Подключение двигателя на 220 вольт через конденсатор: Подключение электродвигателя 380В на 220В

Содержание

Быстрое подключение асинхронного двигателя на 220 без конденсатора

Содержание

  • 1 Варианты подключения обмоток двигателя
  • 2 Запуск мотора 
  • 3 Теория В. Голика 
  • 4 Схемы, разработанные В. Бурлако 
    • 4.1 Способ 1 – старт мотора ключем симистора
    • 4.2 Запуск мотора с высокими пусковыми моментами
  • 5 Тиристорный преобразователь
    • 5.1 Логическая интерпретация
    • 5.2 Силовая часть 
  • 6 Общая характеристика 
  • 7 Вывод 

В статье мы расскажем об асинхронных двигателях, а именно об их подключении к сети на 220 вольт без применения конденсатора. Вопрос довольно актуальный сегодня, ведь обеспечение энергоэффективности в современных системах выходит на первый план.  

Схема управления асинхронным двигателем

Электродвигатель асинхронного типа представляет собой устройство, работающее от переменного тока, в котором напряжение находится в роторе. Основное назначение роторного тока – создание момента вращения посредством электромагнитной индукции, которая идет из магнитного поля статорной обмотки.  

Устройства данного типа бывают двух видов: одно- и трехфазные. В первом случае силовой агрегат питается от источника электроэнергии с одной фазой. Приборы представляют собой маломощные агрегаты, используемые в домашних или офисных условиях, где подача однофазного электропитания осуществляется от электросети и ее полюсов. 

Трехфазные же модификации работают, соответственно от источников питания, обладающих тремя фазами. Мотор работает в различных конфигурациях: дельта или звездообразной, исходя из требований приложения. Устройства отличаются высокой мощностью, свое применение находят в промышленной отрасли.  

Варианты подключения обмоток двигателя

Доступны всего два варианта подключения обмоток асинхронных электрических моторов:

  • по «звездной» схеме.
  • по варианту «треугольник».

В последнем случае подсоединения используются устройства, которые характеризует большую мощность, отдаваемую приводом.  Однако при запуске силового агрегата продуцируется высокий уровень пускового тока, что представляет опасность для любого бытового прибора. Если подключать по схеме «звезда», можно добиться наиболее плавного пуска двигателя, т. К. Ток небольшой. Вы не можете получить от привода большой мощности. 

Подключение асинхронного двигателя теругольник и звезда

Схема соединения электродвигателя мощность в 380В к сети 220В, организованная «треугольником», обеспечивает максимальный показатель рабочей мощности. Когда же показатель питания – 380 вольт, тогда катушки подключаются типом «звезда». Это особенно важно, ведь при высоких напряжениях при старте, пусковой ток также увеличивается. 

Это может повредить электропривод. При нехватке мощности можно запустить двигатель с подключенными катушками первым способом, а после перехода в рабочий режим произвести коммутацию и включить обмотки способом «треугольник».

Модели асинхронного типа имеют простую конструкцию, массово используются в разнотипных приложениях. Не стоит обходить стороной их невысокую стоимость, которая в некоторой степени и определяет распространение компонентов. Они присоединяются к обыкновенным сетям на 220 воль (однофазные), но, что делать, если есть необходимость в расширении мощностного потенциала? Выход простой – подпитать трехфазный силовой агрегат к однофазной сети. При этом нет необходимости использовать конденсаторные детали. Реализовано сразу несколько схем по созданию такого подключения, и каждая из них заслуживает внимания. Рассмотрим же детально каждую из них и определим сильные стороны и выгоды от реализации.

Подключение звезда

Запуск мотора 

Как вы уже поняли, запуск двигателя будет осуществляться без применения конденсатора. Чтобы осуществить подключение по этому методу, достаточно иметь самый типичный асинхронный двигатель. Авторы научных книг, среди которых есть В. Голик, указывают на то, что номинальные обороты моторного ротора должны быть на уровне 1500 об./мин, а не 3000. Связывают это с особенностями статорных обмоток.   

Мощность силовых агрегатов ограничивается электрическими параметрами диодов силового типа и тиристоров, которые составляют 10 ампер, при этом показатель обратного напряжения превышает 300 вольт. 3 обмотки статора нужно присоединять, применяя треугольное подсоединение. Выводы же группируются на колодке клемм, при помощи упорядоченных перемычек. 

Напряжение в 220В подается через автоматический защитный выключатель автоматического действия. Подключение проводится параллельно одной из обмоток, определим ее как «А». Остальные две («В» и «С») последовательно соединяются друг с другом и параллельно с «А». К выходам одной части, например, «С», устанавливается электронный блок, определим его «К». 

Рассмотрим ситуацию, при которой контакт блока всегда разомкнут и напряжение бесперебойно подается. При ней по вышеописанным цепям «А», «В» и «С» будут протекать токи типов Ia и Ib+c. Резистивно – индуктивные уровни сопротивления на всех статорных обмотках одинаковые. Эта особенность обусловливает превышение тока вдвое на цепочке «А», по сравнению с направлением Ib+c. По фазе будет наблюдаться совпадение цепей.

Каждый ток по отдельности создает возле себя намагниченные потоки, которые не приводят в движение роторный элемент. Для обеспечения работы мотора, нужно провести сдвиг по углу двух магнитных потоков или же между собой двух токов. Именно для этой задачи в схеме реализован электронный блок (ключ). Конструкция компонента позволяет ему кратковременно замыкаться и размыкаться, проводя шунтирование второй обмотки «В». 

Пример маркировки электродвигателя

Для запуска ключа выбирается временной промежуток, при котором синусоида тока имеет наивысшее амплитудный показатель. Сила тока в третьей катушке «С» минимальная, что обусловливается наличием индуктивного сопротивления.  

При проведении закорачивания сопротивления «В» в общей цепочке с «С», создается бросок тока, при помощи замкнутого контакта по виткам третьей обмотки. Сам контакт довольно быстро взрастает, после чего уменьшается под воздействием спада амплитуды напряжения, который плавно стремится к нулю.   

Также в системе образуется так называемый временной сдвиг, который маркируется ϕ. Благодаря образованному углу сдвигания, генерируется единый сильный намагниченный поток, который и приводит ротор в движение. 

Подача тока в третьей катушке «С» при функционировании ключа отличается от формы напряжения, реализованной в гармоничной синусоиде. Несмотря на это, она никак не влияет на генерирование момента вращений на вале мотора. Когда осуществляется переход полуволны от синусоиды в сферу «минусовых» показателей, ситуация повторяется, а сам силовой агрегат раскручивается дальше, чем до этого. 

Теория В. Голика 

В основе такой реализации лежит запуск мотора с использованием имеющейся элементной базы. В состав силовой части электрического ключа, с помощью которого осуществляется коммутация, входят такие мощные элементы:

  • два диода: VD 1 и 2;
  • тиристоры: VS 1 и 2. 

 Все эти детали подключены с применением схемы обыкновенного моста.

Но, в данной схеме эти элементы реализуют другую функцию – проводят шунтирование обмотки подсоединенного мотора посредством своих «плеч» из одного диода и транзистора. Осуществляется это сразу после достижения агрегатом амплитудных параметров от синусоиды, представленной на схеме. Благодаря такому подключению создается электронный блок двунаправленного срабатывания, который в процессе работы реагирует на волны гармоник. Они бывают двух типов:

  • положительные;
  • отрицательные. 

С помощью диодов VD 3 и 4 реализуется напряжение импульса с двумя полупериодами. Сигнал этот поступает напрямую на цепи управления. Ограничивается он и далее стабилизируется при помощи резисторного элемента R1 и стабилизатора VD5.

Сигналы, нацеленные на открывание тиристоров электрического ключа, исходят от транзисторов с 2 полюсами, на рисунке они маркируются как VT 1 и 2. Резистор переменного действия R7, рассчитанный на 10 кОм, выполняет важную функцию регулирования момента открывания тиристора.

 

В ситуациях, когда его регулятор находится в начальномм положении сопротивления, электрический блок активируется даже при самом малом напряжении амплитуды, которая имеет место в обмотке «В». 

Наличие наивысшего ввода резисторного сопротивления R7 позволяет отключать ключ. Старт схемы проводится, когда положение ползунка вышеуказанного резистора соответствует показателю самого высокого сдвига токовых фаз между катушками.  

Электронный ключ на симисторе

Старт системы реализуется достаточно просто – необходимо перевести ползунок R7 в положение, полностью соответствующее наибольшему фазовому сдвигу токов между катушками. Далее происходит сдвигание регулятора, тем самым определяя самый устойчивый рабочий режим, напрямую зависящий от уровня приложенной нагрузки и мощности электродвигателя. Силовые агрегаты с разными показателями номиналов взаимозаменяемые, широко представленные на отечественном рынке. 

Силовые компоненты системы, реализованные с целью дальнейшей работы с моторами малых мощностей, могут конструироваться без охладительных радиаторов в конструкции. Когда же распределители функционируют на максимальных ресурсах, использование теплоотвода является обязательным. 

Электрические блоки применяются под напряжением сети 220В . Отдельные компоненты необходимо тщательно заизолировать, тем самым защитив от случайных касаний. Соблюдение мер безопасности – еще один немаловажный аспект при реализации подключения, который обязательно необходимо соблюдать.  

Схемы, разработанные В. Бурлако 

Данная методология также является одной из активно применяемых, что обусловливается особенностями реализации. Несмотря на то, что общие принципы регулирования такие же, как те, которые предложил В. Голик, схемы все-таки являются разными. 

Способ 1 – старт мотора ключем симистора

По своей сути, метод является усовершенствованной реализацией метода, представленного Голиком. Здесь мы имеем существенно упрощенную схему подключения трехфазного электрического двигателя. 

Пример диаграммы работы тиристоров

К особенностям нового способа относят:

  • использование единого симистора VS1 от TC-2-10, вместо привычных двух тиристорных компонентов и силового блока. Деталь также отвечает за шунтирование другой обмотки «В», в то момент, когда достигается требуемый показатель напряжения. При этом, ток цепочки должен быть на минимуме;
  • создание сдвига фаз для токов во всех параллельных обмотках. Показатель общий с предыдущей схемой и находится в диапазоне 51 – 80 градусов, которых с лихвой хватает на обеспечение вращений ротора;
  • применение ключа, который отвечает за работу симистора VS1. Он устанавливается на динистор симметричного типа с маркировкой VS2, для каждого отдельного периода гармоник напряжений. Ключ получает командные сигналы от цепочки сдвигания фаз, которая включает резистивно-емкостные компоненты;
  • сдвиг фазы посредством конденсатора «С» усиливается общим сопротивлением компонентов R1 R2. Вспомогательный резистор R2 на 68 килоом выполняет функции компонента R7 из вышеописанной схемы, обеспечивая регулирование времени зарядки конденсатора, и, как следствие – момент запуска VS2, а уже с его помощь – VS1.  

Автор также предоставляет свои рекомендации по сборке и настройке созданной схемы. Она разрабатывалась для использования с двигателями, ресурс которых позволяет раскручивать ротор до 1500 об/мин. Электрическая мощность при этом – 0,5 – 2,2 киловатта. 

Если же электронные ключи применяются на машинах с высокими показателями рабочей мощности, нужно обязательно обеспечить теплоотвод. Реализуется он с применением VS1 симистора. При проведении настройки необходимо смотреть на оптимальное состояние подгонки угла сдвижения фаз для токов между компонентами обмотки. Это обеспечит двигателю тихую слаженную работу, без вибраций, шумов и др. С такой целью можно менять номиналы у компонентов цепи фазосдвигания. 

Симисторы можно использовать самые разные, главное, чтобы они полностью отвечали характеристикам электромеханики. Например, импортный элемент DB3 взаимозаменяем с динистором отечественного производства КР1125. 

Запуск мотора с высокими пусковыми моментами

Здесь, как и в других схемах не применяется конденсатор. Методика является отличным вариантом для регулирования работы электродвигателей, которые были собраны для обеспечения моментов вращений в 3000 за минуту. Это обусловливает в схеме одну особенность – изменения системы подключения катушек на звездообразную. Ранее применялась треугольная схема. В процессе генерируется крутящий момент на порядок выше, обеспечивающий быстрый запуск ротора. 

В чем же отличия этой схемы от предыдущей? Первое, что стоит указать – это наличие вспомогательного электрического ключа (блока), который соединяется с обмоткой «А», тем самым создавая дополнительный фазовый сдвиг тока. Он играет важную роль при эксплуатации в сложных производственных условиях. При этом алгоритм настройки аналогичен предыдущему.  

Тиристорный преобразователь

  Данная разработка дает возможность с высокой эффективностью сохранять параметры мощности моторов, при подключении в электросеть с одной фазой. Разработка принадлежит В. Соломыкову. 

Тиристорный преобразователь автор В Соломыкова

Решение лежит в основе всех современных ПЧ, хотя разработана с учетом более ранней, проверенной базы.  

С помощью тиристорного преобразователя, получается конструировать такие формы напряжений, которые будут максимально приближенные к идеальным для каждой фазы. Будут иметь место также гармоники синусоид, которые отлично сочетаются с асинхронными электрическими двигателями. 

Подача энергии от 1-фазной электросети на 220В осуществляется с помощью защиты – автоматического разъединителя SF1 и моста диодов, имеющего в основе Д233В. На выходе силовые цепи получаются, благодаря работе ключей тиристоров VS1-6. 

Сдвиг токовых фаз для источника питания каждой катушки мотора собственным напряжением обусловливается функционированием 2 основных микросхем:

  • DD1 – для К176ЛЕ54
  • DD2 – для R176 ИР2.

Платы дают возможность формировать такты сдвигов напряжений от сигналов во всех регистрах, а их комбинации подаются на порты для регулирования работы тиристоров VS1 – 6, посредством самостоятельных транзисторов VT 1 – 6, по диаграмме, которая была ранее спланирована.

 

Логическая интерпретация

Схема типа К176ИР2 генерирует сразу 2 раздельных регистра сдвига на 4 разряда. Они в свою очередь обладают четырьмя выходами Q от каждого из триггеров. Каждый «пускатель» относится к типу D и является двухступенчатым. 

Микросхема К176ИР2

Введение ведомостей в регистр осуществляется также через порт D. Реализован и вход для подачи команд, тактового типа С. Они идут через порты D от начального триггера, далее сдвигаются по ходу движения на 1 такт. 

Сброс выходных данных из регистра Q осуществляется, когда на вход R поступает напряжения из логического уровня. Такое обнуление еще называют асинхронным сбросом. 

Силовая часть 

Схема также обладает и силовой частью, которая имеет свои принципы и особенности наладки и дальнейшего управления. Итак, когда напряжение подается на схему, то происходит обнуление регистра сдвига платы DD2. Это в свою очередь способствует завершению заряда емкостей С2 далее по цепи через элемент R5. Когда происходит заряд, мгновенно срабатывает  DD1.1 – являющийся, по сути, логическим компонентом. Он и «разрешает» сдвиг импульса для дальнейшего регистра DD2. 

Пример схемы К175ЛЕ5

Когда же осуществляется переход регистра в логическое положение 1, тогда проводится подача сигнала на основу его биполярного транзистора – VT 1 – 6. Он открывается и посылает сигнал на свой тиристор, а именно – на его электрод управления. 

В результате мы получим трехфазное напряжение, которое возникнет между силовыми клеммами на выходе. Оно является достаточно близким к синусоидальной форме, при этом, сдвинутым векторно между собой на максимальный угол 120 градусов. 

  Силовой агрегат асинхронного типа, который регулируется согласно этой схеме, способен развивать самую высокую мощность, среди всех описанных вариантов. Частота, с которой осуществляется коммутация, подбирается экспериментальным способом, при проведении настройки за счет подбора емкостных номиналов: С 4, 5 или 6. Их уровни определяются мощностью самого двигателя.   

  Конденсаторная мощность рассчитывается по такой формуле:

С = 0,01Р (Вт) / n*1/30n (мкФ)

Когда имеет место номинальная частота оборотов ротора, тогда показатель n определяют как 1. R3 и R4, которые являются резисторами, после наладки убирают, а на место последнего монтируют конденсатор, емкость которого – 0,68 микрофарад.  Далее, что делают – припаивают резистор регулировки, рассчитанный на 15 кОм. Устанавливают его к местам А и В. Здесь элемент выполняет основную функцию – максимально точно выставляет частоты оборотов роторных деталей двигателя.  

Общая характеристика 

В инверторе входящая однофазная сеть выпрямляется до постоянного тока, а затем «прерывается» до трехфазного переменного тока, который подается на трехфазный двигатель. Преимущество инвертора или частотно-регулируемого привода состоит в том, что оператор имеет возможность управлять скоростью работы двигателя. Ему в этом помогает огромное количество пользовательских настроек, которые позволяют выбирать выбранное изменение скорости, а также обнаружение и защиту от перегрузок силового агрегата. Также можно осуществлять регулирование компенсации скорости и момента вращения. Хотя, стоит отметить, что данный метод далеко не всегда является лучшим решением.  

Пример безконденсаторного запуска 3фазного двигателя от й фазной сети

Частотный преобразователь помогает создавать дополнительные фазы при помощи конденсаторов, которые подключаются между фазой и «нейтралью» первой фазы к обмотке мотора. Если это реализуется с нагрузочным двигателем, тогда преобразователь статический. Для них требуется минимальная нагрузка для генерации разумного псевдотрехфазного тока, и часто необходимо иметь номинальную мощность, превышающую максимальную нагрузку, чтобы обеспечить хорошую производительность двигателя.

Но, в статье мы рассмотрели 4 ключевые схемы реализации подключения без использования конденсатора, которые получили более широкое распространение в деятельности. 

Вывод 

Схемы, представленные в сегодняшней статье, включают только необходимые компоненты, ничего лишнего. Их с легкостью можно собрать своими руками, обладая минимальными знаниями в области электрики. 

Можно также начать реализовывать более сложные методики, например, по подключению трехфазного мотора к однофазным сетям питания, но с использованием современного электронного инструментария. Решение более сложное, поэтому требует профессиональных навыков и знаний в электромеханике. 

Какую именно схему применять для своего оборудования – каждый пользователь решает самостоятельно. Произвести старт асинхронного трехфазного электродвигателя без мощностных потерь, можно, применяя преобразователь частоты промышленного назначения.

 

На Сколько Микрофарад Нужен Конденсатор Для Электродвигателя… Трехфазные двигатели

При подключении трехфазного электродвигателя к однофазной цепи предпочтительнее соединение обмоток электродвигателя типа треугольник. На шильдике двигателя об этом есть информация и когда указано Y-звезда, оптимальным вариантом было бы открыть его кожух и переделать подключение обмоток по принципу треугольник. В противном случае потери будут слишком велики.

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора.

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В). На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете. Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

ПОДБОР КОНДЕНСАТОРА ДЛЯ ТРЕХФАЗНОГО ДВИГАТЕЛЯ

Применяется неполярный конденсатор на 400В. Для расчета емкости пускового и рабочего конденсатора для асинхронного двигателя в формулу нужно внести данные с шильдика электродвигателя, если же они неизвестны , то принимаются средневзвешенные данные, взятые из справочников.

Соединение обмоток двигателя, Y/Δ . Задача : рассчитать емкость конденсатора.

Мощность двигателя 400 Вт, напряжение 220-240В, коэффициент мощности cosφ,0.9, КПД двигателя от 75 до 95 % — берем 80.

Получается емкость пускового конденсатора 45 мкФ и рабочего 18 мкФ.

Для включения трехфазного электродвигателя (что такое электродвигатель в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

После пуска двигателя конденсатор 2 отключают.

Что лучше: теплый пол или батареи?

Теплый полБатареи

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.

В некоторых случаях, а именно когда пусковые характеристики достигают значительных величин пуск двигателя под нагрузкой , необходимо использовать дополнительные, пусковые, конденсаторы для запуска электродвигателя.

Как подобрать емкость конденсатора для подключения двигателя

РАСЧЕТ ЕМКОСТИ КОНДЕНСАТОРОВ ДЛЯ ТРЕХФАЗНОГО И ОДНОФАЗНОГО ДВИГАТЕЛЯ ПРИ ПОДКЛЮЧЕНИИ В ОДНОФАЗНУЮ СЕТЬ — Укрнасоссервис

Асинхронные электродвигатели с тремя обмотками на статоре преобладают в различных отраслях сельского хозяйства. Их применяют для привода устройств вентиляции, уборки навоза, приготовления кормов, подачи воды. Популярность таких моторов обусловлена рядом преимуществ:

Основные параметры конденсаторов

Мнение эксперта

Стребиж Виктор Федорович, ведущий мастер строительных работ

Задать вопрос эксперту

Если есть точное попадание в номинал емкости, который существует у нужной серии конденсаторов, то можно выбирать именно такой. Иногда даже используют последовательно соединенные конденсаторы для получения требуемой пусковой емкости и запаса по напряжению. Как выбрать конденсатор для электродвигателя 380 на 220В, 12В и т. д. Задавайте мне вопросы, отвечу всем!

Конденсатор для электродвигателя: как выбрать и пользоваться, расчет емкости для пускового и рабочего, подключение и эксплуатация

Для однофазного напряжения в 220 В рабочее напряжение конденсатора должно быть не менее 360 В, но опытные электрики всегда советуют использовать 400 или 450 В, так как запас, как известно, карман не тянет. Для включения трехфазного электродвигателя что такое электродвигатель в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Фазосдвигающий конденсатор для трехфазного двигателя

Полярные версии не подходят для подключения на основе переменного напряжения, поскольку увеличивается опасность исчезновения диэлектрика, что неминуемо приведет к перегреву и возникновению аварийной ситуации возгоранию либо появлению короткого замыкания. Грубо можно определить емкость фазосдвигающего конденсатора так Сф 70 P.

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

Как Рассчитать Емкость Конденсатора Для Однофазного Электродвигателя

Калькулятор расчета емкости конденсатора Пользуясь приведенными формулами, возьмем за среднее значение емкости рабочего выпрямителя показатель 25 мкФ. Здесь была выбрана несколько большая емкость, равная 10 мкФ. Так мы попытаемся выяснить, как влияет такое изменение на пуск аппарата. Обычно различные конденсаторы для асинхронных электродвигателей используются для работы с напряжением в 220 В с учетом установки в однофазную сеть. Существуют модели, в которых пусковая обмотка работает не только при запуске, а и все остальное время.

Подбор конденсатора для асинхронного двигателя

Для подключения асинхронного трехфазного двигателя 380 вольт к однофазной сети необходим конденсатор. Электродвигатель имеет два вида соединения обмоток – звездой или треугольником. Соединение треугольником будет эффективнее работать в сети 220 вольт.

Для расчета конденсатора существуют специальные программы. Достаточно ввести данные двигателя и программа сама произведет расчет. Она выдаст рекомендации для подключения рабочего конденсатора и пускового. Таких программ в интернете существует множество. Они получили название калькулятор.

Существует формула, согласно которой производят расчет:

По вышеприведенной схеме рассчитывается рабочая емкость конденсатора, где в формуле:

  • U – Напряжение питающей сети. В нашем случае это 220 вольт.
  • Iф – номинальный ток статора. Можно посмотреть на шильдике электродвигателя, или замерить токоизмерительными клещами.
  • К – коэффициент, который зависит от схемы соединения обмоток. Для соединения треугольником он равен 4800, а для соединения звездой 2800.

Если все параметры известны, то правильно рассчитать конденсатор несложно. Результат получаем в мкФ. Эта формула справедлива для выбора рабочей емкости.

Сложнее обстоит дело с пусковым конденсатором. Он подключается к обмоткам на небольшое время. Не более 3 сек в момент запуска двигателя.

Как показано подключение двигателя 380 на 220 Вольт на рисунке снизу:

Подбирают пусковую емкость исходя из условий, что она должна превышать рабочую в 2 -3 раза. Однако есть более простой способ подбора.

В интернете существуют таблицы, согласно которым можно определить необходимую емкость. На рисунке снизу представлена такая таблица. В ней указывают рабочий и пусковой конденсатор.

Существуют рекомендации, согласно которых легко определить необходимый параметр. На каждые 100 Вт устанавливают емкость, равною 7 мкФ. Пусковая будет составлять 14 мкФ. Рабочее напряжение конденсаторов должно быть не менее 1,5 U сети.


Для однофазного напряжения в 220 В рабочее напряжение конденсатора должно быть не менее 360 В, но опытные электрики всегда советуют использовать 400 или 450 В, так как запас, как известно, карман не тянет.

Преобразователь частоты для однофазного двигателя — как подключить?

Применение электролитических устройств

Конструктор должен знать, что для разгона мощного электродвигателя в первый момент требуется большая емкость конденсатора. По мере набора оборотов, она должна уменьшаться. Т.е. номинал пускового конденсатора должен быть больше рабочего.

Подключение двигателя 380 на 220 Вольт с конденсатором

Мнение эксперта

Стребиж Виктор Федорович, ведущий мастер строительных работ

Задать вопрос эксперту

Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов. Ток, все характеристики которого были определены при помощи электроизмерительных клещей в трехфазном режиме работы 1,9А;. Видео: подключение однофазного двигателя в однофазную сеть Задавайте мне вопросы, отвечу всем!

Пусковой конденсатор

Способ подключения обмоток и схема подключения рабочего и пускового конденсатора, а так же формула расчета конденсаторов для трехфазного электродвигателя. Теперь вы получили необходимую информацию и знаете, как подключить конденсатор к асинхронному двигателю чтобы обеспечить максимальную эффективность.

В чем сложность выбора такого конденсатора?

Его устройство отличается простотой и надежностью внутри две параллельные пластины в пространстве между ними установлен диэлектрик необходимый для защиты от поляризации в виде заряда, создающегося проводниками. Поле площадь очистим, так именно его мы будем определять.

  • Пусковая обмотка, и конденсатор подключаются кратковременно на время запуска. В этом случае на каждый 1 кВт мощности устанавливают 70 мкФ. Можно использовать электролитические с диодом.
  • Пусковая катушка и конденсатор постоянно подключены на все время работы мотора. В этом случае используют не полярные детали емкостью 23-35 мкФ на 1 кВт.
  • Параллельно рабочему конденсатору подключают кратковременно пусковой. В этом случае в качестве пусковой можно применить электролитическую емкость с диодом. Она должна быть в 2-3 раза больше рабочей. Однако, схема должна быть построена таким образом, чтобы пусковой кондер был подключен не более 3 секунд.

Всем известно, что электрический конденсатор представляет собой две разделенные диэлектриком проводящие обкладки, и служит для накопления, временного хранения и отдачи электрического заряда, то есть электрической энергии. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле. Как Рассчитать Емкость Конденсатора Для Однофазного Электродвигателя

Если необходим конденсатор для работы с трехфазным электродвигателем Что же касается номинального напряжения конденсатора, то обычно конденсаторы на рабочее напряжение меньше 450 вольт не применяют. Лучше всего если конденсатор будет рассчитан на 500 или 600 вольт по переменному току. Итак, выбирая рабочий конденсатор для трехфазного двигателя, необходимо принять в расчет несколько основных параметров рабочей цепи переменного тока. При выборе емкости конденсатора очень важно не превысить расчетную, иначе ток через обмотку статора превысит номинал, двигатель будет перегреваться и вообще может быстро сгореть.

Важно Пусковая версия конденсатора должна обладать рабочим напряжением не менее 400 В, что связано с появлением всплеска увеличенной мощности до 300 600 В, происходящего в процессе пуска либо завершения работы двигателя.

Схемы подключения

Для этих целей применяют неполярные емкости на рабочее напряжение, превышающее сетевое в 1,5-2 раза. Его устройство отличается простотой и надежностью внутри две параллельные пластины в пространстве между ними установлен диэлектрик необходимый для защиты от поляризации в виде заряда, создающегося проводниками.

Подбор конденсатора для однофазного двигателя

Используя подобный агрегат с выбранной батареей выпрямителей, следует учесть, что его полезная мощность будет находиться на уровне до 70-80 от номинальной мощности, при этом частота вращения ротора будет соответствовать номинальному показателю. Именно в этом причина популярности двигателя среди населения. Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно. Но такого не происходит и поэтому для его запуска на 220 нужен пусковой элемент. Как Рассчитать Емкость Конденсатора Для Однофазного Электродвигателя

Как подобрать пусковой конденсатор для однофазного электромотора Основные схемы включения трехфазных электродвигателей: звезда и треугольник. Для их работы предпочтительнее будет «треугольник». Формула расчета: Сраб.=k*Iф / U сети. Теперь немного подробнее. Теперь ознакомьтесь с фото конденсаторов для электродвигателя это поможет отличить их по внешнему виду. Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15 20.

Его устройство отличается простотой и надежностью внутри две параллельные пластины в пространстве между ними установлен диэлектрик необходимый для защиты от поляризации в виде заряда, создающегося проводниками.

Ёмкость плоского конденсатора
Относительная диэлектрическая проницаемость
Площадь одной из обкладок конденсатора
Расстояние между обкладками
Полученные характеристики плоского конденсатора

Если необходим конденсатор для работы с однофазным электродвигателем

U действующее среднеквадратичное напряжение переменного тока сети, к которой будет подключен двигатель с конденсатором, например 220 вольт. Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя.

Способ подключения обмоток и схема подключения рабочего и пускового конденсатора, а так же формула расчета конденсаторов для трехфазного электродвигателя.

Полярные версии не подходят для подключения на основе переменного напряжения, поскольку увеличивается опасность исчезновения диэлектрика, что неминуемо приведет к перегреву и возникновению аварийной ситуации возгоранию либо появлению короткого замыкания. Крутящий момент создается за счет применения дополнительных пусковых обмоток.

  1. Ср означает рабочий конденсатор, пусковой будет обозначаться далее как Сп.
  2. Ток I определен тут соотношением мощности мотора P с произведением 1,73 напряжения U и коэффициента мощности (cosφ ) с коэффициентом поленого действия (η). То есть I=P/1,73Uηcosφ.

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Однофазный электродвигатель основные виды, принцип работы и инструкция по подключению и настройке. Как Рассчитать Емкость Конденсатора Для Однофазного Электродвигателя

Схема подключения электродвигателя на 220В через конденсатор В случае с рабочим вариантом конденсатора рекомендуем уменьшить его емкость. Рекомендуем использовать конденсаторы, работающие на основе мощности в 450 или больше В, поскольку они считаются оптимальным вариантом. Для этого к рабочему конденсатору на время пуска параллельно подключается дополнительный пусковой конденсатор. Для этих целей применяют неполярные емкости на рабочее напряжение, превышающее сетевое в 1,5-2 раза.


Как обработать поверхность → Отделка помещений → Как правильно выбрать краску → Технологии обработки поверхностей → Выравниваем и отделываем стены → Выбор и нанесение грунтовки → Удаление с поверхности → Натяжные потолки и технологии→ Обзоры и отзывы

Как сконфигурировать проводку для пары Valet Vacuum System 220 В, однофазные двигатели

\$\начало группы\$

У меня есть два новых электродвигателя для вакуумной системы Valet. К сожалению, фотографии, которые я сделал со старой установкой двигателя (это было несколько месяцев назад), я потерял с телефона.

Новые моторы внешне немного отличаются от сгоревших оригинальных.

Я не знаю, как снова подключить эту резервную копию.

  1. Я предполагаю, что не имеет значения, какой из черных проводов на самом двигателе используется для отрицательного и положительного, если оба двигателя вращаются в одном направлении.

  2. Я не понимаю, почему белая маленькая коробка (которая, как я предполагаю, является резистором) находится на обоих двигателях. Это резистор? Если да, то почему на новых моторах он есть, а на старых нет? Какова его цель в этой установке?

  • двигатель
  • проводка

\$\конечная группа\$

1

\$\начало группы\$

По вашим вопросам:

Я предполагаю, что не имеет значения, какой из черных проводов на самом двигателе используется для отрицательного и положительного… при условии, что оба двигателя вращаются в одном направлении?

Да, это не имеет значения, потому что показанный двигатель представляет собой универсальный двигатель и сделан таким образом, что он может питаться как от постоянного, так и от переменного тока и работает в том же направлении .
Кроме того, ему не важна полярность +DC или -DC (или AC), так как он вращается в одном направлении. В случае, если кто-то хочет изменить направление вращения, текущая ориентация ротора и якоря (соединенных щетками) должна быть изменена на противоположную по отношению к обмотке возбуждения. Смотрите здесь и здесь.


Я не понимаю, почему белая маленькая коробка (которая, как я предполагаю, является резистором) находится на обоих двигателях. Это резистор?

Нет, это не так. Это конденсатор .

Если да, то почему на новых моторах он есть, а на старых нет? Какова его цель в этой установке?

Коллекторные двигатели — постоянного тока или универсальные — генерируют электрический (через провод) и электромагнитный («беспроводной» шум, поскольку обмотки якоря постоянно переключаются щетками и работой коммутатора.
Оригинальное устройство установило двигатель в металлический корпус, которая работает как клетка Фарадея и содержит/защищает от электромагнитное облучение. Но электрический шум также распространяется по проводам. Поскольку он имеет высокочастотные компоненты, для его «шунтирования» используется относительно небольшой конденсатор, что резко снижает его распространение.
Назначение этого конденсатора заключалось в том, чтобы шунтировать/уменьшать распространение шума, избегая помех другим электронным устройствам.
Для самого мотора они не нужны. Вероятно, первоначальный дизайнер использовал другой, более отдаленный от него, или просто он не считался актуальным в прошлом, но важен сейчас. Держать их!

\$\конечная группа\$

\$\начало группы\$

Белые компоненты — это конденсаторы. Они подключены непосредственно к двигателю, поэтому они предназначены для подавления шума.

Да, черные провода можно подключать в любой полярности. Двигатели, вероятно, по-прежнему будут вращаться в том же направлении, но лучше проверить.

\$\конечная группа\$

2

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Трансформаторы, фазопреобразователи и ЧРП | Как расшифровать схему подключения однофазного двигателя 110/220В? | Практик-механик

Джим С.
Горячекатаный

  • #1

У меня старый (1950-х — 1960-х годов?) конденсаторный пусковой, двухфазный однофазный двигатель, который я не могу найти в правильной проводке. У меня есть схема подключения high-low, но окраска проводов не соответствует (возможно, несколько блеклая, но маловероятно) схеме, и я нервничаю, угадывая и выпуская дым из обмоток.

Может ли кто-нибудь помочь мне расшифровать, как подключить это к высокому напряжению?

Вся проводка выглядит как OEM и не подвергалась изменениям. Цветных проводов должно быть четыре – черный, желтый, красный и зеленый; и два пронумерованных провода — с метками 1 и 2. Проблема заключается в цветных проводах. Ни один из цветов не является прозрачным (они имеют тканевую оплетку), даже внутри корпуса. Если бы мне пришлось угадывать существующие цвета, я бы назвал белый, желтый, черный и красный. Три из них совпадают, но остается белый цвет там, где должен быть зеленый, и он, конечно, не выглядит блеклым. (два пронумерованных провода четко помечены металлическим зажимом.

Ни один из проводов не закорочен на массу. Когда я их раскрашиваю, желто-красный и бело-черный демонстрируют преемственность друг к другу, но ни к чему другому.

Все четыре цветных провода идут прямо к обмотке возбуждения. Провод номер 2 идет на обмотку, а провод номер 1 идет сначала через конденсатор, потом на обмотку.

Двигатель не имеет повреждений, и мне сказали, что он работал до того, как я его получил, но соединения были разъединены. См. фотографии электрической схемы и паспортной таблички двигателя.

Спасибо за любую помощь.
Джим

 

петерх5322
Алмаз

  • #2

Стандартный пусковой/асинхронный двигатель с конденсатором 115/230.

Параллельное размещение двух рабочих обмоток… Черная к желтой к 1 и красная к зеленой к 2… дает 115 вольт. Поменяйте местами 1 и 2, чтобы реверсировать двигатель.

Последовательное соединение двух рабочих обмоток… от желтого к красному к 2 дает 230 от черного к 1 и к зеленому. Переместите 1 на зеленый, чтобы реверсировать двигатель.

В этой конфигурации двигатель всегда запускается на 115, а работает на 115 или 230.

Черный — начало одной обмотки, красный — ее конец.

Желтый — начало второй обмотки, зеленый — ее конец.

При наличии двух выводов, обозначенных цифрами, и только одного цветного вывода каждой из оставшихся двух обмоток любое сочетание напряжения и направления может быть определено только путем проверки непрерывности.

Патент 2,184,411 на заводской табличке относится к новому типу центробежного пускового выключателя, который, как обычно, нормально замкнут, но размыкается, когда двигатель достигает 80% или около того синхронной скорости.

 

Джим С.
Горячекатаный