Параллельное соединение и последовательное – Последовательное и параллельное соединение проводников

Параллельное соединение и последовательное – Последовательное и параллельное соединение проводников

Последовательное и параллельное соединение проводников

В реальной жизни сложно себе представить существование в электрической цепи одного единственного потребителя. Такие цепи существуют, но всегда очень примитивны. Например, если мы с вами включим в розетку одну единственную лампочку, то в цепи лампочка-розетка, мы будем иметь одно единственное устройство-потребитель. Но на практике таких устройств всегда гораздо больше и если рассмотреть ту же самую цепь в разрезе электростанция-лампочка, то схема подключения будет содержать уже множество дополнительных потребителей.

Внутри электрических устройств также используются целые схемы, которые содержат в своем составе множество элементов. Например, управляющая схема телевизора состоит из множества резисторов, транзисторов, диодов и других элементов. Достаточно взглянуть на любую печатную плату и обратить внимание на количество вспомогательных «дорожек». Все они соединены последовательно или параллельно. Кроме того, типы соединений могут смешиваться.

Каждый тип соединения подразумевает определенное соотношение между основными параметрами, такими как напряжение, сила тока и сопротивление.

Типов соединения бывает всего два, а третий – это комбинированный вариант подключения.

Первый вариант соединения – это последовательное подключение. Второй вариант – параллельное подключение. Эти подключения могут комбинироваться в реальной практике.

Чем отличаются параллельное и последовательное подключения

Последовательное подключение представляет собой последовательное соединение проводников в одной общей электрической цепи.

Почему оно последовательное?

Всё очень просто – проводники располагаются в электрической цепи аналогично птицам, которые сидят на проводе – один за другим. В данном случае представим, что птицы держатся за лапы – каждая птица держит своей левой лапой правую лапу ближайшей птицы. Получаем ёлочную гирлянду. Все сидят последовательно.

Кстати говоря, если свободные лапы крайних птиц прислонить к источнику питания, то выйдет фейерверк :)…

Представим, например, светодиод, который имеет + и -. Для того, чтобы объединить такие светодиоды в единую последовательную цепь, мы должны соединить ножку + первого светодиода с плюсом источника постоянного тока, а ножку – соединить с ножкой + следующего светодиода. Ножку – следующего светодиода мы подключаем также к ножке + следующего светодиода, а – подключаем к – источника постоянного тока. Вот мы и собрали простейшую последовательную цепь из трех элементов.

Параллельное подключение выглядит немного иначе.

Если вернуться к примеру с птицами, то птицы уже не сидят на проводе одна за другой, а держат друг друга лапами.

Причем, птицы так извернулись, что одна птица держит своей правой лапой, правую лапу соседней птицы, а левой лапой левую лапу этой же птицы.

Для того, чтобы зажарить таких птиц, остаётся только прислонить букет из этих соответствующих друг другу лап к полюсам источника тока.

Здесь мы берем, скажем, два светодиода, которые имеют ножки + и – соответственно, и соединяем сначала ножки светодиодов по принципу + к + и – к -.

Собранную цепь мы подключаем к источнику тока соответственно полюсам, т.е. общий плюс от двух светодиодов присоединяем к + источника тока, а общий – к минусу источника тока. В результате получили параллельную цепь.

Смешанное соединение сочетает в себе как параллельное, так и последовательные соединения. В зависимости от цели, эти комбинации могут быть различными.

На практике чаще всего используются именно смешанные схемы. Часто анализ такого соединения вызывает затруднения у студентов и школьников.

На самом же деле, тут нет ничего сложного.

Для того, чтобы разобраться во всех параметрах, нужно попросту разложить цепь на удобные фрагменты.

Так, если мы имеем ряд последовательно подключенных резисторов, которые скомпонованы вместе с параллельно соединенными резисторами, то цепь можно разбить на два обобщенных условных участка, где и определить значимый параметр.

Часто испуг вызывает появление в схеме поворотов, углов и изгибов. Человек теряется и не понимает, что от смены направления линии соединительных проводов, логика не меняется.  

Основные параметры последовательного и параллельного подключений

Типы подключений следует различать из-за особенностей основных параметров электрической цепи при таких подключениях.

При параллельном подключении, напряжение на элементах цепи всегда будет постоянным, а сила тока суммируется из токов на каждом элементе. Есть еще такой параметр, как сопротивление. Мы не рекомендуем заучивать наизусть все формулы, а руководствоваться законом Ома, предположив, что один из параметров будет постоянным. Но для ускорения решения задач заучить выкладку может быть полезно. Собственно, там отношение единицы к сопротивлению цепи, равно сумме отношений 1 к каждому из сопротивлений.

При последовательном подключении, напряжение на каждом элементе будет суммироваться, а сила тока будет постоянной. Сопротивление мы также можем узнать из закона Ома. Или же запомнить, что сопротивление равно сумме сопротивлений элементов цепи.

Особенности параметров при последовательном и параллельном подключениях можно легко запомнить, если представить, что соединительные провода – это трубы, а электрический ток вода. Сравнить с водой тут можно именно силу тока. Почему же силу тока? Потому что ток характеризуется количеством заряженных частиц (читай, как наличие воды в трубе).

Представим, что в случае последовательного подключения мы соединяем две трубы одинакового сечения (представим именно одинаковое сечение, т.к. дальше уже начинают влиять такие параметры, как сопротивление) и в каждой трубе есть вода при её наличии в водопроводе. Если же мы соединим две трубы параллельно, то поток распределится равномерно (а на деле в соответствии с геометрическими параметрами труб) между двумя трубами, т.е сила тока будет суммироваться из всех участков.

Почему всё происходит именно так и почему при параллельном подключении ток распределяется именно по двум проводникам и суммируется? Это сложный фундаментальный вопрос, обсуждение которого займет ни одну статью. На данный момент предлагаю считать, что это просто свойство, которое нужно знать. Как и то, что лёд ощущается холодным, а огонь горячим.

При смешанном подключении мы предварительно должны разбить цепь на простые для понимания участки, а затем проанализировать, как они в итоге будут соединены. Соответственно, на выходе мы получим простой вариант несложного подключения, которое однозначно будет или последовательное, или параллельное.

Зная все эти параметры, мы легко можем проанализировать любую электрическую цепь и собрать новую с нужными параметрами.

Как пользоваться знаниями про особенности параллельного и последовательного подключений

Наверное, самый главный вопрос, который встаёт перед учеником – это зачем вообще всё это знать?

Тут всё довольно просто. Зная эти параметры, можно легко собрать нужную цепь. Например, представим, что мы хотим соединить два аккумулятора, напряжение каждого из которых 6 В для подключения автомобильного светодиода, рассчитанного на 12 В. Как соединить аккумуляторы? Если параллельно, то получим повышенную емкость и напряжение 6 В. Диод не «раскурится». Если же использовать последовательное подключение, то на выходе будем иметь сумму 6 В + 6 В = 12 В. Задача решена. Таких примеров можно привести очень и очень много.

Ещё один вопрос, как рассчитывать другие параметры (емкость, мощность, индуктивность) при последовательном и параллельном соединении проводников.

Например, если мы подключим последовательно 5 конденсаторов, как узнать общую емкость этой цепи? Конечно же, можно, опять-таки, заучить формулы. На практике вы их забудете сразу, как перестанете решать подобные задачи. Поэтому, гораздо важнее держать в уме физическое определение ёмкости, а уже из него выводить конкретный частный случай, помня, что при последовательном подключении сила тока всегда одинакова, а напряжение суммируется.

Вас также может заинтересовать

uzumeti.ru

Последовательное и параллельное соединение светодиодов

При конструировании различных электронных устройств часто возникает необходимость в последовательном, параллельном или комбинированном включении элементов. Не стали исключением и светодиоды. Учитывая их небольшие размеры, а также с целью повышения яркости, в одном корпусе осветительного прибора можно разместить несколько LED-чипов.

Как правильно собрать электрическую цепь, чтобы надёжность схемы была на высоком уровне? Что нужно знать о светодиодах, соединяя их параллельно или последовательно?

Параллельное соединение

Необходимость в параллельном включении возникает в случае, когда напряжения источника питания недостаточно для запитки нескольких последовательно соединённых светодиодов. Теоретически, в самом простом варианте можно было бы отдельно объединить все аноды и все катоды излучающих диодов. После чего подключить их к источнику напряжения с соблюдением полярности. простой неправильный вариантНо такая схема не работоспособна, так как дифференциальное сопротивление открытого светодиода чрезмерно мало, что провоцирует режим короткого замыкания. В результате все светодиоды в цепи единожды вспыхнут и навсегда погаснут.

Но как говорят: «Правило без исключений не бывает». В китайских игрушках и зажигалках с подсветкой можно увидеть, что светодиоды запитаны прямо от батареек без каких-либо промежуточных элементов. Почему они не перегорают? Дело в том, что ток в цепи ограничен внутренним сопротивлением круглых батареек типа AG1. Их мощности недостаточно, чтобы нанести вред светодиоду.

Ограничить резкое нарастание тока в нагрузке можно с помощью резистора. О том, как это грамотно сделать с одним светодиодом, подробно написано в данной статье. Для цепи из нескольких параллельно подключенных LED с одним резистором схема примет следующий вид. неправильная схемаНо и этот вариант не пригоден для конструирования осветительных устройств с высокой надёжностью. Почему? Ответ на этот вопрос кроется в особенностях строения полупроводников. В процессе производства полупроводниковых элементов невозможно получить два абсолютно одинаковых прибора. Даже у светодиодов из одной партии будет разное дифференциальное (внутреннее) сопротивление, от которого зависит величина прямого напряжения. Это касается не только светодиодов, но и других полупроводников. Среди  диодов, транзисторов и тиристоров тоже не найти двух приборов с равными электрическими параметрами.

Из второй схемы видно, что резистор R1 ограничивает только суммарный ток цепи, который затем распределяется по ветвям со светодиодами в зависимости от их сопротивления. По закону Ома светодиод с наименьшим сопротивлением p-n-перехода получит наибольшую порцию тока. И скорее всего он будет больше номинального значения, что ускорит деградацию кристалла. Работа светодиода в режиме перегрузки по току рано или поздно приведёт к выходу из строя на обрыв. Оставшиеся в работе светодиоды распределят между собой ток сгоревшего элемента, что также приведёт к резкой потере яркости.

Как и в первом варианте, китайцы не стесняются конструировать светильники на базе «полурабочих» схем. Схему с одним резистором часто можно встретить в дешёвых фонариках и маломощных светильниках на пальчиковых батарейках. А чтобы светодиоды проработали хотя бы год, сопротивление резистора умышленно завышают, как бы, исключая возможные перегрузки.

Ниже приведен единственно верный вариант параллельного включения светодиодов. правильный вариантЗдесь последовательно с каждым светодиодом подключен ограничительный резистор. Такое схемотехническое решение позволяет выровнять токи в каждой отдельной ветви, не позволяя им превышать рабочее значение.

Подключать светодиоды через резистор рекомендуется только от стабилизированного источника постоянного напряжения.

Пример расчета

Для закрепления теоретических знаний параллельное соединение светодиодов рассмотрим на конкретном примере. примерВ схеме включены два светодиода: слаботочный красный и мощный одноваттный белый, которые для удобства можно запитать от разных выключателей.

Дано:

  • источник напряжения U = +5 В;
  • LED1 – красного свечения с ULED1 = 1,8 В и ILED1 = 0,02 А;
  • LED2 – белого свечения с ULED2 = 3,2 В и ILED2 = 0,35 А.

Требуется рассчитать параметры и выбрать резисторы R1 и R2.

При параллельном включении к обеим ветвям (R1-LED1 и R2- LED2) прикладывается одинаковое напряжение, равное 5 В. Сопротивление каждого резистора определим по формуле: расчет сопротивленийОкругляем полученное значение R2 до ближайшего большего значения из стандартного ряда E24 – 5,1 Ом. Подставив его обратно в формулу, находим реальный ток во второй ветви: расчет реального токаС учетом возможного отклонения сопротивления выбранного резистора, которое для ряда Е24 может достигать 5%, ток 0,33 А является оптимальным. Снижение рабочего тока примерно на 4% сильно не повлияет на яркость, но позволит светодиоду работать без перегрузок.

Мощность, которую должны рассеивать резисторы, определим с учетом пересчёта тока LED2 по формуле: расчет токаРезистор R1 подойдёт любой как планарный, так и с выводами сопротивлением 160 Ом и мощностью 0,125 Вт. Корпус резистора R2 должен эффективно отводить тепло в течение длительной работы светильника. Поэтому его выбираем с двойным запасом по мощности, а именно: 5,1 Ом – 1 Вт.

Последовательное соединение

В последовательном включении светодиодов нужно соблюдать правило: «Напряжение источника питания должно быть больше суммы падений напряжений на светодиодах». соответствие напряженийОстаток напряжения в неравенстве гасится одним единственным резистором R, правильное включение которого показано на схеме. правильное последовательное подключениеВсе светодиоды подключаются поочередно от анода к катоду. Сопротивление резистора задаёт ток цепи. Это значит, что соединять последовательно можно светодиоды только с одинаковым рабочим током.

Пример расчета

Расчет сопротивления и мощности резистора проведём на примере включения трёх белых светодиодов из серии Cree XM-L, для которых характерным является ток ILED = 0,7 А и прямое напряжение ULED = 2,9 В. Взяв за основу цветовую температуру и требуемую яркость, можно последовательно подключать светодиоды из разных групп в пределах серии XM-L. Например, один Cree XM-L-T6 с ТС=5000°K и два Cree XM-L-T2 с ТС=2600°K, которые в итоге дадут мощный поток нейтрального света. пример 2Питание на схему поступает от блока стабилизированного напряжения U = +12 В. Сопротивление резистора находим по закону Ома: расчет сопротивленияБлижайший стандартный номинал – 4,7 Ом, при котором ток теоретически будет равен 0,702 А. Это не критично, но следует быть уверенным, что сопротивление резистора не изменится под влиянием температуры во время работы. Поэтому устанавливать нужно либо прецизионный резистор с допуском менее 1%, либо последовательно с R1 = 4,7 Ом запаять ещё одно сопротивление 0,1-0,2 Ом такой же мощности.

Найдём мощность резистора: расчет мощностиПо аналогии с расчётами для первой схемы устанавливать нужно резистор примерно с двойным запасом по мощности, то есть один на 5 Вт. Можно его заменить на два штуки по 2 Вт, но тогда придётся пересчитать сопротивление.

Два важных момента

В момент первого включения желательно измерить мультиметром ток в цепи и падение напряжения на каждом светодиоде. Если полученные данные будут отличаться от расчётных, то нужно пересчитать сопротивление резистора. Иначе, ток в схеме может оказаться слишком заниженным (с потерей яркости) или завышенным (с перегревом чипа светодиода).

Как в последовательном, так и в параллельном включении светодиодов нельзя делать расчеты, ссылаясь исключительно на способность источника питания обеспечить нужный ток или напряжение. Важны оба этих параметра, произведение которых даёт мощность. Мощность блока питания всегда должна быть больше мощности потребления, чтобы гарантировать стабильную и продолжительную работу всего устройства.

Читайте так же

ledjournal.info

Последовательное и параллельное соединение ламп

Здравствуйте, уважаемые читатели сайта sesaga.ru. Сегодня мы рассмотрим практичные схемы последовательного и параллельного соединения ламп накаливания.

В статье схемы подключения трех и более ламп я рассказывал про параллельное соединение, а вот про последовательное упустил. В этой статье мы рассмотрим оба вида соединений используемых в быту.

Пойдем от простого к сложному. Обыкновенная лампа на принципиальных схемах обозначается таким образом:

Обозначение ламп на принципиальных схемах

Следующий момент Вы должны понять и запомнить:

Соединительные провода на схемах показываются линиями. Места соединения трех и более проводов показываются точками, а если провода пересекаются без соединения, то в месте их пересечения точка не ставится.

На рисунке ниже показано, когда провода просто пересекаются, то есть проходят рядом и не касаются друг друга, и когда провода уже соединены между собой — об этом говорит точка, стоящая в пересечении.

Соединения проводов

А теперь рассмотрим виды соединений:

Последовательное соединение ламп накаливания.

Последовательное соединение ламп накаливания в домашнем быту используется редко. В свое время я подключал две лампы последовательно у себя в подъезде, но это был единичный случай.

Тут ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.
Но повторюсь – это редкий случай.

Посмотрите на рисунок ниже. Здесь изображены две схемы последовательного соединения ламп накаливания. В верхней части рисунка показана принципиальная схема, а в нижней части – монтажная. Причем для лучшего восприятия, монтажная схема показана с реальным изображением ламп и двужильного провода.

Последовательное соединение двух ламп

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

На следующем рисунке показаны три лампы соединенные последовательно.

Последовательное соединение трех ламп

На этой схеме напряжение на каждой лампе составит около 73 Вольт, так как будет делиться уже между тремя лампами.

Так же примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

Монтажная схема гирлянды

P.S. Так как напряжение в сети не постоянно, то расчет лучше производить исходя из 245 – 250 Вольт.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на базар, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, как Вы уже догадались, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Параллельное соединение ламп.

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

Параллельное соединение ламп накаливания

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Еще один способ параллельного соединения

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Кстати, именно «звездой» делают разводку по квартире при монтаже розеток.

Ну вот в принципе и все. И как всегда по традиции ролик о последовательном и параллельном подключении ламп

Теперь я думаю, у Вас не должно возникнуть проблем с последовательным и параллельным соединением ламп.
Удачи!

sesaga.ru

Соединение конденсаторов: последовательное, параллельное и смешанное

В электротехнике существуют различные варианты подключения электрических элементов. В частности, существует последовательное, параллельное или смешанное соединение конденсаторов, в зависимости от потребностей схемы. Рассмотрим их.

Параллельное соединение

Параллельное соединение характеризуется тем, что все пластины электрических конденсаторов присоединяются к точкам включения и образовывают собой батареи. В таком случае, во время заряда конденсаторов каждый из них будет иметь различное число электрических зарядов при одинаковом количестве подводимой энергии

схема параллельного крепленияСхема параллельного крепления

 

Емкость при параллельной установке рассчитывается исходя из емкостей всех конденсаторов в схеме. При этом, количество электрической энергии, поступающей на все отдельные двухполюсные элементы цепи, можно будет рассчитать, суммировав сумму энергии, помещающейся в каждый конденсатор. Вся схема, подключенная таким образом, рассчитывается как один двухполюсник.

Cобщ = C1 + C2 + C3

напряжение на накопителяхСхема — напряжение на накопителях

 

В отличие от соединения звездой, на обкладки всех конденсаторов попадает одинаковое напряжение. Например, на схеме выше мы видим, что:

VAB = VC1 = VC2 = VC3 = 20 Вольт

Последовательное соединение

Здесь к точкам включения присоединяются контакты только первого и последнего конденсатора.

схема последовательного соединенияСхема — схема последовательного соединения

 

Главной особенностью работы схемы является то, что электрическая энергия будет проходить только по одному направлению, значит, что в каждом из конденсаторов ток будет одинаковым. В такой цепи для каждого накопителя, независимо от его емкости, будет обеспечиваться равное накопление проходящей энергии. Нужно понимать, что каждый из них последовательно соприкасается со следующим и предыдущим, а значит, емкость при последовательном типе может воспроизводиться энергией соседнего накопителя.

Формула, которая отражает зависимость тока от соединения конденсаторов, имеет такой вид:

i = ic1 = ic2 = ic3 = ic4, то есть токи проходящие через каждый конденсатор равны между собой.

Следовательно, одинаковой будет не только сила тока, но и электрический заряд. По формуле это определяется как:

Qобщ= Q1 = Q2 = Q3

А так определяется общая суммарная емкость конденсаторов при последовательном соединении:

1/Cобщ = 1/C1 + 1/C2 + 1/C3

Видео: как соединять конденсаторы параллельным и последовательным методом

Смешанное подключение

Но, стоит учитывать, что для соединения различных конденсаторов необходимо учитывать напряжение сети. Для каждого полупроводника этот показатель будет отличаться в зависимости от емкости элемента. Отсюда следует, что отдельные группы полупроводниковых двухполюсников малой емкости будут при зарядке становиться больше, и наоборот, электроемкость большого размера будет нуждаться в меньшем заряде.

Смешанное соединение конденсаторовСхема: смешанное соединение конденсаторов

Существует также смешанное соединение двух и более конденсаторов. Здесь электрическая энергия распределяется одновременно при помощи параллельного и последовательного подключения электролитических элементов в цепь. Эта схема имеет несколько участков с различным подключением конденсирующих двухполюсников. Иными словами, на одном цепь параллельно включена, на другом – последовательно. Такая электрическая схема имеет ряд достоинств сравнительно с традиционными:

  1. Можно использовать для любых целей: подключения электродвигателя, станочного оборудования, радиотехнических приборов;
  2. Простой расчет. Для монтажа вся схема разбивается на отдельные участки цепи, которые рассчитываются по отдельности;
  3. Свойства компонентов не изменяются независимо от изменений электромагнитного поля, силы тока. Это очень важно при работе с разноименными двухполюсниками. Ёмкость постоянна при постоянном напряжении, но, при этом, потенциал пропорционален заряду;
  4. Если требуется собрать несколько неполярных полупроводниковых двухполюсников из полярных, то нужно взять несколько однополюсных двухполюсника и соединить их встречно-параллельным способом (в треугольник). Минус к минусу, а плюс к плюсу. Таким образом, за счет увеличения емкости изменяется принцип работы двухполюсного полупроводника.

www.asutpp.ru

Последовательное и параллельное соединение — Википедия. Что такое Последовательное и параллельное соединение

Последовательное соединение проводников. Параллельное соединение проводников.

Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова. При этом общее напряжение в цепи равно сумме напряжений на концах каждого из проводников.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включённых проводников.

Последовательное соединение

При последовательном соединении проводников сила тока в любых частях цепи одна и та же: I=I1=I2=⋯=In{\displaystyle I\mathrm {=} I_{1}=I_{2}=\cdots =I_{n}} (так как сила тока определяется количеством электронов, проходящим через поперечное сечение проводника, и если в цепи нет узлов, то все электроны в ней будут течь по одному проводнику).

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника питания, равно сумме напряжений на отдельных участках цепи: U=U1+U2+⋯+Un{\displaystyle U\mathrm {=} U_{1}+U_{2}+\cdots +U_{n}}.

Резисторы

Несколько резисторов, соединённых последовательно.

R=R1+R2+⋯+Rn{\displaystyle R=R_{1}+R_{2}+\cdots +R_{n}}

Катушка индуктивности

Несколько катушек, соединённых последовательно.

L=L1+L2+⋯+Ln{\displaystyle L=L_{1}+L_{2}+\cdots +L_{n}}

Электрический конденсатор

Несколько конденсаторов, соединённых последовательно.

1C=1C1+1C2+⋯+1Cn{\displaystyle {\frac {1}{C}}={\frac {1}{C_{1}}}+{\frac {1}{C_{2}}}+\cdots +{\frac {1}{C_{n}}}}.

Мемристоры

M=M1+M2+⋯+Mn{\displaystyle M=M_{1}+M_{2}+\cdots +M_{n}}

Выключатели

Последовательно соединённые выключатели Цепь замкнута, когда замкнуты все выключатели. Цепь разомкнута, когда разомкнут хотя бы один выключатель. (См.также Логическая операция И).

Параллельное соединение

Сила тока в неразветвлённой части цепи равна сумме сил тока в отдельных параллельно соединённых проводниках: I=I1+I2+⋯+In{\displaystyle I\mathrm {=} I_{1}+I_{2}+\cdots +I_{n}}

Напряжение на участках цепи АВ и на концах всех параллельно соединённых проводников одно и то же: U=U1=U2=⋯=Un{\displaystyle U\mathrm {=} U_{1}=U_{2}=\cdots =U_{n}}

Резисторы

При параллельном соединении резисторов складываются величины, обратно пропорциональные сопротивлению (то есть общая проводимость 1R{\displaystyle {\frac {1}{R}}} складывается из проводимостей каждого резистора 1Ri{\displaystyle {\frac {1}{R_{i}}}})

ParallelR.png

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее (искомое) сопротивление.

Доказательство

Для двух параллельно соединённых резисторов их общее сопротивление равно: R=R1R2R1+R2{\displaystyle R={\frac {R_{1}R_{2}}{R_{1}+R_{2}}}}.

Если R1=R2=R3=…=Rn{\displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}, то общее сопротивление равно: R=R1n{\displaystyle R={\frac {R_{1}}{n}}}.

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Катушка индуктивности

A diagram of several inductors, side by side, both leads of each connected to the same wires.

1Ltotal=1L1+1L2+⋯+1Ln{\displaystyle {\frac {1}{L_{\mathrm {total} }}}={\frac {1}{L_{1}}}+{\frac {1}{L_{2}}}+\cdots +{\frac {1}{L_{n}}}}

Электрический конденсатор

A diagram of several capacitors, side by side, both leads of each connected to the same wires.

Ctotal=C1+C2+⋯+Cn{\displaystyle C_{\mathrm {total} }=C_{1}+C_{2}+\cdots +C_{n}}.

Мемристоры

Mtotal=M1‖M2‖⋯‖Mn=(M1−1+M2−1+⋯+Mn−1)−1{\displaystyle M_{total}=M_{1}\|M_{2}\|\cdots \|M_{n}=\left(M_{1}^{-1}+M_{2}^{-1}+\cdots +M_{n}^{-1}\right)^{-1}}

Выключатели

Цепь замкнута, когда замкнут хотя бы один из выключателей.

Примеры использования

  • Батареи гальванических элементов или аккумуляторов, в которых отдельные химические источники тока соединены последовательно (для увеличения напряжения) или параллельно (для увеличения тока).
  • Регулировка мощности электрического устройства, состоящего из нескольких одинаковых потребителей электроэнергии, путём их переключения с параллельного на последовательное соединение. Таким способом регулируется мощность конфорки электрической плиты, состоящей из нескольких спиралей; мощность (скорость движения) электровоза, имеющего несколько тяговых двигателей.
  • Делитель напряжения
  • Балласт
  • Шунт

См. также

Литература

  • Перышкин А. В. Учебник для общеобразовательных учреждений 10 класс. М.: 2011. С.121
  • Перышкин А. В. Учебник для общеобразовательных учреждений 8 класс № 42

Ссылки

wiki.sc

Последовательное и параллельное соединение — это… Что такое Последовательное и параллельное соединение?


Последовательное и параллельное соединение

Последовательное соединение проводников.

Параллельное соединение проводников.

Последовательное и параллельное соединение в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все, входящие в цепь, элементы объединены двумя узлами и не имеют связей с другими узлами. При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Последовательное соединение

При последовательном соединении проводников сила тока в любых частях цепи одна и та же: I = I1 = I2

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи: U = U1 + U2

Резисторы

A diagram of several resistors, connected end to end, with the same amount of current going through each.

R_\mathrm{total} = R_1 + R_2 + R_3 + \cdots + R_n

Катушка индуктивности

A diagram of several inductors, connected end to end, with the same amount of current going through each.

L_\mathrm{total} = L_1 + L_2 + \cdots + L_n

Электрический конденсатор

A diagram of several capacitors, connected end to end, with the same amount of current going through each.

\frac{1}{C_\mathrm{total}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n}.

Мемристоры

M_\mathrm{total} = M_1 + M_2 + \cdots + M_n

Параллельное соединение

Сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединенных проводниках: I = I1 + I2

Напряжение на участках цепи АВ и на концах всех параллельно соединенных проводников одно и то же: U = U1 = U2

Резисторы

A diagram of several resistors, side by side, both leads of each connected to the same wires.

\frac{1}{R_\mathrm{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_n}.

Катушка индуктивности

A diagram of several inductors, side by side, both leads of each connected to the same wires.

\frac{1}{L_\mathrm{total}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n}.

Электрический конденсатор

A diagram of several capacitors, side by side, both leads of each connected to the same wires.

C_\mathrm{total} = C_1 + C_2 + \cdots + C_n.

Мемристоры

M_{total} = M_1 \

См. также


Wikimedia Foundation. 2010.

  • Последовательное деление
  • Последняя фантазия

Смотреть что такое «Последовательное и параллельное соединение» в других словарях:

  • Последовательное и параллельное соединение проводников — Последовательное соединение проводников …   Википедия

  • Параллельное соединение — Последовательное соединение проводников. Параллельное соединение проводников. Последовательное и параллельное соединение в электротехнике  два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы… …   Википедия

  • Параллельное соединение (информатика) — В области телекоммуникаций и информатике параллельным соединением называют метод передачи нескольких сигналов с данными одновременно по нескольким параллельным каналам. Это принципиально отличается от последовательного соединения; это различие… …   Википедия

  • Последовательное соединение — проводников. Параллельное соединение проводников. Последовательное и параллельное соединение в электротехнике  два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так,… …   Википедия

  • Последовательное соединение (информатика) — В области телекоммуникаций и информатике под термином последовательное соединение понимают процесс пересылки данных по одному биту за раз (последовательно) по каналу связи или компьютерной шине. Это противопоставляется параллельному соединению, в …   Википедия

  • СОЕДИНЕНИЕ — (1) деталей, изделий, конструкций способы механического скрепления или сочленения составных частей для образования из них машин, агрегатов, механизмов, приборов, а также сборных элементов в строительных конструкциях с целью выполнения ими… …   Большая политехническая энциклопедия

  • Стабилитрон — У этого термина существуют и другие значения, см. Стабилитрон (значения) …   Википедия

  • Электрическая цепь — У этого термина существуют и другие значения, см. Цепь (значения). Рисунок 1  Условное обозначение электрической цепи Электрическая цепь   совокупность устройств, элементов, предназначенных для протекания …   Википедия

  • Электрические цепи — Электрической цепью называют совокупность соединенных друг с другом источников электрической энергии и нагрузок, по которым может протекать электрический ток. Изображение электрической цепи с помощью условных знаков называют электрической схемой… …   Википедия

  • Реостатно-контакторная система управления — (сокр. РКСУ) комплекс электромеханического оборудования, предназначенного для регулирования тока в обмотках тяговых электродвигателей (ТЭД) подвижного состава метрополитена, трамвая, троллейбуса и железных дорог. Содержание 1 Принцип действия …   Википедия


dic.academic.ru

Последовательное и параллельное соединение проводников

Последовательное соединение проводников. Параллельное соединение проводников.

Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Последовательное соединение

При последовательном соединении проводников сила тока в любых частях цепи одна и та же:

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

Резисторы

Несколько резисторов, соединённых последовательно.

Катушка индуктивности

Несколько катушек, соединённых последовательно.

Электрический конденсатор

Несколько конденсаторов, соединённых последовательно.

.

Мемристоры

Параллельное соединение

Сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединённых проводниках:

Напряжение на участках цепи АВ и на концах всех параллельно соединённых проводников одно и то же:

Резистор

При параллельном соединении резисторов складываются величины, обратно пропорциональные сопротивлению (то есть общая проводимость складывается из проводимостей каждого резистора )

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее(искомое) сопротивление.

Доказательство  

Для двух параллельно соединённых резисторов их общее сопротивление равно: .

Если , то общее сопротивление равно:

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Катушка индуктивности

A diagram of several inductors, side by side, both leads of each connected to the same wires.

Электрический конденсатор

A diagram of several capacitors, side by side, both leads of each connected to the same wires.

.

Мемристоры

См. также

Ссылки


Question book-4.svgВ этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 14 мая 2011.

dik.academic.ru