Падение напряжения на резисторе: Как найти напряжение на резисторах, подобрать элемент и рассчитать его падение

Содержание

Падение напряжения: расчет, формула, как найти

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение  происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Закон Ома для участка цепи

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Падение напряжения на резисторе

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Порядок расчета делителей напряжения на резисторе: схемы и формулы

Автор Aluarius На чтение 5 мин. Просмотров 257 Опубликовано

Делитель напряжения на резисторах

Резисторный делитель напряжения — это устройство, с помощью которого из источника с высоким напряжением можно получить лишь необходимую для устройства часть. Это нужно сделать для питания потребителя с низкой мощностью. Ниже вы узнаете о разновидностях такого приспособления, для чего оно используется в физике, а также, как произвести необходимые расчёты самостоятельно и при помощи программ.

Что такое делитель тока

Делитель тока — это устройство, позволяющее разделить поток тока на две части, чтобы в дальнейшем использовать одну из них. Он нужен, когда устройство не работает с большим током и нужно отделить его меньшее количество, необходимое для использования аппаратуры.

Состоит делитель обычно из двух резисторов, параллельно соединённых, так в каждом из них будет уменьшаться ток.
При последовательном соединении будет уменьшаться напряжение.

Виды и принцип действия

В основе принципа действия устройства, уменьшающего нагрузку сети, лежит первый закон Кирхгофа: сумма сходящихся в узле токов равна нулю.

Принцип работы у всех одинаковый: в них есть U исходное: такое же, как в источнике питания и получаемое на выходе из сети, зависящее от соотношения резисторов в плечах делителя.
Схема, позволяющая понять принцип действия:

Резисторный-делитель-напряжения

Различают разные устройства, в зависимости от элементов в составе:

  • резистивный — более популярен из-за простоты устройства.
  • ёмкостный;
  • индуктивный.

Формула для расчёта делителя напряжения

Как рассчитать резистор для понижения напряжения ?

Для расчёта получаемой в итоге нагрузки, нужно знать следующие данные: U исходное и значение сопротивления в каждом из составных элементов.

Делитель рассчитывается с учётом того, что проходящий через него ток минимум в 10 раз больше, чем на выходе и меньше, чем входящий в сеть.

Можно рассчитать общее сопротивление в резисторах:

R=R1*R2/(R1+R2)

В параллельно соединённых резисторах U1=U2, из это можно сделать вывод, что в сети протекает общий ток:
I=I1+I2

Найти общий ток можно, зная закон Ома

закон ома

 

Уменьшаемое в итоге напряжение на резисторах находится по формуле:
U1=(R1/(R1+R2))*U
U2=(R2/(R1+R2))*U
Остаётся узнать, как найти ток на обоих резисторах:

I=U/R

Также, рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу):

r – внутреннее сопротивление устройства.

рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу)

 

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель на резисторах — отличается своей универсальностью: используют при постоянном и переменном токе, но только при пониженном сопротивлении цепи.

Согласно закону Ома и правилу Кирхгофа через всю цепь будет проходить один и тот же ток.

Тогда на каждом из резисторов: U1= I х R1 и U2 = I х R2
Ток в цепи устройства:

ток-в-цепи-делителя

 

Уменьшение на конденсаторах применяют для цепей с высоким переменным током. В нём минимальная потеря энергии на выходе. Реактивное сопротивление конденсатора зависит от его электроёмкости и частоты напряжения в цепи.

Формула для вычисления сопротивления:

формула

 

Делитель на индуктивностях используется при переменном низком токе на высоких частотах. Сопротивление катушки переменного тока прямо пропорционально зависит от индуктивности и частоты. У провода катушки имеется активное сопротивление, из-за чего мощность такого прибора больше, чем у аналогов.

Сопротивление катушки находится по формуле:

сопротивление-катушки

 

Расчет делителя напряжения калькулятором онлайн

Калькулятор онлайн — это программа, с помощью которой вы можете произвести необходимые вычисления для расчёта U выходного. Её используют, когда в расчётах много резисторов или при больших значениях. Для этого вам сначала нужно определить U исходное, сопротивление каждого из резисторов и ёмкость конденсатора.

Практическое применение параллельного и последовательного соединения

Составные элементы прибора соединяют в цепь, чтобы получить из сети нужную для устройства часть энергии.


Пример работы делителя напряжения на фоторезисторе.

Исходное сопротивление меняется от 1кОм в момент полного освещения до 10кОм при отсутствии света, то можно увеличить диапазон сопротивления. При добавлении резисторов с R=5,6кОм, исходящее напряжение меняется следующим образом:

Освещённость R1 (кОм) R2(кОм) R2/(R1+R2) U выходное (В)
Яркая 5,6 1 0,15 0,76
Тусклая 5,6 7 0,56 2,78
Темнота 5,6 10 0,67 3,21

Таким образом, увеличивается диапазон выходного напряжения, и оно становится подходящим для большинства сетей.

Потенциометры

Потенциометры используют в качестве делителя в системе с постоянным током. Их применяют в основном для изменения отдельных параметров в механизме.

Потенциометр

 

На потенциометр подается напряжение, регулируемое подвижным контактом, который действует, когда крутят ручку, в результате оно может меняться от нуля до исходного значения.
Потенциометры используют в быту, как регулятор громкости, и в электронике, например, в качестве датчика.


Резистивные датчики

Резистивные датчики также называют омическими. Это приборы, в которых изменяется сопротивление, если изменяется длина, площадь сечения или удельное сопротивление. Их используют в устройствах для изменения сопротивления, а также при помощи микроконтроллера с его помощью вы можете измерить напряжение. Существуют различные датчики, одним из некоторых является фоторезистор — переменный резистор, сопротивление которого зависит от попадающего на него света.

Переменный резистор в качестве делителя напряжения

Переменный резистор позволяет напряжению изменяться более плавно. Работает он так: крайние выводы подключаются к положительному и отрицательному заряду, а из центрального на выходе получается пониженное напряжение

Делитель применяют в различных конструкциях, если нагрузка сети слишком высока для устройства, в датчиках и электронных схемах. Он является одним из основных аспектов электроники, позволяет приспособить параметры сети для механизма. Теперь вы знаете, для чего применяют резисторный делитель, основные для использования вычисления, например, как рассчитать резистор для понижения напряжения.

расчет, теория и принцип действия

Существуют два вида сопротивления – переменное и постоянное, а делитель напряжения на резисторах нужен для защиты электроприборов. Например, светодиодам необходим небольшой ток, в противном случае они могут перегореть. Для ограничения тока в электрическую цепь вставляется резистор, следовательно ток уменьшается и светодиоды работают в штатном режиме. Резистор – радиоэлемент для увеличения сопротивления электрической цепи. Его ставят с целью понижения напряжения или тока.

Постоянное сопротивление – резисторы, которые не изменяют свой номинал. Если подобное происходит, значит резистор вышел из строя. Переменные резисторы могут менять свое сопротивление в процессе своей работы. Они оснащены специальный бегунок, который и регулирует сопротивление. На основе их изготавливают самые различные регуляторы.

В статье будут подробно рассмотрены типы подключения и что такое делитель напряжения. Также в статье содержится видеоролик на данную тему и скачиваемый файл с дополнительной информацией.

Делитель напряжения

Делитель напряжения.

Соединение резисторов

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике. Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов. Соединение резисторов может производиться последовательно, параллельно и смешанно.

Последовательное соединение резисторов

Последовательное соединение резисторов

Последовательное соединение.

Последовательное соединение резисторов это такое соединение, в котором конец одного резистора соединен с началом второго резистора, конец второго резистора с началом третьего и так далее. То есть при последовательном соединении резисторы подключатся друг за другом. При таком соединении через резисторы будет протекать один общий ток. Следовательно, для последовательного соединения резисторов будет справедливо сказать, что между точками А и Б есть только один единственный путь протекания тока.

Интересно почитать: принцип действия и основные характеристики варисторов.

Таким образом, чем больше число последовательно соединенных резисторов, тем большее сопротивление они оказывают протеканию тока, то есть общее сопротивление Rобщ возрастает. Рассчитывается общее сопротивление последовательно соединенных резисторов по следующей формуле: Rобщ = R1 + R2 + R3+…+ Rn.

Последовательное и параллельное соединение резисторов

Последовательное и параллельное соединение резисторов.

Параллельное соединение резисторов

Параллельное соединение резисторов Параллельное соединение резисторов это соединение, в котором начала всех резисторов соединены в одну общую точку (А), а концы в другую общую точку. При этом по каждому резистору течет свой ток. При параллельном соединении при протекании тока из точки А в точку Б, он имеет несколько путей. Таким образом, увеличение числа параллельно соединенных резисторов ведет к увеличению путей протекания тока, то есть к уменьшению противодействия протеканию тока. А это значит, чем большее количество резисторов соединить параллельно, тем меньше станет значение общего сопротивления такого участка цепи (сопротивления между точкой А и Б.)

Общее сопротивление параллельно соединенных резисторов определяется следующим отношением: 1/Rобщ= 1/R1+1/R2+1/R3+…+1/Rn. Следует отметить, что здесь действует правило «меньше – меньшего». Это означает, что общее сопротивление всегда будет меньше сопротивления любого параллельно включенного резистора.
Общее сопротивление для двух параллельно соединенных резисторов рассчитывается по следующей формуле Rобщ= R1*R2/R1+R2

Если имеет место два параллельно соединенных резистора с одинаковыми сопротивлениями, то их общее сопротивление будет равно половине сопротивления одного из них. Данный вид подключения характерен тем, что все элементы цепи соединяется выводами в одной точке друг другу, т.е. точка входа и выхода всех нагрузок сходятся в одну точку (или еще одно обозначение на схемах — //). Электроток, двигаясь по проводнику, дойдя до общего соединения делится на количество имеющихся веток.

Что такое делитель напряжения и как он используется на резисторах?

Если представить движение воды в трубе, то можно сказать, что вода двигающиеся по одной трубе, равномерно перетекает в несколько отводов, подсоединенных к ней. В нашем случае заряженные электроны, двигающиеся по проводнику, также растекаются на количества предложенных веток в узле.

Каждый вид соединения находится под одинаковым напряжением:

  • U = U1 = U2; Суммарная сила тока равняется суммарному значению тока каждого участка
  • I = I1 + I2; Сопротивление цепи равно сумме величина обратных сопротивлению участка:
  • 1/R = 1/R1 + 17R2 + . . . + 1/Rn; Сила тока пропорциональна сопротивлению каждого участка
  • I1/I2=R2/R1.

Примеры расчета

Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:

  • U1 = R1 * I = 1200 Ом * 2 А = 2400 В;
  • U2 = R2 * I = 800 Ом * 2А = 1600 В.

Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В. Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток.  R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом. Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2 А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В. А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором — 1600 В. При этом напряжение источника питания — 4000 В.

Смешанное соединение резисторов

Смешанное соединение резисторов является комбинацией последовательного и параллельного соединения. Иногда подобную комбинацию называют последовательно-параллельным соединением. На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 последовательно.

Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:

  • Определяют эквивалентное сопротивление участков с параллельным соединением резисторов.
  • Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их сопротивление.
  • После расчета эквивалентных сопротивлений резисторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений.
  • Рассчитывают сопротивления полученной схемы.
Смешанное подключение резисторов

Схема смешанного подключения.

Законы Кирхгофа

Первый закон

законы Ещё один очень важный закон — это закон Кирхгофа. Для участка цепи постоянного тока их два. Первый закон имеет формулировку: Сумма всех токов, входящих в узел и выходящих из него равна нулю. Если посмотреть на схему, I1 — это ток, который заходит в узел, I2 и I3 — это электроны, которые вытекают из него. Применяя формулировку первого закона можно записать формулу по-другому: I1-I2+I3=0. В этой формуле знаки плюс имеют значения, которые прибывают в узел, минус, который отходит от него.

Второй закон Кирхгофа

Если к цепи с включенными сопротивлениями подключен один источник ЭДС (батарея питания) тогда всё понятно, можно обойтись законом Ома. А, если, источников несколько и схема с различным схемным расположением элементов, тогда вступает в силу второй закон, который гласит: сумма токов всех источников питания для замкнутого контура, равна сумме падений напряжения на всех сопротивлениях участка в этом контуре.

Параллельное и последовательное соединение резисторов, решение задач

подключение резисторов Алгоритм расчёта смешанных подключений находится в тех же правилах, что и в элементарных схемах расчета последовательного и параллельного соединения резисторов. Ничего нового нет: нужно правильно разбить предложенную схему на пригодные для расчета участки. Участки, с элементами, подключены поочередно либо параллельно. Для решения задачи на последовательное и параллельное соединение резисторов необходимо правильно оценить цепи элементов. На схеме присутствует параллельная и последовательная часть соединения элементов. Для расчета очень важно аккуратно, шаг за шагом упрощать цепи и не брать сразу всю схему (рис.1). Как же правильно определить параллельное и последовательное соединение резисторов?

Для примера расчета возьмем резисторы R3, R4, которые подключены параллельно. Эквивалентный резистор этих элементов, будет равенRэ. = 1/R34 =1/R3 + 1/R4, после преобразования формулы и приведения к одному знаменателю получим R34 = R3 · R4 / (R3 + R4). Э. = 1/3+1/4 /(3+4) =1,7 Ом.

Далее видно, что приведённая эквивалентное R эк и R6 соединены последовательно, чтобы узнать сопротивление их необходимо сложить, тогда общее сопротивление будет равно R346 = R34 + R6, тогда Rэк346 = 1,7 + 6 = 7, 7 Ом.

Материал в тему: описание и область применения подстроечного резистора.

Заменяем на схеме одним общим элементом, теперь, позиция упрощается еще больше. Теперь образовалась ситуация — включение трех элементов в //. Как вычисляется такое соединение нам уже известно, 1/ R23465 = 1/ R2 +1/R346 + 1/R5 после вычисления правой части получаем 0,82 Ом. После окончательного вычисления получаем R23465 = 2,1 Ом. Здесь следует обратить внимание, что общее сопротивление получилось меньше самого меньшего из трех. Заменяем эти сопротивление одним эквивалентным R23465. В конечном итоге все выглядит уже намного проще. Rц = Rэк + R1+ R2. R об. = R ц = 1,21 +7+1 =9,21 Ом.

Что такое делитель напряжения и как он используется на резисторах?

Из приведенного алгоритма расчёта видно, как из сложной схемы путем простого математического вычисления и применения правил сокращения резисторов участок становится простой и понятной.

подключение резисторов При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными.

Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно. На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Почитать материал по теме: что такое SMD резисторы.

Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом.

Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.

  • Соединили параллельно 150 Ом и 100 Ом. Считаем результирующее: 150*100 / (150+100) = 15000/250 = 60 Ом.
  • Если соединить 150 Ом и 50 Ом, получим: 150*50 / (150+50) = 7500 / 200 = 37,5 Ом.

Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.

типы подключений

Типы подключений.

Расчет гасящего резистора

В схемах аппаратуры связи часто возникает необходимость подать на потребитель меньшее напряжение, чем дает источник. В этом случае последовательно с основным потребителем включают дополнительное сопротивление, на котором гасится избыток напряжения источника. Такое сопротивление называется гасящим.

Напряжение источника тока распределяется по участкам последовательной цепи прямо пропорционально сопротивлениям этих участков. Рассмотрим схему включения гасящего сопротивления:

  1. Полезной нагрузкой в этой цепи является лампочка накаливания, рассчитанная на нормальную работу при величине напряжения Uл= 80 в и тока I =20 ма.
  2. Напряжение на зажимах источника тока U=120 в больше Uл, поэтому если подключить лампочку непосредственно к источнику, то через нее пройдет ток, превышающий нормальный, и она перегорит.
  3. Чтобы этого не случилось, последовательно с лампочкой включено гасящее сопротивление R гас.
Схема гасящего сопротивления

Схема включения гасящего сопротивления резистора.

Расчет величины гасящего сопротивления при заданных значениях тока и напряжения потребителя сводится к следующему:

– определяется величина напряжения, которое должно быть погашено:

Uгас = Uист – Uпотр,

Uгас = 120 – 80 = 40в

определяется величина гасящего сопротивления

Rгас = Uгас / I

Rгас = 40 / 0,020 = 2000ом = 2 ком

Далее необходимо рассчитать мощность, выделяемую на гасящем сопротивлении по формуле

P = I2 * Rгас

P = 0,0202 * 2000 = 0,0004 * 2000 = 0,8вт

Зная величину сопротивления и расходуемую мощность, выбирают тип гасящего сопротивления.

Практическое применение параллельного и последовательного соединения

Для чего практически можно использовать параллельное и последовательное соединение резисторов? Случается, что при ремонте электронной аппаратуры, не всегда в наличии сопротивление нужного номинала. Ехать в магазин за одним копеечным элементом — накладно. Вот тут и могут пригодиться составные резисторы. Просто надо последовательно или параллельно соединить их, подобрав требуемый номинал.

Приведем пример работы делителя напряжения на фоторезисторе. Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Изменение выходного напряжения

Диапазон изменения выходного напряжения.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

При соединении резисторов, их ножки первоначально скручивают. Какой стороной разворачивать сопротивление — неважно (в отличие от диодов, резисторы одинаково пропускают ток в обоих направлениях). На концах скрутку слегка обжимают плоскогубцами, затем пропаивают. Следите за тем, чтобы корпуса были друг от друга подальше — так они будут лучше охлаждаться при работе.

Более подробно о делителях напряжения можно узнать из скачиваемого файла правила подключения проводников. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.elektroznatok.ru

www.themechanic.ru

www.electrono.ru

www.hightolow.ru

www.sxemotehnika.ru

Как вам статья?Poll Options are limited because JavaScript is disabled in your browser. Предыдущая

РезисторыSMD резисторы: что это такое и для чего используются?

Следующая

РезисторыКак рассчитать резистор для светодиода?

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях - Help for engineer

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель напряжения используется в электрических цепях, если необходимо понизить напряжение и получить несколько его фиксированных значений. Состоит он из двух и более элементов (резисторов, реактивных сопротивлений). Элементарный делитель можно представить как два участка цепи, называемые плечами. Участок между положительным напряжением и нулевой точкой – верхнее плечо, между нулевой и минусом – нижнее плечо.

Делитель напряжения на резисторах может применятmся как для постоянного, так и для переменного напряжений. Применяется для низкого напряжения и не предназначен для питания мощных машин. Простейший делитель состоит из двух последовательно соединенных резисторов:

На резистивный делитель напряжения подается напряжение питающей сети U, на каждом из сопротивлений R1 и R2 происходит падение напряжения. Сумма U1 и U2 и будет равна значению U.

В соответствии с законом Ома (1):

Закон Ома

Падение напряжения будет прямо пропорционально значению сопротивления и величине тока. Согласно первому закону Кирхгофа, величина тока, протекающего через сопротивления одинакова. С чего следует, что падение напряжения на каждом резисторе (2,3):

Закон Ома
Закон Ома

Тогда напряжение на всем участке цепи (4):

Напряжение всей цепи

Отсюда определим, чему равно значение тока без включения нагрузки (5):

Величина тока

Если подставить данное выражение в (2 и 3), то получим формулы расчета падения напряжения для делителя напряжения на резисторах (6, 7):

Величина тока
Величина тока

Необходимо упомянуть, что значения сопротивлений делителя должны быть на порядок или два (все зависит от требуемой точности питания) меньше, чем сопротивление нагрузки. Если же это условие не выполняется, то при приведенном расчете подаваемое напряжение будет посчитано очень грубо.

Для повышения точности необходимо сопротивление нагрузки принять как параллельно подсоединенный резистор к делителю. А также использовать прецизионные (высокоточные) сопротивления.

Онлайн подбор сопротивлений для делителя

Пусть источник питания выдает 24 В постоянного напряжения, примем, что величина сопротивления нагрузки переменная, но минимальное значение равно 15 кОм. Необходимо рассчитать параметры резисторов для делителя, выходное напряжение которого равно 6 В.

Таким образом, напряжения: U=24 B, U2=6 В; сопротивление резисторов не должно превышать 1,5 кОм (в десять раз меньше значения нагрузки). Принимаем R1=1000 Ом, тогда используя формулу (7) получим:

Величина тока

выразим отсюда R2:

Величина тока

Зная величины сопротивления обоих резисторов, найдем падение напряжения на первом плече (6):

Величина тока

Ток, который протекает через делитель, находится по формуле (5):

Величина тока

Схема делителя напряжения на резисторах рассчитана выше и промоделирована:

Величина тока

Использование делителя напряжения очень неэкономичный, затратный способ понижения величины напряжения, так как неиспользуемая энергия рассеивается на сопротивлении (превращается в тепловую энергию). КПД очень низкий, а потери мощности на резисторах вычисляются формулами (8,9):

Величина тока
Величина тока
Величина тока
Величина тока

По заданным условиям, для реализации схемы делителя напряжения необходимы два резистора:

1. R1=1 кОм, P1=0,324 Вт.
2. R2=333,3 Ом, P2=0,108 Вт.

Полная мощность, которая потеряется:

Полная мощность
Мощность на делителе

Делитель напряжения на конденсаторах применяется в схемах высокого переменного напряжения, в данном случае имеет место реактивное сопротивление.

Мощность на делителе

Сопротивление конденсатора рассчитывается по формуле (10):

Мощность на делителе
где С – ёмкость конденсатора, Ф;
f – частота сети, Гц.

Исходя из формулы (10), видно, что сопротивление конденсатора зависит от двух параметров: С и f. Чем больше ёмкость конденсатора, тем сопротивление его ниже (обратная пропорциональность). Для ёмкостного делителя расчет имеет такой вид (11, 12):

Мощность на делителе
Мощность на делителе

Еще один делитель напряжения на реактивных элементах – индуктивный, который нашел применение в измерительной технике. Сопротивление индуктивного элемента при переменном напряжении прямо пропорционально величине индуктивности (13):

Мощность на делителе
где L – индуктивность, Гн.

Мощность на делителе

Падение напряжения на индуктивностях (14,15):

Мощность на делителе

Мощность на делителе

Недостаточно прав для комментирования

Как рассчитать падение напряжения на резисторе?

физика
Наука
  • Анатомия и физиология
  • астрономия
  • астрофизика
  • Биология
  • Химия
  • наука о планете Земля
  • Наука об окружающей среде
  • Органическая химия
  • физика
математический
  • Алгебра
  • Исчисление
.
Падение напряжения на конденсаторе последовательно с резистором - Electronics Q & A

Поиск вопросов и ответов


Задать вопрос

Любой может задать вопрос.

Вы уже искали (см. Выше), чтобы увидеть, если на аналогичный вопрос уже был дан ответ? Если вы не можете найти ответ, вы можете задать вопрос.


Об этом сайте

Q & A CircuitLab - это БЕСПЛАТНЫЙ форум вопросов и ответов для студенты-электроники и электротехники, любители и профессионалы.

Мы рекомендуем вам использовать наше встроенное программное обеспечение для схем и моделирования, чтобы добавить больше деталей к вашим вопросам и ответам.

Приемлемые вопросы:

  • Вопросы концепции или теории
  • Практические инженерные вопросы
  • «Домашнее задание» вопросы
  • Пересечение программного и аппаратного обеспечения
  • Лучшие практики
  • Выбор дизайна и выбор компонентов
  • Устранение неисправностей

Недопустимые вопросы:

  • Неанглийский языковой контент
  • Бесспорная дискуссия
  • Вопросы, не связанные с электроникой
  • Темы для конкретного поставщика
  • вопросы программного обеспечения
  • Поддержка программного обеспечения CircuitLab

Пожалуйста, уважайте, что здесь есть как опытные эксперты, так и новички: будьте добры, будьте конструктивны и конкретны!

О CircuitLab

CircuitLab - это программный инструмент для захвата схем и моделирования цепей в браузере, который поможет вам быстро проектировать и анализировать аналоговые и цифровые электронные системы.

,

Измерение внутреннего сопротивления батарей

Избранные любимец 6

Внутреннее сопротивление

При разработке схемы с аккумулятором мы часто предполагаем, что аккумулятор является идеальным источником напряжения. Это означает, что независимо от того, какую нагрузку мы прилагаем к батарее или мало, напряжение на клеммах источника всегда будет оставаться неизменным.

Если мы моделируем эту батарею как идеальный источник напряжения, изменение значения R L не влияет на напряжение между клеммами батареи

В действительности, несколько факторов могут ограничивать способность батареи действовать как идеальный источник напряжения.Размер батареи, химические свойства, возраст и температура влияют на величину тока, который может выдавать батарея. В результате мы можем создать лучшую модель батареи с идеальным источником напряжения и резистором серии .

Батареи могут быть смоделированы как идеальный источник напряжения с последовательным резистором (с маркировкой R I )

Мы можем измерить напряжение аккумулятора на его клеммах без подключения нагрузки. Это известно как напряжение холостого хода (V OC ).

Измерение напряжения щелочного элемента АА без нагрузки

Обратите внимание, что из-за отсутствия тока через внутренний резистор падение напряжения на нем равно 0 В. Поэтому можно предположить, что V OC равно напряжению идеального источника напряжения в батарее.

Если подключить нагрузку к батарее, напряжение на клеммах падает.

Здесь мы измеряем падение напряжения на резисторе 4 Ом

Это падение напряжения вызвано внутренним сопротивлением батареи.Мы можем рассчитать внутреннее сопротивление, если взять показания напряжения холостого хода и напряжения на клеммах батареи с подключенной нагрузкой.

Для начала мы создадим диаграмму, показывающую нашу схему.

Вот наша схема. Мы хотим рассчитать R I .

Мы можем подключить измеренное нами нагруженное напряжение (V L ) и значение резистора (R L ) в закон Ома, чтобы ток протекал через цепь (I).

Нам также нужно получить напряжение на внутреннем резисторе. Мы можем сделать это, используя закон напряжения Кирхгофа. Упрощенно для этой схемы, мы можем сказать, что падение напряжения на обоих резисторах должно складываться с напряжением идеального источника напряжения.

Теперь, когда мы знаем падение напряжения на внутреннем резисторе и ток через него, мы можем снова использовать закон Ома, чтобы найти его сопротивление.

Отсюда видно, что внутреннее сопротивление (на данный момент) элемента AA составляет 0.273 Ом .

ПРИМЕЧАНИЕ : с помощью этого метода мы можем сделать только снимок внутреннего сопротивления. Внутреннее сопротивление может варьироваться в зависимости от времени работы батареи и температуры. Через 10 минут значение сопротивления может быть другим! Обычная щелочная батарея типа АА может иметь внутреннее сопротивление от 0,1 до 0,9 Ом.


← Предыдущая страница
Введение ,

Отправить ответ

avatar
  Подписаться  
Уведомление о