Чем отличаются NPN и PNP транзисторы. Как устроены биполярные транзисторы разных типов. Какие особенности имеет работа PNP транзисторов по сравнению с NPN. Как правильно подключать источники питания к PNP транзисторам.
Основные различия между NPN и PNP транзисторами
Биполярные транзисторы бывают двух типов — NPN и PNP. Хотя принцип их работы схож, между ними есть ряд важных отличий:
- В NPN транзисторах основные носители заряда — электроны, в PNP — дырки
- Направление токов в PNP транзисторе противоположно NPN
- PNP требует обратной полярности напряжений по сравнению с NPN
- Ток базы в PNP вытекает из базы, в NPN — втекает в базу
- Эмиттер PNP должен быть более положительным, чем база и коллектор
Таким образом, PNP транзистор можно рассматривать как «зеркальное отражение» NPN транзистора с точки зрения полярностей и направлений токов.
Устройство биполярных транзисторов NPN и PNP типа
NPN транзистор состоит из двух областей полупроводника n-типа, разделенных тонким слоем p-типа. PNP имеет обратную структуру — две p-области и одну n-область между ними:
- NPN: n-p-n
- PNP: p-n-p
Средний слой образует базу транзистора, крайние — эмиттер и коллектор. В PNP транзисторе эмиттер и коллектор имеют p-проводимость, а в NPN — n-проводимость.
Принцип работы PNP транзистора
Основные особенности работы PNP транзистора:
- Для открытия перехода база-эмиттер нужно отрицательное напряжение на базе относительно эмиттера
- Ток базы направлен от эмиттера к базе (вытекает из базы)
- Ток коллектора направлен от эмиттера к коллектору
- Небольшой ток базы управляет значительно большим током коллектора
Таким образом, PNP транзистор открывается при подаче отрицательного напряжения на базу, в отличие от NPN, который требует положительного напряжения.
Схемы включения PNP транзисторов
Существуют три основные схемы включения PNP транзисторов:
- С общей базой (ОБ)
- С общим эмиттером (ОЭ)
- С общим коллектором (ОК)
В схеме с ОЭ, которая используется наиболее часто, эмиттер является общей точкой для входной и выходной цепей. Ток базы ответвляется от тока эмиттера. При этом выполняется соотношение:
IЭ = IК + IБ
Где IЭ — ток эмиттера, IК — ток коллектора, IБ — ток базы.
Особенности подключения источников питания к PNP транзистору
При подключении PNP транзистора важно соблюдать правильную полярность:
- Источник напряжения база-эмиттер (VБЭ): отрицательный полюс к базе, положительный к эмиттеру
- Напряжение коллектор-эмиттер (VКЭ): отрицательный полюс к коллектору, положительный к эмиттеру
Эмиттер PNP транзистора всегда должен быть более положительным, чем база и коллектор. Это основное отличие от схем с NPN транзисторами.
Применение PNP транзисторов
PNP транзисторы находят широкое применение в электронике, несмотря на большую распространенность NPN типа. Основные области использования:
- Усилительные каскады, особенно в паре с NPN транзисторами
- Ключевые схемы
- Источники стабильного тока
- Схемы защиты от переполюсовки
Важным преимуществом PNP транзисторов является возможность создания комплементарных пар с NPN для построения эффективных двухтактных усилителей мощности.
Характеристики PNP транзисторов
Выходные характеристики PNP транзисторов аналогичны NPN, но «отражены» относительно осей координат из-за обратной полярности токов и напряжений. Основные параметры:
- Коэффициент усиления по току (h21э или β)
- Максимально допустимые токи и напряжения
- Граничная частота усиления
- Остаточное напряжение коллектор-эмиттер
При выборе PNP транзистора для конкретной схемы необходимо учитывать эти характеристики, указанные в документации производителя.
Особенности применения PNP транзисторов в схемах
При использовании PNP транзисторов в электронных устройствах следует учитывать несколько важных моментов:
- Необходимость инверсии входных сигналов по сравнению с NPN схемами
- Обратную полярность источников питания
- Возможность создания комплементарных пар с NPN транзисторами
- Особенности расчета цепей смещения
Правильное применение этих принципов позволяет эффективно использовать преимущества PNP транзисторов в различных электронных схемах.
Заключение
PNP транзисторы, несмотря на меньшую распространенность по сравнению с NPN, играют важную роль в современной электронике. Понимание принципов их работы и особенностей применения позволяет создавать эффективные и надежные электронные устройства. Ключевые отличия от NPN транзисторов заключаются в обратной полярности напряжений и направлении токов, что требует соответствующего подхода при проектировании схем.
В чем различие между PNP и NPN транзистором?
Существует два основных типа транзисторов – биполярные и полевые. Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов – NPN и PNP. Транзистор имеет три вывода, известные как эмиттер (Э), база (Б) и коллектор (К). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.
Физика полупроводников в этой статье обсуждаться не будет, однако, стоит упомянуть, что биполярный транзистор состоит из трех отдельных частей, разделенных двумя p-n переходами. Транзистор PNP имеет одну N область, разделенную двумя P областями:
Транзистор NPN имеет одну P область, заключенную между двумя N областями:
Сочленения между N и P областями аналогичны переходам в диодах, и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:
- Отсечка: работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то еесть «контакт разомкнут».
- Активный режим: транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
- Насыщение: работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
- Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении. Используется очень редко.
В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора (К) к эмиттеру (Э):
А в PNP ток протекает от эмиттера к коллектору:
Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.
PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, UБ должно быть выше, чем UК и UЭ. Ниже приводится краткое описание режимов работы в зависимости от их напряжения:
Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.
Транзистор биполярный, описание транзисторов, функция транзистора, npn-транзистор, pnp-транзистор, типы транзисторов
Описание транзисторов
Описание транзисторов удобно начать с описания функции, которую они выполняют. Основная функция биполярного транзистора — усиливать ток и напряжение. Например, они могут усиливать слаботочные выходные сигналы интегральных микросхем таким образом, чтобы ими можно было управлять лампой, реле и т.д. Во многих схемах транзистор служит для преобразования изменяющегося тока в изменяющееся напряжение. Т.е. транзистор работает как усилитель напряжения.
Транзистор может работать как ключ (либо полностью открыт и через него может течь максимально возожный ток, либо полностью закрыт и ток через него не течёт) или как усилитель (всегда частично открыт)
npn-транзистор, pnp-транзистор
Существуют следующие типы транзисторов: npn и pnp с различным обозначением на схемах. Буквы, обозначающие выводы транзистора, относятся к слоям полупроводника, из которого сделан транзистор. Большинство биполярных транзисторов, используемых сегодня, являются npn-транзисторами потому, что они самые простые в производстве из кремния. Если Вы новичок в электронике, лучше всего начинать изучение с npn-транзисторов.
Пожалуй, одним из самых известных отечественных транзисторов структуры npn является транзистор КТ315, а структуры pnp — транзистор КТ361.
Выводы биполярного транзистора обозначаются следующими буквами: B — (база), C — (коллектор), E — (эмиттер), в русском варианте, соответсвенно Б, К и Э. Эти термины относятся к внутренней организации транзистора, но не помогают понять, как транзистор работает. Поэтому, просто запомните их.
В добавление к pnp-транзисторам и npn-транзисторам (имеющим общее название — транзисторы биполярные) существуют полевые транзисторы, часто называемые FETs. Они имеют другое схематическое обозначение и характеристики.
Как работает PNP-транзистор на примере: поясняю простым языком | ASUTPP
Транзистор PNP для многих загадка. Но так не должно быть. Если вы хотите проектировать схемы с транзисторами, то безусловно нужно знать об этом типе транзисторов.
Пример: Хотите автоматически включить свет, когда стемнеет транзистор PNP сделает это легко для вас.
Если вы понимаете работу NPN — транзистора, то это облегчит понимание PNP-транзистора. Они работают примерно так же, с одним существенным отличием: токи в транзисторе PNP протекают в противоположных направлениях, если сравнивать с протеканием токов в транзисторе NPN.
Как работают транзисторы PNP?
Транзистор PNP имеет те же выводы, что и NPN:
- База
- Эмиттер
- Коллектор
Транзистор PNP «включится», когда у вас будет небольшой ток, протекающий от эмиттера к базе. Когда я говорю «включится», я имею в виду, что транзистор откроет канал между эмиттером и коллектором. И через этот канал сможет протекать уже гораздо больший ток.
Чтобы ток протекал от эмиттера к базе, вам нужно напряжение около 0,7 В. Поскольку ток идет от эмиттера к базе, база должна иметь напряжение на 0,7 В ниже, чем напряжение на эмиттере.
Установив напряжение на базе PNP-транзистора на 0,7 В ниже, чем на эмиттере, вы «включаете транзистор» и позволяете току течь от эмиттера к коллектору.
Я знаю, что это может звучать немного запутанно, поэтому читайте дальше, чтобы увидеть, как можно спроектировать схему с транзистором PNP.
Пример: транзисторная схема PNP
Давайте посмотрим, как создать простую схему с транзистором PNP. С помощью этой схемы вы можете «зажечь» светодиод, когда стемнеет.
Шаг 1: Эмиттер
Прежде всего, чтобы включить PNP-транзистор, нужно, чтобы напряжение на базе было ниже, чем на эмиттере. Для этого подключите эмиттер к плюсу вашего источника питания. Таким образом, вы знаете, какое у вас напряжение на эмиттере.
Шаг 2: что вы хотите контролировать
Когда транзистор включается, ток течет от эмиттера к коллектору. Итак, давайте подключим то, что мы хотим контролировать: а именно светодиод.
Поскольку у светодиода всегда должен быть последовательно установлен резистор , давайте добавим и резистор.
Шаг 3: Транзисторный вход
Для включения светодиода необходимо включить транзистор, чтобы канал от эмиттера к коллектору открылся. Чтобы включить транзистор, необходимо, чтобы напряжение на базе было на 0,7 В ниже, чем на эмиттере, что составляет 9 В — 0,7 В = 8,3 В.
Например, теперь вы можете включить светодиод, когда стемнеет, используя фоторезистор и стандартный резистор, настроенный в качестве делителя напряжения.
Напряжение на базе не будет вести себя точно так, как говорит формула делителя напряжения. Это потому, что транзистор тоже влияет на напряжение.
Но в целом, когда значение сопротивления фоторезистора велико (нет света), напряжение будет близко к 8,3 В, и транзистор включен (что включает светодиод). Когда значение фоторезистора низкое (много света присутствует), напряжение будет близко к 9 В и отключит транзистор (который выключит светодиод).
Я использовал такие компоненты:
- Транзистор PNP- BC557.
- Фоторезистор — 10 кОм, когда светло, и 1 мОм, когда темно.
- Резистор на базе транзистора — 100 кОм.
- Резистор, который последовательно подключен светодиодом — 470 Ом.
Ключ на биполярном транзисторе. Нагрузочная прямая.
Приветствую всех снова на нашем сайте 🙂 Мы продолжаем активно погружаться в нюансы работы биполярных транзисторов и сегодня мы перейдем к практическому рассмотрению одной из схем использования БТ – схеме ключа на транзисторе!
Суть схемы довольно проста и заключается в том, что как и любой переключатель, транзистор должен находиться в одном из двух состояний – открытом (включенном) и закрытом (выключенном). То есть либо транзистор пропускает ток, либо не пропускает. Давайте разбираться!
И, первым делом, давайте саму схему и рассмотрим:
Здесь у нас используется n-p-n транзистор. А вот вариант для p-n-p:
И по нашей уже устоявшейся традиции будем разбирать все аспекты работы на примере n-p-n транзистора 🙂 Суть и основные принципы остаются неизменными и для p-n-p. Так что работаем с этой схемой (здесь мы добавили протекающие по цепи токи):
Как вы уже заметили, схема очень напоминает включение транзистора с общим эмиттером. И действительно именно схема с ОЭ чаще всего используется при построении ключей. Только здесь у нас добавились два резистора (R_б и R_к). Вот с них и начнем!
Зачем же нужен резистор в цепи базы?
Итак, нам нужно подать на переход база-эмиттер напряжение прямого смещения. Его величина указывается среди параметров конкретного транзистора и обычно составляет в районе 0.6 В. Также мы знаем, какой управляющий сигнал мы будем подавать на вход для того, чтобы открыть транзистор. Например, при использовании микроконтроллера STM32 для управления ключом, на входе цепи у нас будет либо 0 В (транзистор в данном случае закрыт), либо 3.3 В (транзистор открыт). В данной схеме сигнал на вход подается не с контроллера, а напрямую с источника напряжения E_{вх} при замыкании переключателя S_1.
Таким образом, получаем, что при 3.3 В на входе напряжение на резисторе R_б составит:
U_{R_б} = E_{вх} \medspace – \medspace U_{бэ}
А теперь вспоминаем, что управление биполярным транзистором осуществляется изменением тока базы – а как его менять? Верно – изменяя сопротивление этого самого резистора! То есть, варьируя сопротивление резистора, мы меняем ток базы и, соответственно, этим самым вносим изменения в работу выходной цепи нашей схемы.
Чуть позже мы рассмотрим практический пример для конкретных номиналов и величин и посмотрим на деле, как это работает.Мы уже несколько раз использовали термины “транзистор открыт” и “закрыт”. Понятно, что это означает наличие, либо отсутствие коллекторного тока, но давайте рассмотрим эти понятия применительно к режимам работы транзистора. И тут все достаточно просто:
- для того, чтобы закрыть транзистор, мы стремимся перевести его в режим отсечки
- а чтобы открыть – в режим насыщения
То есть при проектировании ключа на биполярном транзисторе мы преследуем цель переводить транзистор то в режим отсечки, то в режим насыщения в зависимости от управляющего сигнала на входе!
Переходим к рассмотрению коллекторной цепи разбираемой схемы. В данном резистор R_к выполняет роль нагрузки, а также ограничивает ток в цепи во избежания короткого замыкания источника питания E_{вых}. И вот теперь пришло время вспомнить выходные характеристики, которые мы совсем недавно обсуждали 🙂
Но в данном случае выходные параметры схемы определяются помимо всего прочего еще и нагрузкой (то есть резистором R_к). Для коллекторной цепи мы можем записать:
U_{кэ} + I_к R_к = E_{вых}
Или:
I_к = \frac{E_{вых} \medspace – \medspace U_{кэ}}{R_к}
Этим уравнением задается так называемая нагрузочная характеристика цепи. Поскольку резистор – линейный элемент (U_R = I_R R), то характеристика представляет из себя прямую (которую так и называют – нагрузочная прямая). Наносим ее на выходные характеристики транзистора и получаем следующее:
Рабочая точка в данной схеме будем перемещаться по нагрузочной прямой. То есть величины U_{кэ} и I_к могут принимать только те значения, которые соответствуют точкам пересечения выходной характеристики транзистора и нагрузочной прямой. Иначе быть не может 🙂
И нам нужно обеспечить, чтобы в открытом состоянии рабочая точка оказалась в положении 1. В данном случае падение напряжения U_{кэ} на транзисторе будет минимальным, то есть почти вся полезная мощность от источника окажется на нагрузке. В закрытом же состоянии рабочая точка должна быть в положении 2. Тогда почти все напряжение упадет на транзисторе, а нагрузка будет выключена.
Теперь, когда мы разобрались с теоретическими аспектами работы ключа на транзисторе, давайте рассмотрим как же на практике производятся расчеты и выбор номиналов элементов!
Расчет ключа на биполярном транзисторе.
Добавим в схему полезную нагрузку в виде светодиода. Резистор R_к при этом остается на месте, он будет ограничивать ток через нагрузку и обеспечивать необходимый режим работы:
Пусть для включения светодиода нужно подать на него напряжение 3В (U_д). При этом диод будет потреблять ток равный 50 мА (I_д). Зададим параметры транзистора (в реальных схемах эти значения берутся из документации на используемый транзистор):
- Коэффициент усиления по току h_{21э} = 100…500 (всегда задан именно диапазон, а не конкретное значение)
- Падение напряжения на переходе база-эмиттер, необходимое для открытия этого перехода: U_{бэ} = 0.6 \medspace В.
- Напряжение насыщения: U_{кэ \medspace нас} = 0. 1 \medspace В.
Мы берем конкретные значения для расчетов, но на практике все бывает несколько иначе. Как вы помните, параметры транзисторов зависят от многих факторов, в частности, от режима работы, а также от температуры. А температура окружающей среды, естественно, может меняться. Определить четкие значения из характеристик при этом бывает не так просто, поэтому нужно стараться обеспечить небольшой запас. К примеру, коэффициент усиления по току при расчете лучше принять равным минимальному из значений, приведенных в даташите. Ведь если коэффициент в реальности будет больше, то это не нарушит работоспособности схемы, конечно, при этом КПД будет ниже, но тем не менее схема будет работать. А если взять максимальное значение h_{21э}, то при определенных условиях может оказаться, что реальное значение оказалось меньше, и его уже недостаточно для обеспечения требуемого режима работы транзистора.
Итак, возвращаемся к примеру 🙂 Входными данными для расчета кроме прочего являются напряжения источников. В данном случае:
- E_{вх} = 3.3\medspace В. Я выбрал типичное значение, которое встречается на практике при разработке схем на микроконтроллерах. В этом примере подача и отключение этого напряжения осуществляется переключателем S_1.
- E_{вых} = 9\medspace В.
Первым делом нам необходимо рассчитать сопротивление резистора в цепи коллектора. Напряжения и ток выходной цепи во включенном состоянии связаны следующим образом:
U_{кэ \medspace нас} + U_{R_к} + U_д = E_{вых}
При этом по закону Ома:
U_{R_к} = I_к R_к
А ток у нас задан, поскольку мы знаем, какой ток потребляет нагрузка (в данном случае диод) во включенном состоянии. Тогда:
U_{R_к} = I_д R_к
U_{кэ \medspace нас} + I_д R_к + U_д = E_{вых}
Итак, в этой формуле нам известно все, кроме сопротивления, которое и требуется определить:
R_к = \frac{E_{вых} \medspace – \medspace U_д \medspace – \medspace U_{кэ \medspace нас}}{I_д} \enspace= \frac{9 \medspace В \medspace – \medspace 3 \medspace В \medspace – \medspace 0. 1 \medspace В}{0.05 \medspace А} \medspace\approx 118 \medspace Ом.
Выбираем доступное значение сопротивления из стандартного ряда номиналов и получаем R_{к} = 120\medspace Ом. Причем важно выбирать именно бОльшее значение. Связано это с тем, что если мы берем значение чуть больше рассчитанного, то ток через нагрузку будет немного меньше. Это не приведет ни к каким сбоям в работе. Если же взять мЕньшее значение сопротивления, то это приведет к тому, что ток и напряжение на нагрузке будут превышать заданные, что уже хуже 🙂
Пересчитаем величину коллекторного тока для выбранного значения сопротивления:
I_к = \frac{U_{R_к}}{R_к} \medspace = \frac{9 \medspace В \medspace – \medspace 3 \medspace В \medspace – \medspace 0.1 \medspace В}{120 \medspace Ом} \medspace\approx\medspace 49.17 \medspace мА
Пришло время определить ток базы, для этого используем минимальное значение коэффициента усиления:
I_б = \frac{I_к}{h_{21э}} = \frac{49.17 \medspace мА}{100} = 491. 7 \medspace мкА
А падение напряжения на резисторе R_б:
U_{R_б} = E_{вх} \medspace – \medspace 0.6 \medspace В = 3.3 \medspace В \medspace – \medspace 0.6 \medspace В = 2.7 \medspace В
Теперь мы можем легко определить величину сопротивления:
R_б = \frac{U_{R_б}}{I_б}\medspace = \frac{2.7 \medspace В}{491.7 \medspace мкА} \approx 5.49 \medspace КОм
Опять обращаемся к ряду допустимых номиналов. Но теперь нам нужно выбрать значение, мЕньшее рассчитанного. Если сопротивление резистора будет больше расчетного, то ток базы будет, напротив, меньше. А это может привести к тому, что транзистор откроется не до конца, и во включенном состоянии бОльшая часть напряжения упадет на транзисторе (U_{кэ}), что, конечно, нежелательно.
Поэтому выбираем для резистора базы значение 5.1 КОм. И этот этап расчета был последним! Давайте резюмируем, наши рассчитанные номиналы составили:
- R_{б} = 5.1\medspace КОм
- R_{к} = 120\medspace Ом
Кстати в схеме ключа на транзисторе обычно добавляют резистор между базой и эмиттером, номиналом, например, 10 КОм. Он нужен для подтяжки базы при отсутствии сигнала на входе. В нашем примере, когда S1 разомкнут, то вход просто висит в воздухе. И под воздействием наводок транзистор будет хаотично открываться и закрываться. Поэтому и добавляется резистор подтяжки, чтобы при отсутствии входного сигнала потенциал базы был равен потенциалу эмиттеру. В этом случае транзистор будет гарантированно закрыт.
Сегодня мы прошлись по классической схеме, которой я стараюсь придерживаться, то есть – от теории к практике 🙂 Надеюсь, что материал будет полезен, а если возникнут какие-либо вопросы, пишите в комментарии, я буду рад помочь!
Чем отличается pnp транзистор от npn
PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.
Конструкция прибора
Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.
Стрелка определяет эмиттер и общепринятое направление его тока («внутрь» для транзистора PNP).
PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Рассмотрим отличия PNP-типа на схеме включения с общей базой
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Отличия PNP-типа на примере схемы включения с общим эмиттером
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.
PNP-транзистор: подключение источников напряжения
Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.
Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.
Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.
Работа PNP-транзисторного каскада
Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.
Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.
Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.
Характеристики транзистора
Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.
Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.
Транзисторные пары в усилительных каскадах
Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.
Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.
Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.
Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.
Транзисторные пары в схемах управления электродвигателями
Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.
H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.
Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.
Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.
Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.
Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.
Определение типа транзисторов
Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.
Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:
1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.
2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.
3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.
Значения сопротивлений переходов транзисторов обоих типов
Пара выводов транзистора | PNP | NPN | |
Коллектор | Эмиттер | RВЫСОКОЕ | RВЫСОКОЕ |
Коллектор | База | RНИЗКОЕ | RВЫСОКОЕ |
Эмиттер | Коллектор | RВЫСОКОЕ | RВЫСОКОЕ |
Эмиттер | База | RНИЗКОЕ | RВЫСОКОЕ |
База | Коллектор | RВЫСОКОЕ | RНИЗКОЕ |
База | Эмиттер | RВЫСОКОЕ | RНИЗКОЕ |
Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.
Существует два основных типа транзисторов – биполярные и полевые. Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов – NPN и PNP. Транзистор имеет три вывода, известные как эмиттер (Э), база (Б) и коллектор (К). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.
Физика полупроводников в этой статье обсуждаться не будет, однако, стоит упомянуть, что биполярный транзистор состоит из трех отдельных частей, разделенных двумя p-n переходами. Транзистор PNP имеет одну N область, разделенную двумя P областями:
Транзистор NPN имеет одну P область, заключенную между двумя N областями:
Сочленения между N и P областями аналогичны переходам в диодах, и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:
- Отсечка: работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то еесть «контакт разомкнут».
- Активный режим: транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
- Насыщение: работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
- Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении. Используется очень редко.
В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора (К) к эмиттеру (Э):
А в PNP ток протекает от эмиттера к коллектору:
Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.
PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, UБ должно быть выше, чем UК и UЭ. Ниже приводится краткое описание режимов работы в зависимости от их напряжения:
Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.
Существует два основных типа транзисторов – биполярные и полевые. Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов – NPN и PNP. Транзистор имеет три вывода, известные как эмиттер (Э), база (Б) и коллектор (К). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.
Физика полупроводников в этой статье обсуждаться не будет, однако, стоит упомянуть, что биполярный транзистор состоит из трех отдельных частей, разделенных двумя p-n переходами. Транзистор PNP имеет одну N область, разделенную двумя P областями:
Транзистор NPN имеет одну P область, заключенную между двумя N областями:
Сочленения между N и P областями аналогичны переходам в диодах, и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:
- Отсечка: работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то еесть «контакт разомкнут».
- Активный режим: транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
- Насыщение: работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
- Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении. Используется очень редко.
В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора (К) к эмиттеру (Э):
А в PNP ток протекает от эмиттера к коллектору:
Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.
PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, UБ должно быть выше, чем UК и UЭ. Ниже приводится краткое описание режимов работы в зависимости от их напряжения:
Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.
Как отличить транзисторы PNP и NPN?
Это довольно легко. Раньше я обычно делал это в старшей школе при утилизации деталей из неизвестных отброшенных досок.
Как сказал в своем выступлении Спер, иногда вы можете найти номер детали. В этом случае вы можете найти таблицу данных и получить параметры прямо. Однако слишком часто нет номера детали производителя или его короткого кода или его внутреннего номера. Особенно с меньшими пакетами, вам придется экспериментировать.
Во-первых, убедитесь, что омметр не настроен на какой-то дополнительный режим низкого напряжения, предназначенный для непереходных диодов смещения. У некоторых счетчиков есть такая особенность. В этом случае вы определенно хотите перенаправить смещения.
Биполярный транзистор имеет только три провода, поэтому только 6 возможных двухпроводных измерений при учете полярности. С точки зрения зондирования с помощью двухпроводного омметра биполярный транзистор выглядит как два диода спина к спине. Существует один B-E и один B-C. В NPN он принимает положительное напряжение на базе относительно E или C, чтобы проводить диоды, а наоборот — с помощью PNP. «N» и «P» в названиях сообщают вам напряжения, необходимые для проведения диодов.
Таким образом, легко понять, есть ли у вас NPN или PNP, а какой из них является основой. Следующая проблема заключается в том, чтобы выяснить, каковы C и E ведет. На большинстве пакетов C находится посередине. В пакете питания C обычно подключается к корпусу или вкладке или что-то еще.
Еще один способ проверить C на E — измерить коэффициент усиления. Транзистор по-прежнему будет работать с перевернутыми C и E, но коэффициент усиления будет выше при подключении по назначению. Обычно я делаю это, подключая счетчик через C-E. При плавании базы не должно быть тока, поэтому счетчик должен читать бесконечное сопротивление. Теперь используйте ваши пальцы для соединения C и B. Вы должны увидеть более низкое сопротивление, чем если бы вы использовали ваши пальцы для соединения C и E. Это кажущееся более низкое сопротивление связано с тем, что транзистор усиливает базовый ток.
Теперь запустите тот же тест, когда C-E перевернулся. В большинстве случаев одна ориентация имеет очевидный более высокий выигрыш. Если нет, то вы можете запустить этот тест с помощью реального резистора вместо ваших пальцев.
✅ Как подключить npn транзистор
Транзисторы: схема, принцип работы, чем отличаются биполярные и полевые
Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.
В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.
Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:
Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.
Биполярные транзисторы
Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:
Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.
Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.
Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.
NPN и PNP
Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).
NPN более эффективны и распространены в промышленности.
PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.
Полевые транзисторы
Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.
Полевые транзисторы обладают тремя контактами:
N-Channel и P-Channel
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Подключение транзисторов для управления мощными компонентами
Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.
Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:
Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.
Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:
здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.
Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА
Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.
Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:
это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.
Соединение транзисторов
Кремниевые транзисторы в свое время полностью вытеснили лампы. Когда же появились интегральные схемы, где транзисторов иногда насчитывалось до миллиарда штук, эти радиоэлементы стали незаменимы. В этом материале будет рассказано, как подключить биполярный транзистор и какие схемы включения транзисторов для чайников существуют.
Что это такое
Транзистор — это особый элемент электроцепи полупроводникового типа, который служит для изменения основных электрических параметров электротока и для регулирования этих параметров. В стандартном полупроводниковом триоде есть всего 3 вывода: коллектор, инжектор зарядов и базовый элемент, на который собственно и направляются электроны от управления. Также имеются комбинированные транзисторы с большой мощностью. Если обычные элементы, используемые в интегральных схемах, могут быть размером в несколько нанометров, то производственные транзисторы для промышленных предприятий имеют корпус и составляют до 1 сантиметра в ширину. Напряжение обратного типа производственных управляющих триодов достигает 1 тысячи Вольт.
Конструкция триода сделана на основе слоев полупроводника, заключенных в корпусе элемента. В качестве полупроводников выступают материалы, в основу которых входит кремний, германий, галлий и некоторые другие химические элементы. В настоящее время проводится множество исследований, которые предлагают в качестве материалов различные виды полимеров и углеродных нанотрубок.
Важно! Когда-то кристаллы полупроводников располагали в металлических отсеках в виде шляп с тремя выводами. Такое строение было характерно для точечных элементов транзисторного типа.
На сегодняшний день строение практически всех плоских и кремниевых транзисторов основано на легированном монокристалле. Они находятся в пластмассовых, металлических или стеклянных корпусах. У многих из них есть выступающие выводы, позволяющие отвести тепло при сильном нагреве от электричества.
Выводы современных транзисторов расположены, как правило, в один ряд. Это удобно, так как плату собирают роботы, и это экономит ресурсы. Выводные контакты также не маркируются на корпусе элемента. Вид вывода определяют по инструкции эксплуатации или после тестовых замеров.
Важно! Для транзисторов применяют сплавы полупроводникового типа с разным строением: PNP или NPN. Их различие заключается в разных знаках напряженности на выводах.
Если брать схематически, то описать этот радиоэлемент можно так: два полупроводника, разделенные дополнительным слоем, который управляет проводимостью триода.
Область применения и основной принципы функционирования
В состоянии покоя между коллекторами транзистора нет электрического тока. Его прохождению мешает сопротивляемость переходника, которая возникает из-за одновременной работы двух слоев транзистора. Включить элемент просто: необходимо подать любое напряжение на него. Управление базой и ее токами будет напрямую переключать режимы работы транзистора с «включенного» на «выключенный».
Если же направить сигнал от аналогового источника, то он будет взаимодействовать с выходными токами путем передачи им своей амплитуды. Иначе говоря, электрический сигнал, который поступил на выходы, будет усилен. Полупроводниковые управляющие триоды вполне могут активно работать как электронные ключи или усилители электронных сигналов входа.
Обозначение на электросхемах
У транзистора есть принятое обозначение: «ВТ» или «Q». После букв нужно указать индекс позиции. Например, ВТ 2. На старых чертежах можно найти условные обозначения: «Т», «ПП» или «ПТ», которые более не используются. Транзистор рисуют в виде неких отрезков, обозначающих контакты электродов. Иногда их обводят кругом. Направление электротока в области эмиттера указывает специальная стрелка.
По принципу действия и строению различают следующие полупроводниковые триоды:
- Полевого типа;
- Биполярного;
- Комбинированного.
Все они обладают схожим функционалом и отличаются по технологии работы.
Полевые
Такие триоды ещё называют униполярными, из-за их электрических свойств — у них происходит течение тока только одной полярности. Такой тип также подразделяется на некоторые виды по своему строению и типу регулировки:
- Транзисторы с PN переходом управления;
- Элементы с затвором изолированного типа;
- Такие же транзисторы другой структуры (металл-диэлектрик-проводник).
Важно! Изолированный затвор обладает одной отличительной особенностью — наличием диэлектрического слоя между ним и каналом.
Еще одна особенность полевых транзисторов — низкое потребление электроэнергии. Например, такой элемент может функционировать больше одного года на одной батарейке. Полевые радиоэлементы довольно независимы: они потребляют крайне мало электроэнергии. Такой прибор может годами работать на пальчиковой батарейке или небольшом аккумуляторе. Именно это и обусловило их широкое применение в электросхемах и приборах.
Биполярные
Свое название эти элементы получили за то, что они способны пропускать электрические заряды плюса и минуса через один проходной канал. Также они обладают низким входным сопротивлением. Такие приспособления работают как усилители сигнала и коммутаторы. Благодаря им в электроцепь можно подключить довольно сильную нагрузку и понизить действие ее сопротивления. Биполярники являются наиболее популярными полупроводниковыми приборами активного типа.
Комбинированные
Комбинированные элементы изобретаются для того, чтобы по применению одного дискретного состояния достичь требуемых электрических параметров. Они бывают:
- Биполярными с внедрёнными в их схему резисторами;
- Двумя триодами одной или нескольких структур строения в единой детали;
- Лямбда-диодами — сочетанием двух полевых управляющих триодов, создающих сопротивляемость со знаком «минус»;
- Элементы, в которых полевые составляющие управляют биполярными.
Схема подключения транзистора для чайников
Наиболее популярны следующие схемы подсоединения транзисторов в цепь: с общей базовой установкой, общими выводами инжекторного эмиттера и с общим коллекторным преобразователем для подачи напряженности.
Для усилителей с базой общего типа характерно следующее:
- Низкие параметры входного сопротивления, которое не достигает даже 100 Ом;
- Неплохая температура и частота триода;
- Допустимое напряжение весьма большое;
- Требуют два различных источника питания.
Схемы второго типа обладают:
- Высокими показателями усиления электротока и напряжения;
- Низкими показателями усиления мощностных характеристик;
- Инверсионной разницей между входным и выходным напряжением.
Важно! Схема транзистора с электродами общего коллекторного типа требует одного источника питания.
Подключение по типу общего коллектора может обеспечить:
- Низкие показатели электронапряжения по усилению;
- Большая и меньшая сопротивляемость входа и выхода соответственно.
Таким образом, транзистор — один из самых распространенных радиоэлементов в электронике. Он позволяет изменять параметры электрического тока и регулировать его для корректной работы электроприборов. Существует несколько видов транзисторов, как и способов их соединения. Различаются они строением и целями использования.
Биполярные транзисторы
Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.
Введение
Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.
Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.
Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.
Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.
Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:
Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается Hfe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.
Использование NPN транзистора как коммутатора
На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.
1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке Vc. Мы найдем значение резистора базы, при котором всё будет правильно.
2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (Vce) взято из документации транзистора. Эмиттер подключен к GND, соответственно Vce= Vc — 0 = Vc. Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:
Иногда, сопротивления нагрузки RL неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.
3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:
Из неё следует что:
4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.
5. Расчёт необходимого значения Rb: Учитывая перегрузку в 10 раз, сопротивление Rb может быть рассчитано по следующей формуле:
где V1 является напряжением управления транзистором (см. рис 2.а)
Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V1 = 5V, формула может быть упрощена до следующего вида:
Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение Rb известно, транзистор «настроен» на работу в качестве переключателя, что также называется «режим насыщения и отсечки «, где «насыщение» — когда транзистор полностью открыт и проводит ток, а «отсечение» – когда закрыт и ток не проводит.
Примечание: Когда мы говорим
, мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.Расчет нагрузки
Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:
HFE (β) меняется в зависимости от тока коллектора и напряжения VCEsat. Но VCEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.
Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший HFE, крупнейший VCEsat и VCEsat.
Типичное применение транзисторного ключа
1. Управление реле
В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.
2. Подключение транзистора с открытым коллектором:
Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3. B
3. Создание логического элемента ИЛИ-НЕ (NOR):
Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.
На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.
Поиск ошибок в транзисторных схемах
При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:
1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.
2. Измерение VCE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные VCE это быстрый способ обнаружения дефектных транзисторов.
3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.
Электронные печеньки
Arduino, DIY и немного этих ваших линуксов.
Транзистор
Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.
Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:
Типы транзисторов
Биполярный транзистор
Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:
Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).
Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.
Работа биполярного транзистора
NPN и PNP биполярные транзисторы
Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.
От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:
Обозначение NPN (слева) и PNP (справа) транзисторов на схеме
NPN транзисторы более распространены в электронике, потому что являются более эффективными.
Полевый транзистор
Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.
Полевые транзисторы имеют как минимум 3 вывода:
Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.
N канальные и P канальные полевые транзисторы
Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме
Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.
Транзистор Дарлингтона
Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.
Схема составного транзистора дарлингтона
Подключение транзистора
Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:
Подключение мощного мотора с помощью транзистора
На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).
ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.
При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.
PNP-транзистор: схема подключения.
Какая разница между PNP и NPN-транзисторами?PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.
Конструкция прибора
Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.
Стрелка определяет эмиттер и общепринятое направление его тока («внутрь» для транзистора PNP).
PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Рассмотрим отличия PNP-типа на схеме включения с общей базой
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Отличия PNP-типа на примере схемы включения с общим эмиттером
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.
PNP-транзистор: подключение источников напряжения
Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.
Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.
Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.
Работа PNP-транзисторного каскада
Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.
Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.
Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.
Характеристики транзистора
Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.
Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.
Транзисторные пары в усилительных каскадах
Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.
Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.
Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.
Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.
Транзисторные пары в схемах управления электродвигателями
Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.
H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.
Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.
Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.
Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.
Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.
Определение типа транзисторов
Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.
Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:
1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.
2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.
3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.
Значения сопротивлений переходов транзисторов обоих типов
транзисторов — learn.sparkfun.com
Добавлено в избранное Любимый 77Введение
Транзисторы вращают мир электроники. Они критически важны как источник управления практически в каждой современной цепи. Иногда вы их видите, но чаще всего они спрятаны глубоко внутри кристалла интегральной схемы. В этом уроке мы познакомим вас с основами самого распространенного транзистора: биполярного переходного транзистора (BJT).
В небольших дискретных количествах транзисторы могут использоваться для создания простых электронных переключателей, цифровой логики и схем усиления сигналов. В количествах тысяч, миллионов и даже миллиардов транзисторы соединены между собой и встроены в крошечные микросхемы для создания компьютерной памяти, микропроцессоров и других сложных ИС.
рассматривается в этом учебном пособии
После прочтения этого руководства мы хотим, чтобы вы получили широкое представление о том, как работают транзисторы.Мы не будем слишком углубляться в физику полупроводников или эквивалентные модели, но мы достаточно углубимся в предмет, чтобы вы поняли, как транзистор можно использовать в качестве переключателя или усилителя .
Это руководство разделено на несколько разделов, охватывающих:
Существует два типа базовых транзисторов: биполярный переход (BJT) и металлооксидный полевой транзистор (MOSFET). В этом руководстве мы сфокусируемся на BJT , потому что его немного легче понять.Если копнуть еще глубже в типы транзисторов, на самом деле существует две версии BJT: NPN и PNP . Мы сфокусируемся еще больше, ограничив наше раннее обсуждение NPN. Если сузить наш фокус — получить твердое представление о NPN — будет легче понять PNP (или даже МОП-транзисторы), сравнив, чем он отличается от NPN.
и nbsp
и nbsp
Рекомендуемая литература
Перед тем, как углубиться в это руководство, мы настоятельно рекомендуем просмотреть его:
- Напряжение, ток, сопротивление и закон Ома — Введение в основы электроники.
- Основы электричества — Мы немного поговорим об электричестве как потоке электронов. Узнайте, как текут эти электроны, в этом уроке.
- Electric Power — Одно из основных применений транзисторов — усиление — увеличение мощности сигнала. Увеличение мощности означает, что мы можем увеличивать ток или напряжение, узнайте почему в этом руководстве.
- Диоды — Транзистор — это полупроводниковый прибор, похожий на диод. В некотором смысле это то, что вы получили бы, если бы сложили два диода вместе и связали их аноды вместе.Понимание того, как работает диод, во многом поможет раскрыть принцип работы транзистора.
Хотите изучить транзисторы?
Символы, булавки и конструкция
Транзисторы — это в основном трехконтактные устройства. На биполярном переходном транзисторе (BJT) эти контакты обозначены как коллектор (C), база (B) и эмиттер (E). Обозначения схем как для NPN, так и для PNP BJT приведены ниже:
Единственное различие между NPN и PNP — это направление стрелки на эмиттере.Стрелка на NPN указывает, а на PNP указывает. Полезная мнемоника для запоминания:
NPN:
N от P ointing i NОбратная логика, но работает!
Конструкция транзистора
Транзисторы полагаются на полупроводники, чтобы творить чудеса. Полупроводник — это не совсем чистый проводник (например, медный провод), но и не изолятор (например, воздух). Проводимость полупроводника — насколько легко он позволяет электронам течь — зависит от таких переменных, как температура или наличие большего или меньшего количества электронов.Заглянем вкратце под капот транзистора. Не волнуйтесь, мы не будем углубляться в квантовую физику.
Транзистор как два диода
Транзисторы— это своего рода продолжение другого полупроводникового компонента: диодов. В некотором смысле транзисторы — это всего лишь два диода со связанными вместе катодами (или анодами):
Диод, соединяющий базу с эмиттером, здесь важен; он соответствует направлению стрелки на схематическом символе и показывает , в каком направлении должен течь ток через транзистор.
Изображение диодов — хорошее место для начала, но оно далеко не точное. Не основывайте свое понимание работы транзистора на этой модели (и определенно не пытайтесь воспроизвести ее на макете, это не сработает). Существует множество странных вещей на уровне квантовой физики, управляющих взаимодействием между тремя терминалами.
(Эта модель полезна, если вам нужно проверить транзистор. Используя функцию проверки диодов (или сопротивления) на мультиметре, вы можете измерить контакты BE и BC, чтобы проверить наличие этих «диодов».)
Структура и работа транзистора
Транзисторысостоят из трех разных слоев полупроводникового материала. В некоторые из этих слоев добавлены дополнительные электроны (процесс, называемый «легированием»), а в других электроны удалены (допирование «дырками» — отсутствие электронов). Полупроводниковый материал с дополнительными электронами называется n-типа ( n для отрицательного заряда, потому что электроны имеют отрицательный заряд), а материал с удаленными электронами называется p-типа (для положительного).Транзисторы создаются путем размещения n поверх p поверх n или p поверх n над p .
Упрощенная схема структуры NPN. Заметили происхождение каких-либо аббревиатур?
Если немного помахать рукой, мы можем сказать, что электронов могут легко перетекать из областей n в области p , если у них есть небольшая сила (напряжение), толкающая их.Но переход от области p к области n действительно затруднен (требуется лот напряжения). Но особенность транзистора — та часть, которая делает нашу модель с двумя диодами устаревшей — это тот факт, что электронов могут легко перемещаться от базы p-типа к коллектору n-типа, пока база- эмиттерный переход смещен в прямом направлении (это означает, что база находится под более высоким напряжением, чем эмиттер).
NPN-транзистор предназначен для передачи электронов от эмиттера к коллектору (поэтому обычный ток течет от коллектора к эмиттеру).Эмиттер «испускает» электроны в базу, которая контролирует количество электронов, испускаемых эмиттером. Большая часть испускаемых электронов «собирается» коллектором, который отправляет их в следующую часть цепи.
PNP работает таким же, но противоположным образом. База по-прежнему контролирует ток, но этот ток течет в противоположном направлении — от эмиттера к коллектору. Вместо электронов эмиттер испускает «дырки» (концептуальное отсутствие электронов), которые собираются коллектором.
Транзистор похож на электронный клапан . Базовый штифт похож на ручку, которую вы можете настроить, чтобы позволить большему или меньшему количеству электронов течь от эмиттера к коллектору. Давайте исследуем эту аналогию дальше …
Расширение аналогии с водой
Если вы в последнее время читали много руководств по концепциям электричества, вы, вероятно, привыкли к аналогиям с водой. Мы говорим, что ток аналогичен скорости потока воды, напряжение — это давление, проталкивающее воду по трубе, а сопротивление — это ширина трубы.
Неудивительно, что аналогия с водой может быть распространена и на транзисторы: транзистор похож на водяной клапан — механизм, который мы можем использовать для управления скоростью потока .
Есть три состояния, в которых мы можем использовать клапан, каждое из которых по-разному влияет на скорость потока в системе.
1) Вкл — короткое замыкание
Клапан может быть полностью открыт, позволяя воде свободно течь в — проходить, как если бы клапана даже не было.
Аналогично, при определенных обстоятельствах транзистор может выглядеть как короткое замыкание между выводами коллектора и эмиттера. Ток может свободно течь через коллектор и выходить из эмиттера.
2) Выкл. — обрыв цепи
Когда он закрыт, клапан может полностью перекрыть поток воды.
Таким же образом можно использовать транзистор для создания разомкнутой цепи между выводами коллектора и эмиттера.
3) Линейное управление потоком
С некоторой точной настройкой можно точно настроить клапан для точного управления расходом до некоторой точки между полностью открытым и закрытым.
Транзистор может делать то же самое — линейно регулирует ток через цепь в какой-то момент между полностью выключенным (разомкнутая цепь) и полностью включенным (короткое замыкание).
Из нашей аналогии с водой, ширина трубы аналогична сопротивлению в цепи. Если клапан может точно регулировать ширину трубы, то транзистор может точно регулировать сопротивление между коллектором и эмиттером. Таким образом, транзистор подобен регулируемому резистору .
Усилительная мощность
Есть еще одна аналогия, которую мы можем провести здесь. Представьте себе, если бы с легким поворотом клапана вы могли контролировать скорость потока затворов плотины Гувера. Ничтожное усилие, которое вы можете приложить для поворота ручки, может создать усилие в тысячи раз сильнее. Мы расширяем аналогию до предела, но эта идея распространяется и на транзисторы. Транзисторы особенные, потому что они могут усиливать электрические сигналы , превращая сигнал малой мощности в аналогичный сигнал гораздо большей мощности.
Вид. Это еще не все, но это хорошее место для начала! В следующем разделе вы найдете более подробное объяснение работы транзистора.
Режимы работы
В отличие от резисторов, которые обеспечивают линейную зависимость между напряжением и током, транзисторы являются нелинейными устройствами. У них есть четыре различных режима работы, которые описывают протекающий через них ток. (Когда мы говорим о токе, протекающем через транзистор, мы обычно имеем в виду ток , протекающий от коллектора к эмиттеру NPN .)
Четыре режима работы транзистора:
- Насыщение — Транзистор действует как короткое замыкание . Ток свободно течет от коллектора к эмиттеру.
- Отсечка — Транзистор действует как разомкнутая цепь . Нет тока от коллектора к эмиттеру.
- Активный — Ток от коллектора к эмиттеру пропорционален току, протекающему в базу.
- Reverse-Active — Как и в активном режиме, ток пропорционален базовому току, но течет в обратном направлении.Ток течет от эмиттера к коллектору (не совсем то, для чего были предназначены транзисторы).
Чтобы определить, в каком режиме находится транзистор, нам нужно посмотреть на напряжения на каждом из трех контактов и на то, как они соотносятся друг с другом. Напряжения от базы к эмиттеру (V BE ) и от базы к коллектору (V BC ) устанавливают режим транзистора:
Упрощенный квадрантный график выше показывает, как положительное и отрицательное напряжение на этих клеммах влияет на режим.На самом деле все немного сложнее.
Давайте рассмотрим все четыре режима транзистора по отдельности; мы исследуем, как перевести устройство в этот режим и как это влияет на ток.
Примечание: Большая часть этой страницы посвящена транзисторам NPN . Чтобы понять, как работает транзистор PNP, просто поменяйте полярность или знаки> и <.
Режим насыщенности
Насыщенность — это в режиме транзистора.Транзистор в режиме насыщения действует как короткое замыкание между коллектором и эмиттером.
В режиме насыщения оба «диода» транзистора смещены в прямом направлении. Это означает, что V BE должен быть больше 0, и , поэтому должен быть V BC . Другими словами, V B должен быть выше, чем V E и V C .
Поскольку переход от базы к эмиттеру выглядит как диод, в действительности V BE должно быть больше, чем пороговое напряжение , чтобы войти в режим насыщения.Существует множество сокращений для этого падения напряжения — V th , V γ и V d несколько — и фактическое значение варьируется между транзисторами (и даже больше в зависимости от температуры). Для многих транзисторов (при комнатной температуре) это падение может составить около 0,6 В.
Еще один облом реальности: между эмиттером и коллектором не будет идеальной проводимости. Между этими узлами образуется небольшое падение напряжения. В технических характеристиках транзисторов это напряжение определяется как напряжение насыщения CE, В CE (насыщение) — напряжение от коллектора к эмиттеру, необходимое для насыщения.Это значение обычно составляет 0,05-0,2 В. Это значение означает, что V C должно быть немного больше, чем V E (но оба все еще меньше, чем V B ), чтобы транзистор перешел в режим насыщения.
Режим отсечки
Режим отсечки противоположен насыщению. Транзистор в режиме отсечки — выключен, — нет тока коллектора и, следовательно, нет тока эмиттера. Это почти похоже на обрыв цепи.
Чтобы перевести транзистор в режим отсечки, базовое напряжение должно быть меньше, чем напряжения эмиттера и коллектора.V BC и V BE должны быть отрицательными.
На самом деле, V BE может быть где угодно между 0 В и V th (~ 0,6 В) для достижения режима отсечки.
Активный режим
Для работы в активном режиме транзистор V BE должен быть больше нуля, а V BC должен быть отрицательным. Таким образом, базовое напряжение должно быть меньше, чем на коллекторе, но больше, чем на эмиттере. Это также означает, что коллектор должен быть больше эмиттера.
На самом деле нам нужно ненулевое прямое падение напряжения (сокращенно V th , V γ или V d ) от базы к эмиттеру (V BE ), чтобы «включить» транзистор. Обычно это напряжение обычно составляет около 0,6 В.
Усиление в активном режиме
Активный режим — это самый мощный режим транзистора, потому что он превращает устройство в усилитель . Ток, идущий на вывод базы, усиливает ток, идущий в коллектор и выходящий из эмиттера.
Наше сокращенное обозначение для коэффициента усиления (коэффициент усиления) транзистора — β (вы также можете увидеть его как β F или h FE ). β линейно связывает ток коллектора ( I C ) с базовым током ( I B ):
Фактическое значение β зависит от транзистора. Обычно это около 100 , но может варьироваться от 50 до 200 … даже 2000, в зависимости от того, какой транзистор вы используете и сколько тока проходит через него.Если, например, у вашего транзистора β = 100, это будет означать, что входной ток в 1 мА на базу может производить ток 100 мА через коллектор.
Модель с активным режимом. V BE = V th и I C = βI B .
А как насчет тока эмиттера, I E ? В активном режиме токи коллектора и базы идут на устройство, а выходит I E . Чтобы связать ток эмиттера с током коллектора, у нас есть другое постоянное значение: α .α — коэффициент усиления по току общей базы, он связывает эти токи как таковые:
α обычно очень близко, но меньше 1. Это означает, что I C очень близко, но меньше I E в активном режиме.
Вы можете использовать β для вычисления α или наоборот:
Если, например, β равно 100, это означает, что α равно 0,99. Так, если, например, I C равен 100 мА, то I E равен 101 мА.
Реверс Активный
Так же, как насыщение противоположно отсечке, обратный активный режим противоположен активному режиму.Транзистор в обратном активном режиме проводит, даже усиливает, но ток течет в обратном направлении, от эмиттера к коллектору. Обратной стороной активного режима является то, что β (β R в данном случае) на намного меньше на .
Чтобы перевести транзистор в обратный активный режим, напряжение на эмиттере должно быть больше, чем на базе, которая должна быть больше, чем на коллекторе (V BE <0 и V BC > 0).
Обратный активный режим обычно не является состоянием, в котором вы хотите управлять транзистором.Приятно знать, что он есть, но он редко превращается в приложение.
Относительно PNP
После всего, о чем мы говорили на этой странице, мы все еще покрыли только половину спектра BJT. А как насчет транзисторов PNP? Работа PNP очень похожа на работу NPN — у них те же четыре режима, но все изменилось. Чтобы узнать, в каком режиме находится PNP-транзистор, поменяйте местами все знаки <и>.
Например, чтобы перевести PNP в режим насыщения, V C и V E должны быть выше, чем V B .Вы опускаете базу ниже, чтобы включить PNP, и поднимаете ее выше, чем коллектор и эмиттер, чтобы выключить его. И, чтобы перевести PNP в активный режим, напряжение V E должно быть выше, чем напряжение V B , которое должно быть выше, чем V C .
Итого:
Соотношение напряжений | Режим NPN | Режим PNP |
---|---|---|
В E | Активный | Обратный |
V E | Насыщенность | Отсечка |
V E > V B | Отсечка | Насыщенность |
V E > V B > V C | Задний ход | Активный |
Другой противоположной характеристикой NPN и PNP является направление тока.В активном режиме и режиме насыщения ток в PNP течет от эмиттера к коллектору . Это означает, что эмиттер обычно должен иметь более высокое напряжение, чем коллектор.
Если вы перегорели концептуальными вещами, перейдите к следующему разделу. Лучший способ узнать, как работает транзистор, — это изучить его в реальных схемах. Давайте посмотрим на некоторые приложения!
Приложения I: Коммутаторы
Одно из самых фундаментальных применений транзистора — использовать его для управления потоком энергии к другой части схемы — используя его в качестве электрического переключателя.Управляя им в режиме отсечки или насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.
Транзисторные переключатели являются важными строительными блоками; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.
Транзисторный переключатель
Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:
Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.
В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом выводе. Вывод микроконтроллера ввода-вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.
Когда напряжение на базе превышает 0,6 В (или какое бы там значение у вашего транзистора V th ), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0.6 В транзистор находится в режиме отсечки — ток не течет, потому что это похоже на разрыв цепи между C и E.
Схема, приведенная выше, называется переключателем нижнего уровня , потому что переключатель — наш транзистор — находится на стороне низкого (заземления) цепи. В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:
Подобно схеме NPN, база — это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер подключен к высокому уровню, а нагрузка подключена к транзистору со стороны земли.
Эта схема работает так же хорошо, как и коммутатор на основе NPN, но есть одно огромное отличие: для включения нагрузки база должна быть низкой. Это может вызвать осложнения, особенно если высокое напряжение нагрузки (V CC — 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить выключатель , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .
Базовые резисторы!
Вы заметите, что каждая из этих схем использует последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.
Напомним, что в некотором смысле транзистор — это просто пара соединенных между собой диодов. Мы смещаем диод база-эмиттер в прямом направлении, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток.Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.
Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.
Резистор должен быть достаточно большим, чтобы эффективно ограничивать ток , но достаточно маленьким, чтобы питать базу достаточным током .Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.
Цифровая логика
Транзисторыможно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.
(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)
Инвертор
Вот схема транзистора, которая реализует инвертор , или НЕ затвор:
Инвертор на транзисторах.
Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером. Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтянут до VCC
.(На самом деле это фундаментальная конфигурация транзистора, называемая общим эмиттером .Подробнее об этом позже.)
И Ворота
Вот пара транзисторов, используемых для создания логического элемента И с двумя входами :
2-входной логический элемент И на транзисторах.
Если какой-либо транзистор выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то выходной сигнал схемы также высокий.
OR Выход
И, наконец, логический элемент ИЛИ с двумя входами :
2-входной логический элемент ИЛИ на транзисторах.
В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню. Если оба транзистора выключены, то через резистор выводится низкий уровень.
Н-образный мост
H-мост — это транзисторная схема, способная приводить двигатели как по часовой, так и против часовой стрелки . Это невероятно популярная трасса — движущая сила бесчисленных роботов, которые должны уметь двигаться как вперед на , так и на назад.
По сути, H-мост представляет собой комбинацию из четырех транзисторов с двумя входными линиями и двумя выходами:
Вы можете догадаться, почему это называется H-мостом?
(Примечание: обычно у хорошо спроектированного H-моста есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)
Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.
H-мост имеет таблицу истинности, которая выглядит примерно так: