Переделка на литий: Аккумуляторы 18650, переделка шуруповёрта | AlexGyver

Содержание

Переделка шуруповертов на литиевые аккумуляторы 18650 — схемы и инструкции

Каждый мастер встречается с проблемой снижения работоспособности инструмента, или полного отказа из-за аккумулятора. Производители используют в 12-ти, 14-ти, 18-ти вольтовых шуруповертах аккумуляторы из никель-кадмиевых батареек. Схема последовательной сборки нескольких элементов создает нужное напряжение. Замена никель-кадмиевых батареек  на литийевые увеличивает срок службы аккумулятора, облегчая конструкцию. Обязательная установка платы BMS добавляет надежность. Поэтому переделка шуруповерта на литиевые аккумуляторы, в основном, на форм-фактор 18650, оправдана.

Содержание

  • 1 Смысл и порядок переделки шуруповертов на литиевые аккумуляторы
  • 2 Переделка шуруповерта на литиевые аккумуляторы 18650 14 В
  • 3 Переделка шуруповерта «Макита» на литиевый аккумулятор
  • 4 Переделка шуруповерта «Хитачи» 12 В на литиевые аккумуляторы 18640
  • 5 Переделка шуруповерта «Интерскол» на литиевые аккумуляторы 18650

Смысл и порядок переделки шуруповертов на литиевые аккумуляторы

Почему никель-кадмиевые аккумуляторы быстро выходят из строя? В гирлянде последовательно соединенных банок каждая особенна. Химический процесс индивидуален, заряд в закрытых системах различный. При неисправности в одной банке, конструкция не дает нужное напряжение. Система контроля и балансировка заряда в отдельных компонентах не предусмотрена.

  1. Каждая Ni-Cd банка дает 1,2 В, а li-ion 18650 – 3,6 В.
  2. Емкость литиевой батарейки в 2 раза больше никель-кадмиевой, близкого размера.
  3. Перегретая батарейка li-ion грозит взрывом и возгоранием, поэтому установка контроля равномерности заряда в банках обязательна. В никель-кадмиевых батарейках BMS не ставят – производитель не заинтересован.
  4. У литиевых элементов нет эффекта памяти, в отличие от Ni-Cd, заряжать их можно в любое время и в течение часа.
  5. Шуруповерт становиться значительно легче после переделки аккумулятора на li-ion, с использованием банок 18650.

Есть только два препятствия для переделки шуруповерта под литиевые аккумуляторы – с ним невозможно работать при минусе. Емкость банок падает, начиная с понижения уже от +10 0 С. Литиевые аккумуляторы дороги.

Зная, какое требуется входное напряжение на шуруповерт, переделка зарядного устройства производится, с учетом размещения банок литиевого аккумулятора и управляющих элементов в заводском контейнере. Также можно поступить с фонариком, модернизировав гнездо под блок из элементов 18650.

Допустим необходима переделка 12 В шуруповерта, использующего Ni-Cd банки на li-ion. Если использовать 3 банки, напряжения на выходе недостаточно: 3,6 х 3 = 10, 8 В. С 4-мя компонентами мощность аппарата будет выше: 3,6 х 4 = 14,4 В. При этом инструмент станет легче на 182 г, несколько увеличится его мощность, емкость – сплошные плюсы. Но при демонтаже необходимо оставить клеммы и родной термодатчик.

Переделка шуруповерта на литиевые аккумуляторы 18650 14 В

При переделке шуруповертов разной мощности и фонариков с Ni-Cd на Li-ion, чаще используют аккумуляторы форм фактор 18650. Они легко встают в контейнер или гнездо, так как вместо двух-трех родных устанавливают один литиевый. Переделка АКБ шуруповерта должна вестись с учетом особенностей литиевых аккумуляторов на 18650.

Этот вид источников энергии не переносит глубокий разряд и излишний заряд. Значит, необходимо использовать платы управления величиной напряжения. Так как каждая батарея имеет свой характер, их заряд корректируется балансиром. Смысл переделки шуруповерта с напряжением на 14,4 В заключен в создании прибора с использованием литиевых аккумуляторов для облегчения ручного инструмента и повышения его работоспособности. Больше всего для этих целей подходят литиевые аккумуляторы 18650.

При подборе комплектующих, следует учесть, пусковой ток шуруповерта высок, необходимо выбрать соответствующий BMS на нужное количество банок и не менее чем на 30 А. Для переделки зарядки шуруповерта на литиевый аккумулятор необходимо запастись хорошим паяльником, не кислотным флюсом и толстыми проводами для выполнения перемычек.

Комплектация:

  • Литий-ионные банки в количестве 4 шт.
  • Контроллер li-ion аккумулятора на 4 банки, хорошо подходит CF-4S30A-A. В нее встроен балансир, контролирующий заряд каждого элемента.
  • Термоклей, флюс для паяния ТАГС, припой.
  • Термостойкий скотч;
  • Соединительные перемычки или толстый провод в изоляции сечением не менее 0,75 квадрата, порезанный для мостиков.

Порядок работы по переделке шуруповерта под 18650:

  • Разобрать корпус и извлечь из контейнера связку из 12 Ni-Cd элементов.
  • Убрать гирлянду, оставив разъем с выводами «+» и «-» . Вместо термодатчика установится термопара от контроллера.
  • Спаять сборку, учитывая, что нельзя использовать кислоту, только нейтральный флюс и чистый припой. В период соединения нельзя разогревать крышки. Работать точечно.
  • Подключить балансировочные точки к контроллеру, согласно схеме. На плате разъемы предусмотрены.
  • Соединить сборку с выводами плюса и минуса.
  • Проверить работоспособность схемы. Если все работает, собранную АКБ, контроллер разместить в гнезде, закрепить с помощью герметика.

Если ЗУ не универсальное, потребуется дополнительная переделка. Шуруповерты на 12 V с универсальным зарядным устройством собирают так же, но используется защитная схема подключения 3х18650 3,7 В на литиевые аккумуляторы. Точно так же переделывается отвертка с использованием комплекта АКБ 18650 в количестве 2 элементов.

Переделка шуруповерта «Макита» на литиевый аккумулятор

Есть «Макита» шуруповерт с аккумулятором емкостью 1,3 А/ч и напряжением 9,6 В. Чтобы сменить на нем источник питания  на литий-ионный, потребуется 3 компонента 18650. Переделка предоставит старому инструменту новые возможности: увеличит продолжительность работы на одном заряде, добавит мощность, так как рабочее напряжение поднимется до 10,8 В.

Для конструкции потребуется использовать BMS, управляющий контроллер, поддерживающий режим работы литиевых элементов в рабочих пределах. С этим прерывателем зарядка каждой банки будет равномерной без превышения 4,2 В, нижнее напряжение 2,7 В. Здесь применяется встроенный балансир.

Параметры контроллера должны сопровождать работу инструмента при повышении рабочего тока до 10-20 А. Обеспечить работу без отключения сможет плата на 30 А Sony VTC4, рассчитанная на емкость 2100 А/ч. Из 20 амперных подойдет Sanyo UR18650NSX принимающие энергии 2600А/ч. Плата нужна для 3 элементов, что маркируется в классификации 3S. При этом в плате должно быть 2 контакта, плюс и минус. Если выводы имеют обозначения с буквами «Р-«, «Р+», «С-», они предназначены для более поздних моделей шуруповертов.

Пошаговая инструкция переделки шуруповерта Макита на литиевые аккумуляторы выглядит так.

  1. Разобрать аккумулятор на клею можно, если на весу обстукивать место соединения молотком с мягкой головкой. Направление удара вниз, в стык по нижней части корпуса.
  2. Взять от старой сборки только контактные пластины, аккуратно отсоединив их от батареи. Датчик и размыкатель нужно оставить.
  3. Спаять 3 элемента последовательно, пользуясь флюсом ТАГС и перемычками с изоляцией. Сечение провода должно быть больше 0,75 мм2.
  4. Собрать схему с контроллером, и соединить блок питания с контактными разъемами проводами 1,5 квадрата.
  5. Проверить работоспособность схемы и собрать корпус, снова посадив его на клей.

В шуруповерте со старым зарядным устройством DC9710 после окончания зарядки литиевого аккумулятора 18650 красный светодиод на панели выключится. За уровнем заряда следит встроенный контроллер.

ЗУ Макита DC1414 Т используют для зарядки источников питания на 7.2-14,4 В. Пока идет зарядка, горит красный свет. Но при зарядке литиевого аккумулятора, его напряжение не укладывается в стандарты солевых изделий, и после 12 В зарядное начнет мигать красным и зеленым. Но нужная зарядка уже есть. Шуруповерт готов к работе.

Переделка шуруповерта «Хитачи» 12 В на литиевые аккумуляторы 18640

Особенности переделки шуруповерта «Хитачи» 12 В на литиевые аккумуляторы. Очень компактное гнездо под аккумуляторные элементы предназначено для пальчиковых элементов. Поэтому следует подготовить место под 18650 элементы. Необходимо вырезать у перегородки одну сторону, чтобы плотно разместить 1 элемент.

Нужно обзавестись флюсом, плоской металлической соединительной лентой, термоклеем. Устанавливать литиевые аккумуляторы в шуруповерт при переделке необходимо через защитный контроллер. Он должен обслуживать 3 элемента 18650, напряжением 3,7 В и рассчитан на 20-30 ампер.

Извлечь старую батарею из гнезда, аккуратно отсоединить контакты в сборке с датчиком температуры и индикатором включения. Зачистить и подписать контакты. Их следует вывести в одну сторону, соединить припоем с выводами из толстых проводов и залить сборку термоклеем.

Собрать источник энергии с одним из контроллеров, рассчитанных на 3 элемента. Собрать последовательную схему из 3-х Li-ion элементов. Подключить контроллер. Переделка литиевого 12-вольтового аккумулятора завершается, когда конструкция будет установлена в блоке, закреплена, и индикатор зарядки загорится. После полной зарядки замеры показывают 12,17 вольт в наружной сети. Но этого достаточно для безотказной длительной работы прибора.

Переделка шуруповерта «Интерскол» на литиевые аккумуляторы 18650

Рано или поздно никель-кадмиевая сборка из 15 банок отказывает. Один- два элемента заленились, и получить напряжение на выходе уже невозможно. Современные ДШ «Интерскол» на литиевых аккумуляторах служат гораздо лучше. Переделка шуруповерта на литиевые аккумуляторы 18 вольт мастерами освоена.

Необходимо приобрести плату защиты на 5S, 3,7 В и 40-50 А. Потребуется балансировочная плата и сами источники энергии – 5 аккумуляторов литиевых 18650, можно оставить с заводскими терморезисторами, удлинив провода. При монтаже создать контактную площадку, вставить сборку, проверить работоспособность, закрепить. Особенности сборки советы мастера подробно даны в видео. Здесь полная информация о переделке 18-вольтного литиевого шуруповерта

Переделка шуруповерта на литиевые аккумуляторы 18650

Очередная переделка шуруповерта на литий + решаем проблемы платы BMS

Давно не было обзора переделки шуруповерта на литий 🙂
Обзор посвящен в основном плате BMS, но будут ссылки и еще на некоторые мелочи, задействованные в переводе моего старого шуруповерта на литиевые батареи формата 18650.

Коротко — эту плату брать можно, после небольшого допиливания она вполне нормально работает в шуруповерте.
ЗЫ: много текста, картинки без спойлеров.

P.S. Обзор почти юбилейный на сайте — 58000-й, если верить адресной строке браузера 😉

Зачем все это

Трудится у меня уже несколько лет купленный в строймаге по дешевке безымянный двухскоростной шуруповерт на 14. 4 вольта. Точнее, не прям совсем безымянный — на нем проставлена марка этого строймага, но и не какой-то именитый. На удивление живуч, до сих пор не сломался и выполняет все, что я от него требую — и сверление, и закручивание-раскручивание шурупов, и как намотчик трудится 🙂

Но вот его родные NiMH аккумуляторы так долго работать не захотели. Один из двух комплектных окончательно сдох год назад после 3 лет эксплуатации, второй в последнее время уже не жил, а существовал — полной зарядки хватало на 15-20 минут работы шуруповерта с перерывами.

Сначала я хотел обойтись малыми силами и просто заменить старые банки на такие же новые. Купил вот эти у вот этого продавца — https://aliexpress.com/item/item/Russian-seller-18-pcs-Sub-C-SC-battery-1-2V-1300mAh-Ni-Cd-NiCd-Rechargeable-Battery/32660234790.html
Они отлично работали (хотя и немного хуже родных) целых два или три месяца, после чего сдохли быстро и полностью — после полного заряда их не хватало даже на закрутить десяток шурупов. Не рекомендую брать у него аккумуляторы — хотя емкость изначально соответствовала обещанной, долго они не протянули.
И я понял, что придется все-таки заморочиться.

Ну и теперь о главном 🙂

Повыбирав на Али из предлагаемых плат BMS, остановился на обозреваемой, по ее размерам и параметрам:

  • Модель: 548604
  • Отключение по перезаряду при напряжении: 4.28+ 0.05 V (на ячейку)
  • Восстановление после отключение по перезаряду при напряжении: 4.095-4.195V (на ячейку)
  • Отключение по переразряду при напряжении: 2.55±0.08 (на ячейку)
  • Задержка отключения по перезаряду: 0.1s
  • Температурный диапазон: -30-80
  • Задержка отключения по КЗ: 100ms
  • Задержка отключения по превышению тока: 500 ms
  • Ток балансировки ячеек: 60mA
  • Рабочий ток: 30A
  • Максимальный ток (срабатывание защиты): 60A
  • Работа защиты по КЗ: самовосстановление после отключения нагрузки
  • Размеры: 45x56mm
  • Основные функции: защита от перезаряда, защита от переразряда, защита от КЗ, защита от перегрузки по току, балансировка.

Вроде все отлично подходит для задуманного, наивно думал я 🙂 Нет, чтобы почитать обзоры других BMS, а главное — комментарии к ним… Но мы же предпочитаем свои грабли, и только наступив на них, узнаем, что авторство на эти грабли уже давным давно и множество раз описано в инете 🙂

Все компоненты платы размещены на одной стороне:

Вторая сторона пустая и покрыта белой маской:

Часть, отвечающая за балансировку при заряде:

Эта часть отвечает за защиту ячеек от перезаряда/переразряда и она же отвечает за общую защиту от КЗ:

Мосфеты:

Собрано аккуратно, откровенных разводов флюса нет, вид вполне приличный. В комплекте шел хвост с разъемом, был сразу воткнут в плату. Длина проводов в этом разъеме — около 20-25 см. К сожалению, сразу его не сфотографировал.

Что еще заказал именно для этой переделки:
Аккумуляторы — https://aliexpress.com/item/item/6pcs-lot-LiitoKala-LG-HG2-18650-18650-3000mah-electronic-cigarette-Rechargeable-batteries-power-high-discharge-30A/32793701336. html
Никелевые полоски для спайки аккумуляторов: https://aliexpress.ru/item/item/32962881106.html (да, знаю, что можно спаять и проводами, но полосками будет занято меньше пространства и получится эстетичнее :)) Да и изначально я хотел даже собрать контактную сварку (не только для этой переделки, конечно), поэтому и заказал полоски, но лень победила и пришлось паять.

Выбрав свободный день (точнее, нагло послав все остальные дела подальше), я взялся за переделку. Для начала разобрал батарею со сдохшими китайскими аккумуляторами, выкинул аккумуляторы и тщательно замерил пространство внутри. После чего сел рисовать держатель батарей и платы в 3D-редакторе. Плату тоже пришлось нарисовать (без подробностей) чтобы примерить все в сборе. Получилось как-то так:

По задумке плата крепится сверху, одной стороной в пазы, вторая сторона зажимается накладкой, сама плата серединой лежит на выступающей плоскости, чтобы при ее прижатии она не прогибалась. Сам держатель сделан такого размера, чтобы плотно сидеть внутри корпуса батареи и не болтаться там.
Сначала подумывал сделать пружинные контакты для аккумуляторов, но отказался от этой мысли. Для больших токов это не лучший вариант, поэтому оставил в держателе вырезы для никелевых полосок, которыми аккумуляторы будут спаяны. Так же оставил вертикальные вырезы для проводов, которые должны выходить от межбаночных соединений за пределы крышки.
Поставил печататься на 3D-принтере из ABS и через несколько часов все было готово 🙂

Прикручивание всего навесного я решил не доверять шурупам и вплавил в корпус вот такие вставные гаечки М2.5:

Брал тут — https://aliexpress.com/item/item/200pcs-M2-5-x-4mm-x-OD-3-5mm-Injection-Molding-Brass-Knurled-Thread-Inserts-Nuts/32428033377.html
Отличная вещь для подобного применения! Вплавляется не спеша паяльником. Чтобы пластик не набился внутрь при вплавлении в глухие отверстия, я вкручивал в эту гайку болтик подходящей длины и грел его шляпку жалом паяльника с большой каплей олова для лучшей теплопередачи. Отверстия в пластике под эти гайки оставляются чуть меньше (на 0.1-0.2 мм) диаметра внешней гладкой (средней) части гайки. Держатся очень крепко, можно сколько угодно вкручивать-выкручивать болтики и не особо стесняться с усилием затяжки.

Для того чтобы иметь возможность побаночного контроля и, при необходимости, зарядки с внешней балансировкой, в задней стенке батареи будет торчать 5-контактный разъем, для которого я быстро накидал платку и изготовил ее на станке:


В держателе предусмотрена площадка для этой платки.

Как я уже писал, аккумуляторы я спаивал никелевыми полосками. Увы, этот метод не лишен недостатков и один из аккумуляторов возмутился таким обращением с ним настолько, что оставил на своих контактах только 0.2 вольта. Пришлось его выпаивать и паять другой, благо брал их с запасом. В остальном никаких трудностей не возникло. С помощью кислоты лудим контакты аккумулятора и нарезанные по нужной длине никелевые полоски, потом тщательно протираем ватой со спиртом (но можно и с водой) все залуженное и вокруг него, и паяем. Паяльник должен быть мощным и либо уметь очень резво реагировать на остывание жала, либо просто иметь массивное жало, которое не остынет мгновенно при контакте с массивной железкой.
Очень важно: во время пайки и при всех последующих операциях со спаянным блоком аккумуляторов нужно внимательнейшим образом следить за тем, чтобы не замкнуть какие-либо контакты аккумуляторов! Кроме того, как указал в комментариях ybxtuj, очень желательно паять их разряженными, и я абсолютно согласен с ним, так последствия будут легче если все-таки что-то замкнется. КЗ такой батареи, даже разряженной, может привести к большим неприятностям.
К трем промежуточным соединениям между аккумуляторами припаял провода — они пойдут на разъем платы BMS для контроля за банками и на внешний разъем. Забегая вперед, хочу сказать, что с этими проводами я проделал немного лишней работы — их можно не вести к разъему платы, а припаять к соответствующим контактам B1, B2 и B3. Эти контакты на самой плате соединены с контактами разъема.

Кстати, я везде использовал провода в силиконовой изоляции — совершенно не реагируют на нагрев и очень гибкие. Покупал на Ебее нескольких сечений, но точную ссылку уже не помню… Очень они мне нравятся, но есть и минус — силиконовая изоляция не слишком прочна механически и легко повреждается острыми предметами.

Примерил аккумуляторы и плату в держателе — все превосходно:

А вот для чего я оставлял запас по глубине пазов для аккумуляторов:

Это силиконовые самоклеящиеся ножки. Такие же наклеены и на дно пазов, глубина которых рассчитана так, что при закручивании крышки эти ножки прижимают с обеих сторон аккумуляторы, не давая им болтаться и при этом в силу своей упругости не оказывая существенного давления на них. Кстати, эти ножки очень хороши и в качестве именно ножек (как ни странно :)) — упругие и совершенно не скользят. Маст хейв в арсенале самодельщика 🙂
Брал эти ножки тут — https://aliexpress.com/item/item/500pcs-8-4mm-3M-self-adhesive-soft-clear-anti-slip-bumpers-silicone-rubber-feet-pads-high/32241890556. html

Примерил платку с разъемом, дремелем выпилил в корпусе батареи отверстие под разъем… и промахнулся по высоте, не от той плоскости взял размер. Получилась приличная такая щель:

Теперь остается спаять все в кучу.
На свою платку припаял идущий в комплекте хвост, обрезав его по нужной длине:

Туда же впаял провода от межбаночных соединений. Хотя, как я уже писал, можно было припаять их на соответствующие контакты платы BMS, но тут есть и неудобство — чтобы вытащить аккумуляторы нужно будет отпаивать от BMS не только плюс и минус, но и еще три провода, а сейчас можно просто выдернуть разъем.
Немного повозиться пришлось с контактами батареи: в родном исполнении пластиковая деталь (держащая контакты) внутри ножки батареи поджимается одним аккумулятором, стоящим прямо под ней, а сейчас пришлось думать чем эту деталь зафиксировать, да так чтобы не намертво. Вот эта деталь:

В конце концов взял кусок силикона (остался от заливки какой-то формы), отрезал от него примерно подходящий кусок и вставил в ножку, поджав ту деталь. Заодно этот же кусок силикона прижимает держатель с платой, ничего болтаться не будет.
На всякий случай проложил поверх контактов каптоновую изоленту, провода прихватил несколькими соплями каплями термоклея, чтобы они не попали между половинками корпуса при его сборке.

Зарядка и балансировка

Зарядку я оставил родную от шуруповерта, она как раз выдает на холостом ходу около 17 вольт. Правда, зарядка тупа и никакой стабилизации тока или напряжения в ней нет, есть только таймер, отключающий ее примерно через час после начала заряда. Ток выдает около 1.7А, что хоть и многовато, но допустимо для этих аккумуляторов. Но это пока я не доделаю ее до нормальной, со стабилизацией тока и напряжения. Потому что сейчас плата отказывается балансировать одну из ячеек, имевшую изначально заряд на 0.2 вольта больше. BMS отключает заряд когда напряжение на этой ячейке доходит до 4.3 вольта, соответственно на остальных оно остается в пределах 4. 1 вольта.
Читал где-то утверждение, что эта BMS нормально балансирует только с зарядкой CV/CC, когда ток под конец заряда постепенно снижается. Возможно, это так и есть, так что впереди меня ждет модернизация зарядки 🙂
Разряжать до конца не пробовал, но уверен, что защита по разряду сработает. На Ютубе есть ролики с тестами этой платы, все работает как положено.

А теперь о граблях

Все банки заряжены до 3.6 вольт, все готово к запуску. Вставляю батарею в шуруповерт, нажимаю курок и… Уверен, что не один человек, знакомый с этими граблями, сейчас подумал «И хрен стартанул у тебя шуруповерт» 🙂 Абсолютно верно, шуруповерт слегка дернулся и все. Отпускаю курок, нажимаю снова — то же самое. Нажимаю плавно — стартует и разгоняется, но стоит стартануть его чуть порезче — отказ.
«Вот же …», подумал я. Китаец, наверное, указал в спецификации китайские амперы. Ну да ладно, у меня есть отличная толстая нихромовая проволока, сейчас я напаяю ее кусок поверх резисторов-шунтов (стоят два по 0. 004 Ома в параллель) и настанет мне если и не счастье, то хотя бы какое-то улучшение ситуации. Улучшение не настало. Даже когда я вообще исключил из работы шунт, просто припаяв минус батареи после него. То есть не то что улучшений не настало, а не настало вообще никаких изменений.
И вот тогда я полез в инет и обнаружил, что копирайт на эти грабли мне не светит — они давно уже исхожены другими. Но вот решения как-то не было видно, кроме кардинального — покупать плату, подходящую именно для шуруповертов.

И решил я попробовать все же доковыряться до корня проблемы.

Предположения что срабатывает защита от перегрузки при пусковых токах я отмел, так как даже без шунта ничего не менялось.
Но все же посмотрел осциллографом на самодельном шунте 0.077 ома между аккумуляторами и платой — да, ШИМ видно, резкие пики потребления с частотой примерно 4 кГц, через 10-15 мс после начала пиков плата отрубает нагрузку. Но эти пики показывали меньше 15 ампер (исходя из сопротивления шунта), так что точно дело не в токовой перегрузке (как оказалось впоследствии, это не совсем верно). Да и керамическое сопротивление 1 Ом не вызывало отключения, а ведь ток тоже под 15 ампер.
Был еще вариант кратковременной просадки на банках при пуске, от чего срабатывает защита от переразряда и я полез смотреть что творится на банках. Ну да, там ужас творится — пиковая просадка до 2.3 вольта на всех банках, но она очень короткая — меньше миллисекунды, тогда как плата обещает ждать сотню миллисекунд перед тем как врубит защиту от переразряда. «Китайцы указали китайские миллисекунды», подумал я и полез смотреть схему контроля напряжения банок. Оказалось, что в ней стоят RC-фильтры, сглаживающие резкие изменения (R=100 Om, C=3.3 uF). После этих фильтров — уже на входе микросхем, контролирующих банки, просадка была поменьше — всего до 2.8 вольт. Кстати, вот даташит на микросхемы контроля банок на этой плате DW01B — www.zahranvane.com/Download?file=298&name=DW01B.pdf
По даташиту время реакции на переразряд тоже немалое — от 40 до 100 мс, что не вписывается в картину. Но ладно, предположить больше нечего, поэтому поменяю-ка я сопротивления в RC-фильтрах со 100 Ом на 1 кОм. Это кардинально улучшило картину на входе микросхем, просадок меньше 3.2 вольт там больше не было. Но ничуть не изменило поведение шуруповерта — чуть более резкий старт — и затык.
«Пойдем простым логическим ходом»©. Отрубать нагрузку могут только эти микросхемы DW01B, которые контролируют все параметры разряда. И я просмотрел осциллографом управляющие выходы всех четырех микросхем. Все четыре микросхемы никаких попыток отключить нагрузку при старте шуруповерта не делают. А с затворов мосфетов управляющее напряжение пропадает. Или мистика или китайцы что-то навертели в простой схеме, которая должна быть между микросхемами и мосфетами.
И начал я реверс-инжиниринг этой части платы. С матюками и бегая от микроскопа к компьютеру.

Вот что нарисовалось в итоге:

В зеленом прямоугольнике — это сами аккумуляторы. В синем — ключи с выходов микросхем защиты, тоже ничего интересного, в нормальной ситуации их выходы на R2,R10 просто «висят в воздухе». Самая интересная часть — в красном квадрате, вот тут-то, как оказалось, собака и порылась. Мосфеты я нарисовал по одному для упрощения, левый отвечает за разряд в нагрузку, правый за заряд.
Насколько я понял, причина отключения в резисторе R6. Через него организована «железная» защита от токовой перегрузки за счет падения напряжения на самом мосфете. Причем эта защита работает как триггер — стоит напряжению на базе VT1 начать повышаться, как он начинает снижать напряжение на затворе VT4, от чего тот начинает снижать проводимость, на нем повышается падение напряжения, что приводит к еще большему увеличению напряжения на базе VT1 и пошел лавинообразный процесс, приводящий к полному открытию VT1 и, соответственно, закрытию VT4. Почему это происходит при пуске шуруповерта, когда пики тока не достигают и 15А, тогда как постоянная нагрузка в 15А работает — я не знаю. Возможно тут играет роль емкость элементов схемы или индуктивность нагрузки.
Для проверки я сначала сделал симуляцию этой части схемы:

И вот что получил по результатам ее работы:

По оси X — время в миллисекундах, по Y — напряжение в вольтах.
На нижнем графике — включение нагрузки (на цифры по Y можно не смотреть, они условны, просто вверх — нагрузка включена, вниз — выключена). Нагрузкой является сопротивление 1 Ом.
На верхнем графике красным — ток нагрузки, синим — напряжение на затворе мосфета. Как видно, напряжение на затворе (синим) снижается с каждым импульсом тока нагрузки и в конце концов падает до нуля, а значит нагрузка отключается. И не восстанавливается даже когда нагрузка перестает пытаться что-то потреблять (после 2 миллисекунд). И хотя здесь применены другие мосфеты с другими параметрами, картина один в один как в плате BMS — попытка старта и отключение через считанные миллисекунды.
Ну что ж, примем это за рабочую гипотезу и вооружившись новыми знаниями попробуем разгрызть этот кусок науки китайца 🙂
Тут есть два варианта:
1. Поставить небольшой конденсатор параллельно резистору R1, это:

Конденсатор 0.1 мкф, по симуляции можно и меньше, до 1 нф.
Результат симуляции в таком варианте:

2. Убрать вообще резистор R6:

Результат симуляции этого варианта:

Я попробовал оба варианта — оба работают. Во втором варианте шуруповерт не отключается ни при каких обстоятельствах — старт, блокировка вращения — крутит (или изо всех сил пытается). Но как-то не совсем спокойно жить с отключенной защитой, хотя еще и остается защита от КЗ на микросхемах.
При первом варианте шуруповерт уверенно стартует при любом нажатии. Добиться отключения я смог только когда стартовал его на второй скорости (повышенная для сверления) с заблокированным патроном. Но и то он довольно сильно дергает перед отключением. На первой скорости я не смог добиться его отключения. Этот вариант я и оставил себе, меня он полностью устраивает.

На плате даже есть пустые места для компонентов и одно из них как будто специально предназначено для этого конденсатора. Рассчитано оно под размер SMD 0603, сюда я и впаял 0.1 мкф (обвел его красным):

ИТОГ

Плата вполне оправдала ожидания, хотя и преподнесла сюрприз 🙂
Плюсы и минусы расписывать не вижу смысла, все это в ее параметрах, укажу только одно достоинство: совершенно незначительная доработка превращает эту плату в полноценно работающую с шуруповертами 🙂

ЗЫ: блин, я шуруповерт переделывал меньше времени, чем писал этот обзор 🙂
ЗЗЫ: возможно меня поправят в чем-то более опытные в силовой и аналоговой схемотехнике товарищи, сам-то я цифровик и аналог воспринимаю через пень колоду 🙂

Как переоборудовать вашу тележку для гольфа на литиевые батареи

Ваша машина для гольфа не имеет прежних характеристик? Литиевые аккумуляторы для тележки для гольфа могут увеличить вашу мощность и пробег, давая вам еще лучшую езду, чем раньше. Прежде чем вы начнете конвертировать свои старые свинцово-кислотные аккумуляторы в гораздо лучший литиевый вариант, вам может понадобиться узнать немного больше обо всем этом процессе.

Как узнать, разряжены ли ваши текущие батареи

Определение того, когда батареи вашей тележки для гольфа разряжаются, во многом зависит от емкости. Вы должны провести тест емкости, полностью зарядив батареи, а затем разрядив их, чтобы убедиться, что емкость соответствует разумному количеству спецификаций, основанных на сроке службы батареи.

В течение срока службы свинцово-кислотного аккумулятора эта емкость будет уменьшаться. Таким образом, вы можете сказать, где емкость аккумулятора зависит от того, как долго он будет удерживать определенный уровень заряда. Аккумуляторы рассчитаны на разную силу тока. Таким образом, 56 ампер, что является обычным номинальным значением для разрядных машин, также является обычным номинальным значением для свинцово-кислотных аккумуляторов для тележек для гольфа. Таким образом, если он дает вам время работы около 180 или 170 минут, вы можете сравнить, как долго он работает при определенном номинале усилителя. Если пробег вашей тележки после полной зарядки меньше, чем обычно, значит, вы теряете емкость аккумулятора.

Вы можете обнаружить некоторые визуальные признаки износа свинцово-кислотных аккумуляторов. В некоторых случаях вы можете заметить коррозию на клеммах. Другой способ определить это — снять крышки с залитых аккумуляторов и посмотреть на свинцовые пластины внутри. Обычно они начинают деформироваться и поэтому выглядят слегка волнистыми. Если раствор внутри начинает выглядеть мутным и больше не выглядит прозрачным, это означает, что в него попадает много пасты, и она перемешана, что может быть еще одним признаком того, что паста скоро выйдет. Наиболее очевидным визуальным признаком будет то, что корпус батареи действительно вздуется. Хотя в этот момент батареи вообще не работают. Для свинцово-кислотных аккумуляторов есть куча визуальных индикаторов, а для литиевых нет.

Как проверить аккумуляторы вашего гольф-мобиля

Чтобы проверить текущий аккумулятор, сначала зарядите его до полной емкости. Затем подключите их к разрядному устройству на 48 В, которое представляет собой тестер нагрузки или тестер емкости. В большинстве домов не будет одной из этих машин, потому что они могут быть довольно дорогими, но она есть у любого продавца гольф-каров. Другие распространенные методы могут включать тестер сопротивления, такой как тестер батареи Midtronics. Вы также можете проверить ячейки с помощью ареометра и проверить раствор электролита в них, что является тестом, чтобы увидеть, не вышла ли ячейка из строя. Вы наверняка заметите проблему с батареями еще до того, как вам понадобится использовать ареометр.

Как заменить свинцово-кислотные аккумуляторы и установить литиевые аккумуляторы

Прежде чем приступать к снятию и установке, убедитесь, что у вас есть необходимые инструменты для работы. Набор розеток необходим для аппаратных средств, перчаток, проволочной щетки для очистки от коррозии и ремешка с крючками, чтобы вы могли легче доставать тяжелые свинцово-кислотные батареи из лотка.

  1. В первую очередь отсоедините основные положительные и отрицательные соединения
  2. Затем отсоедините соединительные кабели от аккумуляторной батареи. Откажитесь от этих кабелей и введите новые кабели.
  3. Теперь вы можете приступить к снятию крепежных ремней. Некоторые тележки фактически прокладывают кабели под монтажными кронштейнами.
  4. Снимите монтажные кронштейны. Используйте наручный ремень, который крепится к батареям, и постепенно вытягивайте тяжелые свинцово-кислотные батареи из тележки.
  5. Очистите лоток, в котором они находились, с помощью щетки и стряхните как можно больше мусора. Проверьте основные кабели, чтобы убедиться в отсутствии коррозии. Замените кабели, если они подверглись коррозии, поскольку коррозия вызывает сопротивление и увеличивает нагрев кабелей.
  6. Вставьте несколько новых литиевых батарей на 48 В, которые идеально впишутся в слоты.
  7. В обратном порядке установите монтажные кронштейны и ремни для установки литиевых батарей.
  8. Литиевые батареи InSight 48 В устанавливаются параллельно. Убедитесь, что ваши кабели идут от положительного к положительному. Свинцово-кислотные аккумуляторы соединены последовательно, поэтому вам не нужно повторять это.

После завершения переоборудования ваши новые литиевые батареи имеют ряд преимуществ по сравнению со свинцово-кислотными батареями:

  • Они намного легче, обеспечивают быструю и плавную езду.
  • Предлагается решение, не требующее обслуживания.
  • Литиевые батареи заряжаются намного быстрее, чем свинцово-кислотные.
  • Они намного дольше сохраняют заряд
  • Они имеют до 10 раз больший срок службы батареи
  • A Прямая замена

Если у вас есть вопросы о том, с чего начать переход на литий, свяжитесь с нашей командой. Мы можем помочь вам принять решение о наилучшем аккумуляторе для вашего приложения.

Конверсионные катоды для перезаряжаемых литиевых и литий-ионных батарей

Фейсян Ву и а также Глеб Юшин* a

Принадлежности автора

* Соответствующие авторы

и Школа материаловедения и инженерии, Технологический институт Джорджии, Атланта, Джорджия 30332, США
Электронная почта: юшин@gatech. edu

Аннотация

Коммерческие литий-ионные (Li-ion) аккумуляторы с катодами интеркаляционного типа на основе никеля и кобальта имеют низкую удельную энергию, высокую токсичность и высокую стоимость. Дальнейшее повышение характеристик накопления энергии таких элементов является сложной задачей, поскольку емкости таких интеркаляционных соединений приближаются к своим теоретическим значениям, а дальнейшее увеличение их максимального напряжения вызывает серьезные проблемы с безопасностью. Растущий рынок портативных накопителей энергии быстро расширяется, поскольку новые приложения требуют более легких, компактных, безопасных и недорогих аккумуляторов, чтобы обеспечить более широкое использование подключаемых гибридных и чисто электрических транспортных средств (PHEV и EV), дронов и возобновляемых источников энергии. , такие как солнечная и ветровая. Катодные материалы конверсионного типа являются одними из ключевых кандидатов для перезаряжаемых литий-ионных и литий-ионных аккумуляторов следующего поколения. Непрерывный быстрый прогресс в повышении производительности таких катодов необходим для их использования в будущих приложениях. В этом обзоре мы рассматриваем цену, распространенность и безопасность элементов таблицы Менделеева для их использования в конверсионных катодах. Далее мы сравниваем удельные и объемные возможности широкого спектра конверсионных материалов. Предлагая модель практически достижимой объемной плотности энергии и удельной энергии литиевых элементов с графитовыми, кремниевыми (Si) и литиевыми (Li) анодами, мы напрямую наблюдаем влияние химии катода. Это позволяет оценить возможности различных конверсионных катодов по превышению энергетических характеристик элементов, построенных с использованием современных интеркаляционных соединений. Мы дополнительно рассматриваем основные проблемы, возникающие при использовании активных материалов конверсионного типа в клетках, и общие стратегии их преодоления. Наконец, мы обсуждаем будущие тенденции и перспективы снижения затрат и повышения производительности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *