Как перевести децибелы в разы. Как рассчитать отношение величин в децибелах. Когда используется коэффициент 10, а когда 20 перед логарифмом. Примеры расчетов и калькулятор для конвертации дБ.
Что такое децибел и зачем он нужен
Децибел (дБ) — это логарифмическая единица, используемая для выражения отношения двух величин. Основные преимущества использования децибелов:
- Возможность работать с очень большими и очень маленькими числами в компактном виде
- Удобство сложения и вычитания вместо умножения и деления
- Наглядность при сравнении величин разного порядка
Децибелы широко применяются в акустике, радиотехнике, связи и других областях для оценки усиления, ослабления, мощности сигналов и т.д.
Формулы перевода децибелов в разы и обратно
Для перевода отношения величин в децибелы используются следующие формулы:
- Для энергетических величин (мощность, энергия):
дБ = 10 * log10(P2/P1) - Для амплитудных величин (напряжение, ток, давление):
Для обратного перевода из децибелов в разы:
- Для энергетических величин:
P2/P1 = 10^(дБ/10) - Для амплитудных величин:
A2/A1 = 10^(дБ/20)
Когда использовать коэффициент 10, а когда 20?
Выбор коэффициента 10 или 20 перед логарифмом зависит от типа сравниваемых величин:
- Коэффициент 10 используется для энергетических величин (мощность, энергия, интенсивность)
- Коэффициент 20 применяется для амплитудных величин (напряжение, ток, звуковое давление)
Это связано с тем, что энергетические величины пропорциональны квадрату амплитудных. Например, мощность P пропорциональна квадрату напряжения U: P ~ U^2.
Примеры расчетов перевода децибелов в разы
Рассмотрим несколько примеров перевода децибелов в разы и обратно:
Пример 1: Перевод 3 дБ в разы для мощности
Используем формулу для энергетических величин:
P2/P1 = 10^(3/10) = 10^0.3 ≈ 2
Таким образом, 3 дБ соответствует увеличению мощности в 2 раза.
Пример 2: Перевод 6 дБ в разы для напряжения
Для амплитудных величин используем формулу с коэффициентом 20:
U2/U1 = 10^(6/20) = 10^0.3 ≈ 2
6 дБ соответствует увеличению напряжения в 2 раза.
Пример 3: Перевод отношения мощностей 100 в децибелы
дБ = 10 * log10(100) = 10 * 2 = 20 дБ
Увеличение мощности в 100 раз соответствует 20 дБ.
Калькулятор для конвертации децибелов в разы
Для удобства расчетов можно использовать онлайн-калькуляторы. Вот простой пример такого калькулятора:
«` import React, { useState } from ‘react’; import { Card, CardContent, CardHeader } from ‘@/components/ui/card’; const DBCalculator = () => { const [db, setDb] = useState(»); const [ratio, setRatio] = useState(»); const calculateRatio = () => { const dbValue = parseFloat(db); if (!isNaN(dbValue)) { setRatio((Math.pow(10, dbValue / 10)).toFixed(4)); } else { setRatio(»); } }; const calculateDb = () => { const ratioValue = parseFloat(ratio); if (!isNaN(ratioValue) && ratioValue > 0) { setDb((10 * Math.log10(ratioValue)).toFixed(2)); } else { setDb(»); } }; return (Калькулятор дБ — разы
Этот калькулятор позволяет быстро конвертировать значения между децибелами и разами для энергетических величин (мощность, энергия).
Практическое применение децибелов в различных областях
Децибелы широко используются в различных технических областях. Вот несколько примеров их практического применения:
Акустика и аудиотехника
- Измерение уровня звукового давления (SPL)
- Оценка усиления или ослабления звуковых сигналов
- Расчет звукоизоляции помещений
Радиотехника и связь
- Расчет бюджета радиолинии
- Оценка усиления антенн
- Измерение мощности сигналов
Оптика
- Измерение затухания в оптоволоконных линиях
- Оценка мощности лазерного излучения
Типичные значения децибелов в повседневной жизни
Для лучшего понимания масштаба децибелов, рассмотрим некоторые типичные значения уровня звука в повседневной жизни:
- 0 дБ — порог слышимости
- 20-30 дБ — шепот, тихая комната
- 50-60 дБ — обычный разговор
- 70-80 дБ — шумная улица, крик
- 90-100 дБ — шум метро, громкая музыка
- 120 дБ — болевой порог
- 140 дБ — взлет реактивного самолета
Особенности использования децибелов в различных системах измерения
Помимо обычных децибелов (дБ), существуют различные производные единицы, используемые в специфических областях:
- дБм (dBm) — мощность относительно 1 милливатта
- дБВт (dBW) — мощность относительно 1 ватта
- дБи (dBi) — усиление антенны относительно изотропного излучателя
- дБ SPL — уровень звукового давления относительно порога слышимости
Как правильно складывать и вычитать децибелы
Одно из главных преимуществ использования децибелов — возможность складывать и вычитать значения вместо умножения и деления. Однако есть некоторые нюансы:
- Простое сложение и вычитание децибелов корректно только для некоррелированных сигналов
- При сложении одинаковых уровней результат увеличивается на 3 дБ
- Для точных расчетов при сложении близких уровней используются специальные таблицы или формулы
Пример: сложение двух сигналов с уровнями 10 дБ и 13 дБ
- Переводим в разы: 10 дБ = 10, 13 дБ ≈ 20
- Складываем: 10 + 20 = 30
- Переводим обратно в дБ: 10 * log10(30) ≈ 14.8 дБ
Таким образом, результат сложения 10 дБ и 13 дБ равен примерно 14.8 дБ, а не 23 дБ, как могло показаться при прямом сложении.
Таблица перевода дБм в мВт
GSM-Репитеры.РУ » Таблица перевода дБм в мВт
Стандартная единица измерения мощности — Ватт (Вт), а также его кратные и дольные единицы, в том числе милливатты (мВт). Однако для расчета мощности сотового сигнала обычно используется абсолютная логарифмическая единица — децибел-милливатт (дБм).
Чтобы быстро пересчитать дБм в мВт (или мВт в дБм), вы можете воспользоваться нижеприведенным калькулятором. Для наиболее ходовых значений мы составили отдельную таблицу. Если же вы хотите узнать, что такое децибел-милливатты, во второй части статьи приведена теоретическая справка!
Мощность в мВт |
Результат в дБм |
Мощность в дБм |
Результат в мВт |
Таблица для перевода дБм в мВт / мВт в дБм
дБм |
Вт |
дБм |
Вт |
дБм |
|
0 |
1,0 мВт |
16 |
40 мВт |
32 |
1,6 Вт |
1 |
1,3 мВт |
17 |
50 мВт |
33 |
2,0 Вт |
2 |
1,6 мВт |
18 |
63 мВт |
34 |
2,5 Вт |
3 |
2,0 мВт |
19 |
79 мВт |
35 |
3,2 Вт |
4 |
2,5 мВт |
20 |
100 мВт |
36 |
4,0 Вт |
5 |
3,2 мВт |
21 |
126 мВт |
37 |
5,0 Вт |
6 |
4 мВт |
22 |
158 мВт |
38 |
6,3 Вт |
7 |
5 мВт |
23 |
200 мВт |
39 |
8,0 Вт |
8 |
6 мВт |
24 |
250 мВт |
|
10 Вт |
9 |
8 мВт |
25 |
316 мВт |
41 |
13 Вт |
10 |
10 мВт |
26 |
398 мВт |
42 |
16 Вт |
11 |
13 мВт |
27 |
500 мВт |
43 |
20 Вт |
12 |
16 мВт |
28 |
630 мВт |
44 |
25 Вт |
13 |
20 мВт |
29 |
800 мВт |
45 |
32 Вт |
14 |
25 мВт |
30 |
1,0 Вт |
46 |
40 Вт |
15 |
32 мВт |
31 |
1,3 Вт |
47 |
50 Вт |
Что такое децибелы и для чего они используются?
Децибел (дБ, dB) — это логарифмическая единица, которая широко применяется в физике для выражения отношений величин. Децибелы показывают, во сколько раз одно значение больше (или меньше) другого. Вместо того, чтобы считать в «разах», считают в децибелах — это удобнее.
В основе децибела лежит десятичный логарифм. Рост значения на 3 дБ означает увеличение в 2 раза, что делает запись в децибелах простой и наглядной для сравнения. Децибелы можно складывать и вычитать, а их численное выражение всегда компактнее, чем полная запись «в разах». Например, коэффициент усиления 65 дБ = 3 160 000 раз, а усиление 80 дБ = 100 000 000 раз.
Перевод «раз» в децибелы для энергетических величин (в том числе мощности) осуществляется по формуле:
10log10(P1/P2) = дБ,
где P1 и P2 — сравниваемые значения.
Чтобы перевести децибелы в разы, достаточно воспользоваться формулой:
10(n / 10) = m,
где n — значение в децибелах, m — отношение в «разах».
Из этого следует, что сам по себе децибел — единица относительная (безразмерная), с ее помощью можно сравнить совершенно любые величины. При этом значение в децибелах может быть как положительным (увеличение в разы), так и отрицательным (уменьшение в разы).
Эта особенность децибелов используется, чтобы в компактной форме выражать большие или малые значения мощности и других величин. Для этого их сравнивают с определенным эталонным значением («нулевым уровнем»).
Что такое децибел-милливатт (дБм)? Зачем нужны дБм?
Приняв за «нулевой уровень» эталонное значение и сравнивая с ним конкретное значение, можно существенно упростить запись и оперировать небольшими, удобными для восприятия числами.
Чаще всего подобная запись используется для единиц мощности — милливаттов. Взяв за опорный уровень значение 1 мВт, получаем новую единицу — децибел-милливатт (дБм).
дБм (dBm) указывает, во сколько раз данное значение мощности больше (или меньше) мощности 1 мВт. Значение в децибел-милливаттах может быть как положительным (при мощности >1 мВт), так и отрицательным (при мощности <1 мВт).
0 дБм = 1 мВт
10log10(мВт) = дБм
10(дБм / 10) = мВт
На первый взгляд использование децибел-милливаттов может показаться излишне сложным, однако на практике применение этой единицы упрощает работу с большими и малыми значениями. Децибел-милливаты и децибелы можно складывать и вычитать, выполняя простые арифметические операции, а запись и численные выражения занимают намного меньше места и времени.
Приведем простой пример. Допустим, исходный сигнал мощностью 17 дБм при распространении в свободном пространстве «затух» на 80 дБ. Тогда:
20 дБм − 80 дБ = -60 дБм
Для классической записи в «разах» подобная запись выглядела бы следующим образом:
100 мВт / 100 000 000 раз = 0,000001 мВт
Очевидно, запись в относительных единицах гораздо удобнее и практичнее, чем полная запись в «разах».
Другие логарифмические единицы: дБи, дБн
Помимо дБм, применяются и другие аналогичные единицы:
- дБи (dBi) — изотропный децибел. Единица выражает коэффициент усиления измеряемой антенны по сравнению с идеальной изотропной антенной, излучающей энергию равномерно во всех направлениях. Коэффициент усиления изотропной антенны принят за 0 дБи.
- дБик (dBic) — децибел по отношению к изотропной антенне с круговой поляризацией. Используется для измерения коэффициента усиления антенн с круговой поляризацией (например, GPS/ГЛОНАСС).
- дБн (dBc) — децибел относительно несущей. При помощи этой единицы измеряется мощность шумов, интермодуляционных искажений и прочих помех (по сравнению с мощностью несущего сигнала).
Как измерить мощность сигнала в дБм?
Для точного определения мощности ВЧ-сигнала используются специальные приборы — измерители мощности. К сожалению, высокая цена ограничивает сферу применения этих устройств крупными предприятиями и научными организациями. Для решения бытовых задач существуют гораздо более доступные решения. Например, узнать уровень сотового сигнала оператора в дБм можно при помощи недорогого набора для настройки 4G-антенны!
Перевод из дБ в ПВЭ и эквивалентную площадь. | Страница 2
epoch5
Профессионал
- #21
astrut написал(а):
В одной перед логарифмами 10, а в другой 20…Еще одна загадка
Нажмите для раскрытия…
Колян2 написал(а):
Тоже мне загадка. ..Пишут-пишут…Взять всё да и поделить на всех!
Нажмите для раскрытия…
Точно! Единая формула — перед логарифмом 15!
astrut
Дефектоскопист всея Руси
- #22
epoch5 написал(а):
Точно! Единая формула — перед логарифмом 15!
Нажмите для раскрытия…
Это по-браЦки
Антошка
Мастер дефектоскопии
- 02.2023″ data-time-string=»10:50″ title=»15.02.2023 в 10:50″ itemprop=»datePublished»>15.02.2023
- #23
Вроде не пятница, а тем зафлудили. (
dea135
Дефектоскопист всея Руси
- #24
epoch5 написал(а):
Точно! Единая формула — перед логарифмом 15!
Нажмите для раскрытия…
я не против, но предлагаю обдумать вопрос и не продешевить. понимаете, волатильность, таргетирование и пр.
поэтому на обсуждение выносится идея привязки к курсу «корзины» валют.
Kaktus_SPb
Дефектоскопист всея Руси
- #25
Alex249 написал(а):
А разве площадь прапорциональна амплитуде сигнала, не квадрату амплитуды?
Нажмите для раскрытия…
Возьмите любой букварь
Там найдите формулу акустического тракта для диска (отверстия с плоским дном, плоскодонки)
Там увидите, что отношение амплитуд сигналов (Р/Р0 или А/А0 или U/U0) пропорционально площади диска (S)
Также в любом букваре можно почитать про децибелы
P. S. Пользоваться формулами акустического тракта можно с кучей допущений….
astrut
Дефектоскопист всея Руси
- #26
Kaktus_SPb написал(а):
Также в любом букваре можно почитать про децибелы
Нажмите для раскрытия…
Но интрига про 10 перед логарифмом вместо 20 осталась.
Ну чё, примем по-браЦки 15, али
dea135 написал(а):
привязки к курсу «корзины» валют
Нажмите для раскрытия…
ilia
Свой
- #27
Alex249 написал(а):
Например у меня есть индикация на 80% ПВЭ от плоскондонного отверстия площадью 10 кв. мм. И вторая индикация скажем на 70% ПВЭ. Как найти эквивалентную площадь от второй индикации?
Нажмите для раскрытия. ..
20 log (А0/А1)=20 log (Sэкв 0/Sэкв 1)
Kaktus_SPb
Дефектоскопист всея Руси
- #28
ilia написал(а):
20 log (А0/А1)=20 log (Sэкв 0/Sэкв 1)
Нажмите для раскрытия…
А логарифм по какому основанию?
ilia
Свой
- 02.2023″ data-time-string=»14:54″ title=»15.02.2023 в 14:54″ itemprop=»datePublished»>15.02.2023
- #29
Kaktus_SPb написал(а):
А логарифм по какому основанию?
Нажмите для раскрытия…
Ну можно без логорифмов. С логорифмом наглядней ,для меня лично. И формулу легче уже готовую вставить сюда
Kaktus_SPb
Дефектоскопист всея Руси
- #30
ilia написал(а):
Ну можно без логорифмов. С логорифмом наглядней ,для меня лично.
Нажмите для раскрытия…
Логарифм — это показатель степени…..
в которую надо возвести число а (основание) , чтобы получить число b…
Чаще всего используют десятичные Lg(основание 10) и натуральный Ln(основание число Непера, экспонента и т.п.) логарифмы….
Если Вы возьмете 20*Log10 (2) или чаще встречаем 20*Lg (2), то получите примерно 6
А если 20*Ln(2) ?
А если 20*Log3(2) ?
P.S. Можно и с логарифмами, только надо понимать что подставлять
Вот у Вас один сигнал 24 дБ, а другой 12 дБ и во сколько раз отличаются эквивалентные площади….?
Последнее редактирование: 02.2023 в 15:29″ itemprop=»dateModified»>15.02.2023
ilia
Свой
- #31
Kaktus_SPb написал(а):
Вот у Вас один сигнал 24 дБ, а другой 12 дБ и во сколько раз отличаются эквивалентные площади….?
Нажмите для раскрытия…
В два раза
Kaktus_SPb
Дефектоскопист всея Руси
- 02.2023″ data-time-string=»15:38″ title=»15.02.2023 в 15:38″ itemprop=»datePublished»>15.02.2023
- #32
ilia написал(а):
В два раза
Нажмите для раскрытия…
А правильный ответ в 4…..
ilia
Свой
- #33
Kaktus_SPb написал(а):
А правильный ответ в 4. ….
Нажмите для раскрытия…
Согласен
Kaktus_SPb написал(а):
А правильный ответ в 4…..
Нажмите для раскрытия…
Согласен, это ж дБ. Не сообразил. Одна амплитуда больше другой в 4 раза. Тут надо по экрану в процентах
или пересчитывать
Колян2
Дефектоскопист всея Руси
- #34
astrut написал(а):
Поровну, по-честному, по совести, по справедливости, по трудовому вкладу, али еще как?
Нажмите для раскрытия. ..
Предлагаю по-хорошему или по-семейному-30/70!
astrut
Дефектоскопист всея Руси
- #35
ilia написал(а):
Согласен, это ж дБ. Не сообразил.
Нажмите для раскрытия…
А чего это, там же деци(Белл), а перед логарифмом почему-то 20 обычно стоит. Но иногда 10. Опять загадка
Маленькая подсказка здесь
Kaktus_SPb написал(а):
Логарифм — это показатель степени. ….
Нажмите для раскрытия…
Дальше подсказывать не буду.
ЗЫ. Из своего опыта. Большинство студентов, сдав высшую математику на 2-м, к 5 курсу с большим трудом вспоминает, что такое логарифмы
astrut
Дефектоскопист всея Руси
- #36
Колян2 написал(а):
Предлагаю по-хорошему или по-семейному-30/70!
Нажмите для раскрытия…
А может, по УСН? там всего 6% отдвавть. ..
ilia
Свой
- #37
astrut написал(а):
А чего это, там же деци(Белл), а перед логарифмом почему-то 20 обычно стоит. Но иногда 10. Опять загадка
Маленькая подсказка здесьДальше подсказывать не буду.
ЗЫ. Из своего опыта. Большинство студентов, сдав высшую математику на 2-м, к 5 курсу с большим трудом вспоминает, что такое логарифмыНажмите для раскрытия…
при r≥3N (но применяют и при r≥N) и прочих соответствующих условиях
🥱
Kaktus_SPb
Дефектоскопист всея Руси
- 02.2023″ data-time-string=»07:34″ title=»16.02.2023 в 07:34″ itemprop=»datePublished»>16.02.2023
- #38
ilia написал(а):
Посмотреть вложение 45890
при r≥3N (но применяют и при r≥N) и прочих соответствующих условиях
🥱Нажмите для раскрытия…
Это если по экрану усиление линейное
dea135
Дефектоскопист всея Руси
- #39
astrut написал(а):
ЗЫ. Из своего опыта. Большинство студентов, сдав высшую математику на 2-м, к 5 курсу с большим трудом вспоминает, что такое логарифмы
Нажмите для раскрытия…
сложный вопрос, это надо основы акустики знать как соотносятся интенсивности, давления и напряжения. не подсказываю.
astrut
Дефектоскопист всея Руси
- #40
dea135 написал(а):
сложный вопрос, это надо основы акустики знать как соотносятся интенсивности, давления и напряжения. не подсказываю.
Нажмите для раскрытия…
А я чуть-чуть подскажу. В этом ультразвуке всё очень запутано. Начинаешь курить темы про коэффициенты отражения и пропускания (прозрачности), там тоже по две формулы
Калькулятор
дБ плюс объяснение. Преобразовать дБ в ватты или ватты в дБ
| Индекс информации VSAT Калькулятор бюджета спутниковой связи Калькулятор диапазона SETI Калькулятор секунд, минут, часов, дней | Пояснение и описание LNB Бюджет радиосвязи линии прямой видимости — в одну сторону — один переход Как измерить EbNo и калькулятор EbNo Расчет шума антенной системы |
дБ великолепны и забавны и позволяют много рассчитывать радио и уровень сигнала Полегче. Прочтите здесь объяснение плюс удобный калькулятор, который конвертирует значения дБ в ватты и наоборот.
В радиосвязи у вас есть много предметов (усилители, аттенюаторы, сигнальные разветвители и объединители, кабели с потерями и т. д.), которые либо увеличивают, либо уменьшают уровень сигнала. Чтобы определить конечный результат для сигнала, проходящего через цепочки таких устройств вы используете усиление дБ или затухание дБ каждого устройства и просто сложите все значения дБ вместе.
КалькулятордБПреобразование дБ в отношение..
Калькулятор дБКоэффициент преобразования в дБ
| На этом примере показано использование дБ. Читайте медленно и постарайтесь понять, потому что если вы поймете этот пример dB весь бизнес станет намного легче понять. Задача расчета дБ : Каков уровень выходной мощности в следующая ситуация и не будет ли перегружен выходной усилитель передатчика ?. Для справки обратите внимание на информационную таблицу справа Уровень мощности входного сигнала = 1 мВт или -30 дБВт (или 0 дБм) Расчет: Выход = -30 + 16 -10 — 3 + 30 = 3 дБВт = 2 Вт Комментарий: Это должно работать, но учтите, что если аттенюатор должен быть установлен на минимальное значение ослабления (0 дБ) система попытается выдать +13 дБВт или 20 Вт. Это не приемлемо с 10-ваттным усилителем, так как он сильно искажает сигнал и может повредить усилитель. Это также будет создавать помехи для других людей на соседних частотах. В приведенном выше случае я бы добавьте дополнительный аттенюатор на 3 дБ (также называемый аттенюатором на 3 дБ) где-то вдоль или в конец кабеля. Это будет означать, что установка 0 дБ на Аттенюатор вызовет выходную мощность 10 Вт и, таким образом, просто насытит усилитель звука. Это позволяет избежать риска случайного вмешательства в работу других людей. и повреждение дорогого усилителя мощности. Формулы: Чтобы преобразовать отношение в дБ, выполните log, а затем умножьте на 10. Чтобы преобразовать дБ в соотношение, разделите на 10, а затем сделайте десять с x, например 10 x | дБ и отношения
дБВт и Вт Вт
дБм и милливатт мВт
|
Определение: дБВт означает дБ относительно 1 ватта, поэтому 0 дБВт = 1 ватт, -3 дБВт = половина
ватт. +3 дБВт = 2 Вт и т. д.
Определение: дБм означает дБ относительно 1 милливатт, поэтому 0 дБм = 1 милливатт (один
тысячная часть 1 Вт или 0,001 Вт). Также равно -30 дБВт.
Определение: дБи означает усиление антенны по отношению к теоретической эталонной антенне с
изотропная, всенаправленная, сферическая диаграмма направленности.
Определение: дБд означает усиление антенны относительно эталонной антенны с
дипольная диаграмма направленности. Эталонная антенна может быть настоящим диполем.
антенна.
Интересные факты:
Спутниковый луч нисходящего канала с э.и.и.м. 50 дБВт означает, что он выглядит как 100 000 ваттный передатчик, подключенный к всенаправленной спутниковой антенне. Ты можно получить тот же эффект, используя спутниковый передатчик мощностью 100 Вт (+20 дБВт). подключен к направленной антенне нисходящего канала с небольшим лучом покрытия диаметром, с коэффициентом усиления 30 дБи, и вы находитесь на земле в центре принадлежащий диаграмма покрытия спутникового луча.
92 или 0,0000000000012589 ватт на квадратный метр на высоте спутника. Итак, если у вас есть прием антенну на спутнике с эффективной площадью сбора 1 кв. мощность сигнала, поступающего в спутниковый ресивер, составляет -119 дБВт.Возможны ошибки; любые проблемы или комментарии, пожалуйста, напишите мне по электронной почте [email protected] Эта страница калькулятора дБ защищена авторским правом (c) 2006 Satellite Signals Ltd, все права защищены Страница начата 26 декабря 2006 г., последние изменения внесены 9 марта 2022 г. |
Преобразование и интерпретация децибелов | Unboxing Tomorrow
Радиочастотные аттенюаторы, подобные этим, имеют маркировку в децибелах.Децибелы (дБ) являются важной единицей для работы с электронными сигналами. И хотя их свойства масштабирования и бесконечные варианты, такие как dBi, dBm, dBFS и dBµ, могут показаться неудобными; мы быстро расскажем, как преобразовать децибелы и обратно.
Децибелы впервые были опубликованы в Техническом журнале Bell System в 1929 году. Важно помнить о них то, что они предназначены для сравнения разницы между двумя уровнями мощности .
Сегодня мы в основном будем сравнивать количество энергии, выходящей из системы, с мощностью, которая поступает. Но децибелы также могут сравнивать измерение со стандартизированным эталонным значением. Так, например, когда мы говорим о громкости звука в децибелах, мы описываем, насколько громким этот звук по сравнению с порогом человеческого слуха (который является эталонным значением).
Когда децибелы впервые использовались, их роль заключалась в сравнении мощности сигнала, входящего в стандартный кабель, с мощностью на выходе. Это стало удобным способом выражения потерь сигнала.
Следующее преобразует это отношение в децибелы:
…где P 1 — входная мощность, а P 2 — выходная мощность. В других случаях член знаменателя (P 1 ) будет фиксированным эталонным значением, а член числителя (P 2 ) будет измерением.
Чтобы сделать обратное (т. е. преобразовать децибелы в коэффициент мощности), начните с числа децибел (x). Затем используйте экспоненциальную формулу, как показано ниже.
Обратите внимание, что эта форма подходит только для питания. Его не следует использовать, например, для нахождения коэффициентов напряжения (подробнее о том, почему, ниже).
Чтобы попрактиковаться в преобразовании, давайте посмотрим на недавний пример из моего радиотеста по отслеживанию суровых погодных условий. Погодные радиостанции, подобные приведенной ниже, рассылают прогнозы и ранние предупреждения об опасных угрозах, таких как торнадо. Обратите внимание на шкалу децибел слева и отношение сигнал/шум (SNR) справа.
Рисунок 1: Представление радиостанции в программном обеспечении Airspy (SDR Sharp)На рисунке 1 выше радиопередача о погоде изображена в виде сине-белого пика. Основание пика составляет около -65 dbFS (децибел относительно полной шкалы). Пик (показан желтым кружком) очень близок к -22 дБ полной шкалы. Верхний край графика находится на уровне 0 dBFS, что является верхним пределом для радио. И наконец: индикатор SNR справа показывает значение 43 дБ.
Сначала начнем со значения SNR, переведя его из децибел в отношение уровней мощности. Мы будем представлять мощность шума как P 1 , мощность сигнала как P 2 и ОСШ (измеряется в децибелах) как x.
Таким образом, когда ОСШ составляет 43 дБ, результатом является безразмерное значение около 19 952. Это говорит нам о том, что мощность принимаемых сигналов в логарифмическом отношении в 19 952 раза больше, чем шум, что весьма неплохо.
Как насчет того, чтобы сделать это в обратном порядке? В приведенном выше расчете мы использовали 10 в качестве основы для нашего показателя степени. Итак, чтобы обратить этот процесс вспять, мы используем логарифм по основанию 10:9.0007
Ввод P2 / P1 = 19952 дает исходное ОСШ 43 дБ.
Из приведенной ниже таблицы видно, что шкала децибел хорошо работает с нашей десятичной системой счета. Мы также можем сказать, что увеличение на 3 дБ соответствует увеличению мощности примерно в 2 раза; а снижение на 3 дБ соответствует потере примерно ½ мощности. Таблица 1: Перевод децибел по десятилетиям
При выражении прироста напряжения в децибелах вместо прироста мощности все работает немного по-другому. Условные обозначения для преобразования коэффициентов напряжения следующие:
Где |V 2 | – абсолютное значение выходного напряжения, а |V 1 | является абсолютным значением входного напряжения. Для краткости мы будем предполагать, что V 2 /V 1 всегда положительно с этого момента, и мы будем опускать знаки абсолютного значения…
Table 2: Decibel Scaling for Power vs. Voltage
Power Decibels (dB) | Voltage Decibels (dB) | Multiplier | ||||||
+50 dB | +100 dB | 100 000 | ||||||
+40 DB | +80 DB | 10 000 | ||||||
+30 DB | +60 DB | 1000 | ||||||
+208 | 9000 40008 | 9000 4000 4000 9000 | 9000 | 9000 9000 | ||||
+10 dB | +20 dB | 10 | ||||||
+0 dB | 0 dB | 1 | ||||||
-10 dB | -20 dB | 0.1 | ||||||
-20 dB | -40 dB | 0.01 | ||||||
-30 dB | -60 dB | 0.001 | ||||||
-40 dB | -80 dB | 0.000 1 | ||||||
-50 dB | — 100 дБ | 0,000 01 |
На первый взгляд это может показаться двойным стандартом, когда расчеты мощности в конечном итоге умножаются на 10, а расчеты напряжения умножаются на 20. Но на самом деле двойных стандартов не существует. Отправной точкой все время было 10 ∙ log 10 (A/B)!
Чтобы понять почему: вспомним, что децибелы изначально предназначались для сравнения с (измеряется в ваттах). Напряжение не мощность. Однако мы можем использовать степенной закон для расчета мощности, если известны напряжение (V) и сопротивление (R) (или импеданс)…
Подстановка этого значения в формулу преобразования децибелов дает…
Это можно упростить, используя два логарифмических свойства:
- Правило произведения для логарифмов: log 10 (A*B) = log 10 (A) + log 10 (B)
- Частное правило для логарифмов: log 10 (A/C) = log 10 (A) – log 10 (C)
Это позволяет нам разделить значения напряжения и сопротивления.
Мы используем правило логарифмической экспоненты, чтобы упростить первый логарифм…
- log 10 (A B ) = B log 10 (A)
, если R 1 = R 2 , то мы можем упростить вещи. ) = 0. Даже если R 1 и R 2 неизвестны, мощность по-прежнему пропорциональна V 2 , если сопротивление или импеданс постоянны. Таким образом, мы можем аппроксимировать усиление как…
Это объясняет, почему «20» связано с напряжением. Это также относится к другим единицам, таким как электрические поля (измеряемые в вольтах на метр).
Чтобы преобразовать представление напряжения x из децибелов в отношение напряжений, мы используем выражение, подобное предыдущему, только децибелы делятся на 20…
Возникает вопрос: почему бы просто не выразить разницу как P2/P1? Что мы получаем, вводя логарифм?
Вскоре мы рассмотрим это более подробно. Пока отмечу:
- Децибелы могут передать чрезвычайно большие и малые значения всего несколькими цифрами.
- Децибелы отлично подходят для значений, которые приближаются к нулю, но не равны нулю точно.
- Децибелы добавляются к бюджету канала связи.
В особых случаях децибелы могут быть менее обманчивы, чем проценты.
[1] | Д. Лю и Х. К. Робертс, «Физика звука и слуха», в Справочник инженеров-экологов , Бока-Ратон, Флорида, CRC Press, 1997, стр. 452-454 . |
[2] | У. Х. Мартин, «Децибел — название единицы передачи», Журнал AIEE, том. 48, нет. 3, с. 223, 1929. |
[3] | М. Мардигуян, «Общие сведения об излучаемых помехах», в Controlling Radiated Emissions by Design , 3-е изд., Springer Science + Business Media, 2014, с. 4. |
Важное примечание: Эта статья и ее содержание («Информация») принадлежат Unboxing-tomorrow.com и Voxidyne Media LLC. Никакая лицензия не предоставляется для его использования, кроме как для информационных целей.