Плазма википедия – Плазма — Википедия

Плазма википедия – Плазма — Википедия

Плазма — Википедия

Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизированный газ, одно из четырёх классических агрегатных состояний вещества.

Ионизированный газ содержит свободные электроны и положительные и отрицательные ионы. В более широком смысле, плазма может состоять из любых заряженных частиц (например, кварк-глюонная плазма). Квазинейтральность означает, что суммарный заряд в любом малом по сравнению с размерами системы объёме равен нулю, является её ключевым отличием от других систем, содержащих заряженные частицы (например, электронные или ионные пучки). Поскольку при нагреве газа до достаточно высоких температур, он переходит в плазму, она называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.

Поскольку частицы в газе обладают подвижностью, плазма обладает способностью проводить электрический ток. В стационарном случае плазма экранирует постоянное внешнее по отношению к ней электрическое поле за счёт пространственного разделения зарядов. Однако из-за наличия ненулевой температуры заряженных частиц существует минимальный масштаб, на расстояниях меньше которого квазинейтральность нарушается.

Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году. Ленгмюр писал[1]. Плазма: четвертое агрегатное состояние вещества

Что такое плазма и чем она отличается от других агрегатных состояний вещества. Каковы основные свойства и характеристики плазмы. Где в природе встречается плазма и как она применяется человеком.

Содержание

Что такое плазма и как она образуется

Плазма — это ионизированный газ, состоящий из свободных электронов, положительно и отрицательно заряженных ионов. Она образуется при нагревании вещества до очень высоких температур или под воздействием сильных электромагнитных полей. При этом атомы теряют часть электронов, превращаясь в ионы.

Основные способы получения плазмы:

  • Нагрев газа до температур в десятки тысяч градусов
  • Воздействие сильного электрического поля на газ
  • Облучение вещества мощными электромагнитными импульсами
  • Бомбардировка атомов быстрыми частицами

Какая минимальная температура необходима для образования плазмы? Это зависит от конкретного вещества, но обычно составляет от нескольких тысяч до десятков тысяч градусов Цельсия.

Основные свойства и характеристики плазмы

Плазма обладает рядом уникальных свойств, отличающих ее от обычных газов:


  • Высокая электропроводность
  • Взаимодействие с магнитными и электрическими полями
  • Коллективное поведение частиц
  • Квазинейтральность (в целом электрически нейтральна)
  • Способность экранировать электрические поля

Важнейшие характеристики плазмы:

  • Степень ионизации (доля ионизированных атомов)
  • Температура электронов и ионов
  • Концентрация заряженных частиц
  • Дебаевский радиус (характерный масштаб экранирования)
  • Плазменная частота (частота колебаний электронов)

Как плазма взаимодействует с магнитным полем? Заряженные частицы плазмы начинают двигаться по спиральным траекториям вдоль силовых линий магнитного поля.

Виды и классификация плазмы

Плазму классифицируют по различным параметрам:

По температуре:

  • Низкотемпературная (до 100 000 К)
  • Высокотемпературная (свыше 100 000 К)

По степени ионизации:

  • Слабоионизированная (менее 1% ионизированных атомов)
  • Сильноионизированная (более 1% ионизированных атомов)
  • Полностью ионизированная (100% ионизация)

По плотности:

  • Разреженная плазма (низкая концентрация частиц)
  • Плотная плазма (высокая концентрация частиц)

Какой вид плазмы наиболее распространен во Вселенной? Это разреженная высокотемпературная плазма, заполняющая межзвездное и межгалактическое пространство.


Где в природе встречается плазма

Плазма — самое распространенное состояние вещества во Вселенной. Она встречается во многих астрономических объектах:

  • Звезды (в том числе наше Солнце)
  • Солнечный ветер и солнечная корона
  • Межзвездная среда
  • Ионосфера Земли и других планет
  • Полярные сияния
  • Молнии

По оценкам ученых, более 99% видимой материи во Вселенной находится в состоянии плазмы. На Земле в естественных условиях плазма встречается редко из-за относительно низких температур.

Почему звезды состоят из плазмы? Температура в недрах звезд достигает миллионов градусов, что приводит к полной ионизации атомов и образованию звездной плазмы.

Применение плазмы человеком

Несмотря на экзотичность, плазма нашла широкое применение в современных технологиях:

  • Плазменные телевизоры и дисплеи
  • Флуоресцентные и газоразрядные лампы
  • Плазменная резка и сварка металлов
  • Плазменные двигатели для космических аппаратов
  • Управляемый термоядерный синтез
  • Плазменная стерилизация медицинских инструментов
  • Плазмохимия (получение новых материалов)

Как плазма используется в медицине? Низкотемпературная плазма применяется для стерилизации инструментов и обработки ран, а также в косметологии для омоложения кожи.


Методы изучения и диагностики плазмы

Для исследования свойств плазмы используются различные методы:

  • Зондовые измерения (введение электродов в плазму)
  • Спектроскопия (анализ излучения плазмы)
  • Лазерное рассеяние
  • Микроволновая диагностика
  • Магнитные измерения
  • Компьютерное моделирование

Эти методы позволяют определять температуру, плотность, состав и другие параметры плазмы. Изучение плазмы важно для понимания процессов в космосе и развития новых технологий.

Какой метод диагностики плазмы является наиболее информативным? Комбинация нескольких методов, например, зондовых измерений и спектроскопии, дает наиболее полную информацию о свойствах плазмы.

Теоретическое описание плазмы

Для описания поведения плазмы используются различные теоретические подходы:

  • Кинетическая теория (описание функции распределения частиц)
  • Магнитогидродинамика (МГД, плазма как проводящая жидкость)
  • Двухжидкостная модель (электроны и ионы как отдельные жидкости)
  • Теория колебаний и волн в плазме
  • Теория неустойчивостей плазмы

Эти теории позволяют описывать и предсказывать поведение плазмы в различных условиях. Однако из-за сложности плазменных процессов часто приходится прибегать к численному моделированию.


Почему плазму сложно описать теоретически? Из-за коллективных эффектов и дальнодействующих электромагнитных взаимодействий между частицами плазма демонстрирует очень сложное нелинейное поведение.


Плазма — Википедия

Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизированный газ, одно из четырёх классических агрегатных состояний вещества.

Ионизированный газ содержит свободные электроны и положительные и отрицательные ионы. В более широком смысле, плазма может состоять из любых заряженных частиц (например, кварк-глюонная плазма). Квазинейтральность означает, что суммарный заряд в любом малом по сравнению с размерами системы объёме равен нулю, является её ключевым отличием от других систем, содержащих заряженные частицы (например, электронные или ионные пучки). Поскольку при нагреве газа до достаточно высоких температур, он переходит в плазму, она называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.

Поскольку частицы в газе обладают подвижностью, плазма обладает способностью проводить электрический ток. В стационарном случае плазма экранирует постоянное внешнее по отношению к ней электрическое поле за счёт пространственного разделения зарядов. Однако из-за наличия ненулевой температуры заряженных частиц существует минимальный масштаб, на расстояниях меньше которого квазинейтральность нарушается.

Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году. Ленгмюр писал[1]:

Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.

Древние философы полагали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Можно сказать, что это положение с учетом некоторых допущений укладывается в современное представление о четырёх агрегатных состояниях вещества, причём плазме соответствует огонь. Свойства плазмы изучает физика плазмы.

По сегодняшним представлениям, фазовым состоянием большей части барионного вещества (по массе ок. 99,9 %) во Вселенной является плазма.[2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвёздное пространство). К примеру, планета Юпитер сосредоточила в себе практически всё вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твёрдом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём — и того меньше: всего 10−15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определённый электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжёлых заряженных ионов (см. пылевая плазма).

Определение плазмы[править | править код]

Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.[4] Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:

[5][6][7]

  • Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:
rD3N≫1,{\displaystyle r_{D}^{3}N\gg 1,}
где N{\displaystyle N} — концентрация заряженных частиц.
  • Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:
rDL≪1.{\displaystyle {r_{D} \over L}\ll 1.}
  • Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:
τωpl≫1.{\displaystyle \tau \omega _{pl}\gg 1.}

Классификация[править | править код]

Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

Температура[править | править код]

Плазму делят на низкотемпературную (температура меньше миллиона K) и высокотемпературную (температура миллион K и выше). Такое деление обусловлено важностью высокотемпературной плазмы в проблеме осуществления управляемого термоядерного синтеза. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние[9].

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Степень и кратность ионизации[править | править код]

Для того, чтобы газ перешёл в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = ni /(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z>ni, где <Z> — среднее значение заряда ионов плазмы, или кратность ионизации плазмы. Очевидно, что максимальное значение α равно 1 (или 100 %), такую плазму называют полностью ионизованной.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные плёнки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвёртым агрегатным состоянием вещества». Примером может служить Солнце.

Концентрация частиц в плазме[править | править код]

Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является концентрация заряженных частиц. Словосочетание концентрация плазмы обычно обозначает концентрация электронов, то есть число свободных электронов в единице объёма. В квазинейтральной плазме концентрация ионов связана с ней посредством среднего зарядового числа ионов ⟨Z⟩{\displaystyle \langle Z\rangle }: ne=⟨Z⟩ni{\displaystyle n_{e}=\langle Z\rangle n_{i}}. Следующей важной величиной является концентрация нейтральных атомов n0{\displaystyle n_{0}}. В горячей плазме n0{\displaystyle n_{0}} мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром концентрации становится rs{\displaystyle r_{s}}, который определяется как отношение среднего межчастичного расстояния к радиусу Бора.

Квазинейтральность[править | править код]

Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (ne=⟨Z⟩ni{\displaystyle n_{e}=\langle Z\rangle n_{i}}). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Плазму часто называют четвёртым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:

СвойствоГазПлазма
Электрическая проводимостьКрайне мала
К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр.[10]
Очень высока
  1. Несмотря на то, что при протекании тока возникает хотя и малое, но тем не менее конечное падение потенциала, во многих случаях электрическое поле в плазме можно считать равным нулю. Градиенты плотности, связанные с наличием электрического поля, могут быть выражены через распределение Больцмана.
  2. Возможность проводить токи делает плазму сильно подверженной влиянию магнитного поля, что приводит к возникновению таких явлений как филаментирование, появление слоёв и струй.
  3. Типичным является наличие коллективных эффектов, так как электрические и магнитные силы являются дальнодействующими и гораздо сильнее, чем гравитационные.
Число сортов частицОдин
Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации, а друг с другом взаимодействуют только на сравнительно небольших расстояниях.
Два, или три, или более
Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга — иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей.
Распределение по скоростямМаксвелловское
Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей, согласно которому очень малая часть молекул газа имеют относительно большие скорости движения.
Может быть немаксвелловское

Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны.

Тип взаимодействийБинарные
Как правило двухчастичные столкновения, трёхчастичные крайне редки.
Коллективные
Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные.

Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем, если использовать для их описания простые модели. Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.

Флюидная (жидкостная) модель[править | править код]

Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

Кинетическое описание[править | править код]

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

Particle-In-Cell (частица в ячейке)[править | править код]

Модели Particle-In-Cell используются для численного решения кинетических уравнений. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных квазичастиц, каждая из которых отвечает некоторому числу реальных частиц (интегралу от функции распределения по ограниченной в фазовом пространстве области). Плотности электрического заряда и тока определяются путём суммирования заряда и квазичастиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число квазичастиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек. Не стоит путать модели PIC с прямым интегрированием уравнений движения реальных частиц, из которых состоит плазма — электронов и ионов — поскольку общее число квазичастиц в PIC-моделях, как правило, на много порядков меньше.

Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона μ=mi/mp{\displaystyle \mu =m_{i}/m_{p}}; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.

Частоты[править | править код]

  • Ларморова частота электрона, угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
ωce=eB/mec=1.76×107Brad/s.{\displaystyle \omega _{ce}=eB/m_{e}c=1.76\times 10^{7}B{\mbox{rad/s}}.}
  • Ларморова частота иона, угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
ωci=eB/mic=9.58×103Zμ−1Brad/s.{\displaystyle \omega _{ci}=eB/m_{i}c=9.58\times 10^{3}Z\mu ^{-1}B{\mbox{rad/s}}.}
  • Плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещёнными относительно ионов:
ωpe=(4πnee2/me)1/2=5.64×104ne1/2rad/s.{\displaystyle \omega _{pe}=(4\pi n_{e}e^{2}/m_{e})^{1/2}=5.64\times 10^{4}n_{e}^{1/2}{\mbox{rad/s}}.}
  • Ионная плазменная частота:
ωpi=(4πniZ2e2/mi)1/2=1.32×103Zμ−1/2ni1/2rad/s.{\displaystyle \omega _{pi}=(4\pi n_{i}Z^{2}e^{2}/m_{i})^{1/2}=1.32\times 10^{3}Z\mu ^{-1/2}n_{i}^{1/2}{\mbox{rad/s}}.}
  • Частота столкновений электронов
νe=2.91×10−6neln⁡ΛTe−3/2s−1.{\displaystyle \nu _{e}=2.91\times 10^{-6}n_{e}\,\ln \Lambda \,T_{e}^{-3/2}{\mbox{s}}^{-1}.}
  • Частота столкновений ионов
νi=4.80×10−8Z4μ−1/2niln⁡ΛTi−3/2s−1.{\displaystyle \nu _{i}=4.80\times 10^{-8}Z^{4}\mu ^{-1/2}n_{i}\,\ln \Lambda \,T_{i}^{-3/2}{\mbox{s}}^{-1}.}

Длины[править | править код]

  • Де-Бройлева длина волны электрона, длина волны электрона в квантовой механике:
λ−=ℏ/(mekTe)1/2=2.76×10−8Te−1/2cm.{\displaystyle \lambda \!\!\!\!-=\hbar /(m_{e}kT_{e})^{1/2}=2.76\times 10^{-8}\,T_{e}^{-1/2}\,{\mbox{cm}}.}
  • Минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
e2/kT=1.44×10−7T−1cm.{\displaystyle e^{2}/kT=1.44\times 10^{-7}\,T^{-1}\,{\mbox{cm}}.}
  • Гиромагнитный радиус электрона, радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
re=vTe/ωce=2.38Te1/2B−1cm.{\displaystyle r_{e}=v_{Te}/\omega _{ce}=2.38\,T_{e}^{1/2}B^{-1}\,{\mbox{cm}}.}
  • Гиромагнитный радиус иона, радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
ri=vTi/ωci=1.02×102μ1/2Z−1Ti1/2B−1cm.{\displaystyle r_{i}=v_{Ti}/\omega _{ci}=1.02\times 10^{2}\,\mu ^{1/2}Z^{-1}T_{i}^{1/2}B^{-1}\,{\mbox{cm}}.}
  • Размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:
c/ωpe=5.31×105ne−1/2cm.{\displaystyle c/\omega _{pe}=5.31\times 10^{5}\,n_{e}^{-1/2}\,{\mbox{cm}}.}
  • Радиус Дебая (длина Дебая), расстояние на котором электрические поля экранируются за счёт перераспределения электронов:
λD=(kT/4πne2)1/2=7.43×102T1/2n−1/2cm.{\displaystyle \lambda _{D}=(kT/4\pi ne^{2})^{1/2}=7.43\times 10^{2}\,T^{1/2}n^{-1/2}\,{\mbox{cm}}.}

Скорости[править | править код]

  • Тепловая скорость электрона, формула для оценки скорости электронов при распределении Максвелла. Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
vTe=(kTe/me)1/2=4.19×107Te1/2cm/s.{\displaystyle v_{Te}=(kT_{e}/m_{e})^{1/2}=4.19\times 10^{7}\,T_{e}^{1/2}\,{\mbox{cm/s}}.}
vTi=(kTi/mi)1/2=9.79×105μ−1/2Ti1/2cm/s.{\displaystyle v_{Ti}=(kT_{i}/m_{i})^{1/2}=9.79\times 10^{5}\,\mu ^{-1/2}T_{i}^{1/2}\,{\mbox{cm/s}}.}
  • Скорость ионного звука, скорость продольных ионно-звуковых волн:
cs=(γZkTe/mi

ru.wikipedia.org

Plazma — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 октября 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 октября 2019; проверки требует 1 правка.

Plazma (оригин. PLAZMA) — российская музыкальная группа, работающая в жанрах от синти-попа и евродэнса[источник?] до поп-рока[1]. Одна из первых начала исполнять песни исключительно на английском языке для русскоговорящей аудитории[2].

Бессменными участниками коллектива являются Роман Черницын (вокалист, композитор, автор текстов) и Максим Постельный (клавишник, бэк-вокалист, композитор, аранжировщик), в концертах также принимают участие музыканты Александр Лучков (скрипач, гитарист) и Николай Трофимов (гитарист).

Известность группа приобрела после выпуска первого сингла «Take My Love», который стал активным участником многих радийных чартов. Первые два альбома — Take My Love и 607 — были проданы тиражом более чем в 1 миллион копий. Также Plazma получила премию Попова за наибольшее количество радиоэфиров[3].

Plazma является участником финала отборочного тура международного конкурса «Евровидение-2009», в котором исполнила композицию «Never Ending Story». Также группа подавала заявку на участие в 2007 и 2010 годах с композициями «Living in the Past» и «Mystery (The Power Within)» соответственно.

Основной состав[править | править код]

Дополнительный концертный состав[править | править код]

Студийные альбомы[править | править код]

Переиздания[править | править код]

Синглы[править | править код]

Радиосинглы[править | править код]

Данный раздел содержит примерный список радиосинглов и других песен в чартах, выпущенных с 2003 года, согласно сайту Tophit[4]. Ранние радиосинглы/песни в чартах в списке отсутствуют, но могут быть добавлены любым участником при наличии ссылки на источник.

Дата начала
ротации
ПесняВсего эфиров
По состоянию на 4 октября 2019
Высшая позиция
Tophit (Top Radio Hits)
Альбом
17.11.2003[5]A Bit of Perfection749105607
01.12.2003[6]The Power of Your Spell5 74049Six Zero Seven — New Version
31.05.2004[7]Never Again12 65143Black & White
08.11.2004[8]Lonely II25 41163
18.04.2005[9]One of a Kind79 28831
12.09.2005[10]One Life204 16526
10.10.2005[11]One Life (Red Max Mix)2 735
10.04.2006[12]Save273 45014
25.09.2006[13]Black Would Be White469 31710
21.05.2007[14]I Never Dreamed (That You’d Love Me)33 00295
24.03.2008[15]Бумажное небо (совместно с Алёной Водонаевой)24 437116
28.07.2008[16]Living in the Past186 05726Black & White
01.12.2008[17]Living in the Past (Nord Remix)3 780
02.03.2009[18]Never Ending Story5 818222Indian Summer
19.10.2009[19]The Real Song (Untitled)6 038209
28.12.2009[20]Mystery (The Power Within)550 81331
19.04.2010[21]Mystery (The Power Within) (совместно с Red Max)3 779
18.07.2011[22]Angel of Snow73 40250Indian Summer
12.09.2011[23]Angel of Snow (совместно с Paul Vine)608
25.03.2013[24]Black Leather Boys12 761171Indian Summer
22.12.2014[25]Lucky Rider27 075156
14.09.2015[26]Tame Your Ghosts7 129191
18.03.2019[27]I Believe in Love804
09.09.2019[28]Salvation364
Цифровые синглы[править | править код]
Дата выходаПесняЛейблАльбом
04.11.2010[29]Living in the Past (Green Noize Remix, 2ears Remix)Musicheads Rec.
28.03.2012[30][31]Angel of SnowTAK MusicIndian Summer
30.10.2013[32]Black Leather BoysFreestyle Records
15.06.2015[33]Lucky Rider
31.08.2015[34]Tame Your GhostsZion Music
07.03.2018[35]Rescue Me (совместно с Mish)Студия Союз / Танцевальный рай
01.03.2019[36]I Believe in LoveПервое музыкальное Издательство
06.09.2019[37]Salvation
Промосинглы[править | править код]

Данный раздел содержит список промосинглов, выпущенных с 2017 года. Ранние промосинглы в списке отсутствуют, но могут быть добавлены любым участником при наличии ссылки на источник.

Дата выходаПесняЛейблАльбом
19.12.2017[38]LaterПервое музыкальное Издательство,
United Music Group
Indian Summer
Dangerous
Indian Summer
Up In the Wind
Brilliant Water

Полноценные видеоклипы[править | править код]

Лирик-видео[править | править код]

  1. ↑ Plazma (неопр.). Last.fm. Дата обращения 23 января 2015.
  2. Кушаков, Олег Группа «Плазма» автографы до посинения (неопр.). Аргументы и факты (31 июля 2001). Дата обращения 4 марта 2009.
  3. ↑ THE STORY (неопр.) (недоступная ссылка). www.plazma.ru. Дата обращения 3 марта 2009. Архивировано 12 апреля 2003 года.
  4. ↑ TopHit.ru (Connecting Music & Media) — Поиск по сайту — Plazma (неопр.). Tophit. Дата обращения 3 февраля 2019.
  5. ↑ Plazma — A Bit Of Perfection (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  6. ↑ Plazma — Power Of Your Spell (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  7. ↑ Plazma — Never Again (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  8. ↑ Plazma — Lonely II (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  9. ↑ Plazma — One Of A Kind (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  10. ↑ Plazma — One Life (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  11. ↑ Plazma — One Life (Red Max Mix) (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  12. ↑ Plazma — Save (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  13. ↑ Plazma — Black Would Be White (Radio Edit) (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  14. ↑ Plazma — I Never Dreamed (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  15. ↑ Plazma & Алёна Водонаева — Бумажное небо (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  16. ↑ Plazma — Living In The Past (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  17. ↑ Plazma — Living In The Past (Nord Remix) (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  18. ↑ Plazma — Never Ending Story (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  19. ↑ Plazma — The Real Song (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  20. ↑ Plazma — Mystery (The Power Within) (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  21. ↑ Plazma feat. Red Max — Mystery (The Power Within) (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  22. ↑ Plazma — Angel Of Snow (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  23. ↑ Plazma feat. Paul Vine — Angel Of Snow (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  24. ↑ Plazma — Black Leather Boys (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  25. ↑ Plazma — Lucky Rider (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  26. ↑ Plazma — Tame Your Ghosts (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  27. ↑ Plazma — I Believe In Love (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.
  28. ↑ Plazma — Salvation (послушать музыку, посмотреть видео клип) (неопр.). Tophit. Дата обращения 4 октября 2019.
  29. ↑ ‎‎Альбом «Living In The Past — Single» (Plazma) в Apple Music (неопр.). iTunes Store. Дата обращения 3 февраля 2019.
  30. ↑ ‎Альбом «Angel Of Snow — Single» (Plazma) в Apple Music (неопр.). iTunes Store. Дата обращения 3 февраля 2019.
  31. ↑ Plazma — Angel Of Snow (File, MP3, Single) (неопр.). Discogs. Дата обращения 27 января 2019.
  32. ↑ Plazma — Black Leather Boys (File, MP3, Single) (неопр.). Discogs. Дата обращения 27 января 2019.
  33. ↑ Plazma — Lucky Rider (File, MP3, Single) (неопр.). Discogs. Дата обращения 27 января 2019.
  34. ↑ Plazma — Tame Your Ghosts (File, AAC, Single) (неопр.). Discogs. Дата обращения 27 января 2019.
  35. ↑ Альбом «Rescue Me — Single» (Plazma & MISH) в Apple (неопр.). iTunes Store. Дата обращения 5 сентября 2018.
  36. ↑ ‎Альбом «I Believe in Love — Single» (Plazma) в Apple Music (неопр.). iTunes Store. Дата обращения 1 марта 2019.
  37. ↑ ‎Альбом «Salvation — Single» (Plazma) в Apple Music (неопр.). iTunes Store. Дата обращения 6 сентября 2019.
  38. ↑ Plazma — 5 новых хитов 2018 (неопр.). Первое музыкальное Издательство, United Music Group. Meloman Music — YouTube (19 декабря 2017). Дата обращения 27 января 2019.
  39. ↑ PLAZMA — Official site — Видеоклипы (неопр.). www.plazma.ru. Дата обращения 31 декабря 2014.
  40. ↑ PLAZMA — Лучшие клипы — The Best Video (неопр.). Meloman Video. YouTube (21 марта 2017). Дата обращения 28 января 2019.
  41. ↑ Plazma — A Bit Of Perfection (послушать музыку, посмотреть видеоклип) (неопр.). Tophit. Дата обращения 3 февраля 2019.

ru.wikipedia.org

Плазма крови — Википедия

Материал из Википедии — свободной энциклопедии

Пла́зма кро́ви (от греч. πλάσμα «нечто сформированное, образованное») — жидкая часть крови, в которой взвешены форменные элементы — вторая часть крови. Процентное содержание плазмы в крови составляет 52—61 %. Макроскопически представляет собой однородную несколько мутную (иногда почти прозрачную) желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови.

Центрифуги-сепараторы выделяют из крови плазму. Плазма крови состоит из воды, в которой растворены вещества — белки (7—8 % от массы плазмы) и другие органические и минеральные соединения. Основными белками плазмы являются альбумины — 55—65 %, α1-глобулины — 2—4 %, α2-глобулины 6—12 %, β-глобулины 8 — 12 %, γ-глобулины — 2-4 % и фибриноген — 0,2—0,4 %. В плазме крови растворены также питательные вещества (в частности глюкоза и липиды), гормоны, витамины, ферменты и промежуточные и конечные продукты обмена веществ, а также неорганические вещества.

В среднем 1 литр плазмы человека содержит 900—950 г воды, 65—85 г белка и 20 г низкомолекулярных соединений. Плотность плазмы составляет от 1,025 до 1,029 г/мл, pH — 7,36—7,42.

Существует обширная практика собирания донорской плазмы крови. Плазма отделяется от эритроцитов центрифугированием с помощью специального аппарата, после чего эритроциты возвращаются донору. Этот процесс называется плазмаферезом.

Плазма с высокой концентрацией тромбоцитов (богатая тромбоцитами плазма) находит все большее применение в медицине в качестве стимулятора заживления и регенерации тканей организма. В настоящее время на её основе разработана многофункциональная медицинская методика, используемая в стоматологии и косметологии.

ru.wikipedia.org

Плазменная панель — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 февраля 2019; проверки требуют 12 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 февраля 2019; проверки требуют 12 правок. У этого термина существуют и другие значения, см. Панель. Плазменный телевизор

Газоразрядный экран (также широко применяется калька с английского «плазменная панель») — устройство отображения информации, монитор, основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря — в плазме. (См. также: SED).

Оранжевая монохромная индикаторная панель Digivue в PLATO V, 1981

Плазменная панель была разработана в Университете Иллинойса в процессе создания системы электронного обучения США доктором Дональдом Битцером (Donald Bitzer), Жене Слоттовым (H. Gene Slottow) и Робертом Вильсоном (Robert Willson)[1]. Патент на изобретение они получили в 1964 году. Первый плоский дисплей состоял из одного пикселя.

В 1971 году компания «Owens-Illinois» приобрела лицензию на производство дисплеев Digivue. В 1983 году Университет Иллинойса продал лицензию на производство плазменных панелей компании IBM.

Первый в мире 21-дюймовый (53 см) полноцветный дисплей представила в 1992 году компания Fujitsu. В 1999 году «Matsushita» («Panasonic») создала перспективный 60-дюймовый прототип.

Начиная с 2010 года производство плазменных телевизоров сокращалось из-за невозможности конкурировать с более дешевыми LED-телевизорами и в 2014 практически прекратилось[2].

Устройство плазменной панели

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключённых между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Особенности конструкции:

  • субпиксель плазменной панели обладает следующими размерами: 200 x 200 x 100 мкм;
  • передний электрод изготовляется из оксида индия и олова, поскольку он проводит ток и максимально прозрачен.
  • при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома, несмотря на его непрозрачность;
  • для создания плазмы ячейки обычно заполняются газами — неоном или ксеноном (реже используется гелий и/или аргон, или, чаще, их смеси) с добавлением ртути.

Химический состав люминофора:

  • Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+;+ / YBO3:Tb / (Y, Gd) BO3:Eu[3]
  • Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3+
  • Синий: BaMgAl10O17:Eu2+

Существующая проблема в адресации миллионов пикселей решается расположением пары передних дорожек в виде строк (шины сканирования и подсветки), а каждой задней дорожки — в виде столбцов (шина адресации). Внутренняя электроника плазменных экранов автоматически выбирает нужные пиксели. Эта операция проходит быстрее, чем сканирование лучом на ЭЛТ-мониторах. В последних моделях PDP обновление экрана происходит на частотах 400 — 600 Гц, что позволяет человеческому глазу не замечать мерцания экрана.

Работа плазменной панели состоит из трёх этапов:

  1. инициализация, в ходе которой происходит упорядочение положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подаётся импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочение расположения ионной газовой среды, на второй ступени — разряд в газе, а на третьей — завершение упорядочения.
  2. адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подаётся положительный импульс (+75 В), а на шину сканирования отрицательный (–75 В). На шине подсветки напряжение устанавливается равным +150 В.
  3. подсветка, в ходе которой на шину сканирования подаётся положительный, а на шину подсветки — отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, сменой полярности импульсов обеспечивается многократный разряд ячейки.

Один цикл «инициализация — адресация — подсветка» образует формирование одного подполя изображения. Складывая несколько подполей, можно обеспечивать изображение заданной яркости и контраста. В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит ёмкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение, проходя через переднюю стеклянную пластину, попадает в глаз зрителя.

Преимущества:

  • высокая контрастность;
  • глубина цветов;
  • стабильная равномерность на чёрном и белом цвете;
  • наибольший срок службы (30 лет) по сравнению с ЖК-панелями (7—10 лет)[источник не указан 189 дней]

Недостатки:

  • более высокое энергопотребление в сравнении с ЖК-панелями;
  • крупногабаритные пиксели и, как следствие, только достаточно крупногабаритные плазменные панели обладают достаточным экранным разрешением;
  • выгорание экрана от неподвижного изображения (эффект памяти), например, от логотипа телеканала (происходит из-за перегрева люминофора и последующего его испарения).

Плазменные телевизоры История создания плазменных панелей и их техническая характеристика

ru.wikipedia.org

Плазма — Википедия

Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизованный газ, одно из четырех основных агрегатных состояний вещества.

Ионизированный газ содержит свободные электроны и положительные и отрицательные ионы. В более широком смысле, плазма может состоять из любых заряженных частиц (например, кварк-глюонная плазма). Квазинейтральность означает, что суммарный заряд в любом малом по сравнению с размерами системы объёме равен нулю, является её ключевым отличием от других систем, содержащих заряженные частицы (например, электронные или ионные пучки). Поскольку при нагреве газа до достаточно высоких температур, он переходит в плазму, она называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.

Поскольку частицы в газе обладают подвижностью, плазма обладает способностью проводить электрический ток. В стационарном случае плазма экранирует постоянное внешнее по отношению к ней электрическое поле за счёт пространственного разделения зарядов. Однако из-за наличия ненулевой температуры заряженных частиц существует минимальный масштаб, на расстояниях меньше которого квазинейтральность нарушается.

История открытия

Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году. Ленгмюр писал[1]:

Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.

Древние философы полагали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Можно сказать, что это положение с учетом некоторых допущений укладывается в современное представление о четырёх агрегатных состояниях вещества, причём плазме соответствует огонь. Свойства плазмы изучает физика плазмы.

Виды

По сегодняшним представлениям, фазовым состоянием большей части барионного вещества (по массе ок. 99,9 %) во Вселенной является плазма.[2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвёздное пространство). К примеру, планета Юпитер сосредоточила в себе практически всё вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твёрдом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём — и того меньше: всего 10−15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определённый электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжёлых заряженных ионов (см. пылевая плазма).

Свойства и параметры

Определение плазмы

Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.[4] Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:[5][6][7]

  • Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:
rD3N≫1,{\displaystyle r_{D}^{3}N\gg 1,}
где N{\displaystyle N} — концентрация заряженных частиц.
  • Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:
rDL≪1.{\displaystyle {r_{D} \over L}\ll 1.}
  • Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:
τωpl≫1.{\displaystyle \tau \omega _{pl}\gg 1.}

Классификация

Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

Температура

Плазму делят на низкотемпературную (температура меньше миллиона K) и высокотемпературную (температура миллион K и выше). Такое деление обусловлено важностью высокотемпературной плазмы в проблеме осуществления управляемого термоядерного синтеза. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние[9].

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Степень и кратность ионизации

Для того, чтобы газ перешёл в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = ni /(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z>ni, где <Z> — среднее значение заряда ионов плазмы, или кратность ионизации плазмы. Очевидно, что максимальное значение α равно 1 (или 100 %), такую плазму называют полностью ионизованной.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные плёнки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвёртым агрегатным состоянием вещества». Примером может служить Солнце.

Концентрация частиц в плазме

Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является концентрация заряженных частиц. Словосочетание концентрация плазмы обычно обозначает концентрация электронов, то есть число свободных электронов в единице объёма. В квазинейтральной плазме концентрация ионов связана с ней посредством среднего зарядового числа ионов ⟨Z⟩{\displaystyle \langle Z\rangle }: ne=⟨Z⟩ni{\displaystyle n_{e}=\langle Z\rangle n_{i}}. Следующей важной величиной является концентрация нейтральных атомов n0{\displaystyle n_{0}}. В горячей плазме n0{\displaystyle n_{0}} мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром концентрации становится rs{\displaystyle r_{s}}, который определяется как отношение среднего межчастичного расстояния к радиусу Бора.

Квазинейтральность

Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (ne=⟨Z⟩ni{\displaystyle n_{e}=\langle Z\rangle n_{i}}). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Отличия от газообразного состояния

Плазму часто называют четвёртым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:

СвойствоГазПлазма
Электрическая проводимостьКрайне мала
К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр.[10]
Очень высока
  1. Несмотря на то, что при протекании тока возникает хотя и малое, но тем не менее конечное падение потенциала, во многих случаях электрическое поле в плазме можно считать равным нулю. Градиенты плотности, связанные с наличием электрического поля, могут быть выражены через распределение Больцмана.
  2. Возможность проводить токи делает плазму сильно подверженной влиянию магнитного поля, что приводит к возникновению таких явлений как филаментирование, появление слоёв и струй.
  3. Типичным является наличие коллективных эффектов, так как электрические и магнитные силы являются дальнодействующими и гораздо сильнее, чем гравитационные.
Число сортов частицОдин
Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации, а друг с другом взаимодействуют только на сравнительно небольших расстояниях.
Два, или три, или более
Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга — иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей.
Распределение по скоростямМаксвелловское
Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей, согласно которому очень малая часть молекул газа имеют относительно большие скорости движения.
Может быть немаксвелловское

Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны.

Тип взаимодействийБинарные
Как правило двухчастичные столкновения, трёхчастичные крайне редки.
Коллективные
Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные.

Сложные плазменные явления

Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем, если использовать для их описания простые модели. Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.

Флюидная (жидкостная) модель

Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

Кинетическое описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

Particle-In-Cell (частица в ячейке)

Модели Particle-In-Cell используются для численного решения кинетических уравнений. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных квазичастиц, каждая из которых отвечает некоторому числу реальных частиц (интегралу от функции распределения по ограниченной в фазовом пространстве области). Плотности электрического заряда и тока определяются путём суммирования заряда и квазичастиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число квазичастиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек. Не стоит путать модели PIC с прямым интегрированием уравнений движения реальных частиц, из которых состоит плазма — электронов и ионов — поскольку общее число квазичастиц в PIC-моделях, как правило, на много порядков меньше.

Базовые характеристики

Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона μ=mi/mp{\displaystyle \mu =m_{i}/m_{p}}; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.

Частоты

  • Ларморова частота электрона, угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
ωce=eB/mec=1.76×107Brad/s.{\displaystyle \omega _{ce}=eB/m_{e}c=1.76\times 10^{7}B{\mbox{rad/s}}.}
  • Ларморова частота иона, угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
ωci=eB/mic=9.58×103Zμ−1Brad/s.{\displaystyle \omega _{ci}=eB/m_{i}c=9.58\times 10^{3}Z\mu ^{-1}B{\mbox{rad/s}}.}
  • Плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещёнными относительно ионов:
ωpe=(4πnee2/me)1/2=5.64×104ne1/2rad/s.{\displaystyle \omega _{pe}=(4\pi n_{e}e^{2}/m_{e})^{1/2}=5.64\times 10^{4}n_{e}^{1/2}{\mbox{rad/s}}.}
  • Ионная плазменная частота:
ωpi=(4πniZ2e2/mi)1/2=1.32×103Zμ−1/2ni1/2rad/s.{\displaystyle \omega _{pi}=(4\pi n_{i}Z^{2}e^{2}/m_{i})^{1/2}=1.32\times 10^{3}Z\mu ^{-1/2}n_{i}^{1/2}{\mbox{rad/s}}.}
  • Частота столкновений электронов
νe=2.91×10−6neln⁡ΛTe−3/2s−1.{\displaystyle \nu _{e}=2.91\times 10^{-6}n_{e}\,\ln \Lambda \,T_{e}^{-3/2}{\mbox{s}}^{-1}.}
  • Частота столкновений ионов
νi=4.80×10−8Z4μ−1/2niln⁡ΛTi−3/2s−1.{\displaystyle \nu _{i}=4.80\times 10^{-8}Z^{4}\mu ^{-1/2}n_{i}\,\ln \Lambda \,T_{i}^{-3/2}{\mbox{s}}^{-1}.}

Длины

  • Де-Бройлева длина волны электрона, длина волны электрона в квантовой механике:
λ−=ℏ/(mekTe)1/2=2.76×10−8Te−1/2cm.{\displaystyle \lambda \!\!\!\!-=\hbar /(m_{e}kT_{e})^{1/2}=2.76\times 10^{-8}\,T_{e}^{-1/2}\,{\mbox{cm}}.}
  • Минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
e2/kT=1.44×10−7T−1cm.{\displaystyle e^{2}/kT=1.44\times 10^{-7}\,T^{-1}\,{\mbox{cm}}.}
  • Гиромагнитный радиус электрона, радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
re=vTe/ωce=2.38Te1/2B−1cm.{\displaystyle r_{e}=v_{Te}/\omega _{ce}=2.38\,T_{e}^{1/2}B^{-1}\,{\mbox{cm}}.}
  • Гиромагнитный радиус иона, радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
ri=vTi/ωci=1.02×102μ1/2Z−1Ti1/2B−1cm.{\displaystyle r_{i}=v_{Ti}/\omega _{ci}=1.02\times 10^{2}\,\mu ^{1/2}Z^{-1}T_{i}^{1/2}B^{-1}\,{\mbox{cm}}.}
  • Размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:
c/ωpe=5.31×105ne−1/2cm.{\displaystyle c/\omega _{pe}=5.31\times 10^{5}\,n_{e}^{-1/2}\,{\mbox{cm}}.}
  • Радиус Дебая (длина Дебая), расстояние на котором электрические поля экранируются за счёт перераспределения электронов:
λD=(kT/4πne2)1/2=7.43×102T1/2n−1/2cm.{\displaystyle \lambda _{D}=(kT/4\pi ne^{2})^{1/2}=7.43\times 10^{2}\,T^{1/2}n^{-1/2}\,{\mbox{cm}}.}

Скорости

  • Тепловая скорость электрона, формула для оценки скорости электронов при распределении Максвелла. Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
vTe=(kTe/me)1/2=4.19×107Te1/2cm/s.{\displaystyle v_{Te}=(kT_{e}/m_{e})^{1/2}=4.19\times 10^{7}\,T_{e}^{1/2}\,{\mbox{cm/s}}.}
vTi=(kTi/mi)1/2=9.79×105μ−1/2Ti1/2cm/s.{\displaystyle v_{Ti}=(kT_{i}/m_{i})^{1/2}=9.79\times 10^{5}\,\mu ^{-1/2}T_{i}^{1/2}\,{\mbox{cm/s}}.}
  • Скорость ионного звука, скорость продольных ионно-звуковых волн:
cs=(γZkTe/mi)1/2=9.79×105(γZTe/μ)1/2cm/s.{\displaystyle c_{s}=(\gamma ZkT_{e}/m_{i})^{1/2}=9.79\times 10^{5}\,(\gamma ZT_{e}/\mu )^{1/2}\,{\mbox{cm/s}}.}
vA=B/(4πnimi)1/2=2.18×1011μ−1/2ni−1/2Bcm/s.{\displaystyle v_{A}=B/(4\pi n_{i}m_{i})^{1/2}=2.18\times 10^{11}\,\mu ^{-1/2}n_{i}^{-1/2}B\,{\mbox{cm/s}}.}

Безразмерные величины

  • Квадратный корень из отношения масс электрона и протона:
(me/mp)1/2=2.33×10−2=1/42.9.{\displaystyle (m_{e}/m_{p})^{1/2}=2.33\times 10^{-2}=1/42.9.}
  • Число частиц в сфере Дебая:
(4π/3)nλD3=1.72×109T3/2n−1/2.{\displaystyle (4\pi /3)n\lambda _{D}^{3}=1.72\times 10^{9}\,T^{3/2}n^{-1/2}.}
  • Отношение Альфвеновской скорости к скорости света
vA/c=7.28μ−1/2ni−1/2B.{\displaystyle v_{A}/c=7.28\,\mu ^{-1/2}n_{i}^{-1/2}B.}
  • Отношение плазменной и ларморовской частот для электрона
ωpe/ωce=3.21×10−3ne1/2B−1.{\displaystyle \omega _{pe}/\omega _{ce}=3.21\times 10^{-3}\,n_{e}^{1/2}B^{-1}.}
  • Отношение плазменной и ларморовской частот для иона
ωpi/ωci=0.137μ1/2ni1/2B−1.{\displaystyle \omega _{pi}/\omega _{ci}=0.137\,\mu ^{1/2}n_{i}^{1/2}B^{-1}.}
  • Отношение тепловой и магнитной энергий
β=8πnkT/B2=4.03×10−11nTB−2.{\displaystyle \beta =8\pi nkT/B^{2}=4.03\times 10^{-11}\,nTB^{-2}.}
  • Отношение магнитной энергии к энергии покоя ионов
B2/8πnimic2=26.5μ−1ni−1B2.{\displaystyle B^{2}/8\pi n_{i}m_{i}c^{2}=26.5\,\mu ^{-1}n_{i}^{-1}B^{2}.}

Прочее

  • Бомовский коэффициент диффузии
DB=(ckT/16eB)=5.4×102TB−1cm2/s.{\displaystyle D_{B}=(ckT/16eB)=5.4\times 10^{2}\,TB^{-1}\,{\mbox{cm}}^{2}/{\mbox{s}}.}
  • Поперечное сопротивление Спитцера
η⊥=1.15×10−14Zln⁡ΛT−3/2s=1.03×10−2Zln⁡ΛT−3/2Ωcm.{\displaystyle \eta _{\perp }=1.15\times 10^{-14}\,Z\,\ln \Lambda \,T^{-3/2}\,{\mbox{s}}=1.03\times 10^{-2}\,Z\,\ln \Lambda \,T^{-3/2}\,\Omega \,{\mbox{cm}}.}

Современные исследования

См. также

Примечания

Литература

Ссылки

wikipedia.green

Кварк-глюонная плазма — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 июля 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 июля 2019; проверки требует 1 правка.

Кварк-глюо́нная пла́зма (КГП[2], ква́рковый суп[3], хромопла́зма[4]) — агрегатное состояние[5]вещества в физике высоких энергий и физике элементарных частиц, при котором адронное вещество переходит в состояние, аналогичное состоянию, в котором находятся электроны и ионы в обычной плазме[2][4]. Ему предшествует состояние глазмы[6] (глазма термализуется, то есть разрушается, порождая множество хаотично движущихся кварков, антикварков и глюонов — кварк-глюонную плазму[7]). Состоит из кварков, антикварков и глюонов[8].

Обычно вещество в адронах находится в так называемом бесцветном («белом») состоянии[2]. То есть, кварки различных цветов компенсируют друг друга. Аналогичное состояние есть и у обычного вещества — когда все атомы электрически нейтральны, то есть, положительные заряды в них компенсированы отрицательными. При высоких температурах может происходить ионизация атомов, при этом заряды разделяются, и вещество становится, как говорят, «квазинейтральным». То есть, нейтральным остаётся всё облако вещества в целом, а отдельные его частицы нейтральными быть перестают. Точно так же, по-видимому, может происходить и с адронным веществом — при очень высоких энергиях цвет выходит на свободу[9] и делает вещество «квазибесцветным»[2], при этом восстановлена хиральная симметрияruen[10].

Предположительно вещество Вселенной находилось в состоянии кварк-глюонной плазмы в первые мгновения (около 10−11 с[11]) после Большого взрыва[12]. Также есть мнение, что именно свойства кварк-глюонной плазмы привели к барионной асимметрии Вселенной[2]. Сейчас кварк-глюонная плазма может на десятки йоктосекунд[13] образовываться при соударениях частиц очень высоких энергий. Время существования кварк-глюонной плазмы — миллиардные доли секунды[9]. Температура КХД фазового перехода около 150 МэВ. Для релятивистской жидкости подобной КГП, которая не сохраняет число частиц, соответствующая мера плотности — это плотность энтропии s[6]. Но по результатам некоторых исследований в центре нейтронных звёзд есть кварк-глюонная плазма[11][14]. Есть гипотеза, что атомные ядра в своём составе, кроме протонов и нейтронов, содержат «капельки» КГП, то есть ядра рассматриваются как гетерофазные системы[15].

Раньше она рассматривалась как газ[9], ныне считается жидкостью[2][11], почти идеальной и сильно непрозрачной[6]. До своего экспериментального обнаружения хромоплазма была физической гипотезой[4]. Изучение кварк-глюонной плазмы может помочь в познании истории Вселенной[2].

Теоретическое изучение в СССР началось с начала 1980-х годов[16]. Лаборатория физики сверхвысоких энергий НИИ физики им. Фока физического факультета Санкт-Петербургского государственного университета участвует в работе проекта ALICE Большого адронного коллайдера над КГП.[17].

Кварк-глюонная плазма была получена экспериментально на ускорителе RHIC Брукхейвенской национальной лаборатории в 2005 году. В феврале 2010 года там же была получена температура плазмы в 4 триллиона градусов[18].

На ускорителях КГП образуется в результате сильного взаимодействия между партонами (кварками и глюонами) нуклонов ускоренных частиц[8]. Но может ли она рождаться в протон-протонных столкновениях, неизвестно[19].

Максимальную температуру — свыше 10 триллионов градусов, получили в ноябре 2010 года на БАК[20].

В октябре 2017 года на Большом адронном коллайдере впервые сталкивались ядра ксенона для её исследования: определение критической энергии, необходимой для её образования[21].

Мезоны, погружённые в горячую кварк-глюонную плазму, плавятся[22].

  • И. М. Дремин, А. В. Леонидов. Кварк-глюонная среда // УФН. — 2010. — Т. 180. — С. 1167—1196.
  • The Large Hadron Collider: Harvest of Run 1 с. 4, 65, 356—357, 359, 361, 412, 419, 518 Опубликована монография по результатам LHC Run 1
  • Jean Letessier, Johann Rafelski, T. Ericson, P. Y. Landshoff. Hadrons and Quark-Gluon Plasma. — Cambridge University Press, 2002. — 415 p. — ISBN 9780511037276.

ru.wikipedia.org

Физика плазмы — Википедия

Материал из Википедии — свободной энциклопедии

Фи́зика пла́змы — раздел физики, изучающий свойства и поведение плазмы, в частности, в магнитных полях. Плазма рассматривается как неструктурированная квазинейтральная система из большого числа заряженных частиц с коллективной динамикой[1].

Для физики плотной плазмы справедливо утверждение, что её можно считать подразделом физики сплошных сред, так как при исследовании плотной плазмы речь идёт о макроскопическом поведении частично или полностью ионизованной сплошной среды. Однако разреженная плазма не всегда адекватно описывается методами механики сплошных сред.

  • устойчивость плазмы во внешних полях
  • волны в плазме
  • электрические, магнитные и оптические свойства плазмы
  • диффузия, проводимость и другие кинетические явления в плазме
  • динамика плазмы с вмороженным в неё магнитным полем (магнитогидродинамика)
  • физика космической плазмы (ионосфера, структура звёзд, плазма в межзвёздном и межгалактическом пространстве)
  • турбулентность в плазме[2]
  • динамические нелинейные структуры в плазме[2]
  • коллективные явления в плазме[1]

Организация исследований и образования[править | править код]

Журналы[править | править код]

Самым высоким импакт-фактором из специализированных журналов обладает журнал «Physics of Plasmas», издаваемый Американским институтом физики.

Российская академия наук издаёт журнал «Физика плазмы»

  1. 1 2 Плазма как объект физических исследований, 1996, с. 103.
  2. 1 2 Плазма как объект физических исследований, 1996, с. 104.
  3. ↑ Элементарная физика плазмы, 1969, с. 164.
  4. ↑ Элементарная физика плазмы, 1969, с. 180.
  5. ↑ Элементарная физика плазмы, 1969, с. 188.

ru.wikipedia.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *