Основные параметры биполярного транзистора. Основные параметры и характеристики биполярного транзистора: полное руководство

Как устроен биполярный транзистор. Какие бывают типы биполярных транзисторов. Каковы основные параметры и характеристики биполярных транзисторов. Как маркируются биполярные транзисторы. Какие существуют схемы включения биполярных транзисторов. Где применяются биполярные транзисторы.

Содержание

Устройство и принцип работы биполярного транзистора

Биполярный транзистор — это полупроводниковый прибор с тремя выводами, состоящий из трех областей с чередующимся типом проводимости. Он может иметь структуру p-n-p или n-p-n.

Основные части биполярного транзистора:

  • Эмиттер — сильно легированная область, инжектирующая носители заряда в базу
  • База — тонкая слаболегированная область
  • Коллектор — область, собирающая инжектированные носители заряда

Принцип работы биполярного транзистора основан на взаимодействии двух близко расположенных p-n переходов. При подаче напряжения определенной полярности на эмиттерный переход происходит инжекция носителей заряда в базу. Большая часть этих носителей достигает коллекторного перехода и втягивается им в коллектор.


Основные параметры биполярных транзисторов

Ключевые параметры, характеризующие работу биполярного транзистора:

  • Коэффициент усиления по току (β) — отношение тока коллектора к току базы
  • Максимально допустимый ток коллектора
  • Максимально допустимое напряжение коллектор-эмиттер
  • Граничная частота усиления
  • Входная и выходная емкость
  • Тепловое сопротивление переход-корпус

Какой максимальный ток коллектора может протекать через биполярный транзистор? Это зависит от мощности транзистора, но типичные значения составляют от единиц мА для маломощных до десятков А для силовых транзисторов.

Статические характеристики биполярных транзисторов

Основные статические характеристики биполярного транзистора:

  • Входная характеристика — зависимость тока базы от напряжения база-эмиттер при постоянном напряжении коллектор-эмиттер
  • Выходная характеристика — зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы
  • Характеристика прямой передачи по току — зависимость тока коллектора от тока базы при постоянном напряжении коллектор-эмиттер

Как выглядит входная характеристика биполярного транзистора? Она имеет вид экспоненты, так как ток базы экспоненциально зависит от напряжения база-эмиттер.


Типы биполярных транзисторов

Биполярные транзисторы классифицируют по нескольким признакам:

  • По структуре: p-n-p и n-p-n
  • По мощности: малой, средней и большой мощности
  • По частотным свойствам: низкочастотные, среднечастотные, высокочастотные и сверхвысокочастотные
  • По материалу: германиевые, кремниевые, арсенид-галлиевые
  • По технологии изготовления: сплавные, диффузионные, эпитаксиальные

Какие транзисторы лучше подходят для работы на высоких частотах? Высокочастотные и сверхвысокочастотные транзисторы, имеющие малые размеры активных областей и низкую емкость переходов.

Маркировка биполярных транзисторов

Для маркировки биполярных транзисторов используются буквенно-цифровые обозначения:

  • Первый элемент — буква, обозначающая материал (К — кремний, Г — германий)
  • Второй элемент — буква, указывающая на тип прибора (Т — биполярный транзистор)
  • Третий элемент — цифра, обозначающая мощность и частотные свойства
  • Четвертый и пятый элементы — порядковый номер разработки

Как расшифровывается маркировка КТ315? К — кремниевый, Т — транзистор, 3 — маломощный высокочастотный, 15 — порядковый номер разработки.


Схемы включения биполярных транзисторов

Существует три основные схемы включения биполярных транзисторов:

  • С общим эмиттером (ОЭ) — обеспечивает усиление по току и напряжению
  • С общей базой (ОБ) — обеспечивает усиление по напряжению
  • С общим коллектором (ОК) — обеспечивает усиление по току

Какая схема включения обеспечивает наибольшее усиление? Схема с общим эмиттером, так как она усиливает и по току, и по напряжению.

Применение биполярных транзисторов

Основные области применения биполярных транзисторов:

  • Усилители аналоговых сигналов
  • Генераторы электрических колебаний
  • Ключевые схемы
  • Стабилизаторы напряжения и тока
  • Преобразователи электрических сигналов
  • Цифровые логические схемы

Где чаще всего используются биполярные транзисторы в современной электронике? В аналоговых усилительных каскадах звуковой и радиочастоты, а также в импульсных источниках питания.


Биполярные транзисторы. For dummies / Хабр

Предисловие

Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история


Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.

Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (

ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов.

А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т. е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.

  1. Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл .xls (35 кб) .

Список источников:
http://ru.wikipedia.org
http://www.physics.ru
http://radiocon-net.narod.ru
http://radio.cybernet.name
http://dvo.sut.ru

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Биполярный транзистор / Хабр

1.

Основные сведения

Биполярным транзистором называется трехэлектродный усилительный полупроводниковый прибор, имеющий трехслойную p-n-p, либо n-p-n структуру с двумя взаимодействующими (ключевое слово) p-n переходами.

Свое имя «TRANSferresISTOR» (дословно – «переходное сопротивление») этот полупроводниковый прибор получил в 1948 году от Уильяма Шокли. Термин «биполярный» подчеркивает тот факт, что принцип действия транзистора основан на взаимодействии с электрическим полем частиц обоих знаков —  как дырок, так и электронов.

Рис. 1. Упрощенный вид внутреннего устройства биполярного транзистора p-n-p структуры.

На рис. 1 показан упрощенный вид внутренней структуры объемного маломощного биполярного p-n-p транзистора. Крайнюю слева р+ область называют эмиттером. Промежуточная n область называется базой. Крайняя p область справа – коллектор. Электронно-дырочный переход между эмиттером и базой называют эмиттерным, а между базой и коллектором – коллекторным.

Для того, чтобы уменьшить интенсивность процессов рекомбинации дырок в базе, необходимо выполнить условие , то есть физическая толщина базы должна быть меньше диффузионной длины. Это означает автоматическое выполнение условия , что обуславливает взаимодействие переходов.

Эмиттер предназначен для инжекции дырок в базу. Область эмиттера имеет небольшие размеры, но большую степень легирования –  концентрация акцепторной примеси NA в эмиттере кремниевого транзистора достигает ~ 1017 – 1018 ат/см3 (этот факт обозначен символом р+).   Область базы легирована нормально – концентрация донорной примеси ND в ней составляет ~ 1013 – 1014 ат/cм3.   В этом случае эмиттерный переход получается резко несимметричным, поскольку обедненная зона располагается, в основном, в базе. Диффузия носителей становится односторонней, так как резко уменьшается встречный поток электронов из базы в эмиттер, что также уменьшает интенсивность процессов рекомбинации дырок в базе.

Теперь выделим еще раз особенности структуры, которые обеспечивают хорошие усилительные свойства транзистора, уменьшая интенсивность процессов рекомбинации:

Область коллектора имеет наибольшие размеры, поскольку в его функцию входит экстракция носителей, диффундировавших через базу.  Кроме того, на коллекторе рассеивается большая мощность, что требует эффективного отвода тепла. 

Биполярные транзисторы, как правило, изготавливаются из кремния, германия или арсенида галлия. По технологии изготовления биполярные транзисторы делятся на сплавные, диффузионные и эпитаксиальные.

Биполярные транзисторы являются усилительными приборами и, поэтому, применяются для построения схем усилителей, генераторов и преобразователей электрических сигналов в широком диапазоне частот (от постоянного тока до десятков гигагерц) и мощности (от десятков милливатт до сотен ватт). В соответствии с этим биполярные транзисторы делятся на группы по частоте:

  1. низкочастотные­ не более 3 МГц;

  2. средней частоты — от 3 МГц до 30МГц;

  3. высокочастотные- от 30 МГц до 300 МГц;

  4. сверхвысокочастотные — более 300 МГц

По мощ­ности выделяют следующем образом:

  • маломощные — не более 0,3 Вт;

  • средней мощности — от 0,3 Вт до1,5 Вт;

  • большой мощности — более 1,5 Вт.

В настоящее время парк биполярных транзисторов очень разнообразен. Сюда входят как обычные транзисторы, которые работают в самых различных аналоговых, импульсных и цифровых устройствах, так и специальные, например, лавинные тран­зисторы, предназначенные для формирования мощных импульсов наносе­кундного диапазона. Следует упомянуть многоэмиттерные, а также составные биполярные транзисторы (транзисторы Дарлингтона), обладающие очень высоким коэффициентом передачи тока.

2. Принцип действия

Рассмотрим активный режим работы транзистора, когда эмиттерный переход открыт прямым смещением Uэб, а коллекторный закрыт обратным смещением Uкб. Для этого воспользуемся одномерной моделью транзистора, которая показана на рис. 2. Модель характерна тем, что все физические величины зависят только от продольной координаты, поперечные же размеры бесконечны. Стрелками на рисунке обозначены положительные направления токов (от «+» к «–»), дырки обозначены открытыми, а электроны – закрытыми кружками.  Сокращения: ЭП – эмиттерный переход, КП – коллекторный переход.

Рис. 2. Иллюстрация принципа действия биполярного транзистора p-n-p структуры.

Предположим, что в начальный момент времени ключ «К» разомкнут. Эмиттерный переход закрыт, поскольку потенциальный барьер в обедненной области перехода запрещает диффузию носителей, несмотря на огромный градиент концентраций на переходе – дырок слева 1017см-3, а справа 106см-3. Это режим отсечки. Транзистор закрыт, существует только небольшой обратный тепловой ток обратно смещенного коллекторного перехода.

Теперь замкнем ключ «К». Потенциальный барьер понижается вследствие частичной компенсации внутреннего электрического поля встречно направленным внешним электрическим полем источника Uэб. Начинается процесс диффузии, вследствие огромного градиента концентраций дырок между эмиттером и базой. Дырки диффундируют или инжектируются из эмиттера в базу, где меняют статус – становятся неосновными. Для неосновных носителей нет потенциального барьера, другими словами, диффундируя через базу в направлении коллекторного перехода, они попадают во втягивающее поле коллекторного перехода и экстрагируются в область коллектора. В цепи коллектора эти дырки создают дрейфовый ток, пропорциональный току эмиттера:

(2. 1)

где α – доля дырок, достигших коллектора, или коэффициент передачи тока эмиттера.  Поскольку небольшая часть дырок, инжектированных из эмиттера в базу, все же успевает рекомбинировать, то всегда α <1. При достаточно тонкой базе α может доходить до 0,99 и более. Уменьшение концентрации электронов в базе в результате рекомбинации восполняется потоком электронов от внешнего источника Uэб через внешний вывод базы. Таким образом внутренний ток рекомбинации, являющийся дырочным, полностью компенсируется электронным током через электрод базы:

(2.2)

В цепи коллектора кроме управляемого тока протекает неуправляемый дрейфовый обратный ток Iкб0, обусловленный, в основном, тепловой генерацией электронно-дырочных пар в объеме перехода. Этот ток очень мал, он не зависит от напряжения Uкб, а зависит только от температуры.   Обратный ток коллектора Iкб0 измеряется при разомкнутой цепи эмиттера, о чем говорит индекс «0» (ноль).

Полный ток, протекающий во внешней цепи коллектора, имеет дырочный характер и равен

                                         (2.3)

В нормальных условиях работы поэтому с хорошей точностью полагают, что ток во внешней цепи коллектора равен

                                               (2.4)

а ток во внешней цепи базы имеет электронный характер и равен

                                       (2.5)

Согласно первому закону Кирхгофа,

                                         (2.6)

Для удобства, формально, вводят коэффициент передачи тока базы

                                            (2. 7)

Коэффициент связан с коэффициентом соотношением

                                              (2.8)

3. Режимы работы и способы включения

Рис. 3.1. Условное обозначение на схеме биполярного транзистора p-n-p структуры и n-p-n структуры .

Условные обозначения биполярного транзистора на схеме, показаны на рис. 3.1, а показано условное графическое обозначение биполярного транзистора по ГОСТ для формата листа А4. Стрелка на выводе эмиттера всегда направлена от «p» к «n», то есть указывает направление прямого тока открытого перехода. Кружок обозначает корпус дискретного транзистора. Для транзисторов в составе интегральных схем он не изображается. На рис. 3.1, б и в показаны структуры p-n-p и n-p-n соответственно. Принцип действия транзисторов обеих структур одинаков, а полярности напряжений между их электродами разные. Поскольку в транзисторе два перехода (эмиттерный и коллекторный) и каждый из них может находиться в двух состояниях (открытом и закрытом), различают четыре режима работы транзистора.

  • Активный режим, когда эмиттерный переход открыт, а коллекторный закрыт. Активный режим работы является основным и используется в усилительных схемах.

  • Режим насыщения— оба перехода открыты.

  • Режим отсечки— оба перехода закрыты.

  • Инверсный режим— эмиттерный переход закрыт, коллекторный — открыт.

В большинстве транзисторных схем транзистор рассматривается как четырехполюсник. Поэтому для такого включения один из выводов транзистора должен быть общим для входной и выходной цепей. Соответственно различают три схемы включения транзистора, которые показаны на рис. 3.2: а) с общей базой (ОБ), б) общим эмиттером (ОЭ) и в) общим коллектором (ОК).  На рисунке указаны положительные направления токов, а полярности напряжений соответствуют активному режиму работы.

Рис. 3.2. Схемы включения транзистора слева направо: схема с ОБ, ОЭ и ОК.

В схеме ОБ входную цепь является цепь эмиттера, а выходной – цепь коллектора.  Эта схема наиболее проста для анализа, поскольку напряжение Uэб прикладывается к эмиттерному переходу, а напряжение Uкб – к коллекторному, причем источники имеют разные знаки.

В схеме ОЭ входной цепью является цепь базы, а выходной – цепь коллектора. Напряжение Uбэ> 0 прикладывается непосредственно к эмиттерному переходу и открывает его. Напряжение Uкэ той же полярности распределяется между обоими переходами: Uкэ = Uкб + Uбэ. Для того чтобы коллекторный переход был закрыт, необходимо выполнить условие Uкб = Uкэ —  Uбэ> 0, что обеспечивается неравенством Uкэ> Uбэ> 0.

В схеме ОК входной цепью является цепь базы, а выходной – цепь эмиттера.

4. Статические вольт-амперные характеристики

Транзистор, как любой четырехполюсник, можно охарактеризовать четырьмя величинами — входными и выходными напряжениями и токами: Uвх = U1, Uвых = U2, Iвх = I1, Iвых = I2. Функциональные зависимости между этими постоянными величинами называются статическими характеристиками транзистора. Чтобы установить функциональные связи между указанными величинами, необходимо две из них взять в качестве независимых аргументов, а две оставшиеся выразить в виде функций этих независимых аргументов. Как правило, применительно к биполярному транзистору в качестве независимых аргументов выбирают входной ток и выходное напряжение.  В этом случае

                                              (4.1)

Обычно соотношения (4.1) представляют в виде функций одного аргумента. Для этого второй аргумент, называемый параметром характеристики, фиксируют. В основном, используют два типа характеристик транзистора:

                                       (4.2)

                                     (4. 3)

Следует отметить, что общепринято представление вольт-амперной характеристики как функции тока от напряжения, поэтому входная характеристика используется в виде обратной функции

                                    (4.4)

 Статические характеристики транзистора могут задаваться аналитическими выражениями, но в большинстве случаев их представляют графически в виде семейства характеристик, которые и приводятся в справочниках.

4.1. Статические характеристики в схеме с ОБ

В схеме с ОБ (рис. 3.2.а) входным током является ток эмиттера Iэ, а выходным – ток коллектора Iк, соответственно, входным напряжением является напряжение Uэб, а выходным – напряжение Uкб.

Входная характеристика в схеме ОБ представлена зависимостью

                                       (4. 5)

которая, в свою очередь, является прямой ветвью вольт-амперной характеристики эмиттерного перехода. Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.1, а. Зависимость Iэ от Uкб как от параметра связана с эффектом Эрли: увеличение обратного смещения коллекторного перехода Uкб уменьшает эффективную толщину базы W, что приводит к некоторому росту Iэ. Это проявляется в смещении входной характеристики в сторону меньших значений . Режиму отсечки формально соответствует обратное напряжение Uэб> 0, хотя реально эмиттерный переход остается закрытым () и при прямых напряжениях .

Выходная характеристика транзистора в схеме ОБ представляет собой зависимость

                                    (4.6)

Семейство выходных характеристик n-p-n транзистора показано на рис. 4.1, б. Форма кривых в активной области соответствует форме обратной ветви вольт-амперной характеристики коллекторного перехода.

Рис. 4.1. Семейства входных (а) и выходных (б) характеристик биполярного транзистора в схеме с ОБ.

Выражение для идеализированной выходной характеристики в активном режиме имеет вид

                                             (4.7)

Отсюда следует, что ток коллектора определяется только током эмиттера и не зависит от напряжения Uкб, т.е. характеристики в активном режиме расположены параллельно оси абсцисс. На практике же при увеличении Uкб имеет место небольшой рост Iк, связанный с эффектом Эрли, характеристики приобретают очень незначительный наклон. Кроме того, в активном режиме характеристики практически эквидистантны (расположены на одинаковом расстоянии друг от друга), и лишь при очень больших токах эмиттера из-за уменьшения α кривые несколько приближаются друг к другу.

При Iэ = 0 транзистор находится в режиме отсечки и в цепи коллектора протекает только неуправляемый тепловой ток (Iк = Iкб0).

В режиме насыщения на коллекторном переходе появляется открывающее его прямое напряжение Uкб, большее порогового значения Uкб пор, и возникает прямой диффузионный ток навстречу нормальному управляемому току Iк.  Этот ток называют инверсным.  Инверсный ток резко увеличивается с ростом , в результате чего  Iк очень быстро уменьшается и, затем, меняет знак.

 

4.2. Статические характеристики в схеме с ОЭ

В схеме с ОЭ (рис. 3.2, б) входным током является ток базы Iб, а выходным – ток коллектора Iк. Соответственно, входным напряжением является напряжение Uбэ, а выходным – Uкэ

Рис. 4.2. Семейства входных (а) и выходных характеристик (б) биполярного транзистора в схеме с ОЭ.

Входная характеристика в схеме с ОЭ представляет собой зависимость

                                     (4.8)

что, как и в схеме с ОБ, соответствует прямой ветви вольт-амперной характеристики эмиттерного перехода.

Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.2, а. Зависимость тока базы Iб от напряжения на коллекторе Uкэ, как и в предыдущем случае, обусловлена эффектом Эрли. Уменьшение эффективной ширины базы W с ростом Uкэ приводит к уменьшению тока рекомбинации, а, следовательно, тока базы в целом. В результате, характеристики смещаются в сторону больших значений Uбэ. Следует отметить, что Iб = 0 при некотором значении Uпор> 0, когда рекомбинационный ток (1-α)Iэ становится равным тепловому току Iкэ0. При Uбэ <Uпор, Iб = — Iкэ0, что соответствует режиму отсечки.

 При Uкэ <Uбэ открывается коллекторный переход, и транзистор переходит в режим насыщения. В этом режиме вследствие двойной инжекции в базе накапливается очень большой избыточный заряд электронов, интенсивность рекомбинации которых с дырками резко возрастает, и ток базы стремительно растет.  

Выходная характеристика в схеме с ОЭ представляет собой зависимость

                                     (4.9)

Семейство выходных характеристик показано на рис. 7.6б.  Для получения идеализированной выходной характеристики в активном режиме из соотношения (2.2), учитывая (2.6), исключим ток эмиттера. Тогда

                            (4.10)

Ток Iкэ0 называют сквозным тепловым током транзистора, причем, как видно из (4.11),

                                           (4. 11)

Семейство выходных характеристик целиком расположено в первом квадранте. Данный факт обусловлен тем, что в схеме с ОЭ напряжение Uкэ распределено между обоими переходами.  При Uкэ <Uбэ напряжение на коллекторном переходе меняет знак и становится прямым. В результате транзистор переходит в режим насыщения при Uкэ> 0. В режиме насыщения характеристики сливаются в одну линию, т.е. Iк становится неуправляемым и не зависит от тока базы.

Как видно из рис. 4.2 .б, в активном режиме кривые проходят под углом к оси абсцисс, причем этот угол увеличивается с ростом тока базы.  Такое поведение кривых обусловлено эффектом Эрли. Однако рост Iк при увеличении Uкэ выражен значительно ярче, чем в схеме с ОБ, поскольку в активном режиме эмиттерный переход приоткрыт падением напряжения на материале базы в результате протекания коллекторного тока. Это приводит к дополнительному увеличению коллекторного тока Iк с ростом напряжения Uкэ. Этим же объясняется отсутствие эквидистантности и наличие в β раз большего, чем Iкб0, сквозного теплового тока Iкэ0 (4.11). 

Bipolar Junction Transistor (BJT) Основы

BJT Structure

  • BJT состоит из трех легированных полупроводниковых областей ( эмиттер , база и коллектор ), разделенных двумя pn переходами.

  • Один тип состоит из двух n-областей, разделенных p-областью (npn), а другой тип состоит из двух p-областей, разделенных n-областью (pnp).

  • Термин «биполярный» относится к использованию как дырок, так и электронов в качестве носителей тока в структуре транзистора.

Рис. 1. Базовая структура BJT
  • Pn-переход, соединяющий базовую область и область эмиттера, называется переходом база-эмиттер .

  • pn-переход, соединяющий область основания и область коллектора, называется переходом база-коллектор .

  • Провод подключается к каждой из трех областей.

  • Выводы помечены E, B и C для обозначения эмиттера, базы и коллектора соответственно.

  • Базовая область слабо легирована и очень тонка по сравнению с сильно легированной областью эмиттера и умеренно легированной областью коллектора.

  • На рис. 2 показаны схематические обозначения транзисторов с биполярным переходом npn и pnp.

Рис. 2: Стандартные символы BJT

Основные операции BJT

Смещение

Рис. 3: Прямое-обратное смещение BJT

Основные операции BJT

Работа: внутри структуры npn

  • Сильно легированная область эмиттера n-типа имеет очень высокую плотность (свободных) электронов в зоне проводимости.

  • Эти свободные электроны легко диффундируют через прямой BE-переход в слабо легированную и очень тонкую базовую область p-типа.

  • База имеет низкую плотность отверстий, которые являются основными носителями.

  • Небольшой процент от общего числа свободных электронов, инжектированных в базовую область, рекомбинирует с дырками и перемещается в виде валентных электронов через базовую область в эмиттерную область в виде дырочного тока.

Рисунок 4: Работа BJT, показывающая поток электронов
  • Когда электроны, рекомбинировавшие с дырками, покидают кристаллическую структуру базы, они становятся свободными электронами в металлическом выводе базы и создают внешний ток базы.

  • По мере того, как свободные электроны движутся к переходу BC с обратным смещением, они уносятся в область коллектора за счет притяжения положительного напряжения питания коллектора.

  • Свободные электроны проходят через область коллектора во внешнюю цепь, а затем вместе с током базы возвращаются в область эмиттера.

Основные операции с биполярным транзистором

Ток транзистора

Рис. 5: Ток транзистора
  • Стрелка на эмиттере внутри символов транзистора указывает направление обычного тока.

  • На этих диаграммах показано, что ток эмиттера ( I E ) представляет собой сумму тока коллектора ( I C ) и тока базы ( I B 900 ):

BJT Characteristics and Parameters

DC Beta ( β DC ) and DC Alpha (α DC )

  • β DC is usually designated as эквивалентный гибридный ( h ) параметр, h FE , в паспортах транзисторов: β DC = h FE .

  • Коэффициент постоянного тока I C к DC I E является DC альфа (α DC ). Альфа — менее используемый параметр, чем бета, в транзисторных схемах.

Характеристики и параметры биполярного транзистора

Модель транзистора постоянного тока

: Транзисторные токи и напряжения

В BE : Напряжение постоянного тока на базе относительно эмиттера

В CB : Напряжение постоянного тока на коллекторе относительно базы

В C E 90 к эмиттеру

  • Хотя V BE может достигать 0,9 В в реальном транзисторе и зависит от тока, 0,7 В используется для упрощения анализа основных понятий.

  • Характеристика перехода база-эмиттер такая же, как у нормального диода.

  • Поскольку эмиттер находится на земле (0 В), по закону напряжения Кирхгофа напряжение на R B равно

  • По закону Ома, В . Подставляя V RB и решая I B ,
  • Напряжение на коллекторе относительно заземленного эмиттера равно
  • Поскольку падение на R C равно 1 C С Р C , V C E может быть записано как
  • Напряжение по отношению к обратному смещению с коллекторной базой составляет

BJT Характеристики и параметры

КОНТАРИСТИКИ КОГЛИСТИКИ

Рисунок 8: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4.
  • И V BB , и V CC являются регулируемыми источниками напряжения. Предполагается, что V BB выдает определенное значение I B , а V CC равно нулю. Таким образом, и переход база-эмиттер, и переход база-коллектор смещены в прямом направлении, поскольку на базе примерно 0,7 В, а на эмиттере и коллекторе 0 В.

  • -смещенный, транзистор находится в рабочей области насыщения . Насыщенность — это состояние BJT, в котором I C достигло максимума и не зависит от I B .

    • Когда V CE превышает 0,7 В, переход база-коллектор становится смещенным в обратном направлении, и транзистор переходит в активную или линейную рабочую область.

      • I C очень незначительно увеличивается для данного I B по мере увеличения V CE из-за расширения области обеднения база-коллектор. Это вызывает небольшое увеличение β DC .

      • Это участок между точками B и C на рис. 9. I C в этой части определяется только I C DC I B .

    • Когда V CE достигает достаточно высокого напряжения, переход база-коллектор переходит в пробой ; и I C быстро возрастает, что показано на участке справа от точки C. В этой области никогда не следует использовать транзистор.

    • Семейство кривых получается, когда I C по сравнению с V CE построен для значений I B . Когда I B =0, транзистор находится в области отсечки . Отсечка — это непроводящее состояние транзистора.

    Характеристики и параметры BJT

    Отсечка

    • Когда I B =0, транзистор находится в области отсечки своей работы. Это показано на рис. 10 с открытым выводом базы, таким образом, I B =0.

    • Существует очень небольшой ток утечки коллектора, I CEO , в основном из-за термически изготовленных носителей.

    • I CEO обычно игнорируется при анализе схемы, так что V CE = V CC .

    • Переходы база-эмиттер и база-коллектор имеют обратное смещение. Нижний индекс CEO представляет коллектор-эмиттер с открытой базой.

    Рисунок 10: Характеристики и параметры отсечки

    BJT

    Насыщенность

    • Когда переход база-эмиттер становится смещенным в прямом направлении и I B увеличивается, I C также увеличивается, а V CE уменьшается в результате большего падения на R C .

    • Когда V CE достигает своего значения насыщения, V CE(sat) , переход база-коллектор становится смещенным в прямом направлении, и I C больше не может увеличиваться. В точке насыщения I C DC I B больше не действует.

    • В СЕ(сб) для транзистора встречается где-то ниже колена коллекторной кривой, и обычно составляет всего несколько десятых вольта.

    • Переходы база-эмиттер и база-коллектор смещены в прямом направлении.

    Рисунок 11: Характеристики и параметры насыщения

    BJT

    Линия нагрузки постоянного тока

    Рисунок 12: Линия нагрузки постоянного тока на семействе кривых характеристик коллектора
    • Нижняя часть грузовой линии находится в идеальной точке отсечки, где I C =0 и V CE =V CC . Верхняя часть линии нагрузки находится в точке насыщения, где I C = I C(насыщение) и V CE = V CE(насыщение) .

    • Между отсечкой и насыщением по линии нагрузки находится активная область работы транзистора.

    Характеристики и параметры BJT

    Подробнее о β DC

    • β DC зависит как от I C , так и от температуры.

    • Поддержание постоянной температуры перехода и увеличение I C приводит к увеличению β DC до максимума.

    • Дальнейшее увеличение I C выше максимальной точки приводит к уменьшению β DC .

    • Если I C поддерживается постоянным, а температура изменяется, β DC изменяется напрямую с температурой. Если температура повышается, β DC увеличивается, и наоборот.

    Рисунок 13: Изменение постоянного бета в зависимости от тока коллектора для нескольких температур
    • В технических характеристиках транзистора обычно указывается β DC (h FE ) при определенных значениях I C . Даже при фиксированных I C и температуре β DC варьируется от одного устройства к другому для данного транзистора из-за неизбежных несоответствий в производстве.

    • Значение β DC , указанное при определенном I C , обычно является минимальным значением, β DC(min) , хотя иногда указываются максимальные и типичные значения.

    Характеристики и параметры BJT

    Максимальные номиналы транзисторов

    Если I C является максимальным, V CE можно рассчитать по

    BJT как усилитель

    Транзистор усиливает ток, потому что I C равно I B , умноженному на коэффициент усиления по току, β.

  • I B очень мал по сравнению с I C и I E . Из-за этого

  • Рисунок 14: Базовая схема транзисторного усилителя
    • I b , I c и I e представляют собой токи транзистора переменного тока. V b , V c и V e представляют собой напряжения переменного тока от выводов транзистора к земле.

    • AC V в производит AC I B , что приводит к гораздо большему AC I C .

    • Преобразователь переменного тока I C создает переменное напряжение на R C , создавая усиленное, но инвертированное воспроизведение входного переменного напряжения в активной области работы.

    • Переход база-эмиттер с прямым смещением имеет очень низкое сопротивление сигналу переменного тока. Это внутреннее сопротивление эмиттера переменного тока (r’ e ) появляется в серии с R B . Базовое напряжение переменного тока равно
    • Напряжение коллектора переменного тока, В c , равно падению напряжения переменного тока на R C : .
    • Поскольку напряжение коллектора переменного тока равно .
    • V B можно считать входным напряжением транзистора переменного тока, где V B = V S -I B R B .
    • В c можно рассматривать как выходное напряжение переменного тока транзистора.
    • Поскольку коэффициент усиления по напряжению определяется как отношение выходного напряжения к входному напряжению, отношение В c к В b – коэффициент усиления по переменному напряжению, А , транзистор.
    • Замена I e R C вместо V c и I e r’e вместо V b ,

    BJT как переключатель

    Рис. 15. Переключение идеального транзистора
    • На рис. 15(a) транзистор находится в области отсечки, поскольку переход база-эмиттер не смещен в прямом направлении. В идеале между коллектором и эмиттером должен быть открытый .

    • На рис. 15(b) транзистор находится в области насыщения, поскольку переход база-эмиттер и переход база-коллектор смещены в прямом направлении. I B сделан достаточно большим, чтобы вызвать I C , чтобы достичь значения насыщения.

      • В идеале короткий между коллектором и эмиттером. Обычно происходит небольшое падение напряжения на транзисторе до нескольких десятых вольта, что является напряжением насыщения, V CE(sat) .

    Условия отсечки

    • Переход база-эмиттер не смещен в прямом направлении. Если пренебречь током утечки, все токи равны нулю, и V CE =V CC ,

    Условия насыщения

    • Обычно I B должен быть значительно больше, чем I B(мин) 901, чтобы транзистор был насыщенным.

    Биполярные транзисторы

    Биполярные транзисторы

    Биполярные транзисторы

    На рис. 6-1 показана эквивалентная схема для транзистора с биполярным переходом npn.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *