстве случаев (и, конечно же, в большинстве физических задач, связанных с напряжением и электрическим током) его можно использовать без проблем.

Закон Ома для мощности

Закон Ома в основном используется для связи напряжения с током и сопротивлением; однако есть расширение закона, которое позволяет использовать те же величины для расчета электрической мощности, рассеиваемой в цепи, где мощность P — это скорость передачи энергии в ваттах (где 1 Вт = 1 Дж / с). Самая простая форма этого уравнения:

P = IV

Таким образом, на словах мощность равна току, умноженному на напряжение.2R

Переставив эти уравнения, вы также можете выразить напряжение, сопротивление или ток через мощность и другую величину.

Законы Кирхгофа по напряжению и току

Законы Кирхгофа — два других наиболее важных закона для электрических цепей, и они особенно полезны при анализе цепи с несколькими компонентами.

Первый закон Кирхгофа иногда называют законом тока, потому что он гласит, что полный ток, текущий в переход, равен току, текущему из него — по сути, этот заряд сохраняется.

Второй закон Кирхгофа называется законом напряжения и гласит, что для любого замкнутого контура в цепи сумма всех напряжений должна равняться нулю. Согласно закону напряжения, вы относитесь к батарее как к положительному напряжению, а падение напряжения на любом компоненте — как к отрицательному.

В сочетании с законом Ома эти два закона можно использовать для решения практически любой проблемы, с которой вы, вероятно, столкнетесь, связанной с электрическими цепями.

Напряжение и ток: пример расчетов

Представьте, что у вас есть цепь, состоящая из батареи на 12 В и двух последовательно соединенных резисторов с сопротивлением 30 Ом и 15 Ом.Общее сопротивление цепи определяется суммой этих двух сопротивлений, поэтому 30 Ом + 15 Ом = 45 Ом. Обратите внимание, что когда резисторы расположены параллельно, взаимосвязь включает в себя обратные, но это не важно для понимания взаимосвязи между разностью напряжений и током, поэтому этого простого примера будет достаточно для настоящих целей.

Какой электрический ток течет по цепи? Прежде чем читать дальше, попробуйте сами применить закон Ома.

Следующая форма закона Ома:

I = \ frac {V} {R}

\ begin {align} I & = \ frac {12 \ text {V}} {45 \ text {Ω}} \\ & = 0.27 \ text {A} \ end {align}

Теперь, зная ток в цепи, каково падение напряжения на резисторе 15 Ом? Для ответа на этот вопрос можно использовать закон Ома в стандартной форме. Вставка значений I = 0,27 A и R = 15 Ом дает:

\ begin {align} V & = IR \\ & = 0,27 \ text {A} × 15 \ text {Ω } \\ & = 4.05 \ text {V} \ end {align}

Для целей использования законов Кирхгофа это будет отрицательное напряжение (т.е.е., падение напряжения). В качестве последнего упражнения, можете ли вы показать, что полное напряжение в замкнутом контуре будет равно нулю? Помните, что аккумулятор имеет положительное напряжение, а все падения напряжения отрицательные.

Опасности поражения электрическим током

С электричеством связано множество опасностей. Случайное поражение электрическим током может вызвать сильные ожоги, повреждение внутренних органов и даже смерть. Интересно, что хотя большинство людей думают об электричестве с точки зрения напряжения, наиболее опасным аспектом поражения электрическим током является сила тока, а не напряжение.

Напряжение в зависимости от силы тока

Напряжение и сила тока — это две меры электрического тока или потока электронов. Напряжение является мерой давления, , которое позволяет электронам течь, в то время как сила тока является мерой объема электронов. Электрический ток в 1000 вольт не более смертоносен, чем ток в 100 вольт, но крошечные изменения силы тока могут означать разницу между жизнью и смертью, когда человек получает электрический шок.

Хотя физика сложна, некоторые эксперты используют аналогию с текущей рекой, чтобы объяснить принципы работы электричества.В этой аналогии напряжение приравнивается к крутизне или наклону реки, а сила тока приравнивается к объему воды в реке. Электрический ток с высоким напряжением, но очень низкой силой тока можно рассматривать как очень узкую небольшую реку, текущую почти вертикально, как крошечная струйка водопада. У него будет мало возможностей действительно навредить вам. Но большая река с большим количеством воды (сила тока) может утопить вас, даже если скорость течения (напряжение) относительно невысока.

Из этих двух наибольший риск представляет сила тока.

Влияние силы тока на поражение электрическим током

Различная сила тока по-разному влияет на человеческий организм. В следующем списке описаны некоторые из наиболее распространенных последствий поражения электрическим током при различных уровнях силы тока, согласно данным Управления по охране труда США (OSHA). Чтобы понять, какие суммы задействованы, миллиампер (мА) равен одной тысячной ампера (или ампера). Стандартная бытовая цепь, питающая ваши розетки и переключатели, имеет ток 15 или 20 ампер (15 000 или 20 000 мА).

  • От 1 до 5 мА : Ощущается небольшой удар электрическим током. Обидно, но не больно.
  • от 6 до 30 мА : Болезненный шок, потеря мышечного контроля.
  • от 50 до 150 мА : Сильная боль, возможные тяжелые мышечные реакции, возможная остановка дыхания и даже возможная смерть.
  • от 1000 мА до 4300 мА : Сердце перестает работать; возможно повреждение нерва и смерть.
  • 10 000 мА (10 ампер): Остановка сердца, тяжелые ожоги и смерть.

Это дает вам представление о том, насколько опасна домашняя система электропроводки, которую мы считаем само собой разумеющейся, где провода имеют ток 15 000 или 20 000 мА.

Остаться в безопасности

Лучший способ предотвратить поражение электрическим током — это следовать стандартным процедурам безопасности для всех всех электрических работ . Вот некоторые из самых важных основных правил безопасности:

  • Отключите питание : Всегда отключайте питание цепи или устройства, с которыми вы будете работать.Самый надежный способ отключить питание — это выключить автоматический выключатель цепи в бытовом щите (коробке выключателя).
  • Проверка питания : После отключения автоматического выключателя проверьте проводку или устройства, с которыми вы будете работать, с помощью бесконтактного тестера напряжения, чтобы убедиться, что питание отключено. Это единственный способ убедиться, что вы отключили правильную цепь.
  • Используйте изолированные лестницы : Никогда не используйте алюминиевые лестницы для электромонтажных работ.Для безопасности всегда используйте изолированные лестницы из стекловолокна.
  • Оставайтесь сухими : Избегайте влажных помещений при работе с электричеством. Если вы находитесь на улице в сырых или влажных условиях, наденьте резиновые сапоги и перчатки, чтобы снизить вероятность поражения электрическим током. Подключите электроинструменты и электроприборы к розетке GFCI (прерыватель цепи замыкания на землю) или удлинителю GFCI. Вытрите руки перед тем, как взяться за шнур.
  • Публикация предупреждений : Если вы работаете с сервисной панелью или цепью, поместите предупреждающую этикетку на лицевую сторону панели, чтобы предупредить других, чтобы они не включали какие-либо цепи.Перед повторным включением питания убедитесь, что никто другой не контактирует с цепью.

Как человеческое тело использует электричество

Автор Amber Plante

Электричество есть везде, даже в человеческом теле. Наши ячейки предназначены для проведения электрических токов. Электричество требуется нервной системе, чтобы посылать сигналы по всему телу и в мозг, позволяя нам двигаться, думать и чувствовать.

Итак, как клетки контролируют электрические токи?

Элементы нашего тела, такие как натрий, калий, кальций и магний, обладают определенным электрическим зарядом.Почти все наши клетки могут использовать эти заряженные элементы, называемые ионами, для выработки электричества.

Содержимое клетки защищено от внешней среды клеточной мембраной. Эта клеточная мембрана состоит из липидов, которые создают барьер, через который только определенные вещества могут проникнуть внутрь клетки. Мало того, что клеточная мембрана действует как барьер для молекул, она также действует как способ для клетки генерировать электрические токи. Покоящиеся клетки заряжены отрицательно внутри, тогда как внешняя среда заряжена более положительно.Это происходит из-за небольшого дисбаланса между положительными и отрицательными ионами внутри и снаружи клетки. Клетки могут достичь разделения зарядов, позволяя заряженным ионам входить и выходить через мембрану. Поток зарядов через клеточную мембрану — это то, что генерирует электрические токи.

Клетки контролируют поток определенных заряженных элементов через мембрану с помощью белков, которые находятся на поверхности клетки и создают отверстие для прохождения определенных ионов. Эти белки называются ионными каналами.Когда клетка стимулируется, это позволяет положительным зарядам проникать в клетку через открытые ионные каналы. Затем внутренняя часть клетки становится более положительно заряженной, что вызывает дополнительные электрические токи, которые могут превращаться в электрические импульсы, называемые потенциалами действия. Наши тела используют определенные модели потенциалов действия, чтобы инициировать правильные движения, мысли и поведение.

Нарушение электрического тока может привести к болезни. Например, чтобы сердце могло перекачивать кровь, клетки должны генерировать электрические токи, которые позволяют сердечной мышце сокращаться в нужное время.Врачи могут даже наблюдать эти электрические импульсы в сердце с помощью аппарата, называемого электрокардиограммой или ЭКГ. Нерегулярные электрические токи могут помешать правильному сокращению сердечных мышц, что приведет к сердечному приступу. Это всего лишь один пример, показывающий важную роль электричества в здоровье и болезнях.

Список литературы
CrashCourse. «Нервная система, часть 2 — Действие! Потенциал! Ускоренный курс A&P № 9 ». Видео на YouTube, 11:43. 2 марта 2015 г. https://www.youtube.com / watch? v = OZG8M_ldA1M.
Основы анатомии и физиологии. «Каналы с ограничением по напряжению и потенциал действия». McGraw-Hill Co., Видео. 2016. http://highered.mheducation.com/sites/0072943696/student_view0/chapter8/animation__voltage-gated_channels_and_the_action_potential__quiz_1_.html.
Нельсон, Дэвид Л. и Майкл М. Кокс. 2013. Принципы биохимии Ленингера, 6-е изд. Книга. 6-е изд. Нью-Йорк: W.H. Фриман и Ко. Doi: 10.1016 / j.jse.2011.03.016.

Смертельный удар электрическим током: какое напряжение вызывает смерть?

Вопрос с подвохом.Само по себе напряжение — не единственный фактор, способствующий серьезности поражения электрическим током. Ток, обычно измеряемый в амперах, также является важной частью уравнения, наряду с другими второстепенными факторами.

Напряжение — это мера давления или силы электрической энергии, проходящей через проводник, тогда как ток — это, скорее, показатель скорости электрического потока. Это ток, проходящий через тело, сжимает сердце или вызывает его фибрилляцию, что может привести к смерти.

Так что вопрос действительно должен быть: Сколько тока нужно, чтобы кого-то убить?

Ответа очень мало. Сила тока всего 0,007 ампер (7 мА) через сердце в течение трех секунд достаточно, чтобы убить. Прохождение 0,1 ампер (100 мА) через тело почти наверняка приведет к летальному исходу.

Однако сила тока при поражении электрическим током определяется напряжением и сопротивлением цепи. Человеческое тело обладает высоким сопротивлением электрическому току, что означает, что без достаточного напряжения опасное количество тока не может протекать через тело и вызывать травмы или смерть.Как показывает практика, более пятидесяти вольт достаточно, чтобы пропустить через тело потенциально смертельный ток.

Другие факторы, которые могут определять степень поражения электрическим током, включают продолжительность удара и место его попадания в тело. Например, удар током, передаваемый от одной руки через грудь к другой руке, намного опаснее, чем удар между двумя пальцами ног.

Вот несколько примеров:

  • Удар статическим электричеством может составлять 20000 вольт или более, но при очень низком токе и на очень короткое время: безвреден
  • Батарея 9 В имеет недостаточное напряжение для прохождения опасного уровня тока через тело: безвредный
  • Розетка 240 В переменного тока находится под опасным напряжением и более чем способна пропускать очень опасный ток: потенциально опасно для жизни
  • Молния может иметь силу в миллиард вольт и может выдавать чрезвычайно высокий ток (около 30 000 ампер): потенциально смертельный исход

Что происходит в электрической цепи: напряжение против тока

Чтобы полностью понять и исследовать сложный мир электроники, очень важно начать с основ.В этом блоге мы рассмотрим основы самого электричества: напряжение и ток. Но прежде чем сразу приступить к делу, нам нужно будет понять, что такое электричество?

Электричество определяется как форма энергии, возникающая в результате существования заряженных частиц (электронов или протонов), либо статически как накопление заряда, либо динамически как ток.

Проще говоря, электричество — это движение положительно и отрицательно заряженных частиц.Может быть трудно представить себе, что такое электричество, поскольку мы не можем его «видеть», но можем измерить.

Что будет покрываться :

  • Что такое электричество
  • Определение напряжения и тока
  • Ключевое различие между напряжением и током
  • Сравнение напряжения и тока
  • Приложения напряжения и тока

Что такое электричество?

Электричество — это движение положительно и отрицательно заряженных частиц .Есть 3 основных аспекта, которые нужно знать об электричестве, но в этом блоге мы сосредоточимся на 2 из них:

  • Напряжение означает разницу в заряде между двумя точками.
  • Ток относится к потоку электрических зарядов.
  • Сопротивление относится к мере сопротивления потоку тока.

Это может произойти только в замкнутом контуре, чтобы заряды текли, в то время как разомкнутый контур остановит поток во всем контуре.

Ref: Все о схемах

Поскольку мы говорим об электричестве, нам необходимо кратко упомянуть Георга Ома , немецкого врача, открывшего Закон Ома . Он утверждает, что «ток, протекающий через проводник, прямо пропорционален разности потенциалов (напряжению) и обратно пропорционален сопротивлению». Это подводит нас к нашему главному фокусу этого руководства, напряжению и току.

Определение напряжения и тока

Напряжение относится к типу (сильная / слабая) электромагнитной силы .Когда есть большая величина напряжения, ток, протекающий по цепи, будет сильным. Следовательно, когда величина напряжения мала, ток, протекающий по цепи, будет слабым. Он также представлен символом «V», а его единица измерения в системе СИ известна как «вольт».

Ссылка: Круговой глобус

Как показано на рисунке, батарея накапливает всю энергию и позволяет электронам проходить через цепь. Однако провод размещен не по всей цепи, что привело к потере некоторой части напряжения в виде тепловой энергии.Таким образом, напряжение в начале будет меньше, чем напряжение на приемном конце, это известно как «падение напряжения».

Ссылка: Круговой глобус

Ток относится к влиянию напряжения. Он измеряет количество заряда, протекающего по цепи за определенный период времени. Он также представлен символом «I», а его единица измерения в системе СИ известна как «ампер».
Электрический ток делится на 2 типа: переменный ток (AC) и постоянный ток (DC). Проще говоря, электроны текут только в одном направлении при постоянном токе.Направление электронов в переменном токе меняется на противоположное. Чтобы получить более подробное объяснение переменного и постоянного тока, посетите эти блоги:

Переменный ток (AC) против постоянного тока (DC), руководство для вас

Базовая электроника: переменный ток (AC) против постоянного (DC)

Ключевое различие между напряжением и током

Если вы все еще находите концепции напряжения и тока сбивающими с толку, вот некоторые ключевые различия между напряжением и током:

Напряжение:

  1. Поток электрических зарядов между двумя точками электрического поля.
  2. Коэффициент проделанной работы — заряд.
  3. Разница между точкой в ​​электрическом поле
  4. Измеряется вольтметром.
  5. Причина тока.

Текущий:

  1. Поток электронов в электрическом поле.
  2. Отношение заряда ко времени.
  3. Поток зарядов между двумя точками.
  4. Измеряется амперметром.
  5. Влияние напряжения.

Сравнение напряжения и тока

9044 Электростатическое поле 9044 5 производит Измерительный прибор серия 9044 9044 9044 Соединение
Основа для сравнения Напряжение Ток
Определение Разница между двумя точками электрического поля Поток зарядов между двумя точками
Ед.
Символ В I
Формула напряжение = работа / заряд ток = заряд / время
Создаваемое поле Типы магнитного поля
Переменное напряжение и постоянное напряжение Переменный ток и постоянный ток
Полярность Переменное напряжение изменяется, но постоянное напряжение не может изменить свою полярность Переменный ток меняет свою полярность, но полярность постоянного тока остается постоянной
Генератор Напряжение
Вольтметр Амперметр
Заряды 1 Вольт = 1 Джоуль / кулон
Неравномерно по всем компонентам Равномерно распределены по всем компонентам
Параллельное соединение Величина напряжения остается постоянной во всех компонентах Величина тока меняется во всех компонентах
Потери Из-за к полному сопротивлению Из-за пассивных элементов
Отношение Это причина тока Это причина напряжения

Приложения напряжения и тока

Как только мы поймем всю теорию, лежащую в основе напряжения и тока, теперь мы можем взглянуть на некоторые их практические применения:

Напряжение:

Текущий:

  • Посудомоечная машина (переменного тока). Переменный ток используется в бытовых приборах для включения электродвигателей, которые преобразуют электрическую энергию в механическую.
  • Фонарик (постоянный ток) — постоянный ток встречается в приборах, содержащих батарею.

Рекомендации по анализу напряжения и тока

Цифровой миниатюрный интеллектуальный пинцет

DT71 — измеритель LCR / ESR, мультиметр, тестер SMD со встроенным генератором микросигналов — если вы ищете многофункциональный элемент, который не только действует как мультиметр, но также определяет SMD и имеет встроенный -в генераторе сигналов, который выводит сигналы формы волны, этот миниатюрный цифровой пинцет DT71 — идеальный инструмент для вас! Кроме того, он имеет уникальную тройную структуру, которую можно разделить на контроллер, испытательный рычаг и наконечник пинцета.Все они легко заменяются и комбинируются. Более того, позолоченные сменные наконечники пинцета также обеспечат более высокую точность измерения.

Цифровой измеритель емкости

— Если вы новичок и хотите приобрести простой мультиметр, то это вас удовлетворит! Этот мультиметр легкий и компактный, что делает его пригодным для питья. Кроме того, он отличается высокой точностью измерения и оснащен дисплеем с подсветкой. Это действительно надежный, прочный и удобный для начинающих мультиметр!

Комплект интеллектуального цифрового блока питания MDP-XP — Если вы собираетесь узнать больше о постоянном токе, не ищите ничего, кроме этого программируемого линейного источника питания постоянного тока.Эта мини-цифровая система питания может подключать различные модули для использования. Кроме того, он имеет беспроводное соединение 2,4 Гбит / с, что позволяет достичь многоканальной бесканальной комбинации при мощности 90 Вт на канал. Он также может удовлетворить разнообразные потребности в тестировании.

Сводка

И на этом мы подошли к концу этого блога. Теперь, когда вы знаете все о напряжении и токе, а также об инструментах, с которыми вы можете экспериментировать, вы можете погрузиться прямо в мир электроники и создавать захватывающие проекты! Кроме того, если вам интересно узнать больше о напряжении и токе, не стесняйтесь проверять некоторые проекты и другие блоги ниже!

Ресурсы

Автоматическая светодиодная цепь аварийного освещения — Этот проект предназначен для включения при отключении питания.Более того, всего существует 3 схемы, от простых до сложных. Посмотрите этот проект, если хотите попробовать сами!

Диммер переменного тока с управлением через Bluetooth и мобильным приложением для Android. Этот проект предназначен для управления лампой переменного тока и регулировки ее яркости и интенсивности света с помощью телефона.

Полезные книги

Работа на дому: что нужно для домашней лаборатории инженера-электрика

Простые проекты и схемы электроники

Продолжить чтение

Что такое электрический ток?

Когда вы подключаете провода к клеммам аккумулятора, заряд может течь, и образуется полный путь, называемый цепью.Этот поток заряда называется током . Символом тока является буква I, а единицей измерения является ампер. Чем выше ток, протекающий по проводу, тем больше заряда проходит.

Как заряд проходит через контур?

Когда к клеммам аккумуляторной батареи прикреплен медный провод, идет заряд. Если надеть на клеммы резинку, заряд не сдвинется. Почему это? Причина кроется в свойствах меди, которая является хорошим проводником заряда.Материал, который является хорошими проводниками, имеет слабо удерживаемые электроны. Движение электронов происходит очень быстро, переходя от атома к атому по проводу. Для перемещения заряда между двумя точками должна быть разность потенциалов .

Существует взаимосвязь между электрическим потенциалом и электрическим током. Эта взаимосвязь была впервые экспериментально продемонстрирована ученым по имени Джордж Саймон Ом.

В чем разница между электрическим током и потоком электронов? Почему они разошлись?

По этому поводу до сих пор существует большая путаница.Это происходит из-за того, что Бенджамин Франклин впервые открыл электричество, он думал, что это положительные заряды, движущиеся по проводу. Таким образом, ток был определен как поток положительного заряда , который двигался в металлических проводах, с которыми он играл (это часто называют током по конвенции). Теперь мы знаем, что Франклин ошибался — отрицательные (электроны) заряды двигались в направлении , противоположном направлению его положительного заряда в проводе.Важно отметить, что положительные заряды не движутся в медной проволоке, но в других случаях, например, в растворах, перемещаются как отрицательные, так и положительные заряды.

Что такое закон Ома?

Закон

Ома гласит, что в электрической цепи ток, проходящий через резистор между двумя точками, связан с разностью напряжений между двумя точками и обратно пропорционален электрическому сопротивлению между двумя точками. Эта связь показана в следующем письме

.

Где I — ток в амперах, V — разность потенциалов в вольтах, а R — постоянная, измеряемая в омах, называемая сопротивлением.

Ток прямо пропорционален потере напряжения через резистор. То есть, если удваивается ток, то увеличивается и напряжение. Чтобы ток протекал через сопротивление, на этом сопротивлении должно быть напряжение. Закон Ома показывает взаимосвязь между напряжением (V), током (I) и сопротивлением (R). Его можно записать тремя способами:

Направление тока

Электроны, движущиеся по проволоке, могут непрерывно перемещаться по проволоке в одном и том же направлении.Это называется постоянным током. Электричество от сухих элементов или батарей является примером постоянного тока. Электроны также могут регулярно менять или менять свое направление. Это называется переменным током. Электроэнергия в вашем доме — переменный ток. В Соединенных Штатах ток меняет направление 120 раз в секунду.

В чем разница между преимуществами и недостатками постоянного и переменного тока?

Постоянный ток

Постоянный ток вырабатывают такие источники, как батареи, термопары, солнечные элементы и электрические машины коммутаторного типа.Постоянный ток может течь не только по проволоке, но и по полупроводникам. Постоянный ток можно получить из переменного тока с помощью выпрямителя .

В первой коммерческой передаче электроэнергии, разработанной Томасом Эдисоном, использовался постоянный ток.

DC обычно используется во многих низковольтных устройствах, особенно там, где они питаются от батарей. В большинстве автомобильных приложений используется постоянный ток, хотя генератор переменного тока является устройством переменного тока, которое используется для выработки постоянного тока.Большинству электронных устройств требуется постоянный ток.

Переменный ток

Переменный ток — это способ подачи электроэнергии в дома и на предприятия. Первое зарегистрированное применение переменного тока было сделано Гийомом Дюшенном, который изобрел электротерапию. Он пришел к выводу, что переменный ток превосходит постоянный ток для электротеплового запуска мышечных сокращений. Силовой трансформатор был впервые продемонстрирован в Лондоне в 1881 году Люсьеном Гауляром и вызвал интерес у Вестингауза.Хотя они подали заявку на патенты на свои технологии, они были отменены, потому что Никола Тесла смог продемонстрировать предыдущие работы в этой области. Никола Тесла наиболее известен разработкой современной системы электроснабжения переменного тока.

Напряжение переменного тока может быть увеличено или уменьшено с помощью трансформатора. Использование высокого напряжения приводит к значительно большей эффективности передачи энергии. Недостатком высокого напряжения является необходимость большей изоляции.

Как измерить электрический ток?

Амперметр — это прибор для измерения тока.(IMGE НЕОБХОДИМО (. Амперметр

Амперметр измеряет количество электронов, проходящих через измеритель каждую секунду. Ток измеряется в единицах, называемых амперами. Чтобы использовать амперметр, вы подключаете его последовательно к нагрузке, которую вы используете. (См. Изображение выше.)

Для измерения напряжения или электрического потенциала вы включаете вольтметр в цепь параллельно. Вольтметр должен быть подключен параллельно, чтобы измерить напряжение устройства, потому что объекты, подключенные параллельно, испытывают одинаковую разность потенциалов.См. Изображение ниже.

Связь между электрическим током и магнитными полями

Связь между электрическим током, магнитными полями и физическими силами была впервые обнаружена Гансом Кристианом Орстедом в 1820 году. Он наблюдал, как стрелка компаса отклонялась от направления на север, когда в соседнем проводе протекал ток. Это было известно как касательный гальванометр. Тангенциальный гальванометр использовался для измерения токов с использованием этого эффекта.Возвращающей силой к обнулению счетчика в этой системе была сила магнитного поля Земли. Таким образом, измеритель можно было использовать только тогда, когда он был привязан к магнитному полю Земли.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *