Подключение электродвигателя на 220 через конденсаторы. Подключение трехфазного электродвигателя 380В к однофазной сети 220В: схемы и особенности

Как подключить трехфазный двигатель 380В к однофазной сети 220В. Какие схемы подключения существуют. Как рассчитать емкость конденсаторов. Какие особенности нужно учитывать при подключении.

Содержание

Особенности трехфазных и однофазных электродвигателей

Для понимания процесса подключения трехфазного двигателя к однофазной сети важно разобраться в ключевых отличиях между трехфазными и однофазными электродвигателями:

  • Трехфазные двигатели рассчитаны на работу от трех фаз напряжением 380В, сдвинутых на 120 градусов. Это обеспечивает равномерное вращающееся магнитное поле в статоре.
  • Однофазные двигатели работают от одной фазы 220В. Для создания вращающегося поля используются дополнительные пусковые и рабочие обмотки.
  • КПД и мощность трехфазных двигателей выше за счет более эффективного использования обмоток.
  • Трехфазные двигатели имеют более простую конструкцию, не требуют пусковых устройств.

При подключении трехфазного двигателя к однофазной сети основная задача — имитировать трехфазное питание с помощью дополнительных элементов схемы.


Основные способы подключения трехфазного двигателя к сети 220В

Существует несколько основных схем подключения трехфазного электродвигателя 380В к однофазной сети 220В:

  1. С использованием конденсаторов (рабочего и пускового)
  2. С применением частотного преобразователя
  3. Через понижающий трансформатор
  4. С помощью электронного фазорасщепителя

Наиболее распространенным и доступным является подключение через конденсаторы. Рассмотрим его подробнее.

Схема подключения через конденсаторы

Принцип работы данной схемы заключается в создании искусственной третьей фазы с помощью фазосдвигающих конденсаторов. Схема включает следующие основные элементы:

  • Рабочий конденсатор (постоянно включен в цепь)
  • Пусковой конденсатор (подключается только при запуске)
  • Выключатель пускового конденсатора
  • Обмотки двигателя

Как работает данная схема подключения трехфазного двигателя к 220В?

  1. На одну обмотку подается напряжение сети 220В напрямую
  2. На вторую обмотку подается напряжение через рабочий конденсатор, создающий сдвиг фазы на 90°
  3. На третью обмотку поступает напряжение, являющееся разностью первых двух

Таким образом, создается подобие трехфазной системы питания, позволяющее запустить и эксплуатировать трехфазный двигатель.


Расчет емкости конденсаторов

Правильный выбор емкости конденсаторов критически важен для нормальной работы двигателя. Как рассчитать необходимую емкость?

Для рабочего конденсатора можно использовать приближенную формулу:

C = (2800 * P) / U^2

Где: C — емкость в мкФ P — мощность двигателя в кВт U — напряжение сети (220В)

Емкость пускового конденсатора обычно берется в 3-5 раз больше рабочего.

Важно учитывать следующие моменты при выборе конденсаторов:

  • Рабочее напряжение должно быть не менее 400В
  • Лучше использовать специальные двигательные конденсаторы
  • При большой мощности двигателя может потребоваться батарея из нескольких конденсаторов

Особенности подключения и эксплуатации

При подключении трехфазного двигателя к сети 220В через конденсаторы следует учитывать ряд важных моментов:

  • Мощность двигателя снижается примерно на 30% от номинальной
  • КПД также несколько падает
  • Возможен повышенный нагрев обмоток
  • Необходимо обеспечить надежное соединение всех контактов
  • Требуется периодическая проверка состояния конденсаторов

Как проверить правильность подключения трехфазного электродвигателя к 220В? Необходимо измерить напряжение на всех трех обмотках — оно должно быть примерно одинаковым и близким к 220В.


Преимущества и недостатки конденсаторного способа подключения

Рассмотрим основные плюсы и минусы подключения трехфазного двигателя 380В к сети 220В через конденсаторы:

Преимущества:

  • Простота схемы
  • Низкая стоимость компонентов
  • Возможность самостоятельного подключения
  • Не требуется изменение конструкции двигателя

Недостатки:

  • Снижение мощности и КПД двигателя
  • Возможен повышенный нагрев
  • Необходимость периодического обслуживания
  • Сложность точного подбора емкости конденсаторов

Альтернативные способы подключения

Помимо конденсаторного метода существуют и другие способы подключения трехфазного двигателя к однофазной сети:

Частотный преобразователь

Позволяет не только подключить двигатель, но и управлять его скоростью. Однако стоимость преобразователя достаточно высока.

Понижающий трансформатор

Используется для понижения напряжения с 380В до 220В. Подходит для маломощных двигателей.

Электронный фазорасщепитель

Специальное устройство для формирования трехфазного напряжения из однофазного. Обеспечивает высокое качество питания, но имеет высокую стоимость.


Заключение

Подключение трехфазного электродвигателя 380В к сети 220В — задача, с которой может справиться даже непрофессионал при соблюдении необходимых мер предосторожности. Наиболее доступным и распространенным является способ с использованием конденсаторов. При правильном расчете и подключении он позволяет эффективно эксплуатировать трехфазный двигатель от однофазной сети, хотя и с некоторым снижением характеристик.

Важно помнить о необходимости периодического контроля работы такой схемы и соблюдении правил электробезопасности. При возникновении сомнений лучше обратиться к специалисту.


Как подключить двигатель 380 на 220 через конденсаторы схема

Главная » Разное » Как подключить двигатель 380 на 220 через конденсаторы схема

Как подключить электродвигатель 380В на 220В через конденсатор

Большинство собственников частных гаражей или мастерских сталкиваются с таким вопросом, как подключить электродвигатель 380В на 220В через конденсатор или другими методами. Некоторые виды оборудования, которые могут находиться в частной собственности, например, бетономешалки, точильные или деревообрабатывающие станки, потребляют большую мощность.

Обеспечить ее может асинхронный трехфазный двигатель, только главная его беда – расчет на подключение к силовой сети напряжением 380В, которое в большинстве частных домохозяйств отсутствует или сильно ограничено. Варианты выхода из существующей ситуации 380/220 рассмотрим далее.

Разница между однофазными и трехфазными агрегатами

Прежде чем приступить к непосредственному рассмотрению схем подключения типа 380/220, нужно разобраться в следующем:

  • что собой представляют двигатели обоих классов,
  • как они работают,
  • каковы принципы функционирования однофазной (220) и трехфазной (380) сети.

Поскольку большинство асинхронных электродвигателей являются трехфазными (на 380В), то начнем, пожалуй, с них. Любой подобный агрегат имеет два ключевых элемента: подвижный ротор, соединенный с приводным валом, и неподвижный кольцевидный статор. Каждый из них имеет фазные обмотки, смещенные относительно друг друга на 120º. Принцип действия двигателя на 380В заключается в создании подвижного (вращающегося) магнитного поля. Оно создается в обмотках статора при подаче напряжения на них. За счет разности частот полей ротора и статора, между контактными обмотками возникает ЭДС, которая заставляет вал вращаться. На клеммы такого двигателя должны приходить три фазы (по 220 В) через соединение по схеме звезда или треугольник.

Однофазным принято называть силовой агрегат, рассчитанный на подключение к идентичной, чаще всего бытовой сети 220В. Учитывая, что любой такой кабель имеет две жилы (фаза и ноль), двигателю достаточно иметь всего одну фазную обмотку. По факту, на статоре конструктивно есть две обмотки, но одна используется как рабочая, а вторая – пусковая. Для того, чтобы двигатель на 220В начал работать, то есть, чтобы возникло вращающееся магнитное поле и следом за ним ЭДС, необходимо задействовать обе цепи. При этом, пусковая обмотка подключается через промежуточную емкостную/индуктивную цепь или же замыкается, если мощность агрегата мала.

Как можно заключить, главная разница между этими двумя классами двигателей (220 и 380 В) заключается не столько в количестве фаз/проводов подключения, сколько в организации пуска.

Особенности и способы подключения к однофазной сети

Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.

Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:

  1. Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить,
  2. Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.

Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.

Общие схемы подключения двигателей с 380В на 220В через конденсатор

Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:

Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

Расчет емкости конденсаторов ведется по следующим формулам:

Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.

Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.

Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:

Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:

Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:

Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.

Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.

Как подключить электродвигатель от 380 до 220: цепи

Существуют ситуации, когда оборудование рассчитано на 380 вольт, вам необходимо подключиться к домашней сети на 220 В. Поскольку двигатель не запускается, вам необходимо изменить в нем некоторые детали. Это легко сделать самостоятельно. Хотя эффективность несколько снижается, такой подход оправдан.

Трехфазные и однофазные двигатели

Чтобы понять, как подключить электродвигатель от 380 до 220 вольт, мы выясним, что такое источник питания на 380 вольт.

Трехфазные двигатели имеют много преимуществ по сравнению с бытовыми однофазными. Поэтому их использование в промышленности обширно. И дело не только в мощности, но и в коэффициенте полезного действия. Они также включают пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. Например, защитное реле запуска холодильника отслеживает, сколько обмоток обрезано. И в трехфазном двигателе этот элемент больше не нужен.

Это достигается тремя фазами, во время которых электромагнитное поле вращается внутри статора.

Почему 380 В?

Когда поле внутри статора вращается, ротор также перемещается. Обороты не совпадают с пятьдесят герц сети из-за того, что больше обмоток, число полюсов отлично, и по разным причинам происходит проскальзывание. Эти индикаторы используются для регулирования вращения вала двигателя.

Все три фазы имеют значение 220 В. Однако разница между любыми двумя из них в любое время будет отличаться от 220. Таким образом, получится 380 Вольт.То есть двигатель использует 220 В для работы с фазовым сдвигом в сто двадцать градусов.

Поэтому, как напрямую подключить электродвигатель 380 к 220В невозможно, нужно использовать хитрости. Конденсатор считается самым простым способом. Когда контейнер проходит фазу, последний изменяется на девяносто градусов. Хотя он не достигает ста двадцати, этого достаточно для запуска и эксплуатации трехфазного двигателя.

Как подключить электродвигатель от 380 В к 220 В

Чтобы понять задачу, необходимо понять, как устроены намотки. Обычно корпус защищен кожухом, а под ним расположена проводка. Убрав его, нужно изучить содержимое. Часто схему подключения можно найти здесь. Для подключения электродвигателя к сети 380-220 используется коммутация в форме звезды. Концы обмоток находятся в общей точке, называемой нейтральной. Фазы подаются на противоположную сторону.

«Звезда» должна быть изменена. Для этого обмотка двигателя должна быть соединена в другую форму — в форме треугольника, совмещая их на концах друг с другом.

Как подключить электродвигатель от 380 до 220: цепи

Диаграмма может выглядеть следующим образом:

  • Напряжение сети подается на третью обмотку;
  • ,
  • , тогда первое напряжение обмотки будет проходить через конденсатор с фазовым сдвигом в девяносто градусов;
  • вторая обмотка будет зависеть от разности напряжений.

Понятно, что фазовый сдвиг составит девяносто и сорок пять градусов. Из-за этого вращение не является равномерным.Кроме того, форма фазы на второй обмотке не будет синусоидальной. Поэтому после подключения трехфазного электродвигателя к 220 вольт это будет возможно, это невозможно реализовать без потери мощности. Иногда вал даже залипает и перестает вращаться.

Работоспособность

После набора оборотов, пусковая мощность больше не будет необходима, так как сопротивление движению станет незначительным. Чтобы уменьшить емкость, она сокращается до сопротивления, через которое ток больше не проходит.Для правильного выбора рабочей и пусковой емкости необходимо прежде всего учитывать, что напряжение на рабочем конденсаторе должно существенно перекрывать 220 вольт. Как минимум должно быть 400 В. Также необходимо обратить внимание на провода, чтобы токи были рассчитаны на однофазную сеть.

Если рабочая емкость слишком низкая, вал заклинивает, поэтому для него используется начальное ускорение.

Работоспособность также зависит от следующих факторов:

  • Чем мощнее двигатель, тем больше номинальная емкость.Если значение составляет 250 Вт, то достаточно нескольких десятков мкФ. Однако если мощность выше, то номинальное значение можно считать сотнями. Конденсаторы лучше покупать пленочные, потому что электрические придется дополнительно комплектовать (они рассчитаны на постоянный, не переменный ток и без переделки могут взорваться).
  • Чем выше частота вращения двигателя, тем выше рейтинг. Если вы возьмете двигатель при 3000 об / мин и мощности 2,2 кВт, то для батареи потребуется от 200 до 250 мкФ.И это огромная ценность.

Эта мощность также зависит от нагрузки.

Заключительный этап

Известно, что электродвигатель 380 В при 220 В будет работать лучше, если напряжения получаются с равными значениями. Для этого не следует прикасаться к обмотке, соединяющей сеть, но потенциал измеряется на обеих других.

Асинхронный двигатель имеет собственное реактивное сопротивление. Необходимо определить минимум, при котором он начинает вращаться.После этого номинал постепенно увеличивается, пока все обмотки не выровняются.

Но когда двигатель раскручивается, может оказаться, что равенство нарушено. Это связано с уменьшением сопротивления. Поэтому перед подключением двигателя от 380 до 220 вольт и его фиксацией необходимо сравнить значения, даже когда устройство работает.

Напряжение может быть выше 220 В. Обратите внимание, чтобы обеспечить стабильную стыковку контактов, и не было потери питания или перегрева. Наилучшее переключение выполняется на специальных клеммах с фиксированными болтами.После подключения электродвигателя от 380 до 220 вольт получилось с необходимыми параметрами, кожух снова надевается на агрегат, а провода пропускаются через боковые стенки через резиновое уплотнение.

Что еще может случиться и как решить проблемы

Часто после сборки обнаруживается, что вал вращается не в том направлении, в котором это необходимо. Направление должно быть изменено.

Для этого третья обмотка подключается через конденсатор к резьбовой клемме второй обмотки статора.

Бывает, что из-за длительной работы с током появляется шум двигателя. Однако этот звук совершенно другого типа по сравнению с гулом при неправильном подключении. Это происходит со временем и вибрацией двигателя. Иногда вам даже приходится вращать ротор с силой. Это обычно вызвано износом подшипника, который вызывает слишком большие зазоры и шум. Со временем это может привести к заклиниванию, а позже — к повреждению деталей двигателя.

Лучше не допускать этого, иначе механизм станет непригодным для использования.Подшипники легче заменить новыми. Тогда эле

.

Звезда / Дельта подключение двигателя 380В / 220В | GoHz.com

Если двигатель спроектирован для работы в трехфазном источнике питания на 380 В, то он не может быть подключен в треугольнике к тому же источнику питания. Это было бы эквивалентно приложению 380 вольт к обмоткам 220 В, так что очевидно, что двигатель выйдет из строя.

Обратите внимание, что в звезде каждая обмотка получает корень3 от приложенного напряжения (или 380 / 1,732), соединяющегося в треугольник, что означает, что каждая обмотка получает фазово-фазовое напряжение EG 380В.

Если двигатель рассчитан на 380В — «треугольник подключен», то он может быть подключен по схеме «звезда» или «треугольник», так как подключение двигателя 380В с номиналом «треугольник» в звезде снизит напряжение на обмотках до 220В, что нормально и часто используется в звездах / звездах. Дельта начинает уменьшать пусковой ток.Все 6 обмоток двигателя должны быть доступны.

Как указано выше, вы можете взять трехфазный двигатель, подключенный к звезде на 380 В, и запустить его как трехфазный электродвигатель, подключенный к треугольнику. Возвращаясь к основам, это ток, управляемый напряжением, которое создает поток. Плотность потока (зависит от многих вещей) является функцией тока и напряжения. Ток контролируется сопротивлением цепи и нагрузкой на двигатель. Поскольку большая часть изоляции, которая входит в двигатели, рассчитана на напряжение 1000 В плюс, напряжение не является проблемой до тех пор, пока полное сопротивление не станет достаточно низким, чтобы превысить ограничение тока на проводниках до точки, где температура разрушит изоляцию. Мы запустили 380В на 525В и наоборот в чрезвычайной ситуации. Эффективность и коэффициент мощности НЕ будут соответствовать дизайну, и вы должны это понимать. Настройка защиты сложна и безопасна, пожалуйста.

Таким образом, вы можете подать любое напряжение на двигатель, если оно не превышает уровень изоляции и ограничения тока данного конкретного двигателя.

В заключение, есть однофазные входы для трехфазных преобразователей частоты (VFD). Очень часто я получаю запрос, что они не могут довести двигатель до полной нагрузки, не превышая данные заводской таблички.Небольшие двигатели, для которых эти ЧРП, где они предназначены, как правило, соединены звездой. Поскольку VFD не может генерировать шину постоянного тока выше пикового напряжения на входе, вы никогда не сможете получить напряжение 380 В на входе 220 В. Таким образом, VFD выдает три фазы 220v. Двигатель должен быть подключен в треугольник, чтобы работать при полной нагрузке / мощности.

,Конденсатор

последовательно, параллельно и цепей переменного тока

Конденсатор является одним из наиболее часто используемых электронных компонентов. Он обладает способностью накапливать энергию внутри него в форме электрического заряда, создающего статическое напряжение (разность потенциалов) на его пластинах. Просто конденсатор похож на небольшой аккумулятор. Конденсатор представляет собой просто комбинацию двух проводящих или металлических пластин, расположенных параллельно и электрически разделенных хорошим изолирующим слоем (также называемым диэлектрик) , состоящим из вощеной бумаги, слюды, керамики, пластика и т. Д.

Существует много применений конденсатора в электронике, некоторые из них перечислены ниже:

  • накопитель энергии
  • Мощность кондиционирования
  • Коррекция коэффициента мощности
  • Фильтрация
  • Генераторы

Теперь дело в , как работает конденсатор ? Когда вы подключаете источник питания к конденсатору, он блокирует постоянный ток из-за изолирующего слоя и допускает наличие напряжения на пластинах в виде электрического заряда. Итак, вы знаете, как работает конденсатор и каковы его применения или применение, но вы должны научиться тому, как использовать конденсатор в электронных схемах.

Как подключить конденсатор в электронную схему?

Здесь мы собираемся продемонстрировать вам соединения конденсатора и эффект от него на примерах.

  • Конденсатор серии
  • Параллельный конденсатор
  • Конденсатор в цепи переменного тока
Конденсатор в последовательной цепи

В цепи, когда вы подключаете конденсаторы последовательно, как показано на рисунке выше, общая емкость уменьшается.Ток через последовательно соединенные конденсаторы равен (т.е. i T = i 1 = i 2 = i 3 = i n ). Следовательно, заряд, сохраняемый конденсаторами, также одинаков (т.е. Q T = Q 1 = Q 2 = Q 3 ), потому что заряд, хранящийся на пластине любого конденсатора, поступает от пластины соседней конденсатор в цепи.

Применяя Закон напряжения Кирхгофа (KVL) в цепи, мы получаем

  V  T  = V  C1  + V  C2  + V  C3 … уравнение (1)  

Как мы знаем,

  Q = CV   Итак, V = Q / C  

, где V C1 = Q / C 1 ; V C2 = Q / C 2 ; V C3 = Q / C 3

Теперь, поместив вышеуказанные значения в уравнение (1)

  (1 / C  T ) = (1 / C  1 ) + (1 / C  2 ) + (1 / C  3 )  

Для n числа конденсаторов в серии уравнение будет

  (1 / C  T ) = (1 / C  1 ) + (1 / C  2 ) + (1 / C  3 ) +….+ (1 / Cn)  

Следовательно, вышеприведенное уравнение представляет собой уравнение конденсаторов серии .

Где, C T = Общая емкость цепи

C 1 … n = емкость конденсаторов

Уравнение емкости для двух особых случаев определяется ниже:

Случай I: , если два последовательно соединенных конденсатора, при различном значении емкость будет выражаться как:

  (1 / C  T ) = (C  1  + C  2 ) / (C  1  * C  2 )   Или, C  T  = (C  1  * C  2 ) / (C  1  + C  2 )… уравнение (2)  

Случай II: , если два последовательно соединенных конденсатора, при одинаковом значении емкость будет выражаться как:

  (1 / C  T ) = 2C / C  2  = 2 / C   или C  T  = C / 2  

Пример последовательной цепи конденсатора:

Теперь в следующем примере мы покажем вам, как рассчитать общую емкость и индивидуальное среднеквадратичное падение напряжения на каждом конденсаторе.

Согласно приведенной выше принципиальной схеме два конденсатора соединены последовательно с разными значениями. Таким образом, падение напряжения на конденсаторах также неравномерно. Если подключить два конденсатора с одинаковым значением, падение напряжения также будет одинаковым.

Теперь для общего значения емкости будем использовать формулу из уравнения (2)

  Так, C  T  = (C  1  * C  2 ) / (C  1  + C  2 )   Здесь C  1  = 4.7 мкФ и С  2  = 1 мкФ   C  T  = (4,7 мкФ * 1 мкФ) / (4,7 мкФ + 1 мкФ)   C  T  = 4,7 мкФ / 5,7 мкФ   C  T  = 0,824 мкФ  

Теперь падение напряжения на конденсаторе C 1 составляет:

  VC  1  = (C  T  / C  1 ) * V  T   VC  1  = (0,824 мкФ / 4,7 мкФ) * 12   VC  1  = 2,103 В  

Теперь падение напряжения на конденсаторе C 2 составляет:

  VC  2  = (C  T  / C  2 ) * V  T   VC  2  = (0. 824 мкФ / 1 мкФ) * 12   VC  2  = 9,88 В  
Конденсатор в параллельной цепи

При параллельном подключении конденсаторов общая емкость будет равна сумме всех емкостей конденсаторов. Потому что верхняя пластина всех конденсаторов соединена вместе, а нижняя также. Таким образом, при касании друг друга эффективная площадь пластины также увеличивается. Следовательно, емкость пропорциональна отношению площади и расстояния.

Применив Текущий закон Кирхгофа (KCL) в вышеупомянутой цепи,

  i  T  = i  1  + i  2  + i  3  

Как мы знаем, ток через конденсатор выражается как;

  i = C (DV /   dt  )   Итак, я  T  = C  1  (DV /   dt  ) + C  2  (DV /   dt  ) + C  3  (DV /   dt  )   А,   i   T    = (C  1  + C  2  + C  3 ) * (DV /   dt  )   i  T  = C  T  (dV /   dt  )… уравнение (3)  

Из уравнения (3) уравнение параллельной емкости:

  C  T  = C  1  + C  2  + C  3  

Для n конденсаторов, соединенных параллельно, приведенное выше уравнение выражается как:

  C  T  = C  1  + C  2  + C  3  +… + Cn  

Пример параллельной конденсаторной цепи

На приведенной ниже принципиальной схеме три конденсатора соединены параллельно . Поскольку эти конденсаторы подключены параллельно, эквивалентная или полная емкость будет равна сумме отдельной емкости.

  C  T  = C  1  + C  2  + C  3  , где С  1  = 4,7 мкФ; C  2  = 1 мкФ и C  3  = 0,1 мкФ   Итак, C  T  = (4,7 +1 + 0,1) UF   C  T  = 5,8 мкФ  
Конденсатор в цепях переменного тока

Когда конденсатор подключен к источнику постоянного тока, конденсатор начинает медленно заряжаться.И когда напряжение тока зарядки конденсатора равно напряжению питания, говорят, что оно полностью заряжено. Здесь в этом состоянии конденсатор работает как источник энергии, пока подается напряжение. Кроме того, конденсаторы не позволяют току проходить через него после того, как он полностью зарядится.

Всякий раз, когда на конденсатор подается переменное напряжение, как показано на приведенной выше чисто емкостной схеме. Затем конденсатор заряжается и разряжается непрерывно до каждого нового уровня напряжения (заряжается при положительном уровне напряжения и разряжается при отрицательном уровне напряжения).Емкость конденсатора в цепях переменного тока зависит от частоты входного напряжения, подаваемого в цепь. Ток прямо пропорционален скорости изменения напряжения, приложенного к цепи.

  i = dQ /   dt   = C (dV /   dt  )  

Фазовая диаграмма для конденсатора в цепи переменного тока

Как вы видите фазовую диаграмму для конденсатора переменного тока на изображении ниже, ток и напряжение представлены в синусоиде.При наблюдении при 0 ° зарядный ток достигает своего пикового значения, поскольку напряжение постоянно увеличивается в положительном направлении.

Теперь при 90 ° ток не проходит через конденсатор, потому что напряжение питания достигает максимального значения. При 180 ° напряжение начинает медленно уменьшаться до нуля, а ток достигает максимального значения в отрицательном направлении. И снова заряд достигает своего пикового значения при 360⁰, поскольку напряжение питания находится на минимальном значении.

Таким образом, из приведенного выше сигнала мы можем наблюдать, что ток опережает напряжение на 90⁰.Итак, мы можем сказать, что переменное напряжение отстает от тока на 90⁰ в идеальной конденсаторной цепи .

Реактивное сопротивление конденсатора (Xc) в цепи переменного тока

Рассмотрим приведенную выше принципиальную схему, так как мы знаем, что входное напряжение переменного тока выражается как,

  V = V  м  Грех  вес  

А, заряд конденсатора Q = CV,

Итак, Q = CV м Грех вес

А, ток через конденсатор, i = dQ / dt

Итак,

  i = d (CV  m  Sin  wt ) / dt   i = C * d (V  м  Sin  вес ) / дт   i = C * V  м  Cos  вес  * w   i = w * C * V  м  Грех (вес + π / 2)   ат, вес = 0   sin (wt + π / 2) = 1  , следовательно, я  м  = WCV  м   В  м / м  = 1 / wC  

Как мы знаем, w = 2πf

Итак,

  Емкостное реактивное сопротивление (Xc) = V  м  / i  м  = 1 / 2πfC  

Пример емкостного сопротивления в цепи переменного тока

диаграмма

Давайте рассмотрим значение C = 2. 2 мкФ и напряжение питания V = 230 В, 50 Гц,

  Теперь емкостное реактивное сопротивление (Xc) = V  м  / i  м  = 1 / 2πfC   Здесь C = 2,2 мкФ и f = 50 Гц   Итак, Хс = 1/2 * 3,1414 * 50 * 2,2 * 10  -6   Xc = 1446,86 Ом  

.


Смотрите также

  • Как выставить правильно зажигание на 406 двигателе
  • Как собрать грм на 406 двигателе
  • Как подключить двигатель треугольником
  • Как подобрать шаговый двигатель для чпу станка
  • Какой прибор измеряет число оборотов двигателя
  • Двигатель на газель 402 или 406 какой лучше
  • Какой стоит двигатель на митсубиси л200
  • Промывать двигатель лучше чем
  • Какое масло заливать в двигатель мопеда альфа 110
  • Гибридный шаговый двигатель что это
  • Ситроен с5 какой двигатель лучше

Асинхронный двигатель подключение на 220 с конденсатором

Содержание

  1. Схема подключения электродвигателя на 220В через конденсатор
  2. Схемы подключения
  3. Как рассчитать емкость
  4. Однофазный асинхронный двигатель, схема подключения и запуска
  5. Отличие от трехфазных двигателей
  6. Как это работает
  7. Основные схемы подключения
  8. Другие способы
  9. С экранированными полюсами и расщепленной фазой
  10. С асимметричным магнитопроводом статора
  11. Подбор конденсатора

Схема подключения электродвигателя на 220В через конденсатор

Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.

Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

Что при этом получается?

  • Скорость вращения не изменяется.
  • Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.

Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

Обратите внимание в рисунке на нижнюю бирку (Б).

Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

Схемы подключения

Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:

  • Два контакта подсоединяются к сети.
  • Один через конденсатор к обмотке.

Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться. Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой. На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.

В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.

Как рассчитать емкость

Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

I = P/(1. 73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

  • Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
  • Низкая мощность двигателя, значит, емкость занижена.

Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.

Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.

Как подключить трехфазный электродвигатель в сеть 220В – схемы и рекомендации

Как правильно провести подключение электродвигателя 380 на 220 вольт

Схема подключения трехфазного электродвигателя к трехфазной сети

Однофазный асинхронный двигатель, схема подключения и запуска

Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

Отличие от трехфазных двигателей

Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

  1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
  2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

Схема подключения коллекторного электродвигателя в 220В

Схема подключения однофазного асинхронного двигателя (схема звезда)

Как это работает

Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

Основные схемы подключения

В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др. ), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

однофазный асинхронный двигатель и конденсатор

Различают три основные способа запуска однофазного асинхронного двигателя через:

  • рабочий;
  • пусковой;
  • рабочий и пусковой конденсатор.

В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

Другие способы

При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

С экранированными полюсами и расщепленной фазой

В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

С асимметричным магнитопроводом статора

Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

Подбор конденсатора

Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

Керамический и электролитический конденсатор

Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

Проводка

— Как подключить однофазный двигатель 220 В с пусковым конденсатором И рабочим конденсатором, ДОПОЛНИТЕЛЬНО к пусковым и рабочим обмоткам?

спросил

Изменено 4 месяца назад

Просмотрено 751 раз

\$\начало группы\$

Я говорю на вашем языке, так как я работаю 12-летним ветераном-технологом в котельной компании. Я делаю одолжение для друга и столкнулся с этой проблемой. Я подключил много однофазных двигателей с пусковыми и рабочими конденсаторами, но я ничего не помню об этом, используя пусковую и рабочую обмотки.

Я уже определил свои пары, и что есть что. Я также идентифицировал свои конденсаторы. К сожалению, нигде в Интернете об этом ничего нет, и ветераны постарше, с которыми я общаюсь, ведут себя так, будто я краду у них бизнес или что-то в этом роде. Мы не используем этот материал в моей области. Тысячи двигателей, которые я подключил за эти годы, в основном либо ваши 9привести 3 фазы правда, или ваша прямая однофазная с конденсатором или 2. Мой приятель действительно рассчитывает на меня, и я делаю это бесплатно, так как он инвалид и просто очень хороший человек. Я действительно хотел бы иметь возможность помочь ему, и я обещаю, что я не из тех, кто будет глупо пытаться обвинить какого-то благонамеренного электрика за то, что он помог мне советом, о котором я просил, если что-то не получится. Другими словами, я беру на себя всю ответственность за этот ремонт и не буду пытаться принуждать или позволять кому-либо другому делить его со мной.

Если я не смогу понять это довольно быстро, я буквально просто пойду куплю ему достойную замену. Я изучаю это уже больше месяца. Любая помощь будет принята с благодарностью.

  • двигатель
  • проводка

\$\конечная группа\$

1

\$\начало группы\$

Может это? конденсаторный пуск, конденсаторный двигатель: https://circuitglobe. com/capacitor-start-capacitor-run-motor.html

Любые фотографии, которые у вас есть, помогут.

\$\конечная группа\$

1

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Подключение однофазного электродвигателя с пусковым конденсатором

спросил

Изменено 1 год, 6 месяцев назад

Просмотрено 4к раз

\$\начало группы\$

У меня есть однофазный электродвигатель со следующей схемой подключения. На электрической схеме, к сожалению, отсутствуют детали подключения активной линии и нейтрали. Я просмотрел несколько других схем подключения и видео, но они, кажется, противоречат друг другу. Кто-нибудь имеет опыт работы с ними и сможет объяснить, куда подключать входы переменного тока?

(Cap line denotes capacitor line)

English translation:

Original diagram:

Motor inside:

  • capacitor
  • motor
  • wiring
  • single-phase

\$\конечная группа\$

1

\$\начало группы\$

Вся информация есть.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *