Оптоволоконные – Как устроен оптоволоконный кабель

Содержание

Какие виды оптоволоконных кабелей существуют и чем они отличаются?


В нескольких своих постах, опубликованных более года назад, я поднял такую интересную для многих и чем-то захватывающую тему, как магистральные оптоволоконные кабели связи, в частности, тему «подводной» оптики. Информация в данных публикациях была неполной, торопливой и разрозненной, так как статьи писались «на коленке» во время обеденного перерыва. Сейчас я бы хотел поделиться структурированным и, насколько это возможно, полным материалом по теме оптики, с максимумом вкусных подробностей и гик-порно, от которых на душе любого технаря станет тепло.

Вы готовы?

Условная классификация


В отличие от всем нам знакомой витой пары, которая вне зависимости от места применения имеет примерно одну и ту же конструкцию, оптоволоконные кабели связи могут иметь значительные отличия исходя из сферы применения и места укладки.

Можно выделить следующие основные виды оптоволоконных кабелей для передачи данных исходя из области применения:

  • Для прокладки внутри зданий;
  • для кабельной канализации небронированный;
  • для кабельной канализации бронированный;
  • для укладки в грунт;
  • подвесной самонесущий;
  • с тросом;
  • подводный.

Наиболее простой конструкцией обладают кабели для прокладки внутри зданий и канализационный небронированный, а самыми сложными — для прокладки в землю и подводные.

 

Кабель для прокладки внутри зданий

Оптические кабели для прокладки внутри зданий разделяют на распределительные, из которых формируется сеть в целом, и абонентские, которые используются непосредственно для прокладки по помещению к конечному потребителю. Как и витую пару, прокладывают оптику в кабельных лотках, кабель-каналах, а некоторые марки могут быть протянуты и по внешним фасадам зданий. Обычно такой кабель заводят до межэтажной распределительной коробки или непосредственно до места подключения абонента.

Конструкция оптоволоконных кабелей для прокладки в зданиях включает в себя оптическое волокно, защитное покрытие и центральный силовой элемент, например, пучок арамидных нитей. К оптике, прокладываемой в помещениях, есть особые требования по противопожарной безопасности, такие как нераспространение горения и низкое дымовыделение, поэтому в качестве оболочки для них используется не полиэтилен, а полиуретан. Другие требования — это низкая масса кабеля, гибкость и небольшой размер. По этой причине многие модели имеют облегченную конструкцию, иногда с дополнительной защитой от влаги. Так как протяженность оптики внутри зданий обычно невелика, то и затухание сигнала незначительно и влияние на передачу данных оно не оказывает. Число оптических волокон в таких кабелях не превышает двенадцати.

Также существует и своеобразная помесь «бульдога с носорогом» — оптоволоконный кабель, который содержит в себе, дополнительно, еще и витую пару.

Небронированный канализационный кабель

Небронированная оптика используется для укладки в канализации, при условии, что на нее не будет внешних механических воздействий. Также подобный кабель прокладывается в тоннелях, коллекторах и зданиях. Но даже в случаях отсутствия внешнего воздействия на кабель в канализации, его могут укладывать в защитные полиэтиленовые трубы, а монтаж производится либо вручную, либо при помощи специальной лебедки. Характерной особенностью данного типа оптоволоконного кабеля можно назвать наличие гидрофобного наполнителя (компаунда), который гарантирует возможность эксплуатации в условиях канализации и дает некоторую защиту от влаги.

 

Бронированный канализационный кабель

Бронированные оптоволоконные кабели используются при наличии больших внешних нагрузок, в особенности, на растяжение. Бронирование может быть различным, ленточным или проволочным, последнее подразделяется на одно- и двухповивное. Кабели с ленточным бронированием используются в менее агрессивных условиях, например, при прокладке в кабельной канализации, трубах, тоннелях, на мостах. Ленточное бронирование представляет собой стальную гладкую или гофрированную трубку толщиной в 0,15-0,25 мм. Гофрирование, при условии, что это единственный слой защиты кабеля, является предпочтительным, так как оберегает оптоволокно от грызунов и в целом повышает гибкость кабеля. При более суровых условиях эксплуатации, например, при закладке в грунт или на дно рек используются кабели с проволочной броней.

Кабель для укладки в грунт

Для прокладки в грунт используют оптические кабели с проволочной одноповивной или двухповивиной броней. Также применяются и усиленные кабели с ленточным бронированием, но значительно реже. Прокладка оптического кабеля осуществляется в траншею или с помощью кабелеукладчиков. Более подробно этот процесс расписан в моей второй статье по этой теме, где приводятся примеры наиболее распространенных видов кабелеукладчиков. Если температура окружающей среды ниже отметки в -10 оС, кабель предварительно прогревают.

В условиях влажного грунта используется модель кабеля, оптоволоконная часть которого заключена в герметичную металлическую трубку, а бронеповивы проволоки пропитаны специальным водоотталкивающим компаундом. Тут же в дело вступают расчеты: инженеры, работающие на укладке кабеля, не должны допускать превышения растягивающих и сдавливающих нагрузок сверх допустимых. В противном случае, сразу или со временем, могут быть повреждены оптические волокна, что приведет кабель в негодность.

Броня влияет и на значение допустимого усилия на растяжение. Оптоволоконные кабели с двухповивной броней могут выдержать усилие от 80 кН, одноповивные — от 7 до 20 кН, а ленточная броня гарантирует «выживание» кабеля при нагрузке не менее 2,7 кН.

 

Подвесной самонесущий кабель

Подвесные самонесущие кабели монтируются на уже существующих опорах воздушных линий связи и высоковольтных ЛЭП. Это технологически проще, чем прокладка кабеля в грунт, но при монтаже существует серьезное ограничение — температура окружающей среды во время работ не должна быть ниже — 15

оС. Подвесные самонесущие кабели имеют стандартную круглую форму, благодаря которой снижаются ветровые нагрузки на конструкцию, а расстояние пролета между опорами может достигать ста и более метров. В конструкции самонесущих подвесных оптических кабелей обязательно присутствует ЦСЭ — центральный силовой элемент, изготовленный из стеклопластика или арамидных нитей. Благодаря последним оптоволоконный кабель выдерживает высокие продольные нагрузки. Подвесные самонесущие кабели с арамидным нитями используют в пролетах до одного километра. Еще одно преимущество арамидных нитей, кроме их прочности и малом весе, заключается в том, что арамид по природе своей является диэлектриком, то есть кабели, изготовленные на его основе безопасны, например, при попадании молнии.

В зависимости от строения сердечника различают несколько типов подвесного кабеля:

 

  • Кабель с профилированным сердечником — содержит оптические волокна или модули с этими волокнами – кабель устойчив к растяжению и сдавливанию;
  • Кабель со скрученными модулями — содержит оптические волокна, свободно уложенные, кабель устойчив к растяжениям;
  • Кабель с одним оптическим модулем – сердечник данного типа кабеля не имеет силовых элементов, поскольку они находятся в оболочке. Такие кабели обладают недостатком, связанным с неудобством идентификации волокон. Тем не менее, они обладают меньшим диаметром и более доступной ценой.

 Оптический кабель с тросом

Оптические кабеля с тросом — это разновидность самонесущих кабелей, которые также используются для воздушной прокладки. В таком изделии трос может быть несущим и навивным. Еще существуют модели, в которых оптика встроена в грозозащитный трос.

Усиление оптического кабеля тросом (профилированным сердечником) считается достаточно эффективным методом. Сам трос представляет собой стальную проволоку, заключенную в отдельную оболочку, которая в свою очередь соединяется с оболочкой кабеля. Свободное пространство между ними заполняется гидрофобным заполнителем. Часто такую конструкцию оптического кабеля с тросом называют «восьмеркой» из-за внешнего сходства, хотя лично у меня возникают ассоциации с перекормленной «лапшой». «Восьмерки» применяют для прокладки воздушных линий связи с пролетом не более 50-70 метров. В эксплуатации подобных кабелей есть некоторые ограничения, например, «восьмерку» со стальным тросом нельзя подвешивать на ЛЭП. Надеюсь, объяснять, почему именно, не нужно.

Но кабели с навивным грозозащитным тросом (грозотросом) спокойно монтируются на высоковольтных ЛЭП, крепясь при этом к проводу заземления. Грозотросный кабель используется в местах, где есть риски повреждения оптики дикими животными или охотниками. Также его можно использовать на больших по дистанции пролетах, чем обычную «восьмерку».

 

Подводный оптический кабель

Данный тип оптических кабелей стоит в сторонке от всех остальных, так как прокладывается в принципиально иных условиях. Почти все типы подводных кабелей, так или иначе, бронированы, а степень бронирования уже зависит от рельефа дна и глубины залегания.

Различают следующие основные типы подводных кабелей (по типу бронирования):

 

  • Не бронирован;
  • Одинарное (одноповивное) бронирование;
  • Усиленное (одноповивное) бронирование;
  • Усиленное скальное (двухповивное) бронирование;

Подробно конструкцию подводного кабеля я рассматривал больше года назад, поэтому тут приведу только краткую информацию с рисунком:

 

  1. Полиэтиленовая изоляция.
  2. Майларовое покрытие.
  3. Двухповивное бронирование стальной проволокой.
  4. Алюминиевая гидроизоляционная трубка.
  5. Поликарбонат.
  6. Центральная медная или алюминиевая трубка.
  7. Внутримодульный гидрофобный заполнитель.
  8. Оптические волокна.

Как не парадоксально, прямой корреляции бронирования кабеля с глубиной залегания нет, так как армирование защищает оптику не от высоких давлений на глубине, а от деятельности морских обитателей, а также сетей, тралов и якорей рыболовецких судов. Корреляция эта, скорее, обратная — чем ближе к поверхности, тем больше тревог, что явно видно по таблице ниже:

Таблица типов и характеристик подводных кабелей в зависимости от глубины укладки

Производство


Теперь, когда мы познакомились с наиболее распространенными видами оптоволоконных кабелей, можно проговорить и о производственном процессе всего этого зоопарка. Все мы знаем об оптоволоконных кабелях, многие из нас имели с ними дело лично (как абоненты и как монтажники), но как становится ясно из информации выше, оптоволоконные, в особенности магистральные, кабели могут серьезно отличаться от того, с чем вы имели дело в помещении.

Так как для прокладки оптоволоконной магистрали требуются тысячи километров кабеля, их производством занимаются целые заводы.

 

Изготовление оптоволоконной нити

Все начинается с производства главного элемента — оптоволоконной нити. Производят это чудо на специализированных предприятиях. Одной из технологий производства оптической нити является ее вертикальная вытяжка. А происходит это следующим образом:

  • На высоте в несколько десятков метров в специальной шахте устанавливается два резервуара: один со стеклом, второй, ниже по шахте, со специальным полимерным материалом первичного покрытия.
  • Из узла прецизионной подачи заготовки или, проще говоря, первого резервуара с жидким стеклом, вытягивается стеклянная нить.
  • Ниже нить проходит через датчик диаметра волоконного световода, который отвечает за контроль диаметра изделия.
  • После контроля качества нить обволакивается первичным полимерным покрытием из второго резервуара.
  • Пройдя процедуру покрытия, нить отправляется в еще одну печь, в которой полимер закрепляется.
  • Нить оптоволокна протягивается еще N-метров, в зависимости от технологии, охлаждается и поступает на прецизионный намотчик, проще говоря, наматывается на бобину, которая уже и транспортируется как заготовка к месту производства кабеля.

Наиболее распространены следующие размеры оптоволоконного кабеля:

 

  • C сердечником 8,3 мк и оболочкой 125 мкм;
  • C сердечником 62,5 мк и оболочкой 125 мкм;
  • C сердечником 50 мк и оболочкой 125 мкм;
  • C сердечником 100 мк и оболочкой 145 мкм.

Оптику с диаметром сердечника в 8,3 мк качественно спаять в полевых условиях, без высокоточного оборудования или установки концентраторов, непросто или практически невозможно.

Огромное значение имеет контроль диаметра световода. Именно эта часть установки отвечает за один из главных параметров на всех этапах производства нити — неизменность диаметра конечного изделия (стандарт — 125 мкм). Из-за сложностей при сварке нитей любых диаметров, их стремятся сделать настолько длинными, насколько это возможно. Погонный метраж оптоволоконной «заготовки» на бобине может достигать десятков километров (да, именно километров) и более, в зависимости от требований заказчика.

Уже на самом предприятии, хотя это можно сделать и на стекольном заводе, все зависит от производственного цикла, бесцветную нить с полимерным покрытием для удобства могут перемотать на другую бобину, в процессе окрашивая ее в собственный яркий цвет, по аналогии со всем знакомой витой парой. Зачем? Во славу сата.. для быстрого различения каналов при, например, ремонте или сварке кабеля.

 

Изготовление кабеля

Теперь мы получили сердце нашего изделия — оптоволоконную нить. Что дальше? Дальше давайте посмотрим на схему такого себе среднестатистического подводного (да, мне они нравятся больше всего) кабеля в разрезе:

На заводе полученные оптические нити запускаются в станки, в совокупности своей образующие целый конвейер по производству какого-то одного типа кабеля. На первом этапе производства небронированных моделей, нити сплетаются в пучки, которые и составляют, в итоге, «оптический сердечник». Количество нитей в кабеле может быть различным, в зависимости от заявленной пропускной способности. Пучки, в свою очередь, сматывают в «тросс» на специальном оборудовании, которое, в зависимости от своей конструкции и назначения. Это оборудование может еще и покрывать полученный «тросс» гидроизолирующим материалом, чтобы предотвратить попадание влаги и потускнения оптики в будущем (на схеме обозван «внутримодульным гидрофобным заполнителем»).

Вот так проходит процесс скрутки собранных вместе пучков в трос на пермском заводе оптоволоконных кабелей:

После того, как в «тросс» было собрано необходимое количество пучков оптоволокна, их заливают полимером или укладывают в металлическую или медную трубку. Тут, на первый взгляд, кажется, что подводных камней нет и быть не может, но так как производитель стремится минимизировать количество соединений и швов, то все получается не совсем просто. Рассмотрим один конкретный пример.

Для создания трубки-корпуса, представленной на схеме выше как «центральная трубка», может использоваться огромная по длине лента из необходимого нам материала (сталь, либо же медь). Лента используется, чтобы не маяться со всем знакомым нам и очевидным прокатом, и сваркой по всей окружности стыка. Согласитесь, тогда у кабеля было бы слишком много «слабых» мест в конструкции.

Так вот. Металлическая ленточная заготовка проходит через специальный станок, натягивающий ее и имеющий с десяток-другой валиков, которые идеально ее выравнивают. После того, как лента выровнена, она подается на другой станок, где встречается с нашим пучком оптоволоконных нитей. Автомат на конвейере загибает ленту вокруг натянутого оптоволокна, создавая идеальную по форме трубку.

Вся эта, пока еще хрупкая, конструкция протягивается по конвейеру дальше, к электросварочному аппарату высокой точности, который на огромной скорости проводит сварку краев ленты, превращая ее в монолитную трубку, в которую уже заложен оптоволоконный кабель. В зависимости от тех. процесса, все это дело может заливаться гидрофобным заполнителем. Или не заливаться, тут уже все зависит от модели кабеля.

В целом, с производством все стало более-менее понятно. Различные марки оптоволоконного, в первую очередь, магистрального кабеля, могут иметь некоторые конструкционные отличия, например, по количеству жил. Тут инженеры не стали выдумывать велосипед и просто объединяют несколько кабелей поменьше в один большой, то есть такой магистральный кабель будет иметь не один, а, например, пять трубок с оптоволокном внутри, которые, в свою очередь, все также заливаются полиэтиленовой изоляцией и, при необходимости, армируются. Такие кабели называют многомодульными.

Одна из моделей многомодульного кабеля в разрезе

Многомодульные кабели, которые, в основной своей массе, и используются для протяженных магистралей, имеют еще одну обязательную конструктивную особенность в виде сердечника, или как его еще называют — центрального силового элемента. ЦСЭ используется как «каркас», вокруг которого группируют трубки с жилами оптоволокна.

К слову, пермский завод «Инкаб», производственный процесс которого представлен на гифках выше, со своими объемами до 4,5 тыс. километров кабеля в год — карлик, по сравнению с заводом того же инфраструктурного гиганта Alcatel, который может выдавать несколько тысяч километров оптоволоконного кабеля одним куском, который сразу же грузится на судно-кабелеукладчик.

Стальная трубка — это наименее радикальный вариант бронирования оптики. Для неагрессивных условий эксплуатации и монтажа часто применяют обычный изолирующий полиэтилен. Однако, это не отменяет того факта, что после изготовления такого кабеля его могут «обернуть» в бронирующую намотку из алюминиевой или стальной проволоки или тросов.

Бронирование кабеля с полиэтиленовой изоляцией на том же пермском заводе

Вывод

Как можно понять из материала выше, основным отличие различных видов оптоволоконного кабеля является их «обмотка», то есть то, во что упаковываются хрупкие стеклянные нити в зависимости от области применения и среды, в которой будет проводиться кабелеукладка.


См. также:



www.vokrugkabelya.ru

Оптоволоконный кабель. Виды и устройство. Установка и применение

В современном мире необходимо качественно и быстро передавать информацию. Сегодня нет более совершенного и эффективного способа передачи данных, чем оптоволоконный кабель. Если кто-то думает, что это уникальная разработка, то он глубоко ошибается. Первые оптические волокна появились еще в конце прошлого столетия, и до сих пор ведутся работы по развитию этой технологии.

На сегодняшний день мы уже имеем передающий материал, уникальный по свойствам. Его применение получило широкую популярность. Информация в наше время имеет большое значение. С помощью нее мы общаемся, развиваем экономику и быт. Скорость передачи информации при этом должна быть высокой для того, чтобы обеспечить необходимый темп современной жизни. Поэтому сейчас многие интернет провайдеры внедряют оптоволоконный кабель.

Этот тип проводника предназначен только на передачу импульса света, несущего часть информации. Поэтому его применяют для передачи информативных данных, а не для подключения питания. Оптоволоконный кабель дает возможность повысить скорость в несколько раз, в сравнении с проводами из металла. При эксплуатации он не имеет побочных явлений, ухудшения качества на расстоянии, перегрева провода. Достоинством кабеля на основе оптических волокон является невозможность влияния на передаваемый сигнал, поэтому ему не нужен экран, блуждающие токи на него не действуют.

Классификация
Оптоволоконный кабель имеет большие отличия от витой пары, исходя из области применения и места монтажа. Выделяют основные виды кабелей на основе оптического волокна:
  • Для внутреннего монтажа.
  • Установки в кабельные каналы, без брони.
  • Установки в кабельные каналы, бронированный.
  • Укладки в грунт.
  • Подвесной, не имеющий троса.
  • Подвесной, с тросом.
  • Для подводного монтажа.
Устройство

Самое простое устройство имеет оптоволоконный кабель для внутреннего монтажа, а также кабель обычного исполнения, не имеющего брони. Наиболее сложная конструкция у кабелей для подводного монтажа и для монтажа в грунт.

Кабель для внутреннего монтажа

Внутренние кабели делят на абонентские, для прокладки к потребителю, и распределительные для создания сети. Оптику проводят в кабельных каналах, лотках. Некоторые разновидности прокладывают по фасаду здания до распредкоробки, либо до самого абонента.

Устройство оптоволокна для внутренней прокладки состоит из оптического волокна, специального защитного покрытия, силовых элементов, например, троса. К кабелю, прокладываемому внутри зданий, предъявляются требования пожарной безопасности: стойкость к горению, низкое выделение дыма. Материал оболочки кабеля состоит из полиуретана, а не полиэтилена. Кабель должен быть легким, тонким и гибким. Многие исполнения оптоволоконного кабеля облегчены и защищены от влаги.

Внутри помещений кабель обычно прокладывается на небольшие расстояния, поэтому о затухании сигнала и влиянии на передачу информации речи не идет. В таких кабелях количество оптоволокна не более двенадцати. Существуют и гибридные оптоволоконные кабели, имеющие в составе витую пару.

Кабель без брони для кабельных каналов

Оптика без брони применяется для монтажа в кабельные каналы, при условии, что не будет механических воздействий снаружи. Такое исполнение кабеля применяется для тоннелей и коллекторов домов. Его укладывают в трубы из полиэтилена, вручную или специальной лебедкой. Особенностью такого исполнения кабеля является наличие гидрофобного наполнителя, гарантирующего нормальную эксплуатацию в кабельном канале, защищает от влаги.

Кабель с броней для кабельных каналов

Оптоволоконный кабель с броней применяется тогда, когда присутствуют нагрузки снаружи, например, на растяжение. Броня выполняется по-разному. Броня в виде ленты применяется, если нет воздействия агрессивных веществ, в кабельных каналах, тоннелях и т.д. Конструкция брони состоит из стальной трубы (гофрированная, либо гладкая), с толщиной стенки 0,25 мм. Гофрирование выполняют тогда, когда это является одним слоем защиты кабеля. Оно защищает оптическое волокно от грызунов, увеличивает гибкость кабеля. При условиях с большим риском повреждений применяют броню из проволоки, например, на дне реки, или в грунте.

Кабель для укладки в грунт

Для монтажа кабеля в грунт применяют оптоволокно с броней из проволоки. Могут использоваться также кабели с ленточной броней, усиленные, но они не нашли широкого применения. Для прокладки оптоволокна в грунт задействуют кабелеукладчик. Если монтаж в грунт осуществляется в холодное время при температуре менее -10 градусов, то кабель заранее нагревают.

Для мокрого грунта применяют кабель с герметичным оптоволокном в металлической трубке, а броня из проволоки пропитывается водоотталкивающим составом. Специалисты делают расчеты по укладке кабеля. Они определяют допустимые растяжения, нагрузки на сдавливание и т. д. Иначе по истечении определенного времени оптические волокна повредятся, и кабель придет в негодность.

Броня оказывает влияние на величину допускаемой нагрузки на растяжение. Оптоволокно с броней из проволоки выдерживает нагрузку до 80 кН, с ленточной броней нагрузка может быть не более 2,7 кН.

Подвесной оптоволоконный кабель без брони

Такие кабели устанавливаются на опоры линий связи и питания. Так производить монтаж проще и удобнее, чем в грунт. При этом есть важное ограничение – во время монтажа температура не должна опускаться ниже -15 градусов. Сечение кабеля имеет круглую форму. Благодаря этому уменьшаются нагрузки от ветра на кабель. Расстояние между опорами должно быть не больше 100 метров. В конструкции есть силовой элемент в виде стеклопластика.

Благодаря силовому элементу кабель может выдержать большие нагрузки, направленные вдоль него. Силовые элементы в виде арамидных нитей применяют при расстояниях между столбами до 1000 метров. Достоинством арамидных нитей, кроме малой массы и прочности, являются диэлектрические свойства арамида. При ударе молнии в кабель, никаких повреждений не будет.

Сердечники подвесных кабелей по их типу делят на:
  • Кабель с сердечником в виде профиля, оптоволокно устойчиво к сдавливанию и растяжению.
  • Кабель с модулями скрученного вида, оптические волокна проложены свободно, имеется устойчивость к растяжению.
  • С оптическим модулем, сердечник кроме оптоволокна ничего в составе не имеет. Недостаток такого исполнения – неудобно идентифицировать волокна. Преимущество – малый диаметр, низкая стоимость.
Оптоволоконный кабель с тросом

Тросовое оптоволокно является самонесущим. Такие кабели применяются для прокладки по воздуху. Трос бывает несущим или навивным. Есть модели кабеля, в котором оптоволокно находится внутри молниезащитного троса. Кабель, усиленный профильным сердечником, обладает достаточной эффективностью. Трос состоит из стальной проволоки в оболочке. Эта оболочка соединена с оплеткой кабеля. Свободный объем заполнен гидрофобным веществом. Такие кабели прокладывают с расстоянием между столбами не более 70 метров. Ограничением кабеля является невозможность прокладки на линию электропитания.

Кабели с тросом для грозовой защиты устанавливаются на высоковольтных линиях с фиксацией на заземление. Тросовый кабель используется при рисках его повреждения животными, либо на большие дистанции.

Оптоволоконный кабель для укладки под водой

Такой тип оптоволокна обособлен от остальных, потому что его укладка проходит в особых условиях. Все подводные кабели имеют броню, конструкция которой зависит от глубины прокладки и рельефа дна водоема.

Некоторые виды подводного оптоволокна по исполнению брони с:
  • Одинарной броней.
  • Усиленной броней.
  • Усиленной двойной броней.
  • Без брони.

1› Изоляция из полиэтилена.
2› Майларовое покрытие.
3› Двойная броня из проволоки.
4› Гидроизоляция алюминиевая.
5› Поликарбонат.
6› Центральная трубка.
7› Заполнитель гидрофобный.
8› Оптоволокно.

Размер брони не зависит от глубины прокладки. Армирование защищает кабель только от обитателей водоема, якорей, судов.

Сварка оптоволокна

Для сварки используется сварочный аппарат специального типа. В его составе содержится микроскоп, зажимы для фиксации волокон, дуговая сварка, камера термоусадки для нагрева гильз, микропроцессор для управления и контроля.

Краткий техпроцесс сварки оптоволокна:
  • Снятие оболочки стриппером.
  • Подготовка к сварке. На концы надеваются гильзы. Концы волокон обезжириваются спиртом. Конец волокна скалывается специальным приспособлением под определенным углом. Волокна укладываются в аппарат.
  • Сварка. Волокна выравниваются. При автоматическом управлении положение волокон устанавливается автоматически. После подтверждения сварщика, волокна свариваются аппаратом. При ручном управлении все операции проводятся вручную специалистом. При сварке волокна плавятся дугой электрического тока, совмещаются. Затем свариваемое место прогревается во избежание внутренних напряжений.
  • Проверка качества. Автомат сварки проводит анализ картинки места сварки по микроскопу, определяет оценку работы. Точный результат получают рефлектометром, который выявляет неоднородность и затухание на линии сварки.
  • Обработка и защита свариваемого места. Надетая гильза сдвигается на сварку и закладывается в печь для термоусадки на одну минуту. После этого гильза остывает, ложится в защитную пластину муфты, накладывается запасное оптическое волокно.
Достоинства оптоволоконного кабеля

Основным достоинством оптоволокна является повышенная скорость передачи информации, практически нет затухания сигнала (очень низкое), а также, безопасность передачи данных.

  • Невозможно подключиться к оптической линии без санкций. При любом включении в сеть оптические волокна повредятся.
  • Электробезопасность. Она повышает популярность и область применения таких кабелей. Их все больше используют в промышленности при опасности взрывов на производстве.
  • Имеет хорошую защиту от помех природного происхождения, электрооборудования и т.д.
Похожие темы:

electrosam.ru

Оптоволоконные кабели, виды и характеристики

Оптоволоконный кабель

Оптоволоконный кабель (он же волоконно-оптический) — это принципиально иной тип кабеля по сравнению с другими типами электрических или медных кабелей. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент — это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля, только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции — стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае мы имеем дело с режимом так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется, однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам этот сигнал принципиально не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как это требует нарушения целостности кабеля. Теоретически воз¬можная полоса пропускания такого кабеля достигает величины 1012 Гц, что несравнимо выше, чем у любых электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля. Однако в данном случае необходимо применение специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет около 5 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущества перед электрическим кабелем неоспоримы, он просто не имеет конкурентов.

Однако оптоволоконный кабель имеет и некоторые недостатки. Самый главный из них — высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа.

Хотя оптоволоконные кабели и допускают разветвление сигналов (для этого выпускаются специальные разветвители на 2-8 каналов), как правило, их используют для передачи. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может просто не дойти до конца сети.

Оптоволоконный кабель менее прочен, чем электрический, и менее гибкий (типичная величина допустимого радиуса изгиба составляет около 10-20 см). Чувствителен он и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Чувствителен он также к резким перепадам температуры, в результате которых стекловолокно может треснуть. В настоящее времы выпускаются оптические кабели из радиационно стойкого стекла (стоят они, естественно, дороже).

Оптоволоконные кабели чувствительны также к механическим воздействиям (удары, ультразвук) — так называемый микрофонный эффект. Для его уменьшения используют мягкие звукопоглощающие оболочки.

Применяют оптоволоконный кабель только в сетях с топологией «звезда» и «кольцо». Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели всех типов или, во всяком случае, сильно потеснит их. Запасы меди на планете истощаются, а сырья для производства стекла более чем достаточно.

Существуют два различных типа оптоволоконных кабелей:

  1. Многомодовый, или мультимодовый, кабель, более дешевый, но менее качественный;
  2. Одномодовый кабель, более дорогой, но имеющий лучшие ха¬рактеристики. 

Основные различия между этими типами связаны с разным режимам прохождения световых лучей в кабеле.

В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего все они достигают приемника одновременно, и форма сигнала практически не искажается. Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень не¬значительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны. Такие приемопередатчики пока еще сравнительно дороги и не слишком долговечны. Однако в перспективе одномодовый кабель должен стать основным благодаря своим прекрасным характеристикам.

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается. Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки — 125 мкм (это иногда обозначается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0,85 мкм. Допустимая длина кабеля достигает 2-5 км. В настоящее время многомодовый кабель — основной тип оптоволоконного кабеля, так как он дешевле и доступнее. Задержка распространения сигнала в оптоволоконном кабеле не сильно отличается от задержки в электрических кабелях. Типичная величина задержки для наиболее распространенных кабелей составляет около 4-5 нс/м.

rostech.info

Оптоволоконные кабели

Оптоволоконный (он же волоконно-оптический) кабель – это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент – это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.

Рис. 5.6.  Структура оптоволоконного кабеля

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля (рис. 5.6). Только вместо центрального медного провода здесь используется тонкое (диаметром около 1 – 10 мкм) стекловолокно, а вместо внутренней изоляции – стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как при этом нарушается целостность кабеля. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, то есть 1000 ГГц, что несравнимо выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет от 5 до 20 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущества перед электрическим кабелем неоспоримы, у него просто нет конкурентов. Однако оптоволоконный кабель имеет и некоторые недостатки.

Самый главный из них – высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Следует помнить, что некачественная установка разъема резко снижает допустимую длину кабеля, определяемую затуханием.

Также надо помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.

Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивные разветвители (couplers) на 2—8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может просто не дойти до конца сети. Кроме того, в разветвителе есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.

Оптоволоконный кабель менее прочен и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 – 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растяжение, а также раздавливающие воздействия.

Чувствителен оптоволоконный кабель и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно сказываются на нем, стекловолокно может треснуть.

Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели или, во всяком случае, сильно потеснит их. Запасы меди на планете истощаются, а сырья для производства стекла более чем достаточно.

Существуют два различных типа оптоволоконного кабеля:

  • многомодовый или мультимодовый кабель, более дешевый, но менее качественный;

  • одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым.

Суть различия между этими двумя типами сводится к разным режимам прохождения световых лучей в кабеле.

Рис. 5.7.  Распространение света в одномодовом кабеле

В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего они достигают приемника одновременно, и форма сигнала почти не искажается (рис. 5.7). Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны. Такие приемопередатчики пока еще сравнительно дороги и не долговечны. Однако в перспективе одномодовый кабель должен стать основным типом благодаря своим прекрасным характеристикам. К тому же лазеры имеют большее быстродействие, чем обычные светодиоды. Затухание сигнала в одномодовом кабеле составляет около 5 дБ/км и может быть даже снижено до 1 дБ/км.

Рис. 5.8.  Распространение света в многомодовом кабеле

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается (рис. 5.8). Центральное волокно имеет диаметр62,5 мкм, а диаметр внешней оболочки 125 мкм (это иногда обозначается как 62,5/125). Для

Таблица 5.1

Т и п к а б е л я

Характеристики

Тонкий коакси­альный

(10 Base 2)

Толстый коаксиаль­ный

(10 Base 5)

Витая пара

(10Base T)

Оптоволокон­ный

Стоимость ка­беля

Большая чем у витой пары

Большая чем у тон­кого

Наименее доро­гой

Наиболее доро­гой

Допустимая длина кабеля

185м

500м

100м

2км

Скорость пере­дачи

10 Мбит/с

10 Мбит/с

4-100 Мбит/с

100 и более Мбит/с

Гибкость

Относительно гибкий

Менее гиб­кий

Наиболее гиб­кий

Не гибкий

Простота про­кладки

Просто

Просто

Очень просто

Сложная про­кладка

Чувствитель­ность к помехам

Хорошая сопро­тивляемость помехам

Хорошая со­противляе­мость поме­хам

Чувствителен к помехам

Нечувствите­лен к помехам

Специфичные особенности

Компоненты электронной поддержки ме­нее дорогие, чем у витой пары

Компоненты электронной поддержки менее доро­гие, чем у витой пары

Точно такие же, как у телефон­ного провода; часто прокла­дывается в зда­ниях

Поддержка пе­редачи речи, данных и видео

Предпочтитель­ное применение

Применяется в больших горо­дах при требо­ваниях высокой безопасности

Как основ­ное соедине­ние в сетях на тонком кабеле

UTP – в ма­леньких горо­дах с неболь­шим бюджетом

STP – Token Ring любых размеров

Любые раз­меры сети, тре­буемой скоро­сти, высокой безопасности передачи дан­ных и любой интеграции

передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0,85 мкм, при этом наблюдается разброс длин волн около 30 – 50 нм. Допустимая длина кабеля составляет 2 – 5 км. Многомодовый кабель – это основной тип оптоволоконного кабеля в настоящее время, так как он дешевле и доступнее. Затухание в многомодовом кабеле больше, чем в одномодовом и составляет 5 – 20 дБ/км. Типичная величина задержки для наиболее распространенных кабелей составляет около 4—5 нс/м, что близко к величине задержки в электрических кабелях. Оптоволоконные кабели, как и электрические, выпускаются в исполнении plenum и non-plenum.

Характеристики основных типов кабелей приведены в таблице 5.1.

Бескабельные каналы связи

Кроме кабельных каналов в компьютерных сетях иногда используются также бескабельные каналы. Их главное преимущество состоит в том, что не требуется никакой прокладки проводов (не надо делать отверстий в стенах, закреплять кабель в трубах и желобах, прокладывать его под фальшполами, над подвесными потолками или в вентиляционных шахтах, искать и устранять повреждения). К тому же компьютеры сети можно легко перемещать в пределах комнаты или здания, так как они ни к чему не привязаны.

Радиоканал использует передачу информации по радиоволнам, поэтому теоретически он может обеспечить связь на многие десятки, сотни и даже тысячи километров. Скорость передачи достигает десятков мегабит в секунду (здесь многое зависит от выбранной длины волны и способа кодирования).

Особенность радиоканала состоит в том, что сигнал свободно излучается в эфир, он не замкнут в кабель, поэтому возникают проблемы совместимости с другими источниками радиоволн (радио — и телевещательными станциями, радарами, радиолюбительскими и профессиональными передатчиками и т.д.). В радиоканале используется передача в узком диапазоне частот и модуляция информационным сигналом сигнала несущей частоты. Главным недостатком радиоканала является его плохая защита от прослушивания, так как радиоволны распространяются неконтролируемо. Другой большой недостаток радиоканала – слабая помехозащищенность.

Для локальных беспроводных сетей (WLAN – Wireless LAN) в настоящее время применяются подключения по радиоканалу на небольших расстояниях (обычно до 100 метров) и в пределах прямой видимости. Чаще всего используются два частотных диапазона – 2,4 ГГц и 5 ГГц. Скорость передачи – до 54 Мбит/с. Распространен вариант со скоростью 11 Мбит/с.

Сети WLAN позволяют устанавливать беспроводные сетевые соединения на ограниченной территории (обычно внутри офисного или университетского здания или в таких общественных местах, как аэропорты). Они могут использоваться во временных офисах или в других местах, где прокладка кабелей неосуществима, а также в качестве дополнения к имеющейся проводной локальной сети, призванного обеспечить пользователям возможность работать перемещаясь по зданию.

Популярная технология Wi-Fi (Wireless Fidelity) позволяет организовать связь между компьютерами числом от 2 до 15 с помощью концентратора (называемого точка доступа, Access Point, AP), или нескольких концентраторов, если компьютеров от 10 до 50. Кроме того, эта технология дает возможность связать две локальные сети на расстоянии до 25 километров с помощью мощных беспроводных мостов. Для примера на рис. 5.9 показано объединение компьютеров с помощью одной точки доступа. Важно, что многие мобильные компьютеры (ноутбуки) уже имеют встроенный контроллерWi-Fi, что существенно упрощает их подключение к беспроводной сети.

Рис. 5.9.  Объединение компьютеров с помощью технологии Wi-Fi

Радиоканал широко применяется в глобальных сетях как для наземной, так и для спутниковой связи. В этом применении у радиоканала нет конкурентов, так как радиоволны могут дойти до любой точки земного шара.

Инфракрасный канал также не требует соединительных проводов, так как использует для связи инфракрасное излучение (подобно пульту дистанционного управления домашнего телевизора). Главное его преимущество по сравнению с радиоканалом – нечувствительность к электромагнитным помехам, что позволяет применять его, например, в производственных условиях, где всегда много помех от силового оборудования. Правда, в данном случае требуется довольно высокая мощность передачи, чтобы не влияли никакие другие источники теплового (инфракрасного) излучения. Плохо работает инфракрасная связь и в условиях сильной запыленности воздуха.

Скорости передачи информации по инфракрасному каналу обычно не превышают 5—10 Мбит/с, но при использовании инфракрасных лазеров может быть достигнута скорость более 100 Мбит/с. Секретность передаваемой информации, как и в случае радиоканала, не достигается, также требуются сравнительно дорогие приемники и передатчики. Все это приводит к тому, что применяют инфракрасные каналы в локальных сетях довольно редко. В основном они используются для связи компьютеров с периферией (интерфейс IrDA).

Инфракрасные каналы делятся на две группы:

  • Каналы прямой видимости, в которых связь осуществляется на лучах, идущих непосредственно от передатчика к приемнику. При этом связь возможна только при отсутствии препятствий между компьютерами сети. Зато протяженность канала прямой видимости может достигать нескольких километров.

  • Каналы на рассеянном излучении, которые работают на сигналах, отраженных от стен, потолка, пола и других препятствий. Препятствия в данном случае не помеха, но связь может осуществляться только в пределах одного помещения.

Если говорить о возможных топологиях, то наиболее естественно все беспроводные каналы связи подходят для топологии типа шина, в которой информация передается одновременно всем абонентам. Но при использовании узконаправленной передачи и/или частотного разделения по каналам можно реализовать любые топологии (кольцо, звезда, комбинированные топологии) как на радиоканале, так и на инфракрасном канале.

Разъемы в сетевых адаптерах

В качестве разъемов используются разъемы типа UTP (Unshielded Twisted Pair) для подключения витой пары, AUT (Access Unit Interface) для подключения толстого (thick) коаксиального кабеля, который определяет тип разъема и кабель для соединения PS и PMA между собой и BNC (British Naval Connector) для тонкого (thin) коаксиального кабеля.

Имеется два основных вида приемо-передатчиков: внутренний и внешний. Карта может иметь внутренний передатчик и AUI (Access Unit Interface – интерфейс с устройством доступа). Для такого адаптера наиболее подходящим является кабель 10 BaseT, подключаемый в разъем RJ-45 для внутреннего передатчика, или AUI, использующий для подключения толстый или тонкий Ethernet.

Имеется три типа внешних передатчиков:

  • Внешний передатчик для сети с тонким кабелем с AUI разъемом.

  • Внешний передатчик для Ethernet, который соединяется напрямую с сетевым адаптером.

  • Внешний передатчик для толстого кабеля с врезаемым съемником (соединитель, который своими зубцами прошивает изоляцию кабеля и снимает сигналы).

Кабели:

RG-58 А/U имеет стандартный медный провод.

RG-58 C/U представляет собой военный вариант RG-58 А/U

RG-58 U имеет жёсткий медный провод.

Разъёмы:

RJ-11 имеет четыре кабельных соединения и идентичен по размеру стандартному телефонному разъему.

RJ-45 по размеру больше и содержит восемь кабельных соединений. Обычно RJ-45 используется с витой парой (10Base T).

Заключение

Сетевые адаптеры являются физическим интерфейсом или сопряжением между компьютером и сетевым кабелем. Они осуществляют подготовку данных компьютера для пересылки их по кабелю к другому компьютеру, приема данных из сети и передачи их в компьютер. Вы устанавливаете сетевой адаптер в один из расширительных слотов компьютера. Компонентами сетевого адаптера являются: память, кабельные соединители, шинные соединители, процессоры и разъемы.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ:

1. Назначение сетевого адаптера; другие названия.

2. Структура сетевого адаптера; назначение блоков.

3. Компоненты сетевого адаптера и их назначение.

4. Как осуществляется приём и передача данных через сетевой адаптер?

5. Как производится установка сетевого адаптера?

6. Выбор сетевого адаптера.

7.Характеристика различных типов кабелей, используемых в сетях.

8. Характеристика кабелей на основе витых пар.

9. Коаксиальные кабели.

10. Оптоволоконные кабели.

11. Радиоканалы и инфракрасные каналы.

studfile.net

Оптоволоконные кабели связи. Как это делается / ua-hosting.company corporate blog / Habr

В нескольких своих постах, опубликованных более года назад, я поднял такую интересную для многих и чем-то захватывающую тему, как магистральные оптоволоконные кабели связи, в частности, тему «подводной» оптики. Информация в данных публикациях была неполной, торопливой и разрозненной, так как статьи писались «на коленке» во время обеденного перерыва. Сейчас я бы хотел поделиться структурированным и, насколько это возможно, полным материалом по теме оптики, с максимумом вкусных подробностей и гик-порно, от которых на душе любого технаря станет тепло.

Внутри схемы, гифки, таблицы и много интересного текста.

Вы готовы?



Условная классификация


В отличие от всем нам знакомой витой пары, которая вне зависимости от места применения имеет примерно одну и ту же конструкцию, оптоволоконные кабели связи могут иметь значительные отличия исходя из сферы применения и места укладки.

Можно выделить следующие основные виды оптоволоконных кабелей для передачи данных исходя из области применения:

  • Для прокладки внутри зданий;
  • для кабельной канализации небронированный;
  • для кабельной канализации бронированный;
  • для укладки в грунт;
  • подвесной самонесущий;
  • с тросом;
  • подводный.

Наиболее простой конструкцией обладают кабели для прокладки внутри зданий и канализационный небронированный, а самыми сложными — для прокладки в землю и подводные.
Кабель для прокладки внутри зданий

Оптические кабели для прокладки внутри зданий разделяют на распределительные, из которых формируется сеть в целом, и абонентские, которые используются непосредственно для прокладки по помещению к конечному потребителю. Как и витую пару, прокладывают оптику в кабельных лотках, кабель-каналах, а некоторые марки могут быть протянуты и по внешним фасадам зданий. Обычно такой кабель заводят до межэтажной распределительной коробки или непосредственно до места подключения абонента.

Конструкция оптоволоконных кабелей для прокладки в зданиях включает в себя оптическое волокно, защитное покрытие и центральный силовой элемент, например, пучок арамидных нитей. К оптике, прокладываемой в помещениях, есть особые требования по противопожарной безопасности, такие как нераспространение горения и низкое дымовыделение, поэтому в качестве оболочки для них используется не полиэтилен, а полиуретан. Другие требования — это низкая масса кабеля, гибкость и небольшой размер. По этой причине многие модели имеют облегченную конструкцию, иногда с дополнительной защитой от влаги. Так как протяженность оптики внутри зданий обычно невелика, то и затухание сигнала незначительно и влияние на передачу данных оно не оказывает. Число оптических волокон в таких кабелях не превышает двенадцати.

Также существует и своеобразная помесь «бульдога с носорогом» — оптоволоконный кабель, который содержит в себе, дополнительно, еще и витую пару.

Небронированный канализационный кабель

Небронированная оптика используется для укладки в канализации, при условии, что на нее не будет внешних механических воздействий. Также подобный кабель прокладывается в тоннелях, коллекторах и зданиях. Но даже в случаях отсутствия внешнего воздействия на кабель в канализации, его могут укладывать в защитные полиэтиленовые трубы, а монтаж производится либо вручную, либо при помощи специальной лебедки. Характерной особенностью данного типа оптоволоконного кабеля можно назвать наличие гидрофобного наполнителя (компаунда), который гарантирует возможность эксплуатации в условиях канализации и дает некоторую защиту от влаги.

Бронированный канализационный кабель

Бронированные оптоволоконные кабели используются при наличии больших внешних нагрузок, в особенности, на растяжение. Бронирование может быть различным, ленточным или проволочным, последнее подразделяется на одно- и двухповивное. Кабели с ленточным бронированием используются в менее агрессивных условиях, например, при прокладке в кабельной канализации, трубах, тоннелях, на мостах. Ленточное бронирование представляет собой стальную гладкую или гофрированную трубку толщиной в 0,15-0,25 мм. Гофрирование, при условии, что это единственный слой защиты кабеля, является предпочтительным, так как оберегает оптоволокно от грызунов и в целом повышает гибкость кабеля. При более суровых условиях эксплуатации, например, при закладке в грунт или на дно рек используются кабели с проволочной броней.

Кабель для укладки в грунт

Для прокладки в грунт используют оптические кабели с проволочной одноповивной или двухповивиной броней. Также применяются и усиленные кабели с ленточным бронированием, но значительно реже. Прокладка оптического кабеля осуществляется в траншею или с помощью кабелеукладчиков. Более подробно этот процесс расписан в моей второй статье по этой теме, где приводятся примеры наиболее распространенных видов кабелеукладчиков. Если температура окружающей среды ниже отметки в -10 оС, кабель предварительно прогревают.

В условиях влажного грунта используется модель кабеля, оптоволоконная часть которого заключена в герметичную металлическую трубку, а бронеповивы проволоки пропитаны специальным водоотталкивающим компаундом. Тут же в дело вступают расчеты: инженеры, работающие на укладке кабеля, не должны допускать превышения растягивающих и сдавливающих нагрузок сверх допустимых. В противном случае, сразу или со временем, могут быть повреждены оптические волокна, что приведет кабель в негодность.

Броня влияет и на значение допустимого усилия на растяжение. Оптоволоконные кабели с двухповивной броней могут выдержать усилие от 80 кН, одноповивные — от 7 до 20 кН, а ленточная броня гарантирует «выживание» кабеля при нагрузке не менее 2,7 кН.

Подвесной самонесущий кабель

Подвесные самонесущие кабели монтируются на уже существующих опорах воздушных линий связи и высоковольтных ЛЭП. Это технологически проще, чем прокладка кабеля в грунт, но при монтаже существует серьезное ограничение — температура окружающей среды во время работ не должна быть ниже — 15 оС. Подвесные самонесущие кабели имеют стандартную круглую форму, благодаря которой снижаются ветровые нагрузки на конструкцию, а расстояние пролета между опорами может достигать ста и более метров. В конструкции самонесущих подвесных оптических кабелей обязательно присутствует ЦСЭ — центральный силовой элемент, изготовленный из стеклопластика или арамидных нитей. Благодаря последним оптоволоконный кабель выдерживает высокие продольные нагрузки. Подвесные самонесущие кабели с арамидным нитями используют в пролетах до одного километра. Еще одно преимущество арамидных нитей, кроме их прочности и малом весе, заключается в том, что арамид по природе своей является диэлектриком, то есть кабели, изготовленные на его основе безопасны, например, при попадании молнии.

В зависимости от строения сердечника различают несколько типов подвесного кабеля:

  • Кабель с профилированным сердечником — содержит оптические волокна или модули с этими волокнами – кабель устойчив к растяжению и сдавливанию;
  • Кабель со скрученными модулями — содержит оптические волокна, свободно уложенные, кабель устойчив к растяжениям;
  • Кабель с одним оптическим модулем – сердечник данного типа кабеля не имеет силовых элементов, поскольку они находятся в оболочке. Такие кабели обладают недостатком, связанным с неудобством идентификации волокон. Тем не менее, они обладают меньшим диаметром и более доступной ценой.

Оптический кабель с тросом

Оптические кабеля с тросом — это разновидность самонесущих кабелей, которые также используются для воздушной прокладки. В таком изделии трос может быть несущим и навивным. Еще существуют модели, в которых оптика встроена в грозозащитный трос.

Усиление оптического кабеля тросом (профилированным сердечником) считается достаточно эффективным методом. Сам трос представляет собой стальную проволоку, заключенную в отдельную оболочку, которая в свою очередь соединяется с оболочкой кабеля. Свободное пространство между ними заполняется гидрофобным заполнителем. Часто такую конструкцию оптического кабеля с тросом называют «восьмеркой» из-за внешнего сходства, хотя лично у меня возникают ассоциации с перекормленной «лапшой». «Восьмерки» применяют для прокладки воздушных линий связи с пролетом не более 50-70 метров. В эксплуатации подобных кабелей есть некоторые ограничения, например, «восьмерку» со стальным тросом нельзя подвешивать на ЛЭП. Надеюсь, объяснять, почему именно, не нужно.

Но кабели с навивным грозозащитным тросом (грозотросом) спокойно монтируются на высоковольтных ЛЭП, крепясь при этом к проводу заземления. Грозотросный кабель используется в местах, где есть риски повреждения оптики дикими животными или охотниками. Также его можно использовать на больших по дистанции пролетах, чем обычную «восьмерку».

Подводный оптический кабель

Данный тип оптических кабелей стоит в сторонке от всех остальных, так как прокладывается в принципиально иных условиях. Почти все типы подводных кабелей, так или иначе, бронированы, а степень бронирования уже зависит от рельефа дна и глубины залегания.

Различают следующие основные типы подводных кабелей (по типу бронирования):

  • Не бронирован;
  • Одинарное (одноповивное) бронирование;
  • Усиленное (одноповивное) бронирование;
  • Усиленное скальное (двухповивное) бронирование;

Подробно конструкцию подводного кабеля я рассматривал больше года назад вот в этой статье, поэтому тут приведу только краткую информацию с рисунком:

  1. Полиэтиленовая изоляция.
  2. Майларовое покрытие.
  3. Двухповивное бронирование стальной проволокой.
  4. Алюминиевая гидроизоляционная трубка.
  5. Поликарбонат.
  6. Центральная медная или алюминиевая трубка.
  7. Внутримодульный гидрофобный заполнитель.
  8. Оптические волокна.

Как не парадоксально, прямой корреляции бронирования кабеля с глубиной залегания нет, так как армирование защищает оптику не от высоких давлений на глубине, а от деятельности морских обитателей, а также сетей, тралов и якорей рыболовецких судов. Корреляция эта, скорее, обратная — чем ближе к поверхности, тем больше тревог, что явно видно по таблице ниже:


Таблица типов и характеристик подводных кабелей в зависимости от глубины укладки

Производство


Теперь, когда мы познакомились с наиболее распространенными видами оптоволоконных кабелей, можно проговорить и о производственном процессе всего этого зоопарка. Все мы знаем об оптоволоконных кабелях, многие из нас имели с ними дело лично (как абоненты и как монтажники), но как становится ясно из информации выше, оптоволоконные, в особенности магистральные, кабели могут серьезно отличаться от того, с чем вы имели дело в помещении.

Так как для прокладки оптоволоконной магистрали требуются тысячи километров кабеля, их производством занимаются целые заводы.

Изготовление оптоволоконной нити

Все начинается с производства главного элемента — оптоволоконной нити. Производят это чудо на специализированных предприятиях. Одной из технологий производства оптической нити является ее вертикальная вытяжка. А происходит это следующим образом:
  • На высоте в несколько десятков метров в специальной шахте устанавливается два резервуара: один со стеклом, второй, ниже по шахте, со специальным полимерным материалом первичного покрытия.
  • Из узла прецизионной подачи заготовки или, проще говоря, первого резервуара с жидким стеклом, вытягивается стеклянная нить.
  • Ниже нить проходит через датчик диаметра волоконного световода, который отвечает за контроль диаметра изделия.
  • После контроля качества нить обволакивается первичным полимерным покрытием из второго резервуара.
  • Пройдя процедуру покрытия, нить отправляется в еще одну печь, в которой полимер закрепляется.
  • Нить оптоволокна протягивается еще N-метров, в зависимости от технологии, охлаждается и поступает на прецизионный намотчик, проще говоря, наматывается на бобину, которая уже и транспортируется как заготовка к месту производства кабеля.

Наиболее распространены следующие размеры оптоволоконного кабеля:

  • C сердечником 8,3 мк и оболочкой 125 мкм;
  • C сердечником 62,5 мк и оболочкой 125 мкм;
  • C сердечником 50 мк и оболочкой 125 мкм;
  • C сердечником 100 мк и оболочкой 145 мкм.

Оптику с диаметром сердечника в 8,3 мк качественно спаять в полевых условиях, без высокоточного оборудования или установки концентраторов, непросто или практически невозможно.

Огромное значение имеет контроль диаметра световода. Именно эта часть установки отвечает за один из главных параметров на всех этапах производства нити — неизменность диаметра конечного изделия (стандарт — 125 мкм). Из-за сложностей при сварке нитей любых диаметров, их стремятся сделать настолько длинными, насколько это возможно. Погонный метраж оптоволоконной «заготовки» на бобине может достигать десятков километров (да, именно километров) и более, в зависимости от требований заказчика.

Уже на самом предприятии, хотя это можно сделать и на стекольном заводе, все зависит от производственного цикла, бесцветную нить с полимерным покрытием для удобства могут перемотать на другую бобину, в процессе окрашивая ее в собственный яркий цвет, по аналогии со всем знакомой витой парой. Зачем? Во славу сата.. для быстрого различения каналов при, например, ремонте или сварке кабеля.

Изготовление кабеля

Теперь мы получили сердце нашего изделия — оптоволоконную нить. Что дальше? Дальше давайте посмотрим на схему такого себе среднестатистического подводного (да, мне они нравятся больше всего) кабеля в разрезе:

На заводе полученные оптические нити запускаются в станки, в совокупности своей образующие целый конвейер по производству какого-то одного типа кабеля. На первом этапе производства небронированных моделей, нити сплетаются в пучки, которые и составляют, в итоге, «оптический сердечник». Количество нитей в кабеле может быть различным, в зависимости от заявленной пропускной способности. Пучки, в свою очередь, сматывают в «тросс» на специальном оборудовании, которое, в зависимости от своей конструкции и назначения. Это оборудование может еще и покрывать полученный «тросс» гидроизолирующим материалом, чтобы предотвратить попадание влаги и потускнения оптики в будущем (на схеме обозван «внутримодульным гидрофобным заполнителем»).

Вот так проходит процесс скрутки собранных вместе пучков в трос на пермском заводе оптоволоконных кабелей:

После того, как в «тросс» было собрано необходимое количество пучков оптоволокна, их заливают полимером или укладывают в металлическую или медную трубку. Тут, на первый взгляд, кажется, что подводных камней нет и быть не может, но так как производитель стремится минимизировать количество соединений и швов, то все получается не совсем просто. Рассмотрим один конкретный пример.

Для создания трубки-корпуса, представленной на схеме выше как «центральная трубка», может использоваться огромная по длине лента из необходимого нам материала (сталь, либо же медь). Лента используется, чтобы не маяться со всем знакомым нам и очевидным прокатом, и сваркой по всей окружности стыка. Согласитесь, тогда у кабеля было бы слишком много «слабых» мест в конструкции.

Так вот. Металлическая ленточная заготовка проходит через специальный станок, натягивающий ее и имеющий с десяток-другой валиков, которые идеально ее выравнивают. После того, как лента выровнена, она подается на другой станок, где встречается с нашим пучком оптоволоконных нитей. Автомат на конвейере загибает ленту вокруг натянутого оптоволокна, создавая идеальную по форме трубку.

Вся эта, пока еще хрупкая, конструкция протягивается по конвейеру дальше, к электросварочному аппарату высокой точности, который на огромной скорости проводит сварку краев ленты, превращая ее в монолитную трубку, в которую уже заложен оптоволоконный кабель. В зависимости от тех. процесса, все это дело может заливаться гидрофобным заполнителем. Или не заливаться, тут уже все зависит от модели кабеля.

В целом, с производством все стало более-менее понятно. Различные марки оптоволоконного, в первую очередь, магистрального кабеля, могут иметь некоторые конструкционные отличия, например, по количеству жил. Тут инженеры не стали выдумывать велосипед и просто объединяют несколько кабелей поменьше в один большой, то есть такой магистральный кабель будет иметь не один, а, например, пять трубок с оптоволокном внутри, которые, в свою очередь, все также заливаются полиэтиленовой изоляцией и, при необходимости, армируются. Такие кабели называют многомодульными.


Одна из моделей многомодульного кабеля в разрезе

Многомодульные кабели, которые, в основной своей массе, и используются для протяженных магистралей, имеют еще одну обязательную конструктивную особенность в виде сердечника, или как его еще называют — центрального силового элемента. ЦСЭ используется как «каркас», вокруг которого группируют трубки с жилами оптоволокна.

К слову, пермский завод «Инкаб», производственный процесс которого представлен на гифках выше, со своими объемами до 4,5 тыс. километров кабеля в год — карлик, по сравнению с заводом того же инфраструктурного гиганта Alcatel, который может выдавать несколько тысяч километров оптоволоконного кабеля одним куском, который сразу же грузится на судно-кабелеукладчик.

Стальная трубка — это наименее радикальный вариант бронирования оптики. Для неагрессивных условий эксплуатации и монтажа часто применяют обычный изолирующий полиэтилен. Однако, это не отменяет того факта, что после изготовления такого кабеля его могут «обернуть» в бронирующую намотку из алюминиевой или стальной проволоки или тросов.


Бронирование кабеля с полиэтиленовой изоляцией на том же пермском заводе

Вывод


Как можно понять из материала выше, основным отличие различных видов оптоволоконного кабеля является их «обмотка», то есть то, во что упаковываются хрупкие стеклянные нити в зависимости от области применения и среды, в которой будет проводиться кабелеукладка.


Если вам понравился данный материал, то можете смело задавать вопросы в комментариях, опираясь на которые я постараюсь подготовить еще статью по этой теме.

Спасибо за внимание.

habr.com

кварцевые и не только / ЭФО corporate blog / Habr

Время от времени на Хабре появляются различные статьи на тему волоконно-оптических линий связи (ВОЛС), что неудивительно, поскольку оптическая связь сегодня является одним из основных способов передачи информации. Оптические линии связи успешно конкурируют с традиционными медными линиями и беспроводными технологиями. Именно оптическому волокну мы во многом обязаны резким увеличением объема и скорости передаваемой по всему миру информации за последние годы и, в частности, развитием Интернета. Более того, с каждым годом оптическое волокно становится все ближе к потребителю и осваивает все новые сферы применения.


Мы уверены, что каждый уважающий себя IT-специалист должен иметь хотя бы общее представление о ВОЛС, независимо от того, чем конкретно он занимается. Предлагаемая вашему вниманию статья посвящена разновидностям и классификации оптических волокон. Конечно, сейчас можно легко найти очень много разной информации на эту тему. Но, как вы увидите дальше, и нам есть что рассказать. Тем более что на Хабре пока тема оптического волокна освещена, как нам кажется, в недостаточной степени.


Компания «ЭФО» занимается поставками импортных электронных компонентов на российский рынок с 1991 года. Последние 15 лет (с 2001 г.) наша программа поставок включает волоконно-оптические и оптоэлектронные компоненты. Исторически сложилось, что основными нашими клиентами являются представители разных отраслей промышленности.

«ЭФО» имеет несколько специализированных сайтов под разные группы продукции. Оптической связи посвящен сайт infiber.ru, которым занимаются сотрудники Отдела волоконно-оптических компонентов. Сайт содержит каталог волоконно-оптической продукции, которую мы поставляем. Также здесь публикуются новости производителей и статьи, написанные сотрудниками отдела. Наш сайт создан недавно, но активно развивается.


Как уже упоминалось, в этой статье мы хотели рассказать не столько о самом оптическом волокне, сколько о его разновидностях и классификации. Большинство читателей, скорее всего, знает разницу между одномодом и многомодом, но мы хотим дать более детальную информацию, чтобы Вы могли легко ориентироваться в многообразии современных волокон и их свойствах и не испытывали затруднений с вопросами, которые возникают в практической работе, например:


  • Что означает OM4 в спецификации к оптическому волокну и чем оно отличается от OM1, OM2 и OM3?
  • Какие материалы используются при производстве волокон и кабелей? Что такое пластиковое оптическое волокно?
  • Где следует использовать волокно со смещенной дисперсией и в каких случаях дисперсия должна быть нулевой?
  • Что означают аббревиатуры POF и HCS (PCS)?

Опыт общения с заказчиками показывает, что эти и другие вещи, связанные с классификацией волокон, известны далеко не всем (напомним, наши клиенты в основном работают в промышленности и чаще всего являются специалистами каждый в своей области). Поэтому считаем, что подобная информация будет крайне полезной. Очень надеемся, что одной статьей наше совместное обсуждение темы ВОЛС на Хабре не закончится.

Немного забегая вперед, отметим, что одной из главных особенностей этой статьи мы считаем знакомство читателей с волокнами POF и HCS, поскольку 1) эти волокна набирают все большую популярность в промышленности и других сферах и 2) в отличие от традиционных кварцевых волокон они не так хорошо освещены в русскоязычном интернете.

И последнее. Недавно мы разместили на нашем сайте пять статей, в которых более подробно рассказывается об оптическом волокне и его основных типах. Кому информации, изложенной ниже, окажется недостаточно, добро пожаловать к нам на сайт!


Исходя из поставленной задачи (представить классификацию оптических волокон), мы не хотели бы сильно углубляться в теоретические основы волоконно-оптической связи. Но для того чтобы информация была понятна широкому кругу читателей, начнем все-таки с того, что представляет собой оптическое волокно, каким образом по нему передается сигнал и каковы его некоторые основные характеристики.

Оптическое волокно (оптоволокно) – это волновод с круглым поперечным сечением, по которому передается электромагнитное излучение оптического диапазона (обычно ближний ИК и видимый свет). Оптическое волокно состоит из двух основных частей: сердцевины и оптической оболочки. Диаметр этой структуры сравним с толщиной человеческого волоса. Сверху на оптоволокно наносится защитное акриловое покрытие. Для дальнейшей защиты используются различные упрочняющие и защитные элементы. Конструкция, содержащая одно или несколько оптических волокон и различные защитные элементы, покрытые общей оболочкой, называется волоконно-оптическим кабелем.


Информационный сигнал передается по оптическому волокну в виде модулированного светового излучения. Благодаря явлению полного внутреннего отражения (вспомните школьный курс геометрической оптики), свет, попавший в оптоволокно, распространяется по нему на большие расстояния. Сердцевина и оптическая оболочка волокна изготавливаются из материалов с незначительно отличающимися показателями преломления (показатель преломления сердцевины больше). Поэтому световые волны, попавшие в сердцевину под углами, меньшими некоторого критического значения, многократно переотражаются от оболочки. Если при этом выполняются условия для распространения в волноводе (свет – это не только поток частиц, но и электромагнитная волна), то такие световые волны, называемые модами, распространяются на значительные расстояния.


Помимо разницы между показателями преломления сердцевины и оболочки важную роль играет профиль показателя преломления сердцевины, то есть зависимость величины показателя преломления от радиуса поперечного сечения оптоволокна. Если показатель преломления остается одинаковым во всех точках сечения сердцевины, такой профиль называется ступенчатым, если плавно уменьшается от центральной оси к оболочке, – градиентным. Встречаются и более сложные профили. Профиль показателя преломления оказывает большое влияние на характеристики оптического волокна как среды передачи информации.


Среди большого числа характеристик и параметров, описывающих оптическое волокно как среду передачи данных, отметим наиболее важные – затухание (потери) и дисперсию.

Затухание – это постепенное ослабление мощности оптического сигнала по мере распространения по оптоволокну, вызванное разными физическими процессами. Величина затухания имеет сложную зависимость от длины волны излучения и измеряется в дБ/км. Затухание служит одним из главных факторов, ограничивающих дальность передачи сигнала по оптическому волокну (без ретрансляции).

Дисперсия – это уширение оптического импульса, передаваемого по оптоволокну, во времени. При высокой частоте следования импульсов такое уширение на некотором расстоянии от передатчика приводит к перекрыванию соседних импульсов и ошибочному приему данных. Дисперсия ограничивает как дальность, так и скорость передачи информации.



Рассказав (или напомнив) читателю об этих базовых понятиях, перейдем к тому, ради чего все это излагалось, – к классификации оптических волокон. Существует огромное количество различных оптических волокон, поэтому сразу сделаем оговорку, что мы не будем касаться так называемых специальных волокон, используемых в научных исследованиях и разных специфических применениях, а также волокон, которые пока являются скорее технологиями будущего. Мы сосредоточимся на тех типах оптических волокон, которые уже сегодня широко используются в телекоммуникациях. А таких типа четыре.

Основными критериями, по которым проводится классификация, можно считать следующие два:


  • Материал, из которого изготавливается сердцевина и оптическая оболочка. Оптоволокно может изготавливаться не только из кварцевого стекла, но и из других материалов, в частности из полимеров.
  • Количество распространяющихся мод. В зависимости от геометрических размеров сердцевины и оболочки и величины показателя преломления в оптическом волокне может распространяться только одна или же большое количество пространственных мод. Поэтому все оптические волокна делят на два больших класса: одномодовые и многомодовые.

Таким образом, можно выделить четыре больших класса оптических волокон (ссылки ведут к соответствующим статьям на infiber.ru):


  1. Кварцевое многомодовое волокно.
  2. Кварцевое одномодовое волокно.
  3. Пластиковое, или полимерное, оптическое волокно (POF).
  4. Кварцевое волокно с полимерной оболочкой (HCS).

На рисунке ниже изображены поперечные сечения этих четырех типов волокон (соотношение размеров сохранено).


Поговорим подробнее о каждом из этих типов.


1. Кварцевое многомодовое волокно

Кварцевые волокна являются самым известным и распространенным типом оптических волокон. Поскольку многомодовые и одномодовые кварцевые волокна сильно отличаются по своим характеристикам и применению, удобнее рассмотреть их по отдельности.

Многомодовое кварцевое волокно имеет и сердцевину, и оптическую оболочку из кварцевого стекла. Как правило, такое оптоволокно имеет градиентный профиль показателя преломления. Это необходимо, чтобы снизить влияние межмодовой дисперсии. Как было показано выше, моды распространяются в оптическом волокне по разным траекториям, а значит, время распространения каждой моды также отличается. Это приводит к уширению передаваемого импульса. Градиентный профиль уменьшает разницу во времени распространения мод. За счет плавного изменения показателя преломления моды высшего порядка, которые попадают в волокно под бо́льшим углом и распространяются по более длинным траекториям, имеют и бо́льшую скорость, чем те, которые распространяются вблизи сердцевины. Полностью устранить влияние межмодовой дисперсии невозможно, поэтому многомодовое волокно уступает одномодовому по дальности и скорости передачи информации.


Рабочими для многомодового волокна обычно являются длины волн 850 и 1300 (1310) нм. Типичное затухание на этих длинах волн – 3,5 и 1,5 дБ/км соответственно.

Классификация. Кварцевое многомодовое волокно было первым типом волокна, которое стало широко применяться на практике. Распространение получили два стандартных размера многомодовых волокон (диаметр сердцевины/оболочки): 62,5/125 мкм и 50/125 мкм.

Общепринятая классификация многомодовых кварцевых волокон приводится в стандарте ISO/IEC 11801. Этот стандарт выделяет четыре класса многомодовых волокон (OM – Optical Multimode), отличающиеся шириной полосы пропускания (параметр, характеризующий межмодовую дисперсию и определяющий скорость передачи информации):


  • OM1 – стандартное многомодовое волокно 62,5/125 мкм;
  • OM2 – стандартное многомодовое волокно 50/125 мкм;
  • OM3 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером;
  • OM4 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером, с улучшенными характеристиками.

Фраза «оптимизированное для работы с лазером» напоминает о том, что изначальна для передачи сигнала по многомодовому волокну использовались светодиоды (LED). С появлением полупроводниковых лазеров стали разрабатываться волокна более совершенной структуры, названные оптимизированными для работы с лазерами.

Применение. Многомодовое волокно применяется в непротяженных линиях связи (обычно сотни метров), причем волокно 50/125 мкм (OM2, OM3, OM4) используется в основном в локальных сетях и дата-центрах, а волокно 62,5/125 мкм часто применяется в индустриальных сетях. В гигабитных приложениях рекомендуется применять волокна классов OM3 и OM4. Причина, по которой многомодовое волокно до сих пор не вытеснено одномодовым волокном, обладающим лучшими характеристиками, заключается в меньшей стоимости компонентов линии (активное оборудование, соединительные изделия). Цена снижается из-за большего диаметра сердцевины многомодового волокна, и, соответственно, меньших требований к точности изготовления и монтажа компонентов.


2. Кварцевое одномодовое волокно

В одномодовом волокне, как следует из названия, распространяется только одна (основная) мода излучения. Это достигается за счет очень маленького диаметра сердцевины (обычно 8-10 мкм). Диаметр оптической оболочки такой же, как и у многомодового волокна – 125 мкм. Отсутствие других мод положительно сказывается на характеристиках оптоволокна (нет межмодовой дисперсии), увеличивая дальность передачи без ретрансляции до сотен километров и скорость до десятков Гбит/с (приводим стандартные значения, а не те «рекордные», которые достигаются в исследовательских лабораториях). Затухание в одномодовом волокне также крайне низкое (менее 0,4 дБ/км).


Диапазон длин волн для одномодового волокна достаточно широк. Обычно передача осуществляется на длинах волн 1310 и 1550 нм. При использовании технологии спектрального уплотнения каналов используются и другие длины волн (об этом чуть ниже).

Классификация. Ассортимент кварцевых одномодовых волокон весьма разнообразен. Международный стандарт ISO/IEC 11801 и европейский EN 50173 по аналогии с многомодовым волокном выделяют два больших класса одномодовых волокон: OS1 и OS2 (OS – Optical Single-mode). Однако в связи с существующей путаницей, связанной с этим делением, не рекомендуем ориентироваться на эту классификацию. Гораздо более информативными являются рекомендации ITU-T G.652-657, выделяющие больше типов одномодовых волокон.

В таблице ниже представлена краткая характеристика этих волокон и их применение. Но прежде – пара комментариев. Межмодовая дисперсия, отсутствующая в одномодовом волокне, является не единственным механизмом уширения оптического импульса. В одномодовом волокне на первый план выходят другие механизмы, прежде всего, хроматическая дисперсия, связанная с тем, что ни один источник излучения (даже лазер) не испускает строго монохроматичное излучение. При этом существует длина волны, при которой коэффициент хроматической дисперсии равен нулю. В большинстве случае работа на этой длине волны оказывается предпочтительной, но не всегда.


Тип волокна Описание Применение
G.652. Одномодовое волокно с несмещенной дисперсией Наиболее распространенный тип одномодового волокна с точкой нулевой дисперсии на длине волны 1300 нм. Различают 4 подкласса (A, B, C и D). Волокна G.652.C и G.652.D отличаются низким затуханием вблизи «водного пика» («водным пиком» называют область большого затухания в стандартном волокне около длины волны 1383 нм). Стандартные области применения.
G.653. Одномодовое волокно с нулевой смещенной дисперсией Точка нулевой дисперсии смещена на длину волны 1550 нм. Передача на длине волны 1550 нм.
G.654. Одномодовое волокно со смещенной длиной волны отсечки Длина отсечки (минимальная длина волны, при которой волокно распространяет одну моду) смещена в область длин волн около 1550 нм. Передача на длине волны 1550 нм на очень большие расстояния. Магистральные подводные кабели.
G.655. Одномодовое волокно с ненулевой смещенной дисперсией Это волокно имеет небольшое, но не нулевое, значение дисперсии в диапазоне 1530-1565 нм (ненулевая дисперсия уменьшает нелинейные эффекты при одновременном распространении нескольких сигналов на разных длинах волн). Линии передачи со спектральным уплотнением каналов (DWDM).
G.656. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи Ненулевая дисперсия в диапазоне длин волн 1460-1625 нм. Линии передачи со спектральным уплотнением каналов (CWDM/DWDM).
G.657. Одномодовое волокно, не чувствительное к потерям на макроизгибе Волокно с уменьшенным минимальным радиусом изгиба и с меньшими потерями на изгибе. Выделяют несколько подклассов. Для прокладывания в ограниченном пространстве.

Применение. Одномодовое кварцевое волокно, безусловно, является самым распространенным типом оптоволокна. С его помощью можно организовать передачу высокоскоростного сигнала на очень большие расстояния, а применение технологии спектрального уплотнения каналов (CWDM/DWDM) позволяет в разы увеличить пропускную способность линии связи. Одномодовое волокно часто применяется и на коротких дистанциях, например, в локальных сетях.


3. Пластиковое оптическое волокно (POF)

О кварцевом оптическом волокне знают практически все. Но помимо него существует еще два типа оптических волокон, заслуживающие внимания. Прежде всего, речь идет о пластиковом, или полимерном, оптическом волокне (POF – Plastic/Polymer Optical Fiber). Это многомодовое волокно большого диаметра со ступенчатым показателем преломления, сердцевина и оболочка которого изготовлены из полимерных материалов, прежде всего, из полиметилметакрилата (по-простому, оргстекла). Чаще всего можно встретить POF с соотношением диаметров сердцевины и оболочки 980/1000 мкм.

В сравнении с кварцевым волокном POF имеет очень большие потери (100-200 дБ/км). С другой стороны, минимум потерь находится в видимом диапазоне (520, 560 и 650 нм). Это, а также очень большой размер поперечного сечения, позволяет использовать в качестве источников излучения дешевые светодиоды. Большой диаметр также значительно упрощает процесс работы с пластиковым волокном. Процесс изготовления патч-корда (оптического шнура) требует меньших навыков и времени, а все необходимые приспособления имеют значительно меньшую стоимость. На рисунке ниже представлены пластиковые патч-корды с коннекторами семейства Versatile Link (VL) от компании Broadcom Limited (ранее Avago Technologies).


Таким образом, главные преимущества пластикового волокна – это низкая стоимость компонентов и простота работы с ним. При этом POF присущи все те особенности оптического волокна, которые дают ему преимущества перед другими видами связи. В их числе невосприимчивость к электромагнитному излучению и изолирующие свойства (защита от высоких напряжений), меньшие габариты и вес.

Классификация. Хотя выпускаемые пластиковые волокна отличаются по размеру, используемым полимерам, профилю показателя преломления и другим параметрам, подавляющую часть всех пластиковых волокон составляет POF 980/1000 мкм из полиметилметакрилата.

Применение. Область применения POF – короткие низкоскоростные линии связи (до 200 Мбит/с на несколько десятков метров). Преимущества POF проявляются в тех случаях, когда простота эксплуатации и низкая стоимость линии связи важнее, чем характеристики самой передачи. POF часто используется в промышленных линиях связи, автомобильной электронике, медицине и разного рода датчиках. Кроме того, пластиковое волокно может с успехов применяться и в различных специальных/корпоративных сетях передачи данных, например, для связи в пределах квартиры или офиса (к слову, эта область применения в России пока только начинает развиваться).


4. Кварцевое волокно с полимерной оболочкой (HCS)

И, наконец, последний тип оптического волокна, с которым мы бы хотели познакомить читателей, представляет собой нечто среднее (во всех отношениях) между кварцевым и пластиковым волокном. У этого типа волокна много названий, но мы привыкли называть его кварцевым волокном с полимерной (жесткой) оболочкой и обозначать HCS (Hard Clad Silica). Также распространена аббревиатура PCS (Polymer Clad Silica).

HCS-волокно – это многомодовое оптическое волокно большого диаметра с сердцевиной из кварцевого стекла и оболочкой из полимерного материала. Наибольшее распространение в телекоммуникациях получило HCS-волокно с диаметром сердцевины и оболочки 200/230 мкм и ступенчатым показателем преломления. В других областях, таких как медицина и научные исследования, могут использоваться HCS-волокна с бо́льшим диаметром сердцевины (300, 400, 500 мкм…).


По своим оптическим характеристикам HCS-волокно также занимает промежуточное положение между кварцевым оптоволокном и POF. Минимум затухания стандартного HCS-волокна приходится на длину волны 850 нм и составляет единицы-десятки дБ/км. Для работы с HCS-волокном часто можно использовать те же активные компоненты, что и для POF (с длиной волны 650 нм) или для многомодового кварцевого волокна (светодиоды с длиной волны 850 нм).

Достаточно большой размер HCS-волокна, как и в случае POF, упрощает и удешевляет процесс работы с ним.

Классификация. Как уже упоминалось, в телекоммуникациях в основном используется HCS-волокно 200/230 мкм.

Применение. В целом, области применения HCS схожи с областями применения POF, с той лишь только разницей, что расстояние передачи при использовании HCS-волокна увеличивается до нескольких километров (благодаря меньшему затуханию).


Подведем итоги. Как видим, зачастую выбор оптического волокна для создания линии связи не ограничивается выбором одномод VS многомод. Ассортимент оптических волокон достаточно разнообразен, и в зависимости от ситуации наилучшим решением может оказаться использование того или иного типа волокна из тех, что были описаны в данной статье.

Напоследок благодарим всех читателей за внимание. Надеемся, что статья оказалась не только познавательной, но и полезной (или окажется таковой в будущем). С нетерпением ждем комментариев и вопросов.

habr.com

Типы и виды оптического кабеля. Классификация оптоволокна.

Когда был придуман и успешно запущен в «массы» оптический кабель, интернет получил новый фундаментальный фактор, позволивший мировой сети развиваться еще более быстрыми темпами. Созданный на основе принципа передачи информации через оптические сигналы данный тип кабеля связи обеспечил практически мгновенную передачу дата-массивов любого объема на громадные дистанции.


Век информационных технологий оперирует громадными массивами данных из самых разнообразных сфер нашей жизни. Мы обмениваемся в сети большими медиафайлами, госучреждения, банки, аэропорты, институты, компании, тысячи и сотни тысяч других субъектов каждую секунду передают и получают терабиты разнообразнейшей информации. И сегодня от каналов связи, кроме физической способности пропускать через себя такие колоссальные объемы, требуется еще и предельно высокая скорость обмена, которая иногда имеет критически важное значение.

Когда был придуман и успешно запущен в «массы» оптический кабель, интернет получил новый фундаментальный фактор, позволивший мировой сети развиваться еще более быстрыми темпами. Созданный на основе принципа передачи информации через оптические сигналы данный тип кабеля связи обеспечил практически мгновенную передачу дата-массивов любого объема на громадные дистанции. Фотоны движутся на скоростях близких к световым, почти не затухают, не чувствительны к электрошумам, их сложно перехватить. Волоконная оптика работает на высоких частотах, относительно компактна, довольно проста для масштабирования и монтажа.

Данный материал посвящен вопросу классификации оптических кабельных изделий связи, мы выделим их основные разновидности и расскажем об особенностях каждой их них.

Описание и конструкция


kabel_optica (3).jpg

Конструкция оптического кабеля

Как и силовые, оптоволоконные провода чрезвычайно разнообразны по конструкции, типам исполнения, сфере использования и прочим критериям. Оптический кабель, обеспечивающий интернет широкополосным каналом для транспортировки информации, обязательно имеет в своей конструкции такие элементы:

kabel_optica (5).jpg
  •   оптоволокна или стекловолоконные нити из высококачественного кварцевого стекла, которые скручены по продуманной схеме и представляют собой заключенную в оболочку сердцевину. По ней за счет последовательных и полных отражений распространяется свет. При этом сердцевина имеет высочайший уровень преломления, а оболочка – низкий,
  • оптический модуль – это центральная полимерная или металлическая трубка, в которой заключены хрупкие оптические волокна,
  • центральный силовой элемент из стеклопластика, стального каната, проволоки или стренги присутствует в многомодульных магистральных марках кабеля,
  • наружная защитная оболочка.

Кроме того, в конструкцию оптоволоконного изделия могут включаться:

  • армирующие арамидные нити, гофростальная или проволочная броня,
  • демпфирующие амортизаторы,
  • заполнители типа гидрофобных гелей или водоблокирующих нитей,
  • металлические проводники.

Также существуют марки оптического кабеля с тросом для подвешивания.

На видео приведен пример исполнения марки кабеля ДПЛ.

Классификация оптических кабелей и сфера их применения

В этом разделе мы выделим основные критерии, по которым различают оптические кабеля для интернета, и разберемся, что в них особенного.

kabel_optica (6).jpg В зависимости от диаметра сердцевины стекловолокна выделяют моно- и мультимодовый тип оптоволоконных кабельных изделий. Чем меньше значение данного показателя (8-10 и 50 микрон соответственно), тем «скромнее» модовая дисперсия (расплывание светового импульса), и тем дальше можно передать сигнал. Одномодовая оптика, в отличие от многомодовой, способна передавать поток информации без искажений на дистанцию больше 5 км, но ее прокладка дороже и требует особых навыков. Более доступный «мультимод» широко используют провайдеры для построения локальных сетей.

По способу монтажа различают оптику для наружной и внутренней прокладки. К первой группе относятся проводные изделия, проложенные:

kabel_optica (7).jpg

  • в земле, например, марки ОГД (ОГДН), ОГЦ(ОГЦH), ДПС, ОКГМ, ОКТК, САС, ОМЗКГЦ,

  • ОКБ и другие,

  • в канализации, трубах или коллекторах, в т.ч. небронированные ОКМТ, ОКГ, ОККТМ, ОК, ОТД, ОТМ и бронированные марки ДПП, ОКСТМ, ОКЦ, ОКЛ, ОКСТЦ, ДБП,

  • под водой (ДА2, ОГД, ТО2, ОГМ),

  • по воздуху (самонесущие: ОКСНМ, ОКСНЦ, ОКА, ОКСД, ДПТ, ОКЛЖ, ОКМС, а также оптический кабель с тросом из стеклопластика или металла, который покрыт ПЭТ-оболочкой: ОК/Т, ОПД, ДПОм, ОКПМ, ОКПЦ, ДПК, ОКТс). Подвесная оптика может размещаться на грозотросах, фазовых проводах ВЛ, контактной сети электротранспорта.

  • Внутри помещений обычно прокладываются абонентские и распределительные марки, к примеру, FTTH, ОБВ, ОМВ, ИКВА–П, OКТЦ, ОКТМ, ДБН, ОКВ-М и прочие.

По сфере применения и дальности передачи информации оптический интернет-кабель бывает следующих типов:

kabel_optica (8).jpg

  • магистральный, который используют для создания многоканальных линий связи большой протяженности. Обеспечить минимальные показатели дисперсии и затухания сигнала способно только мономодовое волокно с примерными размерами оболочки и сердцевины 8-125 мкм на волнах длиной 1.3-1.55 мкм. К магистральным относят кабеля под марками ОКГМ, ОКГЦ, ОККМ, ОККЦ, ОКСМ, ОКСД,

  • зоновый кабель необходим для организации многополосных линий между, например, областью и отдаленными районами (до 250 км). Кабельная продукция группы содержит градиентные волокна, примеры марок: ОМЗКГМ, ОМЗКГЦ, ОК, ОЗКГ,

  • kabel_optica (9).jpg

  • городской оптический интернет-кабель (ОКСТМ, ОКСТЦ, ОККТМ), как правило, прокладывается в трубах и коллекторах. Он предназначен для создания сравнительно коротких магистралей (до 10 км), но также должен обладать отличной дата-пропускной способностью, т.е. быть поликанальным. По техпараметрам класс городских кабелей близок к зоновым,

  • полевые марки (ОК-ПН) предназначены для строительства линий в полевых условиях, в т.ч. подземным, подводным и подвесным способом, поэтому рассчитаны на многократные прокладки и снятия, не распространяют горение, стойки к воздействию растягивающих усилий, влаги, бензина и дизтоплива, грызунам. Полевой кабель обычно содержит 1-12 оптоволокон,

  • подводный оптический кабель (СПС, ОА2, ДАС) может быть грузонесущим, отличается высокой разрывной и растягивающей устойчивостью, не пропускает влагу, в т.ч. молекулярную, имеет низкий уровень дисперсионности и значительные длины регенерационных участков.,

  • kabel_optica (10).jpg

  •  объектовая (стационарная) оптика служит для пропускания внутренних информационных потоков, к примеру, в бортовых системах кораблей и самолетов, видеотелефонии в учреждениях, кабельном ТВ непосредственно в здании. В конструкции объектовых кабелей не предусмотрены гидрофобные заполнители, что упрощает их монтаж и повышает степень пожарной безопасности. Примеры марок: ИКВ–Т2, ИКВА–П, ОТЦ,

  • монтажный оптический кабель (ОК-МС с разным номером разработки) имеет форму плоских лент или жгутов. Он применяется для создания внутри- и межблоковых соединений в аппаратуре локальных инфо-систем. Монтажные кабельные изделия сконструированы на основе мультимодовых градиентных оптоволокон.

Одна из разновидностей классификации оптических кабелей связи по назначению с указанием вариантов применения и монтажа представлена на рисунке.

kabel_optica (11).jpg

Оптоволоконные кабеля могут также различаться по вариантам конструктивного исполнения сердечника:

  • с повивной концентрической скруткой. Оптические модули с числом волокон 1-24 в этом виде проводных изделий скручены вокруг центрального силового элемента. При этом каждый следующий повив содержит на 6 волокон больше. Одноповивная скрутка насчитывает 4-12 модулей (до 288 оптоволокон), мультиповивная – до 48 (576 ОВ),

  • с центральным оптическим модулем, который выполнен в виде сердечника с количеством оптических волокон до 48,

  • с фигурным сердечником. В полимерной оболочке этого типа кабельных изделий выполнены профилированные пазы, в которые укладываются оптические модули или плоские ленты с общим числом оптоволокон до 576. Преимуществом такого расположения является минимизация продольного разрывного усилия. Этот тип встречается редко из-за высокой стоимости и сложности монтажной разделки,

kabel_optica (1).jpg

Плоские оптические ленты уложены в центральный оптомодуль, количество оптических волокон может достигать 288.

Первые две группы оптических кабелей чрезвычайно широко распространены в странах СНГ и РФ.

Еще одна классификация подразделяет оптические кабеля для интернета по материалу, из которого изготовлены оптоволокна:

  • GOF -стекловолокно, glass optic fiber,

  • POF — полимерное волокно, plastic optic fiber,

  • PCF – стеклянно-кристаллическое волокно с защитным покрытием из полимера, plastic crystal fiber.

В конструкции оптического кабеля для интернета могут присутствовать металлические элементы, к примеру, свинцовые или алюминиевые оболочки, бронированные покровы, медные проводники. Существуют и полностью диэлектрические марки, которые менее прочны и влагостойки, но обладают отличной помехоустойчивостью, имеют более скромные габариты и вес, поэтому удобны в транспортировке и монтаже.

Нужен оптический кабель? Подберем лучший вариант!
Отправьте заявку он-лайн или позвоните по бесплатному номеру 8 (800) 555-88-72

Отправить заявку


kabel-s.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *