Передача энергии по воздуху. Беспроводная передача электроэнергии: реальность или фантастика.

Возможна ли передача электричества без проводов на большие расстояния. Как работает технология беспроводной передачи энергии. Какие перспективы открывает беспроводное электричество для энергетики будущего.

Содержание

Мечта Николы Теслы о беспроводном электричестве

Идея передачи электроэнергии без проводов появилась еще в конце 19 века. Знаменитый изобретатель Никола Тесла проводил эксперименты по беспроводной передаче энергии и мечтал создать глобальную систему, которая обеспечила бы электричеством весь мир. Однако в то время технологии не позволяли воплотить эту идею в жизнь.

Что помешало Тесле реализовать свою мечту? Во-первых, отсутствие необходимых технологий и материалов. Во-вторых, скептицизм инвесторов, которые не видели коммерческой выгоды в беспроводной передаче энергии. Тем не менее, идеи Теслы заложили фундамент для будущих разработок в этой области.

Принципы работы современных систем беспроводной передачи энергии

Как работает беспроводная передача электроэнергии сегодня? В основе современных технологий лежат следующие физические принципы:


  • Электромагнитная индукция
  • Резонансная связь
  • Микроволновое излучение
  • Лазерное излучение

Наиболее перспективным считается метод магнитно-резонансной связи. При этом энергия передается между двумя катушками, настроенными на одну резонансную частоту. Такой способ позволяет передавать энергию на расстояние до нескольких метров с высокой эффективностью.

Прорыв компании Emrod: беспроводная передача энергии на километры

В 2020 году новозеландская компания Emrod объявила о создании технологии, позволяющей передавать электроэнергию по воздуху на расстояние в несколько километров. Как работает система Emrod?

Технология включает следующие компоненты:

  • Передающая антенна
  • Система ретрансляторов
  • Приемная ректенна

Энергия передается в виде направленного пучка микроволнового излучения между антеннами. Система безопасности мгновенно отключает луч при появлении препятствий. Компания Emrod заявляет, что их технология работает в любых погодных условиях и позволяет передавать энергию на расстояние в десятки километров.


Преимущества беспроводной передачи электроэнергии

Какие преимущества может дать внедрение технологий беспроводной передачи энергии?

  • Отсутствие необходимости в дорогостоящих линиях электропередач
  • Возможность обеспечить электричеством труднодоступные районы
  • Повышение надежности энергоснабжения
  • Снижение потерь при передаче энергии на большие расстояния
  • Развитие возобновляемой энергетики

Беспроводные технологии могут произвести революцию в энергетике, сделав электричество доступным в самых отдаленных уголках планеты. Это открывает новые возможности для развития инфраструктуры и промышленности.

Проблемы и ограничения беспроводной передачи энергии

Несмотря на очевидные преимущества, технологии беспроводной передачи энергии сталкиваются с рядом проблем:

  • Низкий КПД по сравнению с проводной передачей
  • Вопросы безопасности для человека и окружающей среды
  • Необходимость создания новой инфраструктуры
  • Высокая стоимость оборудования на начальном этапе
  • Законодательные ограничения на использование радиочастот

Решение этих проблем требует дальнейших исследований и разработок. Однако многие эксперты уверены, что в будущем беспроводные технологии займут важное место в энергетических системах.


Перспективные направления исследований

Над какими задачами работают ученые для совершенствования беспроводной передачи энергии?

  • Повышение эффективности передачи на большие расстояния
  • Разработка безопасных для человека и окружающей среды систем
  • Создание компактных и недорогих приемников энергии
  • Интеграция беспроводных технологий в существующие энергосети
  • Применение новых материалов для улучшения характеристик систем

Успехи в этих направлениях позволят сделать беспроводную передачу энергии экономически выгодной и безопасной технологией.

Возможные сценарии применения беспроводной энергии в будущем

Как может выглядеть мир с широким распространением беспроводной передачи энергии? Вот несколько возможных сценариев:

  • Города без проводов и столбов линий электропередач
  • Электромобили, заряжающиеся на ходу от дорожного покрытия
  • Космические солнечные электростанции, передающие энергию на Землю
  • Беспроводное питание бытовой техники и электроники
  • Автономные роботы и дроны, получающие энергию по воздуху

Эти сценарии пока выглядят фантастично, но развитие технологий может сделать их реальностью уже в обозримом будущем.



Создана технология беспроводной передачи энергии на большие расстояния

Первую в мире функциональную систему беспроводной передачи энергии на большие расстояния разработали в Новой Зеландии. Уже сейчас прототип способен работать в любых погодных условиях, направляя энергию между двумя антеннами, разделенными расстоянием в несколько километров. Полевые испытания технологии, повторяющей эксперименты Николы Теслы, начнутся осенью.

Мечта о беспроводной передаче энергии далеко не нова — еще Никола Тесла когда-то доказал, что можно зажигать лампочки с помощь катушки, находящейся в паре километров от них. Правда, при этом он сжег динамо-машину на местной электростанции и погрузил весь Колорадо-Спрингс во тьму. Тесла мечтал построить повсюду вышки, которые обеспечивали бы всех беспроводной энергией. Но инвестор Джон П. Морган зарубил идею на корню одним вопросом: «А куда прикажете поставить счетчик?»

Прошло 120 лет и вот новозеландская компания Emrod убедила второго по величине поставщика энергии в стране концерн Powerco дать беспроводному электричеству шанс. Powerco поверила в технологию передачи энергии и вложила средства в Emrod, сообщает New Atlas.

Система состоит из передающей антенны, наборов реле и принимающей ректенны (антенны со встроенным выпрямителем, преобразующем микроволновую энергию в электричество). Для передачи используется безопасный радиодиапазон ISM, зарезервированный для промышленных, научных и медицинских целей.

В отличие от мечты Теслы, энергия передается напрямую между двумя антеннами, а лазерная система безопасности, защищающая периметр луча, тут же отключает его, если периметр пересекает птица, дрон или вертолет. Проблем с размещением счетчиков тоже быть не должно.

Система работает при любых погодных условиях — дождь, туман или пыль ей не помеха. Дистанция передачи ограничена только прямой видимостью, то есть в потенциале может быть сотни километров, а установка и эксплуатация не требуют серьезных вложений.

Пока у инженеров Emrod есть только работающий прототип, но к октябрю они планируют завершить создание устройства для инвестора и начать полевые испытания. Первые устройства будут работать с мощностью в несколько киловатт. Прототип способен передавать энергию на несколько километров, но его легко можно масштабировать. «Мы можем использовать точно такую же технологию для передачи в 100 раз больше энергии на много большее расстояние», — пообещал основатель Emrod Грег Кушнир.

Если полевые испытания технологии пройдут успешно, она сможет преобразить энергосети по всему миру. «Мы планируем использовать эту технологию для доставки электричества в отдаленные места или через районы с труднопроходимой местностью. Она также может быть использована для сохранения энергоподачи клиентам в случаях, когда мы проводим техническое обслуживание нашей существующей инфраструктуры», — рассказал о планах инженер по трансформации сети Powerco Николас Вессио.

Беспроводная передача энергии может стать ключевой технологией и для возобновляемой энергетики, которая, как правило, генерирует энергию далеко не там, где она необходима. А мощность существующих энергосетей не позволяет перебрасывать большие объемы такой энергии достаточно далеко от места генерации. Из-за этого, например, Германия, теряет часть оффшорной выработки ветропарков, так как в пиках не может перенаправить ее с севера в южные земли — не хватает ресурсов энергосети.

К середине августа компания Electreon Wireless запустит первый в Израиле участок трассы с возможностью беспроводной подзарядки электротранспорта на ходу. Она же начала работы по аналогичному проекту на шведском острове Готланд.

Научный взгляд на возможности передачи электроэнергии по воздуху Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

НАУЧНЫЙ ВЗГЛЯД НА ВОЗМОЖНОСТИ ПЕРЕДАЧИ ЭЛЕКТРОЭНЕРГИИ ПО ВОЗДУХУ Семёнов Д.М.

Семёнов Денис Михайлович — бакалавр, кафедра электроснабжения промышленных предприятий и электротехнологий, Федеральное государственное бюджетное образовательное учреждение высшего образования Национальный исследовательский университет Московский энергетический институт, г. Москва

Аннотация: данная научная статья освещает научный взгляд о том, можно ли передавать электроэнергию по воздуху и каким образом это можно осуществить. Анализ многочисленных источников освещает исследование данного явления передачи электричества без использования линий электропередач и других вспомогательных устройств. Необходимо учитывать и тот факт, что о беспроводной передаче энергии уже были выдвинуты многочисленные гипотезы и задумываются и сейчас многие ученые, то эта проблема все еще остро стоит перед наукой и требует свежего научного взгляда и подхода для ее решения. Ключевые слова: генератор, катушка, обмотка, трансформатор, плазменный шнур, электроды, наносекундный лазер.

В настоящее время очень нелегко представить человека без электричества. Электричество, как таковое увеличило коммуникабельность, дало возможность повысить и автоматизировать различные процессы в жизни людей. С появлением электричества произошел значительный прорыв в науке и жизни человека. Ни для кого не секрет, что оно важно для всех видов транспорта, больниц, многих аппаратов и производств.

Его отсутствие окажет негативное влияние на инфраструктуру целых мегаполисов. Однако с появлением этого явления жизнь человека с другой стороны, можно сказать, что усложнилась. Многие природные катаклизмы и чрезвычайные для человека ситуации происходят из-за электричества, а точнее по вине линий передач, с помощью которых оно передается. Именно одним из недостатков электричества является его передача по проводам. Без этого в настоящее время никак не обойтись. В таком случае стоит задуматься: возможна ли передача электричества по воздуху, то есть без применения проводов. На первый взгляд, это на самом деле, может показаться кадром из фантастического фильма, но ученые уже сейчас уверено утверждают, что через определенное время беспроводная передача электроэнергии войдет в жизнь человека, как обыденный процесс.[2] Хотя есть и те специалисты, которые не забывают напомнить, что для этого потребуется слишком много вложений и сил. В таком случае стоит разобраться действительно ли для человечества беспроводная передача энергии будет доступна и проста?

Научные опыты для осуществления передачи электроэнергии по воздуху Если говорить о возможности передачи электроэнергии по воздуху, то стоит учесть, что беспроводная передача электричества включает в себя технологический принцип по передаче различного типа мощностей.

Стоит отметить, что в основе всех этих возможностей будут лежать знаменитые открытия Николы Тесла. Именно он обратил свое внимание, что при выключении генератора высоковольтного типа постоянного тока образовывались волны, а при последующем замыкании являлась цепочка голубоватых искр, которые были направлены под прямым углом к кабелю. В результате этого эксперимента электрическое поле начинало двигаться быстрее, чем реальные заряды. [5]Это дало толчок к открытию «нового электричества», которое обладало определенными свойствами. Это были продольные волны. Тесла планировал применять их в новой системе для передачи энергии, однако его мечта стала реализовываться только в 21 веке. [5]

Одна из гипотез создания пирамид раскрывает возможность использования их как генераторов особого вида энергии. [3]Пирамиды строились из гранита, который имеет природную повышенную радиоактивность, а сверху облицовывали песчаником, который значительно менее прочный, чем гранит, но имеет лучшие характеристики как изолятор. (Тесла строил свои вышки на особых местах пересечения энергетических линий Земли). [5]Считается, что пирамиды расположены в определенных энергетических центрах. Под вышками Тесла в земле располагались определенные водоносные слои, изменение которых приводило к изменению энергетических полей.

В настоящее время ученым удалось послать электрически направленный пучок, как радиоволну от одной точки к другой. Это доказывает возможность передачи энергии по воздуху.

Многочисленные опыты для передачи энергии без проводов происходят в настоящее время, в основе которых лежит создание специальной катушки из небольшого числа витков медного толстого кабеля снаружи и многовитковый катушки, которая находится внутри. На внешнюю обмотку подается постоянный ток, который во внутренней обмотке будет генерировать импульс. Из-за ударных волн этого процесса можно будет наблюдать свечение на одном из проводов, отнесённые к внутренней обмотки газонаполненные или неоновые лампы будут светиться. Стоит отметить, что для облегчения работы и повышения уровня безопасности необходимо применять более простую схему катушки.

Данный эксперимент можно отнести к новой технологии, которая обеспечит беспроводное питание мобильных устройств, электромобилей и бытовой техники на расстоянии от нескольких сантиметров до сотни метров. Потребляемая мощность данных питаемых устройств может достигать от сотен милливатт до нескольких киловатт. [2] Переспективы и достижения по передаче электроэнергии

Еще совсем недавно человек представить себе не мог, что в природе существует такое явление, как электричество. Теперь же, если на местной станции случается авария, каждый из нас с трудом выдерживает пару часов пока не устранят какую-либо поломку. Люди уже давно привыкли к таким техническим устройствам, как трансформаторы, столбы, высоковольтные линии и розетки. Мы практически не обращаем на них внимание. Ведь это всё прочно вошло в сознание людей, что человек даже представить себе не может, что передача электричества может произойти каким-то другим способом. Однако ученые в настоящее время заговорили о том, что возможна и реальна альтернативная передача энергии без использования дополнительных устройств.[2]

Некоторые ученые в мире уже к данному времени провели ряд экспериментов, которые обеспечивают высокую проводимость без влияния сопротивления проводников. Однако высокая проводимость это хорошо, но отсутствие линий передач намного лучше. К такому выводу пришли специалисты некоторых университетов. Они провели ряд экспериментов, в основе которых лежат труды знаменитого ученого Тесла. Благодаря этим экспериментам беспроводная передача энергии стала потихоньку переходить из разряда фантастики в самую обыденную реальность.[ 1 ]

Физики из США и Германии изобрели методику, которая потенциально имеет возможность передать электрический разряд на расстояние до десятков метров. Результаты данных исследований авторы опубликовали в научном журнале Optica, а кратко с их принципом работы можно ознакомиться на сайте Аризонского университета.[4]

Для передачи электрического разряда специалисты применяли систему из двух электродов и фемтосекундного лазера. Такой лазер создавал плазменный тонкий шнур между двумя имеющимися в установке электродами.

Для этого ученые применяли наносекундный лазер, продолжительность импульсов которого в миллион раз выше. Излучение от такого лазера усиливало и поддерживало плазменный шнур в стабильном состоянии. [3]

Основная трудность, с которой сталкивались ученые — это удержание плазменного шнура. Это происходит из-за того, что поскольку электромагнитные импульсы, которые излучают фемтосекундные лазеры, длятся всего несколько десятков фемтосекунд.

Идея о передаче электрической энергии без проводов по воздуху с помощью плазменных специальных шнуров, создаваемых лазерами, возникла очень давно. В дальнейшем специалисты планируют активно использовать микроволновые физические лучи вместо излучения от наносекундного лазера для более эффективного теплового нагрева плазменного шнура и передачи энергии на большие расстояния. [2]

Стоит отметить, что еще в прошлом году компания Intel представила проект, который заключался в следующем. Зрителям было продемонстрирована установка, состоящая из двух антенн, одна из них создавала электромагнитное поле вокруг себя. Это поле индуцируется током переменного типа для контура второй антенны. Данной энергии хватило для свечения 60-ваттной бытовой лампочки, на расстоянии 1м. [2]

Такое достижение помогло разработать беспроводные зарядные устройства для мобильных телефонов. Эти устройства могут передавать энергию на расстояние до 3 метров. Такие устройства уже появились на рынке для широко круга потребителей.

Кроме данной компании Intel, корейские ученые также решили создать проект по беспроводной подачи электроэнергии для различного вида электротранспорта. Уникальная технология имеет название OLEV. Она предполагает зарядку муниципальных средств передвижения на ходу или на стоянке при продолжительной парковке.

Стоит отметить, что данный проект успешно прошел все испытания и скоро будет использоваться на железных дорогах, в аэропортах портах и любом городском электротранспорте. Это значит, что новые технологии по передачи энергии по воздуху постепенно внедряются в жизнь человека и возможно наличие трансформатора вскоре не понадобится.[1]

Многочисленные исследования и собранные работающие модели показывают, что возможность передачи электричества по воздуху уже существует в современном мире. Это доказывает не только анализ опытов Тесла, но и гипотезы о назначении египетских пирамид в качестве генераторов по передачи электричества по воздуху.[5] Альтернативные методы передачи электричества всё более реальные для человечества. Когда речь заходит о беспроводной передачи энергии можно сделать, интересный вывод с точки зрения физики. Так выпущенный из орудия снаряд, как это неудивительно, также переносит энергию на расстоянии, а именно кинетическую и химическую.[3] Заметьте, что здесь совсем не применяется проводов, а значит передача энергии по воздуху не такая уж фантастическая задача.

Список литературы

1. Ацюковский В.А. Трансформатор Тесла. Энергия из эфира. Изд-во «Петит», 2017. 175 с.

2. Ацюковский В.А. Энергия вокруг нас. Жуковский. Изд-во «Москва», 2017. 276 с.

3. Веселовский О.Н., ШнейбергЯ.А. Очерки по истории электротехники. МЭИ, 2015. 345 с.

4. Шнейберг Я.А. (соавтор), Академия электротехнических наук РФ, История электротехники. М., МЭИ, 2016. 234 с.

5. Цверава Г.К. Никола Тесла, 1856-1943. Л., изд-во «Москва», 2018. 123 с.

6. Electtik info, Способы беспроводной передачи электроэнергии. [Электронный ресурс] Режим доступа: http://electrik.info/mam/fakty/918-sposoby-besprovodnoy-peredachi-elektroenergii.html/ (дата обращения 18.04.2018).

ОБЛАЧНЫЕ ВЫЧИСЛЕНИЯ Рубашенков А.М.1, Бобров А.В.2

‘Рубашенков Антон Михайлович — студент;

2Бобров Андрей Виорелович — студент, кафедра защиты информации, Институт комплексной безопасности и специального приборостроения, Московский технологический университет, г. Москва

Аннотация: облачные вычисления — модель обеспечения удобного сетевого доступа по требованию к некоторому общему фонду конфигурируемых вычислительных ресурсов (например, сетям передачи данных, серверам, устройствам хранения данных, приложениям и сервисам — как вместе, так и по отдельности), которые могут быть оперативно предоставлены и освобождены с минимальными эксплуатационными затратами или обращениями к провайдеру.

Ключевые слова: облачные сервисы, центры обработки данных (ЦОД), PaaS, IaaS, SaaS, стандарты, технологии.

Обзор облачных вычислений

Облачные вычисления предполагают наличие большого числа подключенных через сеть компьютеров, которые физически могут размещаться в любой точке земного шара. Поставщики услуг в большой мере полагаются на виртуализацию при предоставлении услуг облачных вычислений. Облачные вычисления помогают сократить операционные расходы за счет более эффективного использования ресурсов. Облачные вычисления позволяют решать различные задачи управления данными, обеспечивая:

— повсеместный доступ к данным организации в любое время;

Сбылась мечта Теслы. Новая Зеландия тестирует первую в мире беспроводную передачу электричества

Стартап Emrod воплотил в жизнь мечту известного изобретателя, заключив контракт на первую коммерческую беспроводную передачу электроэнергии.

В Новой Зеландии стартап по беспроводной передаче электроэнергии на большие расстояния заключил контракт на работу со вторым по величине дистрибьютором в стране. Об этом сообщает New Atlas.

Мечта о беспроводной передаче энергии не нова, еще в 1890-х годах изобретатель Никола Тесла заставлял загораться лампочки на расстоянии в 3 км с помощью катушки Теслы. Мечта изобретателя заключалась в том, чтобы разместить огромные вышки по всему миру, которые могли бы передавать энергию по воздуху в любую точку земного шара, обеспечивая электричеством дома, предприятия, промышленность и даже гигантские электрические корабли в океане. Идею Теслы одним вопросом уничтожил инвестор Джон Пирпонт Морган, который спросил, куда в таком случае ставить счетчик?

На решение этого вопроса ушло 120 лет. Новозеландская компания Emrod убедила крупного дистрибьютора в возможности использовать беспроводную сеть в коммерческих целях. Компания-поставщик Powerco согласился инвестировать в стартап. Технология предполагает передачу электроэнергии на большие расстояния в любые точки, которые можно соединить с помощью реле прямой видимости.

«Мы хотим выяснить, сможет ли технология Emrod дополнить привычные способы подачи электроэнергии. Технология может помочь доставлять электроэнергию в отдаленные места или через районы с труднопроходимой местностью. Также появится возможность не отключать клиентов от поставки электроэнергии во время ремонтных работы существующей инфраструктуры», – говорит представитель сети Powerco Николас Вессио.

На данный момент у Emrod уже есть рабочий прототип своего устройства, но стартап собирается создать еще один для Powerco с планами поставки к октябрю. Устройство еще несколько месяцев будет испытываться в лаборатории, прежде чем перейти к полевым испытаниям.

Пока прототип будет выдавать «всего несколько киловатт» мощности, но ее можно будет легко увеличить.

«Мы можем использовать технологию, чтобы передавать в 100 раз больше энергии на гораздо большие расстояния. Беспроводные системы, использующие технологию Emrod, могут передавать любое количество энергии, которое могут поставлять проводные электросети», – заявил основатель Emrod Грег Кушнир.

Важно

Деньги на ветер. Как украинцы применяют «зеленую» энергетику

Передвижное устройство беспроводной передачи электричества. Фото: Emrod

Система использует передающую антенну, серию реле и ректенну (выпрямительная антенна, способная преобразовывать микроволновую энергию в электричество). Вместе все эти компоненты выглядят, как большие квадраты на вышках. Устройство использует радиодиапазоны ISM – это части радиоспектра, зарезервированные на международном уровне для промышленных, научных и медицинских целей, помимо телекоммуникаций.

В отличие от более масштабной задумки Теслы, энергия будет передаваться непосредственно между определенными точками, без излучения вокруг луча. Также система безопасности будет немедленно отключать передачу энергии при приближении посторонних объектов, таких как птицы, дроны, вертолеты и так далее.

Авторы стартапа утверждают, что с их изобретением не останется вопросов, где размещать счетчик.

Кроме этого, в Emrod утверждают, что устройство будет работать в любых атмосферных условиях, таких как туман или пыль. Расстояние передачи энергии будет ограничено лишь линией прямой видимости между реле. Устройство сможет передавать энергию на тысячи километров без лишних расходов на инфраструктуру и ее техническое обслуживание.

В стартапе рассматривают свое устройство, как наилучшее решение для передачи возобновляемой энергии, источники которой не всегда находятся в доступных местах. Такая система может доставлять возобновляемую энергию в городские сети без необходимости использования гигантских аккумуляторных батарей и так далее.

Технология может пригодиться и при незапланированных отключениях электроэнергии. Грузовик с антенной может создавать временные беспроводные подключения к сети в зоне видимости реле.

Важно

Во Франции соберут первый в мире «чистый» термоядерный реактор

Российские ученые предложили новый способ беспроводной передачи энергии — Наука

МОСКВА, 28 января. /Корр. ТАСС Михаил Петров/. Специалисты лаборатории метаматериалов Университета ИТМО и «НИИ Гириконд» показали, что можно создавать эффективные системы беспроводной передачи энергии при использовании керамических диэлектриков.

Результаты моделирования были проверены экспериментально — без использования проводов удалось зажечь светодиодиодную лампочку на расстоянии 20-30 см.

Результаты работы опубликованы в журнале AppliedPhysicsLetters.

«У нас пока только пионерские работы, но для расстояния в 20 сантиметров и мощности 1 Ватт наша система уже работает», — рассказал ТАСС один из авторов статьи, научный сотрудник Университета ИТМО, Полина Капитанова.

Как работает беспроводная передача энергии сейчас

В 2007 году в журнале Science вышла статья группы профессора Массачусетского технологического института Марин Солячича, в которой ученые рассказали об удачных испытаниях беспроводной системы передачи энергии. На расстоянии более чем в 2,5 метра им удалось зажечь лампочку 60 Вт за счет резонансного взаимодействия двух медных катушек.

Одна из них была подключена к источнику переменного электрического тока, который создавал в ней распространяющееся магнитное поле. Магнитное поле доходило до второй катушки, которая была настроена на ту же самую резонансную частоту и создавало в ней переменный ток, с помощью которого зажигалась лампочка.

Этот принцип стал основной коммерческой технологии WiTricity, которую сейчас используют для беспроводных зарядок мобильного телефона. В продаже такие устройства появились недавно и пока скорее похожи на стационарные базы радиотелефонов, чем на беспроводные точки питания: для подзарядки мобильный телефон нужно аккуратно разместить на подключенной в сеть панели.

В будущем ученые обещают избавиться от необходимости физического контакта с базой, но пока это невозможно по двум причинам. Во-первых, беспроводная передача энергии на основе резонансного метода достаточно эффективна только на маленьких расстояниях (резонансные катушки внутри базы и телефона разделяет несколько сантиметров корпусов этих устройств), во-вторых, для зарядки нужно подобрать правильную взаимную ориентацию источника и приемника в пространстве.

Что сделали российские ученые

Специалисты лаборатории метаматериалов Университета ИТМО и «НИИ Гириконд» использовали тот же резонансный метод, но внесли несколько изменений в конструкцию устройства. Медные катушки они заменили на диэлектрические керамические резонаторы, в которых магнитное поле можно возбуждать с меньшими потерями энергии, а для передачи энергии использовали другие, более высокие частоты резонаторов, на которых магнитное поле обладает более сложной структурой и меньше затухает при распространении в пространстве.

Теоретическая эффективность нового подхода достигает 80%. Кроме того, предложенная российскими учеными система беспроводной передачи энергии более устойчива к изменению взаимной ориентации приемника относительно источника.

В эксперименте ученым пока удалось передать около 1 Вт мощности на расстояние 20-30 см на частотах около 2 ГГц и сейчас они начали новые испытания. «Наши коллеги из «НИИ Гириконд» разработали новые образцы керамики с большим значением диэлектрической проницаемости и малыми потерями, что позволит еще больше увеличить расстояние передачи энергии, а также перейти на рабочие частоты в области десятков МГц, безопасные для человека», — рассказала Капитанова.

Беспроводная передача электроэнергии с помощью магнитного поля

Осуществление беспроводной передачи энергии через магнитно-резонансный усилитель поля (MRFE), который может быть таким же простым, как катушка из медного провода, повышает эффективность передачи энергии по меньшей мере на 100% по сравнению с ее передачей просто по воздуху. Как утверждают эксперты, использование MRFE способно потенциально увеличить эффективность передачи электроэнергии в некоторых системах не менее чем на 5000%.

Беспроводная передача энергии реализуется с помощью передатчика, в котором магнитное поле генерируется катушкой. Затем из этого поля в приемнике энергия извлекается посредством катушки. Одно из основных препятствий на пути разработки коммерчески приемлемых технологий беспроводной передачи электроэнергии — достижение высокой эффективности самой передачи.

Эксперименты ученых показали, что с помощью MRFE можно увеличить эффективность передачи энергии на 100% по сравнению с ее передачей просто по воздуху.

Повышение эффективности беспроводной передачи электроэнергии является главной целью работы многих исследовательских групп. К числу основных способов, позволяющих успешно решить эту проблему, относится технология, основанная на применении метаматериалов. Однако, по мнению ученых, MRFE может вплоть до пяти раз быть более эффективным по сравнению с метаматериалами и в 50 раз эффективнее, чем при непосредственной передаче энергии через воздух.

Поместив MRFE между передатчиком и приемником (без соприкосновений) в качестве промежуточного устройства, исследователи смогли значительно усилить магнитное поле, тем самым повысив эффективность передачи.

Специалисты пришли к выводу, что для достижения поставленной цели необходимо не только усиливать магнитное поле, которое приемник «видит», но и предотвращать нецелевое рассеяние энергии, излучаемой передатчиком. MRFE усиливает магнитное поле, при этом лишь крайне малая часть энергии «утекает» из системы.

Исследователи провели экспериментальные испытания по передаче энергии через воздух, через метаматериал и MRFE, изготовленный из материала такого же качества, как и метаматериал. Результаты испытаний MRFE оказались значительно лучше, чем в других случаях. При этом объем MRFE составляет менее одной десятой объема усилителей на основе метаматериала.

Никола Тесла и передача электроэнергии переменным током

АЛЕКСАНДР МИКЕРОВ, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ»

Почти весь XIX век в практических применениях безраздельно господствовал постоянный ток. Главным препятствием широкой электрификации в то время была невозможность передачи электроэнергии на большие расстояния, а переходу на переменные токи мешало отсутствие эффективных электродвигателей переменного тока. Решение было найдено в новаторских работах гениального электротехника Николы Тесла.

Причин популярности постоянного тока тогда было несколько. Прежде всего, источниками тока служили гальванические батареи, и все производимые генераторы и моторы также были постоянного тока. Инженеры мыслили электрогидравлическими аналогиями, в которые не укладывалась идея потоков, меняющих свое направление, поэтому, например, приверженность Эдисона постоянным токам казалась вполне оправданной. Между тем недостатки устройств постоянного тока становились все более очевидными в связи с плохой работой коллектора электрических машин (искрением и износом), проблемами освещения и, главное, невозможностью передачи электроэнергии на большие расстояния.

Электрическое освещение стали использовать после появления дуговых ламп, среди которых наиболее простой была свеча Яблочкова в виде двух вертикально расположенных угольных электродов, разделенных слоем изолирующего материала [1–4]. Вскоре выяснилось, что на постоянном токе разнополярные электроды сгорают неодинаково, поэтому Яблочков предложил питать свечи переменным током, для чего совместно с известным французским заводом Грамма разработал специальный генератор переменного тока, конструкция которого оказалась столь удачной, что его производство доходило до 1000 штук в год [2]. Другое важное изобретение Яблочкова — это схема «дробления света» с использованием индукционной катушки (прообраза современного трансформатора) для параллельного питания от одного генератора любого числа свечей, подобно газовому освещению.

Однако эксплуатация выявила серьезные недостатки дугового освещения, особенно в быту: необходимость замены свечей через каждые два часа, шум, мерцание, большая дороговизна по сравнению даже с газом. Поэтому уже с начала 1890-х гг. электрические свечи были почти повсеместно вытеснены лампами накаливания Эдисона и применялись только в прожекторах или для больших пространств. Тем не менее, именно Яблочкову мы обязаны введением переменных токов в практическую электротехнику, что, в конечном счете, привело к решению острой проблемы дальней передачи электроэнергии, называемой тогда проблемой «распределения света».

Освещение по системе Эдисона имело низкое напряжение, 110 В, поэтому в каждом районе требовалось строить свою электростанцию. Например, в Петербурге из-за дороговизны земли такие электростанции ставились на баржах, стоящих в реках Мойке и Фонтанке [2]. Было ясно, что крупные генерирующие станции выгоднее строить вблизи рек и угольных бассейнов, вдали от городов. Но тогда для дальней передачи нужно или увеличивать сечение подводящих проводов, или повышать напряжение. Для проверки первого подхода на практике русский изобретатель Федор Апполонович Пироцкий предлагал использовать железнодорожные рельсы. Второй путь (повышение напряжения) был испробован французским инженером, впоследствии академиком Марселем Депре (Marcel Deprez), построившим несколько линий передачи постоянного тока с напряжением до 6 кВ. Первая из них, с напряжением 2 кВ, имела длину 57 км и питала двигатель постоянного тока с насосом для искусственного водопада на Мюнхенской электротехнической выставке 1882 г. [2, 4]. Однако для систем освещения такое высокое напряжение было непригодно.

Более простое решение — переход на однофазный переменный ток с повышающими и понижающими трансформаторами — было предложено известной компанией «Ганц и Ко» из Будапешта для освещения оперных театров в Будапеште, Вене и Одессе [2]. Талантливые инженеры этой компании, Микша Дери (Miksa Dèri), Отто Блати (Otto Blathy) и Карой Циперновски (Karoly Zipernowsky), создали в 1884 г. наиболее совершенные конструкции трансформатора (и они же придумали сам этот термин). Отто Блати также изобрел первый электрический счетчик электроэнергии и прославился как выдающийся шахматист.

Рис. 1. Дистанционная передача Депре

Однако развитие промышленности требовало мощных приводов, которые не могли быть созданы на базе электродвигателей переменного тока с питанием от однофазной осветительной сети. Эта проблема формулировалась как «электрическая передача механической энергии» или «передача силы»[4]. Одно из ее первых решений было предложено Депре в 1879 г. в виде дистанционной передачи в опытный вагон движения поршней паровой машины (рис. 1) [5].

У нее был датчик в виде щеточного коммутатора (1) и приемник (2), содержащий ротор (3) с двумя взаимно перпендикулярными катушками, который в свою очередь был подключен к коммутатору (4) и находился в поле магнита (5). Устройство работало со скоростью до 3000 об/мин и с моментом до 5 Нм. Эта идея позднее получила свое развитие в виде сельсинных передач и шаговых двигателей, однако подходила для использования только в приборных системах.

Решение этой проблемы в целом пришло из-за океана, где появился деятельный человек, интуитивно осознавший грядущий переход на переменный ток. Это был Джордж Вестингауз (George Westinghouse) (рис. 2) — видный американский промышленник в сфере оборудования железных дорог, основатель компании Westinghouse, решивший заняться еще и электротехническим бизнесом [2, 4].

 

Рис. 2. Джордж Вестингауз (1846–1914)

Для того чтобы выйти на рынок со своей продукцией, ему нужны были новые патенты, поскольку основные патенты в этой области принадлежали Эдисону, Вернеру Сименсу (Verner Siemens) и другим конкурентам. Перевести освещение на переменный ток было сравнительно просто, и Вестингауз легко вышел на этот рынок, закупив европейские генераторы и трансформаторы и запатентовав ряд своих ламп накаливания. В 1893 г. он получи большой подряд на электрификацию Всемирной выставки в Чикаго, установив там 180 тыс. ламп накаливания и тысячи дуговых ламп [4].Однако электрические машины были совсем другим делом, поэтому для их разработки он подыскал через патентное ведомство никому не известного изобретателя Николу Теслу, имевшего десятки патентов на системы переменного тока. На встрече в Нью-Йорке в 1888 г. Вестингауз предложил Тесле уступить ему все уже полученные и будущие патенты в обмен на один миллион долларов, пост технического руководителя завода в Питтсбурге и один доллар за каждую л. с. двигателей и генераторов по системе Теслы, установленных на территории США в течение ближайших 15 лет. Третье условие соглашения сыграло в дальнейшем важную роль. Тесла все эти условия принял, и так началось его плодо­творное сотрудничество с Вестингаузом [4].
Будущий великий электротехник Никола Тесла (рис. 3) родился в семье сербского священника, жившей в Хорватии. Учился в Градском политехникуме и Пражском университете, но, не закончив их, поступил на работу в отделение компании Эдисона в Париже, откуда перебрался в США с рекомендательным письмом от директора отделения самому Эдисону.

Письмо гласило: «Я знаю двух великих людей: один из них вы, а второй — молодой человек, которого я вам рекомендую». Разумеется, Тесла был принят незамедлительно, и ему поручили самую ответственную работу с электротехническим оборудованием, включая ликвидацию аварий.

Рис. 3. Никола Тесла (1856 – 1943)

Впрочем, работа в этой компании продолжалась недолго. Поводом к расставанию якобы послужил отказ Эдисона выплатить обещанную премию в 50 тысяч долларов за совершенствование генераторов постоянного тока. Когда Тесла напомнил об этом шефу, тот сказал: «Молодой человек, вы не понимаете американского юмора» [4]. Однако скорее всего причиной ухода Теслы было упорное нежелание Эдисона разрешать молодому сербу заниматься бесколлекторным электродвигателем переменного тока, с мечтой о котором Тесла прибыл из Европы. Поэтому, разумеется, Тесла с радостью принял предложение Вестингауза, которое предоставляло ему прекрасные возможности для работы над своей идеей.

Еще в мае 1888 г. Тесла получил семь патентов США на системы переменного тока и бесщеточные двигатели [4]. Главным в них было новаторское предложение строить всю цепочку генерации, передачи, распределения и использования электроэнергии как многофазную систему переменного тока, включающую генератор, линию передачи и двигатель переменного тока, названный Теслой «индукционным». Пример такой системы показан на рис. 4.

Здесь: 1 — синхронный генератор с возбуждением от постоянных магнитов и с двумя взаимно перпендикулярными фазами обмотки ротора (2), соединенными через контактные кольца (3) и линию передачи (4) с двухфазным индукционным двигателем (5) с обмоткой статора (6) и ротором (7) в виде стального цилиндра со срезанными сегментами [4]. Действие такого двигателя, называемого теперь асинхронным, объяснялось формированием «перемещающегося», а по современной терминологии вращающегося магнитного поля. Для линии дальней передачи предлагалось включение двухфазных повышающего и понижающего трансформаторов. В мае того же года Тесла выступил с большим докладом о многофазных системах на семинаре Американского института инженеров-электриков AIEE (предшественника IEEE). Продолжая исследования, он вскоре реализовал и другие идеи: двухфазный и трехфазный асинхронный двигатель с обмоткой в звезду, трехфазный генератор с нейтралью и без, трех- и четырехпроводные линии электропередачи и т. д. Всего по многофазным системам у Теслы был 41 патент [2].

Рис. 4. Двухфазная система Теслы

Несомненно,Тесле принадлежит патентный, а Вестингаузу промышленный приоритет на многофазные системы переменного тока, поскольку им сразу же было развернуто массовое производство двигателей, генераторов и другой аппаратуры таких систем. Вершиной этой бурной деятельности было строительство в 1895 г. самой крупной по тем временам Ниагарской электростанции на американском берегу Ниагарского водопада, высота которого составляла 48 метров. На плотине было установлено 10 двухфазных генераторов по 3,7 мВт каждый, а также проложена линия электропередачи 11 кВ длиной 40 км в Буффало, где был создан промышленный район с многочисленными потребителями электроэнергии переменного тока [2, 4].

Рис. 5. Опыт Теслы

Однако Теслу тяготила производственная деятельность, и он ушел от Вестингауза, желая и дальше развивать идею дальней передачи электроэнергии, но уже без проводов. Этим он и стал с увлечением заниматься в собственной лаборатории.Его первой мыслью было создать с помощью высоковольтного и высокочастотного излучателя мощное электрическое поле, действующее на значительные расстояния, из которого потребитель мог бы черпать электроэнергию. Тесла изобретает первый электромеханический СВЧ-генератор, использованный позднее в первых радиостанциях и для индукционного нагрева, передающую и приемную антенны, а также резонансный контур приемника для выделения определенной частоты. Всех поразил опыт Теслы, когда при включении генератора безо всяких проводов в его руках загоралась электрическая лампа, как показано на рис. 5.

Тесла был в одном шаге от изобретения радио, но не пошел по этому пути, поскольку его занимала мысль о передаче электроэнергии, а не информации. Однако именно ему принадлежит приоритет в создании телемеханики, реализованной в 1898 г. в виде дистанционно управляемого водяного катера.

Тем временем, многочисленные опыты показывали, что электролампу удается зажигать только на расстоянии не более нескольких сотен метров. Тесла попытался реализовать другой способ передачи электро­энергии: не через атмосферу, а прямо сквозь землю путем возбуждения в земном шаре, как огромном конденсаторе, поверхностных стоячих волн, в пучности которых можно было отбирать энергию в любой точке поверхности Земли. Для этого он построил в местечке Уорденклиф под Нью-Йорком огромную антенну с мощным надземным и подземным возбудителями, подключенными к отдельной электростанции, как показано на рис. 6. Опыты с этой башней по беспроводной передаче электроэнергии в период с 1899 по 1905 г., судя по всему, не дали желаемого эффекта, поскольку Тесла их неожиданно забросил, не опубликовав результатов. И ученые до сих пор спорят, чего же все-таки достиг Тесла в этом эксперименте, поскольку он работал без помощников и не оставил никаких записей [4, 6].

Рис. 6. Башня Уорденклифф

Задача беспроводной передачи электроэнергии не решена до сих пор. Последние достижения используют узконаправленные микроволновое или лазерное излучения для удаленного электропитания космических аппаратов от спутника с солнечными батареями или от управляемых дронов [7]. Экспериментально доказана возможность передачи порядка десятка киловатт на расстояние километров. Другое направление разработок — это лазерное оружие, предвозвестником которого был знаменитый «Гиперболоид инженера Гарина».
Тем не менее заслуги Теслы были всемирно признаны. В честь него единица индукции магнитного поля в системе SI названа «тесла», он был избран членом и почетным доктором наук многих академий и университетов. Одна из самых престижных наград IEEE — медаль Теслы — ежегодно присуждается за выдающиеся заслуги в области производства и использования электроэнергии. Тесле принадлежит около 800 патентов, причем, в отличие от патентов Эдисона, они считаются более новаторскими. Существует несколько памятников Тесле и посвященных ему музеев, среди которых самый впечатляющий находится в Белграде, выпущены банкноты с его портретом (рис. 7).

Рис. 7. Банкнота Сербии

Однако личная жизнь Теслы сложилась неудачно [4, 6]. В конце XIX в. в США разразился экономический кризис, поставивший компанию Вестингауза на грань разорения. Узнав об этом, Тесла явился в штаб-квартиру своего бывшего патрона и публично разорвал их первичное соглашение, потеряв около 10 млн долларов, причитавшихся ему в соответствии с третьим пунктом этого договора. Буквально через две недели после этого великодушного жеста дотла сгорела его великолепная лаборатория, и он остался без средств. В отличие от Эдисона, он не был бизнесменом и вложил все, что у него имелось, в эту лабораторию. После этого Тесла был вынужден проводить свои дальнейшие исследования на различные гранты и пожертвования, в частности, башня Уорденклифф была построена на деньги американского финансиста Моргана.

Биограф Теслы Велимир Абрамович писал: «Пытаясь представить себе Теслу, я не вижу его улыбающимся, а наоборот, грустным…» [6]. Тесла не пил вина, никогда не знал женщин, не имел семьи и умер в одиночестве и бедности в отеле «Нью-Йоркер» [4].


Потребность в передаче электроэнергии на большие расстояния возникла в конце XIX в., прежде всего в связи с широким внедрением систем освещения.

  • Такая передача на постоянном токе была технически целесообразной только при высоком напряжении и практически неприемлемой для низковольтного освещения.

  • Линии передачи переменного тока с трансформаторами удовлетворяли задачам освещения, однако для промышленности требовались мощные электродвигатели, все известные конструкции которых были постоянного тока.

  • Решение этой комплексной проблемы было предложено изобретателем Теслой и предпринимателем Вестингаузом, создавшими многофазные системы переменного тока с синхронными генераторами, линиями передачи и асинхронными двигателями.

  • Исследования же Теслы по беспроводной передаче электроэнергии до сих пор не получили практического завершения.

 

 

Facebook

Twitter

Вконтакте

Google+

Литература
  1. Микеров А. Г. Торжество постоянного тока и роль Томаса Эдисона. Control Engineering Россия. 2016. № 4 (64).
  2. История электротехники / Под ред. И. А. Глебова. М.: Изд-во МЭИ. 1999.
  3. Шателен М. А. Русские электротехники XIX века.  М.-Л.: Госэнергоиздат. 1955.
  4. Цверава Г. К. Никола Тесла (1856–1943). Л.: Наука. 1974.
  5. Электродвигатель в его историческом развитии / Сост. Д. В. Ефремов, М. И. Радовский. Под ред. В. Ф. Миткевича. М.-Л.: Изд-во АН СССР. 1936.
  6. Абрамович В. Метафизика и космология ученого Николы Теслы. http://nowimir.ru/DATA/030025_3_3.htm
  7. Wireless power. https://en.wikipedia.org/wiki/Wireless_power

Беспроводная передача электроэнергии

В ближайшем будущем электричество будет передаваться по воздуху Идея передачи электроэнергии без проводов не нова — она занимает умы ученых уже не первое столетие. Явление электромагнитной индукции, позволяющее реализовать эту идею, открыли еще в 1831 году английский физик Майкл Фарадей и американский ученый Джозеф Генри (Фарадей, впрочем, успел опубликовать статью с описанием открытия раньше), а эксперименты в этой области велись на протяжении всей второй половины XIX века.

Самым же известным изобретателем и экспериментатором в сфере передачи электричества «по воздуху» стал родившийся на территории современной Хорватии сербский ученый Никола Тесла. Его опыты с электроустановками были до того масштабны и зрелищны, что современники считали его чуть ли не волшебником. Кое-кто, кстати, даже полагает, что именно работа одного из приборов Теслы вызвала взрыв в сибирской тайге в районе реки Подкаменная Тунгуска 30 июня 1908 года. В XX веке научные работы над передачей электроэнергии «по воздуху» не прекращались. Были изобретены новые (помимо электромагнитной индукции) способы реализации этой идеи — к примеру, передача энергии посредством лазерного или микроволнового излучения. Об этих способах мы расскажем ниже.

Ведущие ученые из разных стран мира сегодня единогласно называют беспроводную передачу электричества одним из важнейших индустриальных прорывов ближайшего будущего. С ними согласны и писатели-фантасты — например, Артур Кларк, описавший промышленное использование технологии в своих произведениях. Впрочем, коммерческие продукты, применяющие методы беспроводной передачи электроэнергии, один за другим появляются в розничной продаже уже сегодня. В основном речь идет об устройствах для зарядки мобильных гаджетов, а также — в гораздо меньшей степени — для подпитки батарей электромобилей.

Как это работает

Беспроводная передача электроэнергии может осуществляться по несколькими технологиям. Наиболее известными и перспективными из них являются следующие три.

Электромагнитная индукция

Преимущество: высокий КПД Недостаток: минимальная дальность действия Электромагнитной индукцией называют явление возникновения электрического тока в замкнутом контуре под воздействием проходящего через него магнитного поля. Это означает, что если подать ток на одну индукционную катушку (в случае с гаджетами — встроенную в зарядное устройство), а рядом с ней расположить другую (встроенную в заряжаемое оборудование), то магнитный поток, возникающий под действием подаваемого тока в первой катушке, возбуждает электрический ток во второй. КПД таких систем превышает 80%, но только в тех случаях, когда заряжаемое устройство находится на минимальном расстоянии от зарядного — не более пары сантиметров. При увеличении дистанции КПД резко падает. Тем не менее именно на принципе электромагнитной индукции сегодня основана работа абсолютного большинства беспроводных зарядных устройств.

Лазерное излучение

Преимущества: большая дальность действия; защищенность сетей Недостаток: необходима прямая видимость между передатчиком и приемником Лазерный луч способен передавать не только информацию, но и энергию, причем на большие расстояния конкретному устройству и в строго выверенных объемах, тогда как при применении электромагнитной индукции электричество может получать любой приемник с соответствующими характеристиками, находящийся в зоне действия магнитного поля. Минус в том, что между лазерным передатчиком и фотоэлектрическим элементом приемника должна сохраняться прямая видимость, иначе энергия не будет достигать получателя. Работающие установки, использующие питание от лазерного луча, уже построены. Так, американский производитель самолетов и военной техники Lockheed Martin совместно с компанией LaserMotive испытала беспилотный летательный аппарат Stalker, способный оставаться в воздухе, получая питание от лазерного луча, в течение 48 часов. А Национальное аэрокосмическое агентство США (НАСА) создало небольшую радиоуправляемую модель самолета, получающего энергию от мощной лазерной пушки.

Микроволновое излучение

Преимущество: большая дальность действия Недостаток: высокая стоимость оборудования Для передачи электроэнергии можно использовать радиоантенну, создающую микроволновое излучение. При этом на устройстве-приемнике должна быть установлена ректенна, преобразующая принимаемое микроволновое излучение в электроток. Эта технология обеспечивает возможность значительного удаления приемника от передатчика и не требует их нахождения  в прямой видимости друг от друга. С увеличением дальности, однако, пропорционально растут размеры и себестоимость оборудования. К тому же работа установки для передачи электроэнергии с помощью микроволнового излучения большой мощности может, как считается, нанести вред окружающей среде.

Микроволновый вертолет

В 1964 году американский ученый Уильям Браун продемонстрировал модель вертолета, не имеющего иных источников питания, кроме ректенны. Чтобы поднять в воздух на высоту около 15 м модель вертолета массой 2,25 кг, понадобилась ректенна массой 900 г и площадью около 0,4 м2. Диаметр рефлектора антенны-источника составлял несколько метров.

Влага нестрашна

Одними из первых массовых бытовых приборов, использующих электромагнитную индукцию для беспроводной зарядки, в 90-е годы прошлого века стали электрические зубные щетки. Чтобы пользователя не ударило током во влажном помещении, крэдл и зубная щетка не имеют разъемов, а их корпуса герметичны — энергия от крэдла к щетке передается бесконтактно.

На острие луча

В 2003 году инженеры НАСА создали модель самолета, оборудованного фотоэлектрическим элементом, который при попадании на него луча лазера мощностью 1 кВт давал достаточно энергии для питания небольшого — мощностью всего 6 Ватт — двигателя самолета.

Существующие решения

Около пяти лет назад в продаже начали появляться первые пригодные для повседневного использования системы беспроводной зарядки мобильных гаджетов. Все они работают по принципу электромагнитной индукции.

Одновременно с выходом этой технологии на массовый рынок крупнейшие производители телекоммуникационного оборудования решили объединиться в Консорциум беспроводной электромагнитной энергии (Wireless Power Consortium) — организацию, призванную, помимо прочего, разработать всемирный стандарт для беспроводных зарядных устройств, работающих по принципу электромагнитной индукции. Данный стандарт получил название QI (читается «чи» или «ци» — от китайского «воздух» и «поток духовной энергии»). В настоящее время именно он регламентирует беспроводную передачу энергии на расстоянии до 4 см от заряжающей поверхности к мобильному устройству, оборудованному пластиной-приемником. Из крупных производителей гаджетов поддержку стандарта QI на части своих моделей обеспечивают HTC, Huawei, LG Electronics, Motorola Mobility, Nokia, Samsung и Sony. Предполагается, что QI вскоре станет единым стандартом для всех подобных устройств, что позволит, к примеру, создавать зоны подзарядки гаджетов в общественных местах — на транспортных узлах, в кафе и т. д.

В настоящее время на мировом рынке представлено более 150 устройств с поддержкой стандарта QI — все они относятся к числу техники малой мощности (до 5 Ватт). В будущем предполагается появление оборудования средней мощности — до 120 Ватт.

Аксессуары для Nokia Lumia

Для смартфонов компании Nokia, поддерживающих беспроводную зарядку, сегодня разработано немало устройств — к примеру, зарядная площадка Nokia DT-901 Wireless Charging Pillow by Fatboy, выполненная в виде небольшой подушки. Чтобы зарядить смартфон, его необходимо просто на нее положить, не подключая никаких проводов. Сама же подушка подключена проводом к сетевому адаптеру.

Помимо зарядных подушек в продаже доступны и другие аксессуары Nokia с поддержкой беспроводной передачи электричества. Это и зарядная площадка с жесткой поверхностью Nokia DT-900, и аудиосистема Nokia MD-100W JBL PowerUp Wireless Charging Speaker. Последняя, к слову, позволяет во время зарядки смартфона транслировать музыкальные треки из его памяти — тоже по воздуху.

Все вышеупомянутые аксессуары компании Nokia и ее партнеров соответствуют стандарту QI. Кстати, старшая модель Nokia Lumia 920 имеет встроенный QI-приемник, тогда как владельцам младшей Lumia 820 придется купить дополнительную заднюю панель.

Беспроводная зарядка Google Nexus

В момент начала продаж смартфона Google Nexus 4, производством которого занимается компания LG, устройство не поддерживало зарядку «по воздуху». Но спустя некоторое время фирмы Google и LG все же представили систему беспроводной зарядки для своего общего детища. Так Nexus 4 стал первым массовым Андроид-смартфоном, который обзавелся фирменной зарядной площадкой, тогда как предыдущие решения представляли собой аксессуары от сторонних производителей. Работает данное зарядное устройство по принципу электромагнитной индукции, как и рассмотренные выше аксессуары Nokia, и также соответствует стандарту QI.

Универсальная зарядная площадка

Зарядные площадки компании WildCharger по-настоящему универсальны: они позволяют питать энергией большинство популярных моделей смартфонов, не оборудованных модулем для беспроводной зарядки, а также обычные телефоны. Помимо самой зарядной площадки, на которой умещается сразу несколько устройств, необходимо приобрести еще и чехол-приемник для мобильного гаджета. Он соединяется с USB-портом смартфона и через него заряжает аккумулятор.

Эти мягкие и приятные на ощупь подушечки предназначены не для утомленных пользователей, а для разрядившихся смартфонов Nokia                 QI-совместимые зарядные устройства вовсе не обязательно должны получать питание от электрической сети: в ближайшее время на рынке появится карманная USB-панель Qimini от гонконгской компании Tektos       Из линейки более привычных беспроводных зарядных устройств Nokia пользователь сможет выбрать то, которое подходит по цвету к его смартфону     Смартфон Google Nexus 4 от LG Electronics стал первым Android-устройством с поддержкой
беспроводной зарядки            

Масштабные проекты

Сегодня инженеры активно ведут работы над крупными проектами, связанными с применением беспроводной передачи данных, — бытовыми электросетями и питающимися «по воздуху» электромобилями.

Технология Intel WCT

Заряжать ноутбуки со значительно большей, чем у смартфонов, емкостью аккумулятора пока непозволительная роскошь, так как этот процесс может растянуться на десятки часов. А вот подпитывать смартфоны от лэптопов станет возможно уже в  ближайшем будущем. Компания Intel совместно с Integrated Device Technology (IDT) ведет работу над проектом Wireless Charging Technology (WCT). По его завершении на рынок будут выпущены ноутбуки, поддерживающие беспроводную зарядку компактных мобильных устройств при их размещении в непосредственной близости от лэптопа. При этом на плечи фирмы Integrated Device Technology легло производство чипов для беспроводной зарядки мобильных гаджетов, а Intel будет заниматься разработкой и стандартизацией готовых устройств с поддержкой технологии WCT.

Беспроводная электросеть для дома

Основатели компании WiTricity мыслят более глобально: они предложили создать в каждом доме централизованную сеть для беспроводной передачи электроэнергии. Такой подход позволит избавиться от тянущихся от розеток к бытовым электроприборам проводов и от необходимости периодически менять аккумуляторные батареи в устройствах. По мнению инженеров WiTricity, для гаджетов, которые пользователи перемещают лишь в пределах дома, источники автономного питания не нужны.

Беспроводная зарядка электромобилей

Корпорация Qualcomm в последние годы ведет работы по внедрению технологий беспроводной зарядки — причем не только батарей мобильных  гаджетов (разрабатываемое Qualcomm собственное решение для зарядки смартфонов называется WiPower), но и аккумуляторов электромобилей. Проект по созданию коммерчески привлекательной системы беспроводной передачи электроэнергии от зарядного устройства автомобилю, называется Qualcomm Halo, а сама технология в исполнении Qualcomm  получила имя Wireless Electric Vehicle Charging (WEVC). Она предполагает использование двух индукционных катушек: первая устанавливается внутри электрокара, а вторая — под дорожным полотном в местах, помеченных как зарядные площадки.

Долгосрочную перспективу технологии WEVC трудно переоценить: густая сеть автозарядных точек позволит оснащать электрокары аккумуляторами меньшей емкости и за счет этого существенно снизить их себестоимость.

Ноутбук как зарядное устройство

Когда Intel обеспечит серийное производство лэптопов с поддержкой беспроводной зарядки мобильных устройств, смартфоны не нужно будет даже помещать на специальную площадку — достаточно будет оставлять их на столе рядом с компьютером.

В каждый дом

Передавать электроэнергию оборудованным соответствующими адаптерами бытовым приборам, гаджетам, аудио- и видеоаппаратуре, по задумке инженеров WiTricity, станут устанавливаемые в каждой комнате потолочные источники питания.

Доступные и удобные электромобили

Реализация проекта QualComm Halo сделает использование электромобилей куда более простым и удобным, чем сейчас. К примеру, на электрическое питание можно будет перевести все городские такси — заряжаться они могут во время стоянки, если места парковки оборудовать беспроводными зарядными устройствами.

Wireless Power — Когда исчезнут все эти кабели?

Беспроводная передача энергии была мечтой Николы Теслы более ста лет назад. Тем не менее, несмотря на значительные усовершенствования его работы и работы многих других с тех пор, настоящая беспроводная мощность все еще кажется чем-то несбыточной мечтой.

Итак, возникает вопрос, когда или будет ли когда-либо создан мир без проводов? Давайте взглянем.

Что такое беспроводная передача энергии?

WPT или беспроводная передача энергии — это передача электроэнергии из одной точки в другую через вакуум или воздух без необходимости использования проводов или других физических средств.Предположительно, WPT можно использовать для обеспечения мгновенной подачи энергии или непрерывной поставки энергии по запросу.

Источник: Chapendra / Flickr

Предлагаются современные применения этого вида технологий там, где обычная проводка недоступна, опасна или просто менее удобна. Сегодняшние примеры включают беспроводные зарядные устройства для интеллектуальных устройств.

Вообще говоря, беспроводная передача энергии может быть достигнута с помощью различных методов, включая:

  • Индуктивная связь
  • Магнитно-резонансная индукция
  • Электростатическая индукция
  • Резонансная индуктивная связь
  • Передача микроволновой энергии
  • Передача энергии лазера

Первые четыре из них, как правило, применимы только для малых расстояний, в то время как последние два специально разработаны для беспроводной передачи энергии на большие расстояния.

Что такое беспроводная зарядка?

Беспроводная, или индукционная, зарядка — это тип передачи энергии, в котором используется электромагнитная индукция для подачи электричества в портативные устройства, такие как смартфоны и планшеты. Сегодня наиболее распространенной формой является так называемый стандарт беспроводной зарядки Qi для смарт-устройств.

Однако эту технологию также можно найти в некоторых транспортных средствах, электроинструментах, другой бытовой электронике, такой как зубные щетки, и некоторых медицинских устройствах. Для его использования совместимые электронные устройства размещаются рядом с зарядной станцией и заряжаются без необходимости точного выравнивания или электрического контакта с ней.

Вообще говоря, существует три основных типа беспроводной зарядки. Это:

  • Зарядные площадки — для работы в них используется сильносвязанная электромагнитная индукционная или неизлучающая зарядка.
  • Зарядные стаканы или зарядные устройства сквозного типа — в них используется слабосвязанный или радиационный электромагнитный резонансный заряд для передачи заряда на расстояние в несколько сантиметров.
  • Несвязанная радиочастотная (RF) беспроводная зарядка — этот тип системы позволяет осуществлять «капельную» зарядку на расстоянии многих метров.
Источник: Libert Schmidt / Flickr

Все они используют один и тот же принцип для создания изменяющегося во времени магнитного поля для индукции тока в замкнутом проводном контуре.

Хотя беспроводная зарядка относительно нова для потребительских товаров, вы можете быть удивлены, узнав, что беспроводная зарядка на самом деле является довольно старой концепцией — ей чуть более 100 лет. Подробнее об этом позже.

Как работает беспроводная зарядка?

В большинстве случаев беспроводная зарядка осуществляется посредством процесса, известного как индуктивная связь.Это включает в себя приложение переменного тока через индукционную катушку в зарядной станции или площадке (также известной как первичная катушка или катушка передачи).

Поскольку любой движущийся электрический заряд создает магнитное поле, передающая катушка создает именно такое поле, интенсивность которого регулярно колеблется, поскольку амплитуда переменного тока постоянно изменяется.

Это изменение напряженности магнитного поля создает так называемое электродвижущее поле, как это было описано в законе индукции Фарадея.

Этот закон гласит, что индуцированное напряжение в цепи пропорционально скорости изменения во времени магнитного потока, проходящего через эту цепь. Проще говоря, это означает, что чем быстрее изменяется магнитное поле, тем больше напряжение в цепи, и любое изменение направления магнитного поля также определяет направление индуцированного тока.

Таким образом, напряжение в цепи можно увеличить, добавив в цепь больше контуров. Таким образом, катушка с двумя петлями имеет в два раза большее напряжение, чем просто одна петля.Это закон, лежащий в основе конструкции и работы электродвигателей и генераторов, и объясняющий, почему эти устройства, как правило, имеют несколько катушек.

Источник: Tony Webster / Flickr

Именно по этой причине зарядные площадки для смартфонов имеют относительно небольшой радиус действия, поскольку медные катушки внутри них имеют диаметр всего несколько сантиметров.

Увеличивая размер используемых катушек, можно значительно увеличить расстояние и эффективность беспроводной зарядки.Чем больше катушки или их больше, тем больше площадь воздействия.

При беспроводной зарядке магнитное поле, создаваемое передающей катушкой, индуцирует другой переменный ток в другой индукционной катушке портативного устройства. Обычно известный как приемная или вторичная катушка, индуцированный переменный ток затем преобразуется в постоянный ток с помощью выпрямителя, который, в свою очередь, заряжает аккумулятор устройства или обеспечивает прямое питание устройства.

Может быть одна или несколько приемных катушек (или антенн).

Все хорошо, но такая установка имеет тенденцию к относительно небольшому радиусу действия. Чтобы расширить диапазон, можно использовать резонансную индуктивную связь (или магнитный резонанс). Это включает добавление конденсатора к каждой индукционной катушке для создания, по сути, двух LC-контуров с определенной резонансной частотой.

Величину наведенного тока в приемном токе можно увеличить, используя соответствующую емкость, чтобы гарантировать, что контуры резонируют на одной и той же частоте. Это также позволяет значительно увеличить радиус действия беспроводной зарядки.

Каковы основные вехи на пути к беспроводной энергии?

Чтобы оценить долгую историю беспроводной передачи энергии, давайте кратко рассмотрим некоторые из основных вех в развитии беспроводной зарядки на сегодняшний день.

1. Никола Тесла отказывается от беспроводной зарядки.

Источник: One Tesla / Wikimedia

В конце 19 века дальновидный изобретатель и инженер Никола Тесла впервые продемонстрировал магнитно-резонансную связь.Это, если вы не знаете, передача электричества по воздуху путем создания магнитного поля между двумя отдельными цепями (передатчик и приемник).

Он смог продемонстрировать это, зажигая по беспроводной сети люминесцентные лампы и лампы накаливания в своей лаборатории в Колорадо-Спрингс, а затем в серии публичных лекций. Тесла запатентовал эту технологию под названием «резонансный трансформатор» или «катушка Тесла».

Это устройство было способно производить очень высокие напряжения и частоты, а его усовершенствованные более поздние конструкции позволили использовать технологию очень безопасным и надежным образом.Хотя, как мы видели, индуктивная и емкостная связь являются эффектами «ближнего поля» и не могут использоваться для передачи на большие расстояния. Однако Тесла был убежден, что сможет разработать беспроводную энергию на большие расстояния.

В 1902 году Тесла начал экспериментировать с гораздо более крупной аппаратурой, чтобы увидеть, возможно ли его видение всемирной беспроводной системы доставки энергии. Он предвидел огромную сеть башен, которые могли бы без проводов освещать города, передавать сообщения и, возможно, даже приводить в действие такие вещи, как самолеты в воздухе.

Его первый прототип, Башня Ворденклиф, был многообещающим, но в конечном итоге затея провалилась.

Тем не менее, это была революционная работа, намного опередившая свое время.

2. Изобретение радио помогло продвинуть эту концепцию дальше.

Источник: not_Aaron / Flickr

Хотя технически говоря, это не форма беспроводной передачи энергии, радио работает по очень похожей концепции. Выявленный и изученный немецкими физиками Генрихом Герцем в конце 1880-х годов, он настолько широко распространен сегодня, что мы почти не задумываемся о нем.

Радио работает, передавая по воздуху электромагнитные волны на частотах от десятков до сотен герц. Они генерируются электронными устройствами, называемыми передатчиками, которые излучают радиоволны до тех пор, пока они не будут приняты другой антенной — приемником.

В приемнике радиоволны индуцируют небольшой переменный ток, который затем преобразуется в звук через преобразователь. По сути, весь этот процесс заключается в передаче энергии на расстояние без использования проводов.

Что касается только передачи энергии, то использование радиоволн пока не приносит результатов. Это из-за относительности низкочастотных радиосигналов и того факта, что они распространяются во всех направлениях. Это означает, что на один приемник можно передать очень мало энергии — отсюда и необходимость в усилителе в большинстве ситуаций.

Однако с помощью устройства, называемого выпрямительной антенной. Это тип приемной антенны, которая используется для преобразования электромагнитной энергии в электричество постоянного тока.При использовании ректенны радиоволны, возможно, можно было бы также использовать для передачи электричества на большие расстояния.

Однако текущие работы в этой области могут обеспечить лишь небольшое количество энергии в масштабе микроватт. Хотя он полезен для небольших электронных устройств, таких как светодиоды или кремниевые чипы, он на порядок ниже, чем требуется для ваших умных часов или телевизора. Тем не менее, важно отметить, что беспроводная радиопередача энергии в настоящее время является быстро развивающейся областью.

3.Микроволны использовались для беспроводной передачи энергии еще в 1960-х годах, когда был создан «вертолетный» аппарат

Брауна с микроволновым питанием. Источник: Researchgate

Для достижения наилучших результатов для эффективной передачи энергии потребуются передатчики, которые генерируют высокочастотные волны, например микроволны. Для этого микроволны необходимо сфокусировать в узкие лучи для передачи.

Первые шаги в этой области были сделаны во время Второй мировой войны, когда были разработаны такие устройства, как клистрон и магнетронная трубка, а также параболические антенны.

Один интересный пример был сделан Уильямом С. Брауном в 1960-х годах. Он смог продемонстрировать беспроводную передачу энергии на большие расстояния с помощью ректенны, которая могла эффективно преобразовывать микроволны в мощность постоянного тока. В 1964 году ему даже удалось продемонстрировать эту технику, приведя в действие модель «вертолета» с помощью микроволн, излученных с земли!

Браун продолжал совершенствовать эту технику в качестве технического директора программы JPL-Raytheon до своего выхода на пенсию в середине 1980-х годов.Часть его работы позволила его команде передать мощность 30 кВт на расстояние 1 милю (1,6 км) с эффективностью более 80%.

4. Беспроводная передача энергии использовалась в медицинских устройствах в 1960-х годах

Источник: MED-EL

Одним из наиболее важных реальных приложений беспроводной передачи энергии было использование индуктивной беспроводной передачи энергии в имплантируемых медицинских устройствах в 1960-е годы. В ранних версиях этих устройств использовалась только резонансная приемная катушка, в то время как в более поздних версиях также использовались резонансные катушки передатчика.

Такие устройства были разработаны для обеспечения высокого КПД с использованием электроники меньшей мощности без необходимости в проводах. Сегодня использование резонансной индуктивной передачи энергии становится все более распространенным явлением со многими коммерчески доступными имплантируемыми медицинскими устройствами, такими как кохлеарные имплантаты.

5. Первые шаги в области беспроводной зарядки в транспортных средствах были сделаны в 1970-х годах.

Источник: Momentum Dynamics.

В 1970-х годах были предприняты различные попытки обеспечить беспроводную зарядку в транспортных средствах.Например, исследование 1972 года, проведенное профессором Доном Отто из Оклендского университета.

В ходе своего исследования профессор Отто предположил, что автомобиль можно заряжать индуктивно с помощью передатчиков, встроенных в поверхность дороги. Приемники на транспортном средстве, возможно, затем могут использоваться для питания транспортного средства во время его движения.

Позже, в 1978 году, первое применение индуктивной зарядки было продемонстрировано Дж. Болджер и его коллеги. Им удалось создать электромобиль с индуктивным приводом от системы, работающей на частоте 180 Гц, мощностью 20 кВт.

В конце десятилетия в Калифорнии также был представлен автобус с беспроводной зарядкой. Подобные предприятия, основанные на индуктивной зарядке, были также пионерами во Франции и Германии примерно в то же время.

Совсем недавно такие компании, как Momentum Dynamics, работали в Норвегии над системами беспроводной зарядки для электромобилей. Используя технологию индуктивной зарядки, они надеются обеспечить беспроводную зарядку электромобилей, таких как автобусы или такси, что позволит им заряжать без необходимости использования зарядных станций.

Это решение позволит электромобилям заряжать свои батареи на холостом ходу, например, ждать, чтобы забрать пассажиров, вместо того, чтобы останавливаться в течение рабочего дня для подзарядки. Компания также работает с другими компаниями в Китае над разработкой аналогичного решения.

6. Зарядка на большие расстояния была продемонстрирована в 2007 году.

В 2006 году профессор Массачусетского технологического института Марин Солячич впервые продемонстрировал, что электричество может передаваться на расстояние более 6,6 футов (2 мт). Это было достигнуто за счет использования очень резонансной формы магнитной индукции.

Soljačićm продемонстрировал, что можно передавать мощность 60 Вт на аналогичный приемник с двойным резонансом на расстоянии 6,6 футов (2 м). Мало того, это было достигнуто с поразительной эффективностью 40%.

7. Консорциум Wireless Power Consortium был основан в 2008 г.

Источник: Аарон Ю / Flickr

В 2008 г. в ответ на широкомасштабное распространение мобильных телефонов, планшетов и других устройств были достигнуты успехи в исследованиях среднего бизнеса. -расширение беспроводного питания и технологии зарядки, чтобы избавиться от необходимости использовать модем и розетки для зарядки.В рамках этих усилий был создан консорциум Wireless Power Consortium для разработки стандартов взаимодействия в отрасли.

Это в конечном итоге привело к появлению стандарта индуктивной мощности Qi, который был впервые опубликован в 2009 году для высокоэнергетической зарядки и питания портативных устройств мощностью до 5 Вт на расстоянии 1,6 дюйма (4 см).

8. Сфокусированные электромагнитные лучи могут стать будущим беспроводной энергии

Художественное впечатление о проекте NASA sps-ALPHA. Источник: SingularityHub / NASA

Одним из интересных направлений исследований беспроводной передачи энергии является использование электромагнитных лучей в качестве основного средства передачи.Например, с микроволнами проводились эксперименты, чтобы обеспечить двухточечную передачу энергии без использования проводов.

НАСА провело исследование в 1960-х годах, чтобы изучить возможность сбора энергии из космоса с помощью спутников, обшитых солнечными панелями, и «направить» энергию обратно на Землю. Работа проводилась в Лаборатории реактивного движения НАСА, где после некоторых проб и ошибок исследователи продемонстрировали передачу 30 кВт на расстояние 1,5 км с использованием микроволн 2,38 GH с эффективностью 80%.

Дальнейшая работа над аналогичной концепцией, получившей название SPS-ALPHA, была позже разработана НАСА в начале 2010-х годов.

В последнее время работа в этой области была сосредоточена на использовании дронов на больших расстояниях. Например, в конце 1980-х Канадскому исследовательскому центру связи удалось разработать небольшой прототип самолета под названием «Стационарная высокогорная релейная платформа (SHARP)».

Этот самолет приводился в действие с помощью микроволн и ректенны и мог пролетать 13 миль (21 км) в воздухе и оставаться в воздухе в течение нескольких месяцев без необходимости подзарядки.Аналогичный, более совершенный аппарат был разработан в Киотском университете в начале 1990-х годов под названием «Эксперимент с подъемом самолета в микроволновую печь» (MILAX).

В начале 2000-х НАСА также удалось разработать первый в мире самолет с лазерным приводом. Был разработан небольшой прототип, работающий от электричества, вырабатываемого фотоэлементами, вырабатывающими энергию наземного ИК-лазера.

9. Разные компании сейчас работают над беспроводным питанием для вашего дома.

Источник: Wi-Charge

В последние годы частный сектор все активнее занимается тем, что способствует распространению беспроводной передачи энергии.Различные компании, такие как Wi-Charge, Energous и Ossia, в настоящее время разрабатывают методы безопасного и надежного питания устройств по беспроводной сети с использованием инфракрасных и радиочастотных технологий. Решение

Wi-Charge использует сфокусированные лучи инфракрасного света, направленные на приемник на активированном устройстве, которое преобразует луч в полезное электричество. Energous, с другой стороны, разрабатывает радиоволны, чтобы обеспечить возможность зарядки многих устройств в радиусе 49 футов (15 метров).

Ossia разрабатывает средства беспроводной передачи энергии, специально предназначенные для автомобильного рынка.Они надеются предоставить средства беспроводной зарядки совместимых устройств в автомобиле в будущем.

Эти решения могли бы оставить в прошлом зарядные кабели — что-то, что было бы очень удобно в местах, где электрические кабели потенциально опасны или неудобны, например, в ванных комнатах.

10. Беспроводная передача энергии на большие расстояния может быть буквально за горизонтом.

Источник: Emrod

Для беспроводной передачи энергии, конкурирующей с традиционной проводной, необходимо средство для ее передачи на большие расстояния.Именно здесь такие компании, как базирующаяся в Новой Зеландии Emrod, могут вскоре произвести революцию в способах передачи энергии по всему миру.

Они разрабатывают средства безопасного и беспроводного распределения электроэнергии в сотрудничестве с Powerco (вторым по величине дистрибьютором электроэнергии Новой Зеландии). Emrod недавно сообщил о многообещающих результатах своих текущих прототипов, когда большое количество энергии эффективно передается между двумя точками.

В их решении используется серия антенн, реле и приемная ректенна для преобразования микроволновой энергии в электричество.Эти микроволны находятся в неионизирующем промышленном, научном и медицинском диапазоне радиочастотного спектра, который включает частоты, обычно используемые в связи Wi-Fi и Bluetooth.

11. Будущее должно быть быстрее и на больших расстояниях

Последние достижения в области беспроводной передачи энергии впечатляют, но это только начало. Однако важно отметить, что большинство экспертов подчеркивают, что существующие решения не являются полностью беспроводными, поскольку сами передатчики должны каким-либо образом подключаться к электросети.

Не только это, но и количество потребителей в настоящее время несколько ограничено. Когда пользователи начнут доверять и массово покупать , спрос на гибкость и надежность, вероятно, значительно улучшится.

Это давление рынка заставит производителей разрабатывать более прочные, надежные решения для беспроводной зарядки с большим радиусом действия. В настоящее время для бытовых применений у потребителей есть выбор между малой, но быстрой зарядкой (по аналогии с проводом) или более длительной подзарядкой.

Работа над беспроводным распределением энергии на большие расстояния потенциально очень многообещающая, но это далеко не жизнеспособная альтернатива традиционным медным проводам — ​​по крайней мере, на данный момент.

Однако в ближайшие годы и десятилетия некоторые из наиболее распространенных применений кабелей в вашем доме могут уйти в прошлое, и то же самое может произойти и с вашим электромобилем. Однако крупномасштабное распределение электроэнергии от электростанций или из космоса, скорее всего, будет невозможно в ближайшее время.

Когда-то могут быть решены надежные и безопасные решения для крупномасштабного распределения на большие расстояния для коммунальных предприятий и предприятий, а также решения для ближнего и среднего радиуса действия для потребителей, и преимущества обоих вместе взятых, только тогда беспроводная зарядка станет по-настоящему достичь совершеннолетия.

Электроэнергия может передаваться по воздуху

B EHIND NIKOLA TESLA’S Бывшая лаборатория в Ворденклиффе на Лонг-Айленде, штат Нью-Йорк, является старым фундаментом.Это все, что осталось от 57-метровой башни, которую Тесла начал строить в 1901 году в рамках эксперимента по беспроводной передаче информации и электричества на большие расстояния. Это наполовину сработало. Как он и предсказывал, беспроводная связь изменила мир. Но ему не удалось заставить электричество путешествовать очень далеко. Как следствие, в течение пяти лет работы прекратились, а башня была позже списана, чтобы помочь ему выплатить долги. Тесла — пионер, который, среди прочего, разработал генерацию и передачу переменного тока, — исчез в относительной безвестности.

Послушайте эту историю

Ваш браузер не поддерживает элемент

Больше аудио и подкастов на iOS или Android.

И так оставалось до тех пор, пока Илон Маск не возродил имя Tesla в качестве бренда его компании по производству электромобилей. Теперь видение Теслы о беспроводной передаче энергии, похоже, тоже возвращается. Фирма Emrod из Окленда в сотрудничестве с Powerco, дистрибьютором электроэнергии в Новой Зеландии, разработала прототип системы для использования в закрытом испытательном центре.Затем, в рамках отдельного проекта, планируется передать энергию от солнечной фермы на Северном острове клиенту в нескольких километрах.

Цель состоит в том, чтобы передавать мощность в виде узкого луча микроволн. Это устранит два фундаментальных недостатка в плане Теслы. Один из них — как взимать с людей плату за электричество, которое они могут просто черпать из воздуха. Другой — необходимость преодолеть закон распространения излучения, согласно которому сила сигнала обратно пропорциональна квадрату расстояния, которое он прошел от передатчика.В результате мощность сигнала резко падает даже на коротких расстояниях. Передача мощности узким лучом вместо излучения во всех направлениях помогает свести к минимуму проблему.

Энергетическое излучение, как известен процесс Эмрода, было опробовано и раньше, но в основном для военных приложений или для использования в космическом пространстве. В 1975 году NASA , американское космическое агентство, использовало микроволны, чтобы послать 34k Вт электроэнергии на расстояние 1,6 км — рекорд, который все еще сохраняется. Однако он никогда не разрабатывался для коммерческого использования.

Операция Эмрода начнется осторожно. Он начнется с передачи того, что Грег Кушнир, основатель фирмы, описывает как «несколько киловатт» на расстояние 1,8 км. Затем он будет постепенно увеличивать мощность и расстояние. Важнейшей переменной является эффективность, с которой это можно сделать. По словам Кушнира, сейчас это около 60%. Этого, как он считает, уже достаточно, чтобы сделать передачу энергии коммерчески жизнеспособной в некоторых обстоятельствах, например, в удаленных районах, не тратя деньги на дорогостоящие линии электропередач.Но, чтобы улучшить положение, у Эмрода есть еще две уловки в рукаве. Один из них — использовать реле. Другой — приправить приемники так называемыми метаматериалами.

Реле, которые представляют собой пассивные устройства, которые не потребляют никакой энергии, работают как линзы, перефокусируя микроволновый луч и отправляя его по своему пути с минимальными потерями при передаче. Они также могут направить его, если необходимо, в новом направлении. Это означает, что передатчик и приемник не обязательно должны находиться в зоне прямой видимости друг друга.

Метаматериалы — это композиты, содержащие крошечные количества проводящих металлов и изолирующие пластмассы, расположенные таким образом, что они определенным образом взаимодействуют с электромагнитным излучением, таким как микроволны. Они уже используются в так называемых маскирующих устройствах, которые помогают военным кораблям и военным самолетам укрываться от радаров. Но их также можно использовать в приемной антенне для более эффективного преобразования электромагнитных волн в электричество.

Распространение мощных микроволн по воздуху сопряжено с риском.В конце концов, подобные волны — это средства, с помощью которых микроволновые печи нагревают то, что в них помещено. Эмрод говорит, что кратковременное воздействие его лучей не должно причинить никакого вреда людям или животным, поскольку плотность мощности относительно низкая. Тем не менее, чтобы избежать несчастных случаев, лучи будут окружены так называемыми лазерными завесами. Это маломощные лазерные лучи, которые сами по себе не вредны. Но если занавес сдвигается из-за вмешательства таких вещей, как птицы или низколетящие вертолеты (которые в Новой Зеландии используются для задержания овец), это прерывание будет немедленно обнаружено, и микроволновая передача временно отключится.Батареи на принимающей стороне будут заряжаться во время любых отключений.

Если технология Power-Beaming действительно получит успех, Emrod не будет иметь дело с собой, так как ряд других фирм работают над этой идеей. TransferFi, базирующаяся в Сингапуре, разрабатывает систему, которая формирует лучи радиоволн, которые обычно имеют более низкую частоту, чем микроволны, для передачи мощности конкретным приемным устройствам. Это краткосрочная идея, разработанная для питания гаджетов на фабриках и в домах.

Американская фирма PowerLight Technologies работала с вооруженными силами этой страны над использованием лазеров для передачи энергии на удаленные базы, а также для питания беспилотных летательных аппаратов в воздухе.Компания также уделяет внимание коммерческим приложениям. Так же поступает и японская инжиниринговая фирма Mitsubishi Heavy Industries. В частности, у Mitsubishi большие амбиции. Помимо промышленного применения на Земле, он изучает возможности использования этой технологии для передачи энергии на землю с геостационарных спутников, оснащенных солнечными панелями. Для этого потребуется передать его на расстояние более 35 000 км. Не столько «поднять меня, Скотти», сколько «поднять». ■

Примечание редактора (23 февраля 2020 г.): В эту статью были внесены поправки, чтобы прояснить, что Эмрод реализует два отдельных проекта.

Эта статья появилась в разделе «Наука и технологии» печатного издания под заголовком «Смотри, никаких проводов!»

NZ для испытания первой в мире коммерческой беспроводной передачи энергии на большие расстояния

Новозеландский стартап разработал метод безопасной беспроводной передачи электроэнергии на большие расстояния без использования медного провода и работает над его внедрением. это со вторым по величине дистрибьютором электроэнергии в стране.

Мечта о беспроводной передаче энергии далеко не нова; Любимый всеми гений электрики Никола Тесла однажды доказал, что он может питать лампочки с расстояния более двух миль с помощью 140-футовой катушки Тесла в 1890-х годах — не говоря уже о том, что при этом он сжег динамо-машину на местной электростанции и погрузил весь город Колорадо-Спрингс в затемнение.

Тесла мечтала разместить по всему миру огромные башни, которые могли бы передавать энергию по беспроводной сети в любую точку земного шара, питая дома, предприятия, промышленные предприятия и даже гигантские электрические корабли в океане. Как известно, инвестор Дж. П. Морган убил эту идею одним вопросом: «Где я могу поставить счетчик?»

На это ушло 120 лет, но новозеландская компания Emrod, похоже, наконец убедила крупного дистрибьютора электроэнергии в необходимости перехода на беспроводную связь в коммерческих целях.Powerco, второй по величине дистрибьютор в Новой Зеландии, инвестирует в Emrod, чья технология, по-видимому, позволяет гораздо более эффективно перераспределять большие объемы электроэнергии между любыми двумя точками, которые могут быть соединены с помощью реле прямой видимости.

«Нам интересно посмотреть, сможет ли технология Emrod дополнить устоявшиеся способы доставки электроэнергии», — сказал Николя Вессио, менеджер по трансформации сети Powerco. «Мы планируем использовать это для доставки электроэнергии в отдаленные места или через районы со сложным рельефом.Также есть потенциал, чтобы использовать его, чтобы держать свет для наших клиентов, когда мы проводим техническое обслуживание нашей существующей инфраструктуры ».

Emrod в настоящее время имеет рабочий прототип своего устройства, но построит еще один для Powerco с планами доставки Октябрь, затем проведите несколько месяцев в лабораторных испытаниях, прежде чем перейти к полевым испытаниям. Прототип устройства будет способен выдавать «всего несколько киловатт» мощности, но его можно легко масштабировать. «Мы можем использовать ту же технологию для передачи В 100 раз больше мощности на гораздо больших расстояниях », — сказал основатель Emrod и серийный предприниматель Грег Кушнир.«Беспроводные системы, использующие технологию Emrod, могут передавать любое количество энергии, передаваемой проводными решениями».

В системе используются передающая антенна, ряд реле и приемная выпрямительная антенна (выпрямляющая антенна, способная преобразовывать микроволновую энергию в электрическую). Каждый из этих компонентов выглядит на этих изображениях просто как большие старые квадраты на столбах. Его лучи используют неионизирующий промышленный, научный и медицинский диапазон радиочастотного спектра, включая частоты, обычно используемые в Wi-Fi и Bluetooth.

В отличие от всемирно доступной мечты Теслы о свободной энергии, здесь энергия передается прямо между определенными точками, без излучения вокруг луча, а «маломощный лазерный защитный занавес» немедленно отключает передачу энергии перед любым объектом, например птицей, дрон, вор или вертолет могут коснуться дальнего света. На этот раз разобраться, где разместить счетчик, не составит труда.

Emrod говорит, что он работает в любых атмосферных условиях, включая дождь, туман и пыль, а расстояние передачи ограничено только прямой видимостью между каждым реле, что дает ему возможность передавать мощность на тысячи километров, что составляет долю от затраты на инфраструктуру, затраты на обслуживание и воздействие на окружающую среду, которое оказывает проводное решение.

Действительно, Эмрод рассматривает беспроводную передачу как ключевую технологию, позволяющую использовать возобновляемые источники энергии, которые часто вырабатываются далеко от того места, где это необходимо. Такая система могла бы быть великолепной для доставки продуктов оффшорного и удаленного производства возобновляемой энергии в городские сети без необходимости в гигантских аккумуляторных батареях и т.п.

Грубый снимок временного грузовика с силовой трансмиссией

Emrod

Это также будет полезно при некоторых незапланированных отключениях; грузовик может быть оснащен ректенной, а затем перемещаться в любом месте в пределах видимости реле для создания временного беспроводного подключения к источнику питания.

Компания поддерживала связь с органами управления радиочастотным спектром в Новой Зеландии на протяжении всего процесса разработки с целью соблюдения всех стандартов безопасности, даже когда технология масштабируется вплоть до высоких уровней мощности, процесс, по словам Кушнира, также помог Emrod в разработке. рекомендации для компаний, которые будут использовать эту технологию.

Мы связались с Эмродом, чтобы узнать больше об эффективности, размере, форме и состоянии текущего прототипа, планах на будущее и о том, что на самом деле произойдет, если вы засунете руку в середину балки, и предоставим вам дополнительную информацию, когда мы можем.

Обновление: мы поговорили с основателем Emrod Грегом Кушниром, которому было чем поделиться в нашем интервью.

Источник: Emrod

Беспроводная передача энергии, открывающая мир возможностей

Для многих «беспроводная передача энергии на большие расстояния» звучит как запутанный жаргон, связанный в одно предложение. Для других это звучит как футуристическая фантазия, которая когда-то была не очень успешной несбыточной мечтой Николы Теслы. Для Эмрода это вполне реальное решение некоторых из самых серьезных проблем с энергоснабжением на сегодняшний день с бесконечными возможностями (буквально) изменить ландшафт мира.

Итак, что такое беспроводная передача энергии на большие расстояния (WPT)? И как можно использовать беспроводную мощность в реальных сценариях?

Что такое технология беспроводной передачи энергии и как она работает

Беспроводная передача энергии (WPT) — это, вероятно, то, что вы себе представляете; мощность, передаваемая из одного места в другое, без необходимости использования традиционных медных катушек (или проводов) для передачи ее туда. Как беспроводная зарядка мобильного телефона, но в гораздо большем масштабе.

Энергия передается через электромагнитные волны на большие расстояния с использованием запатентованной Emrod формы луча, метаматериалов и технологии выпрямления. Для этой технологии требуется передающая антенна для передачи энергии и приемная антенна (ректенна), чтобы делать то, что предполагает ее название, принимать и преобразовывать луч обратно в электричество. Между двумя антеннами можно использовать реле, чтобы увеличить расстояние, по которому может пройти энергия.

Emrod был основан с целью оказать положительное влияние на как можно большее количество людей, поэтому для широкого распространения беспроводной передачи энергии она также должна быть безопасной.И Эмрод делает именно это. Лучи используют обычные электромагнитные частоты в диапазоне ISM, которые используют такие вещи, как Wi-Fi и Bluetooth. Кроме того, двухточечная передача означает отсутствие утечки энергии вокруг луча. Если по какой-либо причине что-то пересекает луч, как птица, он немедленно отключается. Это означает, что птица никогда не касается ничего, кроме чистого воздуха. Emrod не похож на более актуальный пример, 5G, который распространяет повсюду низкие уровни электромагнитного излучения, неизбежно погружая и поражая человеческое тело.

История технологии беспроводной передачи энергии

Передача энергии с помощью микроволн существует уже несколько десятилетий. Фактически, еще в 1891 году Никола Тесла решил поставлять электроэнергию по беспроводной сети. Это привело его к созданию катушки Тесла — первой системы, которая могла передавать энергию без проводов. Он протестировал беспроводную передачу энергии с помощью радиочастотного резонансного трансформатора катушки Тесла. Ему удалось создать переменные токи высокого напряжения и высокой частоты, которые позволили ему без проводов передавать энергию на короткие расстояния.К сожалению, Тесла так и не добился успеха в дальнейшем развитии своей технологии катушек. Однако его изобретения полностью изменили понимание и использование электричества.

Затем, в 70-х годах, НАСА показало, что может поддерживать беспилотный вертолет в воздухе, заряжая его микроволнами с земли, однако они не развивали технологию дальше до точки, когда она была бы коммерчески жизнеспособной… Подсказка Эмрода.

Больше всего изменилась технология метаматериалов.Новые материалы позволили Эмроду невероятно эффективно преобразовывать энергию обратно в электричество. Таким образом, технология становится жизнеспособной для коммерческого использования.

Примеры использования беспроводной системы передачи энергии:

Доступ к возобновляемым источникам энергии и улучшение передачи в удаленные места

Доступ к надежной электроэнергии является ключом к экономическому прогрессу и процветанию. Тем не менее, острова, фермы, отдаленные населенные пункты и морские ветряные электростанции часто полагаются на подводные кабели или одиночные линии через сложную местность.Кроме того, эти линии и кабели требуют дорогостоящей установки и обслуживания. Неудивительно, что это зачастую непомерно дорого, и многие остаются без надежного источника питания. WPT заменяет необходимость дорогостоящего обновления инфраструктуры или дублирования на сложной местности.

В этих случаях Emrod может снизить затраты на установку и обслуживание до 85%. Делает экономически выгодным использование удаленных, устойчивых источников энергии, соединение сообществ и повышение устойчивости сети.

С помощью WPT энергоснабжение природного заповедника, такого как остров Стюарт / Ракиура, может осуществляться за счет излучения устойчиво генерируемой гидроэнергии с Южного острова Новой Зеландии. Или это может позволить островным государствам Тихого океана получить доступ к возобновляемым источникам энергии в прибрежных водах. Уменьшение их зависимости от дизельных генераторов, обеспечение электроэнергией отдаленных населенных пунктов и снижение местных затрат на электроэнергию. Не говоря уже о возможностях открытия для них нового экспортного рынка.

Подача энергии на край распределения

Последняя миля (или километр) распределительной сети является дорогостоящей и часто экономически невыгодной.Например, прибрежный городок, окруженный пересеченной местностью, или ферма на другой стороне большой долины. В таких ситуациях установка и обслуживание БПЭ может быть значительно дешевле по сравнению с традиционными решениями для линий электропередач, аккумуляторных батарей или микросетей.

Прекрасный пример Новой Зеландии — Пиха, прибрежный город на западном побережье Окленда. Пиха не только спрятан за гористой местностью, но и выдерживает основные удары сильных ветров и штормов. Все это затрудняет сохранение целостности и надежности линий электропередач круглый год.

В Новой Зеландии Emrod работает вместе с Powerco над улучшением непрерывности поставок на последней миле и экономической жизнеспособностью.

Замена генераторов для беспроводной передачи энергии

Наверное, каждый на каком-то этапе своей жизни слышал громкое жужжание генератора. Хотя шум в лучшем случае раздражает, нам пришлось с ним мириться, потому что это удобное портативное устройство, обеспечивающее источник питания по требованию. Критически важные компании, такие как телекоммуникационные компании и больницы, часто используют их в качестве систем аварийного резервного копирования.Однако они дороги в эксплуатации, загрязняют окружающую среду, являются шумными, а в случае сбоя требуется некоторое время для развертывания или активации.

Вместо этого для плановых и внеплановых отключений можно использовать беспроводную передачу электроэнергии для устранения «разрыва» в сети, вызванного отключением линий. Мобильные установки на грузовиках или компактные стационарные системы могут передавать электроэнергию тем, кто в ней нуждается. Предлагая решение для сокращения времени простоя и затрат, без шума и загрязнения, как у традиционного генератора.

Формируя будущее

Выше приведены некоторые способы, которыми беспроводная передача энергии может и поможет миру, но как насчет некоторых из менее очевидных способов использования этой технологии?

Для работы беспроводным системам передачи энергии просто необходима прямая видимость от одного конца до другого, по которому можно передавать энергию.Итак, о чем можно мечтать?

Мы представляем мир, в котором технология Emrod используется для питания электромобилей и кораблей, а также для питания беспилотных летательных аппаратов в полете над городскими районами или сельскими пейзажами. Для нас не исключены даже бестопливные перелеты на самолетах.

Следите за этой страницей, мы только начинаем!

Новая Зеландия собирается испытать беспроводную передачу энергии на большие расстояния

Известное изображение изобретателя Николы Теслы показывает, как он небрежно сидит на стуле, скрестив ноги, и делает записи, не обращая внимания на обилие искусственных молний, ​​раздирающих воздух на несколько метров.К тому времени Тесла и чистое электричество были похожи на старую супружескую пару.

Эксперименты, проведенные в Колорадо, привели к одному из самых смелых предложений Теслы: обеспечить мир без проводов. Он попал в заголовки газет с планами создания «всемирной беспроводной системы» и получил финансирование от JP Morgan на строительство первой из нескольких огромных опор передачи.

Но мечта Теслы о беспроводной энергии вскоре умерла. JP Morgan отменил дополнительное финансирование. Башню снесли. Позже ученые скептически относились к планам Теслы (которые были немного расплывчатыми) сработали бы.

Тем временем коллега Теслы Гульельмо Маркони преследовал параллельную мечту с гораздо большим успехом: беспроводная передача информации на радиоволнах. Сегодняшний мир, конечно, наводнен беспроводной информацией.

Теперь, если новозеландский стартап Emrod добьется своего, мечты Теслы и Маркони могут слиться воедино. Компания создает систему для беспроводной передачи энергии на большие расстояния. Ранее в этом месяце Emrod получил финансирование от Powerco, второй по величине энергокомпании Новой Зеландии, для проведения испытаний своей системы на коммерческой электростанции, подключенной к сети.

Компания надеется доставлять энергию в общины, удаленные от сети, или передавать энергию из удаленных возобновляемых источников, таких как морские ветряные электростанции.

Как это работает

Система состоит из четырех компонентов: источника питания, передающей антенны, нескольких (или более) передающих реле и ректенны.

Во-первых, передающая антенна преобразует электричество в микроволновую энергию — электромагнитную волну, похожую на радиоволны Маркони, только немного более энергичные — и фокусирует ее в цилиндрический луч.СВЧ-луч проходит через серию реле, пока не попадает в ректенну, которая снова преобразует его в электричество.

Помня о безопасности, Emrod использует энергию в промышленном, научном и медицинском (ISM) диапазоне, сохраняя при этом низкую плотность мощности. «Дело не только в том, сколько энергии вы передаете, а в том, сколько энергии вы передаете на квадратный метр», — сказал основатель Emrod Грег Кушнир New Atlas . «Уровни плотности, которые мы используем, относительно низкие. На данный момент это примерно эквивалентно стоянию на улице в полдень на солнце, около 1 кВт на квадратный метр.”

Но если он работает, как задумано, луч никогда не будет контактировать ни с чем, кроме пустого воздуха. Система использует сеть лазеров, окружающих луч, для обнаружения препятствий, таких как птица или человек, и автоматически отключает передачу до тех пор, пока препятствие не переместится.

Технология передачи энергии с помощью микроволновой энергии существует уже несколько десятилетий. Но чтобы сделать его коммерчески выгодным, необходимо минимизировать потери энергии. Кушнир сказал, что метаматериалы, разработанные в последние годы, создают разницу.

Компания использует метаматериалы для более эффективного преобразования микроволнового луча обратно в электричество. Реле, которые похожи на «линзы», расширяющие луч за пределы прямой видимости путем его перефокусировки, практически без потерь. По словам Кушнира, большая часть потерь происходит на другом конце, где электричество преобразуется в микроволновую энергию. В целом, он сказал, что эффективность системы составляет около 70%, что недостаточно для медных проводов, но в некоторых областях экономически целесообразно. И это те области, к которым стремится компания.

«… мы не предвидим в ближайшем будущем ситуации, когда можно было бы сказать, что все медные провода можно заменить беспроводными», — сказал Кушнир. «По сути, у него будет более низкий уровень эффективности. Речь идет не о замене всей инфраструктуры, а о ее расширении там, где это имеет смысл ».

Реальный тест

Прототип компании в настоящее время может передавать несколько ватт энергии на расстояние около 130 футов. Для проекта Powerco они работают над большей версией, способной излучать несколько киловатт.Планируется доставить новую систему в Powerco в октябре, протестировать ее в лаборатории в течение нескольких месяцев, а затем, если все пойдет по плану, опробовать ее в полевых условиях. Испытания будут направлены на проверку того, сколько энергии система может передать на какое расстояние.

Хотя текущая модель скромна, Кушнир говорит, что ее следует масштабировать.

«Мы можем использовать ту же самую технологию для передачи в 100 раз больше энергии на гораздо большие расстояния», — сказал он в пресс-релизе. «Беспроводные системы, использующие технологию Emrod, могут передавать любое количество энергии, передаваемой проводными решениями.”

Рэй Симпкин, главный научный сотрудник Emrod, сообщил IEEE Spectrum , что компания также изучает возможность передачи энергии через 30 километров воды от материковой части Новой Зеландии до острова Стюарт. Он сказал, что система может стоить всего 60 процентов подводного кабеля.

В конечном счете, эта технология может помочь в обеспечении электроэнергией сельских районов или передачи энергии от прибрежных ветряных электростанций, причем в обоих случаях строительство физической инфраструктуры для подключения к сети или ее питания обходится дорого.В других случаях, например, в национальных парках, режим беспроводной передачи может иметь меньшее влияние на окружающую среду и требовать меньшего обслуживания. Или его можно использовать для обеспечения электроэнергией после стихийных бедствий, в результате которых была повреждена физическая инфраструктура.

Это не «всемирная беспроводная система» Теслы, но она может превратить беспроводную связь на большие расстояния в коммерческую реальность в недалеком будущем.

Источник изображения: Killian Eon / Pexels

Этот запуск беспроводной сети утверждает, что может заряжать ваш телефон, используя только радиоволны

Настоящая беспроводная передача энергии, без шнуров и зарядных ковриков, на протяжении десятилетий была белыми китами для технологической индустрии.Но новый стартап, созданный Калифорнийским технологическим институтом, утверждает, что он придумал, как реализовать его, сделав небольшой, дешевый и достаточно эффективный способ коммерциализации. Компания, получившая название Guru, создала систему беспроводной зарядки, которая передает электричество с помощью высокочастотных радиоволн, в частности миллиметровых волн (mmWave), которые лежат в основе растущих сетей сотовой связи 5G в США.

На следующей неделе на выставке CES Guru представляет три прототипа зарядных устройств, которые он хочет разработать в сотрудничестве с производителями электроники, но компания провела предварительный обзор технологии The Verge и объяснила, как она работает.Три прототипа включают настольную систему зарядки, которая может по беспроводной связи заряжать практически любой гаджет в пределах нескольких футов, версию в масштабе комнаты размером с потолочную плитку, которая имеет значительно больший радиус действия, и блуждающего робота, подобного Roomba, который предназначен для передвижения. большое пространство и возможность заряжать небольшие умные домашние гаджеты, такие как камеры и датчики Интернета вещей.

Guru представит на CES три прототипа беспроводной зарядки на следующей неделе

«Идея передачи силы на расстоянии не нова.У Никола Тесла была та же идея, что энергия должна передаваться по беспроводной сети », — говорит соучредитель и генеральный директор Флориан Бон, который ранее основал компанию по производству компонентов для мобильных телефонов под названием Axiom Semiconductor и работал над инициативой CalTech по использованию солнечной энергии и передаче ее на Землю с помощью микроволн. . «Что отличает нас от других, так это то, что мы используем очень передовые технологии, а также конструкцию нашей системы и технологию mmWave, которая позволяет нам передавать энергию контролируемым, безопасным и эффективным способом».

И точка зрения Бона очень важна.Концепция беспроводной передачи энергии существует более века назад, и ученые доказали, что она действительно работает, благодаря экспериментам за последние несколько десятилетий, в которых использовались более сложные радиотехнологии. В сфере высоких технологий беспроводная зарядка потребительских гаджетов по воздуху тоже активно используется в течение некоторого времени.

Ряд стартапов пытались воплотить эту идею в жизнь, но не смогли воплотить ее в жизнь, в первую очередь uBeam из Нью-Йорка, проблемный стартап, который пытался использовать ультразвуковые волны для беспроводной передачи энергии и неоднократно нарушал сроки поставки работающего продукта.Apple также недавно подала патент на эту точную технологию, и ряд других стартапов либо пришли на CES в прошлые годы, либо планируют приехать на выставку в этом году, чтобы доказать, что у них есть работающая версия идеи.

Но почему мы должны относиться к Гуру серьезно? По словам Бона, у компании есть два преимущества. Во-первых, он использует mmWave, чрезвычайно высокочастотные радиоволны, обеспечивающие высокую точность. Таким образом, зарядное устройство Guru может идентифицировать устройство, которое нуждается в зарядке, и посылать локализованный луч радиоволн, передающих электричество, намного лучше, чем низкочастотные волны.

Изображение: Guru

Но настоящая инновация, которую Guru утверждает, — это то, что компания называет Smart RF Lensing. Это запатентованная технология, разработанная соучредителем Бона Али Хаджимири в Калифорнийском технологическом институте вместе с Каушиком Сенгуптой из Принстонского университета, которая включает в себя управление направлением и количеством передаваемых лучей.

Фактически, Smart RF Lensing позволяет Guru посылать несколько лучей энергии даже на крошечные приемники, что позволяет уменьшить размеры передающих устройств, чтобы они поместились на вашем столе или были прикреплены к стене.Это также позволяет системе Guru заряжать такие маленькие устройства, как мобильные телефоны, и даже меньшие устройства Интернета вещей и умного дома.

«Основная технология, лежащая в основе всех этих приложений, по сути одна и та же — только разные масштабы, уровни мощности и диапазоны», — говорит Бон. «Одна из наших сильных сторон как компании заключается в том, что наши технологии обладают универсальностью в использовании: малое энергопотребление на короткие расстояния до очень большой мощности на больших расстояниях. Различия заключаются в размере и стоимости конечного продукта ».

Беспроводная система питания Guru действительно работает и масштабируется от стола до всей комнаты

Но действительно ли это работает? Я смотрел живую демонстрацию в видеочате системы Guru в действии, и она действительно работала, как рекламировалось.Член команды Гуру продемонстрировал настольную систему, которая похожа на довольно большую нагревательную лампу, активирующую лампочку, находящуюся в нескольких футах от него. Когда сотрудник просунул руку между двумя объектами, лампочка погасла. То же самое относилось и к зарядному устройству комнатного масштаба, и к перемещающемуся Roomba, которое подключается к переключателю света и автоматически активирует его, как только оно оказывается достаточно близко. Гуру подчеркивает, что вместо этого используется не освещение, а зарядка аккумуляторов. Но переключатели света служат убедительным доказательством того, что система действительно работает.

Guru представляет систему, в которой вы можете контролировать, когда зарядные лучи активны, и вручную отключать их, когда они сталкиваются с какими-либо помехами, либо через приложение, либо физически перемещая устройство, чтобы между ними было что-то среднее. Например, взяв телефон и положив его в карман. Бон подчеркивает, что лучи совершенно безопасно проходят через людей и в большинстве случаев могут проходить через физические поверхности, но Guru хочет, чтобы пользователи могли управлять этим элементом системы самостоятельно.«Сами радиоволны по своей природе неионизируют. Это очень целенаправленно. Если ваше устройство подключено к источнику питания, а вы сидите рядом, у вас почти нулевое воздействие », — говорит Бон. «Как и все радиоустройства, мы проходим одинаковый процесс утверждения регулирующими органами».

На данный момент вам все еще нужны физические приемники, чтобы устройство стало совместимым с системой зарядки Guru, поскольку эта технология не встроена ни в какие существующие бытовые электронные устройства. Это означает, что для смартфонов вам нужно будет разместить небольшой прямоугольный приемник на задней панели телефона.Guru говорит, что работает над созданием приемников еще меньшего размера для гаджетов для умного дома. Бон также говорит, что скорость зарядки сейчас ниже, чем у современного блока питания USB-C, и больше, чем у более медленного беспроводного зарядного устройства Qi. Но со временем они тоже могут улучшиться.

Успех

Guru будет зависеть не только от времени зарядки и размера приемника. То, как компания доставляет свои технологии потребителям, будет иметь большое значение. Бон говорит, что Guru ведет переговоры с производителями бытовой электроники о партнерстве, а также с партнерами по складским технологиям и розничной торговле о коммерческом использовании своей беспроводной системы питания.Он также ведет переговоры с компаниями о лицензировании своих технологий для включения в новые продукты в будущем.

Система Guru требует, чтобы вы подключили приемники к устройствам, на которые вы хотите передавать энергию

От того, как будут формироваться его физические продукты, будет зависеть, станет ли смелое видение Guru простой, эффективной, рентабельной и беспроводной беспроводной зарядки реальностью или же это станет еще одной неудачной попыткой реализации давней идеи. Еще одним фактором является то, действительно ли система будет работать лучше, чем существующие варианты зарядки от подключаемого модуля и зарядки Qi, оба из которых работают отлично, если вы в порядке с хранением шнуров и вставкой их вручную в свои устройства или с зарядным ковриком рядом.Преодоление статус-кво будет самым серьезным препятствием для Гуру, и остается открытым вопрос, сможет ли какая-либо компания, не говоря уже о стартапе, подтолкнуть потребителей к изменению поведения, которое укоренилось в том, как мы используем технологии сегодня.

Но видение Гуру немного грандиознее, чем просто устранение шнуров. Бон и его соучредители уверены, что, если все будет сделано правильно, надлежащая система беспроводной передачи энергии может изменить не только то, как мы думаем о том, чтобы устройства постоянно заряжались и включалось, но и типы устройств, которые мы в конечном итоге используем, и для чего используются эти устройства.Guru представляет себе мир, в котором вы можете хранить всевозможные гаджеты с батарейным питанием, большие и маленькие, по всему дому или в каждом углу офиса, магазина или склада, не беспокоясь о том, откуда они получают электроэнергию и как долго его хватает на одну зарядку. Это потому, что энергия будет постоянно течь по воздуху, чтобы поддерживать все в рабочем состоянии, как и предполагал Тесла более 120 лет назад.

«Большую часть объема вашего устройства составляет батарея», — говорит Хадзимири.«Причина в том, что он должен прослужить вам долгое время. Но как только зарядка станет повсеместной, это может все изменить ».

Как далеко мы находимся от беспроводного электричества? | Леон Оквотч | Predict

Кто-то может возразить, что беспроводное электричество — одно из тех разрекламированных изобретений, которые нам не обязательно нужны. В конце концов, мы уже передаем электричество, и все работает нормально.

Это далеко не так. Скрытые затраты на традиционный метод передачи электроэнергии чрезвычайно высоки.

Прокладка линий электропередач и их обслуживание обходятся дорого, не говоря уже о географических ограничениях, которые ограничивают распространение электрических сетей в отдаленные районы.

Корабли в море, электромобили или самолеты потенциально могут перезаряжаться во время движения. Это решило бы проблему дальности полета, особенно для предлагаемых коммерческих электрических самолетов.

Но, возможно, самой большой революцией, которую он произведет, будет переход на экологически чистый и дешевый возобновляемый источник энергии для всего мира.

Мы можем реализовать это двумя способами:

1. Дистанционная передача солнечной энергии

Согласно данным Global Energy Statistics, общее потребление энергии в мире в 2019 году составило 13000 миллионов тонн нефтяного эквивалента (MTOE).

Это соответствует 17,3 тераватт мощности.

Теперь, если мы покроем территорию размером 350 на 350 км солнечными батареями, это может обеспечить более 17,4 ТВт энергии. Эта площадь составляет около 43000 квадратных миль. Великая пустыня Сахара — это примерно 3 балла.6 миллионов квадратных миль более 12 часов солнечной энергии в день.

Это означает, что 1,2% пустыни достаточно для удовлетворения мировых потребностей в энергии. И нет никакого способа, которым ядерный синтез или любой другой более чистый источник энергии, разрабатываемый в настоящее время, не может конкурировать с этим.

Что, если беспроводное электричество станет вещью, мы будем использовать небольшую часть Сахары для сбора солнечной энергии и передачи ее по всему миру без необходимости в дорогостоящих медных проводных линиях? Разве это не было бы большим прорывом в решении энергетического кризиса, загрязнения окружающей среды и изменения климата?

2.Космическая солнечная энергия

Гигантские солнечные панели, собирающие солнечную энергию в космосе и передающие ее обратно на Землю, звучат как безумная сцена из футуристического научно-фантастического фильма.

Идея космической солнечной энергии (SBSP), концептуализированная российским ученым Константином Циолковским в 1920-х годах, по большей части оставалась неуловимой.

Все постепенно меняется. Несколько месяцев назад Европейское космическое агентство объявило о своем плане профинансировать SBSP как средство решения проблемы изменения климата за счет развития производства зеленой энергии.

Космическая солнечная энергетическая система обеспечит чистой энергией всех и всех.

SBSP будет использовать концепцию беспроводного электричества.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *