Подключение ограничителя перенапряжения. Защита от перенапряжений: устройство, принцип работы и схемы подключения УЗИП

Что такое устройства защиты от импульсных перенапряжений (УЗИП). Как работают ограничители перенапряжений. Какие бывают виды УЗИП. Как правильно выбрать и подключить УЗИП для защиты электрооборудования. Типовые схемы подключения УЗИП в частном доме.

Содержание

Что такое устройства защиты от импульсных перенапряжений (УЗИП)

Устройства защиты от импульсных перенапряжений (УЗИП) предназначены для защиты электрооборудования от кратковременных скачков напряжения в электросети. Основные функции УЗИП:

  • Ограничение амплитуды импульсов перенапряжения до безопасного уровня
  • Отвод импульсных токов в землю
  • Защита изоляции электроприборов от пробоя
  • Предотвращение выхода из строя электронных компонентов

УЗИП устанавливаются во вводных и распределительных щитах для защиты всей электропроводки здания, а также непосредственно возле чувствительного оборудования.

Принцип работы ограничителей перенапряжений

В основе работы УЗИП лежит использование нелинейных элементов — варисторов или разрядников. Принцип действия можно описать следующим образом:


  1. При нормальном напряжении в сети УЗИП находится в высокоомном состоянии и не влияет на работу электроприборов.
  2. При возникновении импульса перенапряжения сопротивление УЗИП резко падает, создавая путь для отвода импульсного тока.
  3. Происходит ограничение амплитуды перенапряжения до безопасного уровня.
  4. После окончания импульса УЗИП возвращается в исходное высокоомное состояние.

Таким образом, УЗИП эффективно защищает оборудование, пропуская через себя опасные импульсы тока и ограничивая напряжение.

Виды и классы УЗИП

По конструкции и назначению различают следующие основные виды УЗИП:

  • Варисторные — на основе металлооксидных варисторов
  • Разрядные — с газонаполненными разрядниками
  • Комбинированные — сочетают варисторы и разрядники

По уровню защиты УЗИП подразделяются на классы:

  • Класс I — для защиты от прямых ударов молнии
  • Класс II — для защиты от наведенных перенапряжений
  • Класс III — для защиты конечных потребителей

Выбор конкретного типа УЗИП зависит от категории защищаемого оборудования и условий эксплуатации.


Как правильно выбрать УЗИП

При выборе УЗИП для защиты электроустановок следует учитывать следующие основные параметры:

  • Максимальное длительное рабочее напряжение
  • Номинальный разрядный ток
  • Максимальный импульсный ток
  • Уровень напряжения защиты
  • Категория размещения

Важно правильно определить необходимый класс УЗИП и место его установки в системе электроснабжения. Для комплексной защиты рекомендуется применять многоступенчатую схему с УЗИП разных классов.

Схемы подключения УЗИП в частном доме

Рассмотрим типовые схемы подключения УЗИП для защиты электропроводки частного дома:

Схема 1: Однофазная сеть с системой заземления TN-S

В данной схеме УЗИП класса I+II устанавливается во вводном щите после вводного автомата. Подключение выполняется между фазным проводником, нулевым рабочим и защитным проводниками:

«` L N PE QF1 УЗИП
QF2 «`

Где:

  • QF1 — вводной автомат
  • УЗИП — устройство защиты от импульсных перенапряжений
  • QF2 — групповой автомат

Схема 2: Трехфазная сеть с системой заземления TN-C-S

В трехфазной сети УЗИП подключается между фазными проводниками, PEN-проводником и шиной заземления:


«` L1 L2
L3 PEN PE QF1 УЗИП QF2 «`

Где:

  • QF1 — вводной автомат
  • УЗИП — устройство защиты от импульсных перенапряжений
  • QF2 — групповой автомат

Основные правила монтажа УЗИП

При установке УЗИП необходимо соблюдать следующие важные правила:

  1. УЗИП должен устанавливаться как можно ближе к вводу электропитания в здание.
  2. Провода, соединяющие УЗИП с шинами, должны быть максимально короткими.
  3. Сечение проводников для подключения УЗИП должно быть не менее 4 мм².
  4. Необходимо обеспечить надежное заземление УЗИП.
  5. Рекомендуется устанавливать УЗИП в отдельном пожаробезопасном боксе.

Правильный монтаж УЗИП обеспечивает его эффективную работу и надежную защиту электрооборудования от импульсных перенапряжений.

Обслуживание и проверка работоспособности УЗИП

Для обеспечения надежной защиты необходимо периодически проверять состояние УЗИП:

  • Визуальный осмотр на предмет механических повреждений
  • Проверка индикаторов состояния (если предусмотрены)
  • Измерение сопротивления изоляции
  • Проверка надежности контактных соединений

При обнаружении неисправностей или после срабатывания УЗИП необходимо производить его замену. Рекомендуемая периодичность проверок — не реже 1 раза в год.



УЗИП для частного дома: 6 схем подключения

Парадокс наших дней — задал простой вопрос десятку знакомых: вы понимаете, что от удара молнии может сгореть стиралка, холодильник, морозильник и дорогая электроника: компьютер, телевизор, домашний кинотеатр?

Спастись от этой беды можно. Достаточно подключить УЗИП для частного дома в отдельном щитке и возложить на него защиту от случайной аварии.

Только один человек сказал, что планирует решить этот вопрос. Остальные же отложили его рассмотрение до лучших времен. Вот я и решил объяснить его подробнее.

Содержание статьи

Для чего предназначены внутренние устройства молниезащиты и как они работают при разрядах

Стихийное возникновение молнии происходит внезапно, создавая огромные разрушения.

Защитить дом от него позволяет внешняя молниезащита, состоящая из молниеприемника, распложенного над крышей, а также молниеотвода и контура заземления.

Ток разряда, проникающий кратковременным импульсом по подготовленной цепи, имеет очень большую величину. Он наводит в близкорасположенной проводке здания и токопроводящих частях перенапряжения, способные сжечь изоляцию, повредить бытовые приборы.

Предотвратить опасные последствия грозового разряда предназначены внутренние устройства молниезащиты, представляющие собой комплекс технических устройств и приборов на основе модулей УЗИП с подключением их к системе заземления.

Они надежно работают не только при непосредственном ударе молнии по дому, но и гасят разряды, попадающие в:

  1. питающую ЛЭП;
  2. близлежащие деревья и строения;
  3. почву, расположенную рядом со зданием.

Если с ударом по ЛЭП обычно вопросов не возникает, то в последних двух случаях перенапряжение способно импульсом проникнуть в домашнюю проводку по контуру земли, трубам водопровода, канализации, другим металлическим магистралям, как показано на самой первой картинке

Работа внутренней молниезащиты происходит за счет подключения проникшего высоковольтного импульса на специально подобранный разрядник или электронный элемент — варистор.

Он включается на разность двух потенциалов и для обычного напряжения обладает очень большим сопротивлением, когда токи через него ограничиваются, не превышают нескольких миллиампер.

При попадании на схему варистора аварийный импульс открывает полупроводниковый переход, замыкая его накоротко. Через него начинает стекать опасный потенциал на защитное заземление.

После варистора опасное напряжение значительно ограничивается. На базе этих электронных компонентов созданы современные модули защиты — УЗИП.

Устройство защиты от импульсных перенапряжений: как правильно выбрать и установить модуль

Представьте картинку, когда накопленная энергия статического электричества между движущимися на больших расстояниях облаками разряжается молниеносным ударом по зданию или питающей его ЛЭП.

Усредненная форма импульса тока приведена ниже. Она вначале круто возрастает примерно за 10 микросекунд, а затем, достигнув своего апогея, начинает плавно снижаться. Причем спад до середины максимального значения тока происходит через 350 мкс и продолжается дальше до нуля.

Этот импульс грозового разряда создает перенапряжение в сети, которое примерно повторяет форму тока, но может отличаться за счет работы ограничителей перенапряжения, установленных на воздушной ЛЭП.

Форма такого импульса, обработанного разрядниками, показана чуть правее, а обычная синусоида частотой 50 герц для сравнения ниже.

Ограничители перенапряжения ЛЭП работают за счет пробивания калиброванного воздушного зазора повышенным импульсом разряда. В обычном состоянии его сопротивление исключает протекание токов от напряжения нормальной величины.

У высоковольтных линий электропередач ограничители имеют довольно внушительные размеры.

На воздушных ЛЭП 0,4 кВ их габариты значительно меньше. Они располагаются на опоре рядом с изоляторами.

Ограничители перенапряжения ВЛ способны погасить очень высокое напряжение разряда молнии только до 6 киловольт. Такой импульс имеет измененную форму нарастания и спада напряжения с характеристикой 8/20 мкс. Он поступает на вводные устройства вашего дома.

Защита перенапряжения ЛЭП его сильно урезала и преобразовала. Но этого явно недостаточно для обеспечения безопасности оборудования и жильцов.

Бытовая проводка 220/380 вольт выпускается с изоляцией, способной противостоять импульсам 1,5÷2,5 кВ. Все, что больше, ее пробивает. Поэтому требуется использовать дополнительное устройство защиты от импульсных перенапряжений для частного дома.

Ассортимент таких конструкций обширен. Их необходимо уметь правильно выбирать и монтировать.

УЗИП для сети 0,4 кВ выпускаются на 2 режима возможной аварии для гашения:

  1. тока разряда с формой 10/350мкс, который не претерпел изменений от ОПН воздушной ЛЭП;
  2. импульса перенапряжения с характеристикой 8/20мкс.

По этим факторам удобно при выборе УЗИП пользоваться алгоритмом, который я показал картинкой ниже.

Однако следует представлять, что практически нет устройств, способных разово погасить импульс 6 киловольт до безопасной для бытовой проводки величины в 1,5 кВ.

Этот процесс происходит в три этапа. Под каждый из них используется свой класс УЗИП, хотя есть небольшие исключения из этого правила.

Модули класса 1 способны снизить импульс перенапряжения с 6 до 4 кВ, который проникает:

  • после ограничителей ЛЭП;
  • или наводится от тока разряда молнии, стекающего по молниеотводу;
  • либо ее удара в близко расположенные строения, деревья, почву.

УЗИП класса 1 устанавливают во вводном щиту здания внутри отдельной герметичной пожаробезопасной ячейки. Пренебрегать этим правилом опасно.

При монтаже следует правильно прокладывать защищаемые кабели. Они не должны пересекаться с отводом аварийных токов на контур земли и приходящими, не подвергнутыми защите магистралями.

От сверхтоков модули спасают силовыми предохранителями с плавкими вставками.

Автоматические выключатели для этих целей не приспособлены. Их контакты не выдерживают создаваемые импульсные перегрузки. Они привариваются, а повреждение продолжает развиваться.

Следующий класс УЗИП №2 снижает импульс перенапряжения с четырех до 2,5 кВ. Его ставят в следующем по иерархии распределительном щите, например, квартирном. Он дополняет работу предшествующего модуля, но может использоваться и автономно.

Класс №3 устройства защиты от импульсных перенапряжений может выполняться модулями, устанавливаемыми на DIN-рейку или комплектами, встраиваемыми в бытовые приборы, удлинители, сетевые фильтры.

УЗИП класса 3 способен обеспечивать безопасность только после срабатывания защиты класса №2. Он ставится последовательно за ней потому, что от 4-х киловольт сгорает.

Производители побеспокоились о сложности выбора правильной конструкции УЗИП и предлагают комплексное решение этого вопроса общим модулем, называемым 1+2+3.

Он ставится в отдельном боксе. Однако, цена такой разработки не всем по карману.

Защита от импульсного перенапряжения: частный дом с однофазным питанием

Монтаж электропроводки в частном доме, особенно выполненном из древесины и горючих материалов, требует тщательного соблюдения правил электрической безопасности.

Необходимо учесть, что здание может быть запитано по разным схемам заземления:

  • типовой старой TN-C;
  • либо современной, более безопасной TN-S или ее модификациям.

Разберем оба случая.

Схема подключения УЗИП: 2 варианта по системе заземления TN-S

На картинке ниже представлена развернутая схема с защитой комбинированного класса 1+2, которое используется для установки после вводного автоматического выключателя.

Варистор ограничителя перенапряжения встроен в корпус модуля, защищает электрическую схему от прямых или удаленных атмосферных разрядов молний.

Традиционный для всех УЗИП сигнальный флажок имеет два цвета:

  1. зеленое положение свидетельствует об исправности устройства и готовности к работе;
  2. красное — о необходимости замены в случае срабатывания или перегорания.

Такой модуль может применяться во всех системах заземления, а не только TN-S. Он имеет 3 клеммы подключения:

  1. сверху слева L — фазный провод;
  2. сверху справа PE — защитный проводник заземления;
  3. снизу N — нулевой провод.

УЗИП защищает электросчетчик и все цепи после него.

На очередной схеме показан вариант использования защиты с УЗО. После него создается дополнительная шинка рабочего нуля N1, от которой запитаны все потребители квартиры.

Схема вроде понятна, вопросов не должно возникнуть.

Для дополнительных систем заземления TN-C-S и ТТ предлагаю к изучению и анализу еще две схемы. У них УЗИП монтируется тоже во вводном устройстве.

Цепи подключения счетчика, реле контроля напряжения РКН и УЗО, а также потребители подробно не показываю. Но принцип понятен: используется защитная шина PE.

А вот в старой системе заземления ее нет, за счет чего снижается надежность и безопасность. Но все же она осуществляет защиту, поэтому и рассматривается.

Схема подключения УЗИП по системе заземления TN-C

Отсутствие шины РЕ диктует необходимость подключения УЗИП только между потенциалами фазного провода и PEN. Других вариантов просто нет.

Слева показан способ монтажа защиты для однофазной проводки, а справа — трехфазной.

Импульс перенапряжения снимается по принципу создания искусственного короткого замыкания в питающей цепи.

Защита от импульсного перенапряжения: частный дом с трехфазным питанием

Разбираю принципы подключения УЗИП на примере разных систем заземления.

Схема подключения УЗИП для трехфазного питания дома по системе TN-S

Защита проводки возложена на:

  • трехполюсный вводной автоматический выключатель;
  • однополюсные и трехполюсные автоматы отходящих линий;
  • устройство защиты от импульсных перенапряжений комбинированного типа 1+2+3.

Учетом электроэнергии занимается трехфазный электросчетчик. После него в цепях рабочего нуля образована дополнительная шинка N1. От нее запитываются все потребители.

Шинки N и РЕ, модуль УЗИП подключены стандартным образом.

При раздельном использовании защит классов №1, 2, 3 следует распределять их по зонам I, II, III.

Проникновение импульсов перенапряжения со всех сторон потенциалов фаз, рабочего нуля и соединенного с контуром земли оборудования блокирует включение модулей между шинами фаз, нуля и РЕ.

Схема подключения УЗИП: 2 варианта для трехфазного питания дома по системе TN-C

В предлагаемой разработке показан не чистый вариант подключения защит под систему заземления TN-C, а рекомендуемая современными требованиями модификация перехода на TN-C-S с выполнением повторного заземления.

Проводник PEN по силовому кабелю от питающей трансформаторной подстанции подается на свою шинку, которая подключается перемычкой к сборке рабочего нуля и шине повторного заземления.

Трехполюсный УЗИП, включенный после вводного автомата, защищает электрический счетчик и все его цепи, включая УЗО, от импульсов перенапряжения. Напоминаю, что он должен монтироваться в отдельном несгораемом боксе.

При отсутствии повторного заземления нижняя клемма модуля УЗИП подключается на шину PEN проводника отдельной жилой, а проводка работает чисто по старой системе TN-C.

Еще одна методика снижения нарастающего фронта броска импульса перенапряжения показана ниже. Здесь работают специальные реактивные сопротивления — дросселя LL1-3 с индуктивностью от 6 до 15 микрогенри, подбираемые расчетным путем.

Они используются при близком расположении оборудования для создания небольшой задержки срабатывания защиты, необходимой по условиям селективности.

Их монтируют в отдельном защитном щитке совместно с УЗИП. Так проще выполнять настройки и периодические обслуживания, профилактические работы.

Считаю, что необходимо указать еще на один вариант использования ограничителей перенапряжения и разрядников, которым иногда пренебрегают владельцы сложной электронной техники.

В отдельных ситуациях, как было у меня в электротехнической лаборатории на подстанции 330 кВ. Настольный компьютер подвергался различным видам облучения электромагнитных полей с частотами низкого и высокого диапазонов. Это сказывалось на отображении информации и даже быстродействии.

Выход был найден за счет создания мощного экранирующего чехла и подключения его к отдельному функциональному заземлению.

Однако при ударе молнии в рядом расположенную почву или молниезащиту такой путь может стать источником опасности. Исправить ситуацию позволяет метод создания дополнительной гальванической развязки.

Ее создают подключением разрядника. У меня использовалась разработка компании Hakel, как показано на картинке выше.

3 главных ошибки электрика в схемах молниезащиты

Отвод случайного разряда молнии от здания и ликвидация опасных последствий перенапряжения — это сложная и ответственная техническая задача, требующая:

  1. тщательного инженерного расчета;
  2. надежного монтажа;
  3. своевременного профилактического обслуживания.

Три перечисленных пункта требуют профессиональных знаний и опыта, которыми обладает далеко не каждый специалист.

Отличает профессионала от других электриков не наличие диплома об образовании, количество сертификатов или положительных отзывов, а готовность взять на себя всю полноту материальной ответственности за проделанную работу и причиненный ущерб в случае допущения ошибки на любом вышеперечисленном этапе.

Расчет проекта молниезащиты

Он должен выполняться по двум направлениям:

  1. внешней схеме отвода тока разряда;
  2. внутренней ликвидации импульса перенапряжения с полным учетом местных условий.

На расчет конструкции влияют характеристики грунтов, форма и габариты здания, условия подключения электроэнергии и многие другие факторы.

Их требуется просчитать, смоделировать, подвергнуть испытаниям специализированными компьютерными программами и внести необходимые усовершенствования.

Но есть и другой путь — собрать доступную информацию самостоятельно, например, с интернета и рискнуть безопасностью дома и жильцов: вдруг пронесет. Грозы то бывают не каждый день, авось… (Так поступает большинство, причем часто по незнанию.)

Монтаж внутренней и внешней молниезащиты

Попробуйте ответить на простой вопрос: можно ли изготовить надежно работающую систему без точного проекта, учитывающего аварийные и эксплуатационные режимы?

А ведь так поступают многие владельцы домов. В итоге создаются контуры заземления с завышенным электрическим сопротивлением, ненадежные молниеотводы, что превращает задуманную защиту в ловушку молний, когда молниеприемник притягивает на себя грозовой разряд, а его энергия не отводится на потенциал земли, а прикладывается к зданию.

Ошибки монтажа внутренней молниезащиты ведут к выгоранию бытовой проводки, повреждению дорогого оборудования, бесполезной трате денег, времени.

Профилактическое обслуживание систем молниезащиты

Здесь надо учитывать, что любая техника не только морально изнашивается, но и естественно стареет.

Электрические характеристики грунта меняются в зависимости от погоды, сезона, влажности. Электронные защиты на УЗИП при срабатывании, как и их предохранители могут выгореть. Контактные соединения собранных цепочек со временем увеличивают сопротивление.

Все эти процессы требуется контролировать внешним и внутренним осмотром, выполнением электротехнических измерений точными специализированными приборами.

Внутри многоэтажного здания вопросами внутренней и внешней молниезащиты занимается эксплуатирующая организация ЖКХ со своими работниками. Владелец частного дома решает их самостоятельно и выполнить их обязан надежно и качественно привлечением специалистов лабораторий.

В статье я привел типовые схемы, показывающие как подключить УЗИП для частного дома и постарался кратко объяснить принципы их работы.

Дополняет этот материал видеоролик владельца Василия Юферева. Обратите внимание на комментарии: отдельные люди так и не поняли роль этой защиты.

Если у вас возникли вопросы по изложенной теме, то воспользуйтесь разделом комментариев. Обсудим.

ОПС-1: схема подключения, расшифровка электрика

Ограничитель импульсных перенапряжений — устройство, призванное защитить внутренние распределительные электроцепи зданий от грозовых всплесков и импульсных перенапряжений. К примеру, ограничитель способен защитить сети от молниевых ударов, сетевых бросков напряжения и прочего. Какие имеет ОПС-1 технические характеристики? Как выглядит схема подключения у ограничителя импульсных перенапряжений ОПС1? Об этом и другом далее.

Технические характеристики ОПС-1

ОПС-1 — серия коммутационных ограничителей импульсных перенапряжений, которые защищают сети от вредоносных импульсов. В конструктивном плане имеют стандартные модули с 18 миллиметровой шириной под установку на монтажный тип рейки. Содержат твердотельные композитные варисторы из карбидового цинка и механизмы, отвечающие за визуальный контроль изнашиваемости варистора и аварийного предохранителя. Благодаря карбиду цинка снижают сопротивление в 1000 раз во время появления на сменном модуле напряжения, значение которого превышает предельно допустимое.

ОПС 1

Каждый ОПС-1 имеет количество модулей от 1 до 4 штук в однофазной и трехфазной сети. Есть класс, номинальное напряжение, рабочее протекторное напряжение (500-1000 вольт), номинальное количество тока ограничителя (5-10 ампер), ток, который разрядник принимает при атмосферном разряде (40-65 килоампер) и напряжение, до которого уменьшается значение при разрыве (от 0,25 до 1,2 киловатт).

Обратите внимание! Бывает четыре класса защиты. Первый класс устройств не применяется в бытовых установках, а нужен только для того, чтобы защитить линию электрической передачи. Второй класс используется, чтобы защитить высоковольтные скачки напряжения, которые вызваны ударом молнии к линии электрической передачи.

Третий класс нужен, чтобы защищать от перенапряжений с низкими сетевыми значениями. Защитные устройства ставятся в бытовом распределительном устройстве. Четвертый класс используется, чтобы защищать электрические устройства, которые чувствительны к импульсным помехам и всплескам в однофазной сети. Они монтируются в распределительном типе щитка, за розеткой в электрокоробке или около защищаемого устройства.

Технические характеристики

Расшифровка аббревиатуры и базовый принцип работы

Расшифровывается ОПС-1 в электрике как ограничитель перенапряжений системы. Работает устройство просто. Выступает часто как пожарная сигнализация.

Аббревиатурная расшифровка

Главный элемент агрегата — это варистор, являющийся специальным проводником в электрике.

Пропускает электрический ток через себя, который многократно возрос, по сравнению с номинальным напряжением. В итоге нагрузка шунтируется, преобразовывается и рассеивается. Создается тепловая энергия или нагревание корпуса. В большинстве случаев есть окно, благодаря которому можно осуществить визуальное определение работоспособности варистора. Также это устройство имеет предохранитель, нацеленный на защиту оборудования от действия сверхтоков.

Базовый принцип работы

Обозначение на принципиальных схемах

Основные символы, которые используются в случае обозначения разрядных устройств от сверхтоков, представлены в следующем изображении. Первое условное обозначение — общий разрядник, второе — трубчатый разрядник, третье — вентильный и магнитовентильный разрядник, а последнее — ограничитель перенапряжения.

Обозначение на принципиальной схеме

Безопасность и эффективность ограничителя

Каждым производителем рекомендуется использование дополнительного предохранителя для защиты сети при повреждении разрядного устройства и при коротком замыкании фазового провода.

В бытовых установках дополнительный предохранитель не нужен, поскольку защита от сверхтока происходит благодаря одному прерывателю или предохранителю. Один аппарат способен защитить сеть от перебоев.

 

Эффективность ограничителя

Схемы подключения

На примере ниже показано осуществление правильного зонального подключения ограничителя перенапряжения. Подобная схема весьма эффективна. Именно концепция трехступенчательной защиты, где размещается устройство внутри помещения, чрезвычайно популярна на практике. При этом для каждой зоны ставится соответствующий ограничительный класс.

Следует обратить внимание! При установке оборудования необходимо соблюдать приличное расстояние между устройствами. Они должны быть приближены друг к другу примерно на 10 метров. Этот момент указывает каждая опс 1 схема подключения.

Схема подключения

В целом, ОПС-1 — устройство защиты от импульсных перенапряжений, созданное для защиты электрической цепи от возникающих кратковременно напряжений между фазой и землей. Появляются импульсные перенапряжения как внутри сети, так и вне ее. ОПС-1 расшифровывается как ограничитель импульсов и имеет свой базовый принцип работы. Условно обозначается на принципиальной схеме прямоугольником. Представлен по разному в схемах подключения.

Что такое ограничитель перенапряжения?

Рассмотрение конструкции, принципа действия и области применения различного вида ограничителей перенапряжения (высоковольтных и модульных).


Для создания условий безаварийной и долгосрочной эксплуатации огромной массы электрооборудования, используемого, как в промышленности, так и в повседневной деятельности, в первую очередь необходимо обеспечить безопасный способ доставки и стабильность параметров электроэнергии. Особую опасность для электрических потребителей представляет кратковременное многократное превышение значение величины номинального напряжения в электрической сети. В электротехнике это явление известно, как перенапряжение. Как правило, причиной его проявления является воздействие на линии электропередач грозовых явлений или же коммутационных процессов внутри электрической установки. Возникающие импульсы высокого напряжения могут безвозвратно вывести из строя дорогостоящее оборудование, быть причиной возникновения пожаров и взрывов. Для защиты от возникающих пиковых значений напряжения, служат специальные высоковольтные устройства, ограничители перенапряжения, принцип работы и назначение которых мы и рассмотрим далее. Содержание:

Назначение

ОПН предназначены для защиты электроприборов и оборудования от воздействия высоковольтных импульсов напряжения. Благодаря простоте конструкции и надежности, они нашли широкое применение в области энергоснабжения. Данные устройства защиты пришли на смену устаревшим, весьма громоздким вентильным разрядникам. В отличие от предшественников, принцип действия ограничителя заключается не в использовании искровых промежутков. В качестве главного рабочего элемента в ОПН используются нелинейные резисторы, выполненные из материала, основу которого составляет окись цинка.

Устройство

Первичным и основным элементом, из чего состоит ограничитель перенапряжения, служит варистор, выполняющий роль нелинейного переменного резистора. Конструктивно ОПН состоят из варисторов, размещенных в корпусе, изготовленном из фарфора или высокопрочного полимера. Конструкция ограничителя выполнена с учетом условий, обеспечивающих взрывобезопасность, в случае возникновения токов короткого замыкания. В зависимости от назначения и места установки ОПН могут быть исполнены в различных вариантах. Для ограничителей, используемых для защиты линий электропередач и оборудования промышленных объектов, на крышке корпуса предусмотрен контактный болт для подключения к сети, в комплект ОПН входит изолированная от контакта с землей плита основания.

Устройства, предназначенные для защиты от пиковых импульсов напряжения электрохозяйства квартиры или дачного домика, очень компактны, имеют привлекательный дизайн, а также снабжены устройством для крепления на din-рейку. В зависимости от категории сложности, могут быть обустроены индикацией режимов работы и дистанционным управлением.

Устройство модульного ограничителя перенапряжения предоставлено на фото:

где:

  1. Корпус
  2. Предохранитель
  3. Сменный варисторный модуль
  4. Указатель износа варисторного модуля
  5. Насечки на зажимах

Принцип работы

Принцип действия ОПН объясняется нелинейным характером вольтамперных характеристик (ВАХ) варисторов. Для их изготовления применяется материал, где находит применение окись цинка в смеси с оксидами других металлов. Благодаря составу данной смеси, колонка, собранная из варисторов является комбинацией параллельных и последовательных включений p-n переходов, что и обуславливает природу вольтамперных характеристик нелинейных резисторов ограничителей.

Когда характеристики напряжения в сети соответствуют номинальным значениям, ограничитель находится в режиме непроводящего состояния. Величина тока в варисторах имеет мизерные значения и объясняется емкостным характером. При появлении в сети импульса напряжения, величина которого может вызвать пробой изоляции электрооборудования, в цепи нелинейных резисторов ОПН, в соответствии с их вольтамперными характеристиками, будет иметь место возникновение значительного импульса тока. В конечном итоге это снижает величину перенапряжения до параметров безопасных для безаварийной эксплуатации оборудования. Когда напряжение в сети нормализуется, ОПН вновь возвращается в непроводящий режим.

Виды ОПН

Конструкции ОПН, предлагаемые производителями энергетикам весьма разнообразны, их различают по следующим признакам:

  1. Типу изоляции (фарфор или полимер).
  2. Конструктивному исполнению (одна или несколько колонок).
  3. Величине рабочего напряжения.
  4. Месту установки ограничителя.

Если говорить об ограничителях перенапряжения, устанавливаемых на DIN-рейку, то тут устройства первоначально разделяются на однофазные и трехфазные. Помимо этого модульные ОПН (они же УЗИП), делятся на три основных класса: B, C и D. Ограничители класса B устанавливаются на вводе в здание, C — непосредственно в распределительном щите квартиры либо дома, D — на отдельное оборудование, которое нужно защитить от помех, если с этим не справились ОПН класса B и C. Подробнее о модульных ограничителях перенапряжения вы можете узнать из видео:

Технические характеристики

  1. Максимально действующее напряжение. Под этим понятием необходимо понимать величину наибольшего значения величины напряжения, при котором ограничитель способен сохранять свою работоспособность без ограничения по времени.
  2. Номинальное напряжение, эквивалентно величине, воздействие которого ОПН способен выдерживать в течение 10 минут.
  3. Ток проводимости. Величина тока, в цепи нелинейных резисторов в период воздействия номинальных значений приложенного напряжения. Как правило, имеет мизерное значение.
  4. Номинальный разрядный ток. Параметр, определяющий классификацию ограничителя в условиях грозового режима.
  5. Расчетный ток коммутационного перенапряжения. Значение тока, определяющее классификацию при коммутационных перенапряжениях.
  6. Токовая пропускная способность. Величина эквивалентная классу разряда линии.
  7. Устойчивость к короткому замыканию. Категория способности ОПН противостоять токам короткого замыкания, сохраняя при этом целостность защитной оболочки.

Защита электрохозяйства административных зданий, многоквартирных домов и предприятий возлагается на соответствующие службы энергетических компаний, оградить свой дом от нежелательных последствий грозового разряда возложена на домовладельца. В настоящее время этот вопрос решается просто. В специализированных магазинах представлен широкий выбор ограничителей перенапряжения различной степени сложности и ценового диапазона.

На рисунке ниже показано подключение ОПН к однофазной сети и условное обозначение на схеме. Подключить ограничитель перенапряжения к домашней электросети не сложно, но выполнение этой операции лучше доверить специалисту, если вы не имеете опыта в электромонтажных работах.

Напоследок рекомендуем просмотреть видео, на котором наглядно рассматривается конструкция и принцип действия ограничителей перенапряжения нелинейных:

Вот мы и рассмотрели устройство, назначение и принцип действия ограничителя перенапряжения. Как вы видите, существует различные виды и конструктивные исполнения данных устройств, благодаря чему можно подобрать подходящий вариант для собственных условий применения.

Будет интересно прочитать:

  • Испытания ограничителей перенапряжения нелинейных
  • Для чего нужно реле напряжения
  • Как защититься от помех в электросети


Нравится0)Не нравится0)

Испытания ограничителей перенапряжения нелинейных

Обзор методик испытания ограничителей перенапряжения. Нормы и объемы испытаний согласно ПУЭ.


Ограничитель перенапряжения нелинейный (далее ОПН), вне зависимости от величины напряжения, подлежит обязательным испытаниям. Данное изделие может использоваться для защиты от коммутационных перенапряжений и применяться в электроустановках с напряжением 0.4 кВ, 6 кВ, 10 кВ, 35 кВ, 110 кВ и выше. В зависимости от рабочего напряжения испытания регламентируются разными нормативными документами. Например, МЭК 60099-4:2004 – стандарт международный, а также утвержденный на его основе и действующий ГОСТ Р 52725 – 2007. Также принимаются во внимание разнообразные технические условия и ГОСТы проверки оборудования высоковольтного. В этой статье мы вкратце рассмотрим методики, нормы и объемы испытания ОПН. Содержание:

Важность испытаний

Пожалуй, основной нормативный документ, который мы используем и с которым чаще всего сталкиваемся при производстве приемо-сдаточных испытаний – это ПУЭ. Применительно к ограничителям перенапряжения в нем существует глава 1. 8, а конкретно пункт 1.8.3. Он устанавливает нормы и объемы испытаний для ОПН и вентильных разрядников.

Кроме приемо-сдаточных, в соответствии с вышеприведенными документами, могут проводиться такие испытания:

  • периодическое;
  • квалификационное;
  • типовое.

Квалификационная проверка данных устройств нужна для того, чтобы определить имеет ли готовность предприятие для выпуска продукции в данном объеме. Это касается первой промышленной серии либо установочной партии. Немаловажным этапом здесь является проверка взрывобезопасности. В процессе эксплуатации ОПН вследствие воздействия различных факторов, одним из которых является нерасчетный режим применения, внутри него может возникать повышенное давление. Как результат возможен взрыв, который влечет за собой повреждения оборудования, которое установлено поблизости, а также, что самое главное – людей, работающих на объекте.

Давайте подробнее остановимся на рассмотрении приемо-сдаточных испытаний. Как отмечалось выше, они регламентируются главой 1.8 ПУЭ п. 1.8.3. Если свести все данные из нее, то получим удобную табличку:

Таким образом, для ОПН существует методика измерения сопротивления и тока проводимости. Как проверить эти параметры рассмотрим ниже.

Замер тока проводимости

На картинке представлены различные схемы подключения для проведения испытаний ОПН, связанных с измерением тока проводимости:

В основном нормативное значение тока проводимости завод изготовитель указывает в техническом паспорте к изделию. Это значение берется на основании проводимых на предприятии испытаний и напрямую зависит от наибольшего длительно прикладываемого напряжения.

Измерение величины тока проводится амперметром или миллиамперметром. К выводам собранной схемы подключается лабораторный источник питания. При подаче нагрузки проводятся измерения тока. Нагрузка должна соответствовать величине наибольшего допустимого длительного напряжения.

Нужно отметить, что работы должны проводиться при установившейся температуре окружающей среды 20 ±15°С, на очищенных и вытертых досуха ограничителях перенапряжения, которые необходимо предварительно отключить от сети.

Замер сопротивления изоляции

Исходя из данных, приведенных в выше представленной таблице, видно, что при испытании ОПН до 3 кВ необходимо использовать мегомметр напряжением 1000 В, если свыше 3 кВ – нужен мегомметр на 2500 В. Измеренное сопротивление для ОПН до 3 кВ должно быть выше 1000 мОм, напряжением от 3 до 35 кВ – должно быть в пределах рекомендованного изготовителем значения, выше 110 кВ – должно составлять не меньше 3000 мОм, в то же время результат не должен отличаться больше чем на ±30% от ранее произведенных испытаний или значений, указанных изготовителем.

О том, как правильно пользоваться мегаомметром, мы рассказали в соответствующей статье, с которой настоятельно рекомендуем ознакомиться!

Помните, что гарантировать безопасное и качественное выполнение работ может только электролаборатория, у которой есть свидетельство на проведение данного вида мероприятий. По окончании замеров составляется протокол о проведении испытаний ОПН. В нем указывается наименование и тип ограничителя, значения замеров сопротивления изоляции и тока проводимости, погодные условия, а также приборы, с помощью которых были произведены замеры. Образец протокола приведен ниже:

Напоследок рекомендуем ознакомиться с полезным материалом, предоставленном на видео (качество видеоролика не очень, но все же информация изложена понятно):

Вот и все, что мы хотели рассказать о методике испытания ОПН. Теперь вы знаете, как проводятся работы и для чего это нужно делать!

Интересное по теме:

  • Испытания кабеля повышенным напряжением
  • Что такое отделитель с короткозамыкателем
  • Устройства защиты от перенапряжения в сети


Нравится0)Не нравится0)

Предназначение и правила установки ограничителя перенапряжения

Чтобы обеспечить стабильную и безаварийную работу электрического промоборудования и бытовой техники, необходимо, чтобы поступающая электроэнергия соответствовала определенным параметрам. Сегодня мы рассмотрим, что такое ОПН и как подключить ограничитель перенапряжения – приспособление, которое предотвращает многие проблемы, связанные с перепадами  напряжения в электрической сети, вызванные различными факторами.

Предназначение ограничителя перенапряжения

ОПН – приспособление, предназначенное для защиты электроустановок и техники от резкого превышения напряжения в сети, которое возникает вследствие грозовых разрядов или коммутационных явлений в электроустановке. Такие импульсы могут стать причиной возникновения аварийных ситуаций, выхода из строя электротехники, пожара. Последствия таких ситуаций обходятся достаточно дорого.

Сейчас вместо утративших актуальность старых моделей разрядников используются ОПН. Приспособление состоит из полимерной или фарфоровой емкости, в которую помещены варисторы. Когда показатели напряжения в электросети соответствуют нормальным параметрам, устройство находится в непроводящем состоянии.

При возникновении опасных импульсов, которые могут повредить защитную оболочку и вывести из строя технику, в цепи резисторов устройства возникает высокий импульс электротока, который уменьшает перенапряжение до показателей безопасных для работы электротехники. После этого приспособление обратно переходит в непроводящий режим.

Ограничители перенапряжения: виды и описание

Приспособления классифицируются по следующим критериям:

  • по виду изоляционного корпуса – полимерные и фарфоровые;
  • по особенностям конструкции – на одну или несколько колонок;
  • по показателю рабочего напряжения;
  • по месту монтажа устройства.

Также ограничители делятся на несколько классов:

  • А – защищают ЛЭП и ближайшие строения в случае удара молнии;
  • В – монтируют на вводе в постройку;
  • С – устанавливают в распределительном электрощите здания или квартиры;
  • D – ставят на отдельное электрооборудование.

Как установить ограничитель перенапряжения?

Все работы, связанные с монтажом оборудования, должны выполняться опытным электриком, имеющим соответствующий допуск. При этом должны строго соблюдаться правила техники безопасности, а работы – проводиться в соответствии с инструкцией. Рассмотрим, как подключить ограничитель импульсных перенапряжений на примере модели ОПН/TEL-35.

Правила и особенности установки

Данный тип устройств используется для обеспечения защиты электроустановок на подстанциях, а также в электросетях со средним и высоким показателем напряжения. Такие ограничители зарекомендовали себя как надежные, безопасные и не требующие специального обслуживания.

Модель ОПН/TEL предназначена для вертикального монтажа, ее установка производится следующим образом:

  • приспособления в специальной таре доставляются к месту проведения работ;
  • на металлическую рамку основания устанавливают подставку;
  • предварительно проводят визуальный осмотр ограничителей, удаляют загрязнения, коррозионные пятна;
  • монтаж ОПН производится вручную с точным соблюдением расстояний, предусмотренных Правилами устройства электроустановок, крепежи затягивают по кругу на половину оборота;
  • с помощью специальных шин или электропровода проводят подключение к электросети или другим объектам; чтобы предотвратить развитие коррозионных явлений, следует использовать только алюминиевые проводники;
  • необходимо выдержать расстояние до заземленного металлического объекта или других частей электроустановки не менее 90,0 сантиметров.

Профессионально выполненная установка должна исключать воздействие статических нагрузок на ограничитель перенапряжения и обеспечить его продолжительную эксплуатацию.

Варианты подключения

В технической документации, которая прилагается к ОПН, содержится информация о правилах монтажа и возможных вариантах подключения устройства. Чтобы избежать аварийных ситуаций и различных проблем, необходимо строго соблюдать указанные рекомендации и выполнять работы по прилагающейся схеме.

Ограничители перенапряжения в домашней электропроводке

Как подключить УЗИП в частном доме?

Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.

Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.

В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.

В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.

В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.

Ответы на вопросы про УЗИП на видео:

Типы устройств

Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.

Вентильные и искровые разрядники. Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате перенапряжения в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.

Ограничители перенапряжения (ОПН). Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, принцип работы ОПН построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.

Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.

Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:

https://youtube.com/watch?v=Xp-bwkpuQBA

Виды ОПН

Вы уже поняли, что конструкция бывает совершенно разных типов в зависимости от способов применения, но всё-таки со всеми устройствами так и не ознакомились. Как выбрать ограничитель перенапряжения для дома вы узнаете ниже, узнав в деталях все возможные видовые особенности.

Различаются ОПН по следующим характеристикам:

  • Изоляционный тип (полимерный или фарфорный)
  • Количество колонок
  • Величина стандартного напряжения
  • Установочное место прибора

Можно потом углубиться в конкретные особенности и отличия трехфазных и однофазных приборов. Есть к тому же и классификация, которая относится к месту установки – делятся на B, C и D. Но нам куда важнее разобраться с техническими свойствами.

Классификация УЗИП

Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:

  • I класс. Предназначены для защиты от непосредственного воздействия грозового разряда. Данными устройствами в обязательном порядке должны укомплектовываться вводно-распределительные устройства (ВРУ) административных и промышленных зданий и жилых многоквартирных домов.
  • II класс. Обеспечивают защиту электрических распределительных сетей от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции второй ступени защиты от воздействия удара молнии. Монтируются и подключаются к сети в распределительных щитах.
  • III класс. Применяются, чтобы обезопасить аппаратуру от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нулевым проводом. Устройства данного класса работают также в режиме фильтров высокочастотных помех. Наиболее актуальны для условий частного дома или квартиры, подключаются и устанавливаются непосредственно у потребителей. Особой популярностью пользуются устройства, которые изготавливаются, как модули, оснащенные быстросъемным креплением для установки на din-рейку, либо имеют конфигурацию электрических штепсельных розеток или сетевых вилок.

Другие виды защитных устройств

Существуют и другие варианты защиты от перенапряжения в сети. Они широко применяются в быту и считаются одними из наиболее эффективных средств.

Сетевые фильтры

Отличаются простой конструкцией и доступной стоимостью. Несмотря на свою малую мощность, это устройство вполне способно защитить оборудование при скачках, достигающих 380 вольт и даже 450 вольт. Более высокие импульсы фильтр не выдерживает. Он просто сгорает, сохраняя в целости дорогостоящую электронику.

Данное устройство защиты от перенапряжения оборудуется варистором, играющим ключевую роль в обеспечении защиты. Именно он сгорает при импульсах свыше 450 В. Кроме того, фильтр надежно защищает от помех высокой частоты, возникающих при работе сварки или электродвигателей. Еще одним компонентом служит плавкий предохранитель, срабатывающий при коротких замыканиях.

Стабилизаторы

В отличие от сетевых фильтров, эти устройства позволяют выполнить нормализацию напряжения дома и привести его в соответствие с номиналом. Путем регулировок устанавливаются граничные пределы от 110 до 250 вольт, и на выходе устройства получаются требуемые 220 В. В случае скачков напряжения и выходе его за допустимые пределы, стабилизатор автоматически отключает питание. Подача напряжения возобновляется лишь после приведения сети к нормальному рабочему режиму.

Что лучше сетевой фильтр или стабилизатор напряжения. В определенных условиях, например, за городом или в сельской местности, стабилизаторы являются наиболее эффективной защитой от перенапряжения, выступают в качестве единственного варианта, способного выровнять напряжение до установленных норм.

Все стабилизирующие устройства, используемые в быту, разделяются на два основных типа. Они могут быть линейными, когда к ним подключается один или несколько бытовых приборов, или магистральными, устанавливаемыми на вводе сети в квартире или во всем здании.

Читайте далее:

Устройство защиты от импульсных перенапряжений

УЗИП – устройство защиты от импульсных перенапряжений

Защита от перенапряжения сети

Ограничитель импульсных перенапряжений

Защита от скачков напряжения

Молниезащита дома: устройство и монтаж

Классификация устройств

Стандартом предусмотрена классификация устройств по следующим параметрам:

  • числу вводов;
  • по способу осуществления защитных функций;
  • по месту расположения;
  • по способу монтажа;
  • по набору защитных функций;
  • по степени защиты наружной оболочки;
  • по роду тока питания.

Так выглядят устройства для защиты от грозовых и коммутационных перенапряжений.

Читайте еще: что такое узо и зачем нужен автоматический выключатель тока?

По признаку количества вводов приборы защиты делятся на одновводные, то есть, имеющие один ввод и двухвводные. Защита может осуществляться различными способами, существуют устройства коммутирующего типа, приборы, осуществляющие ограничение напряжения, а также аппараты комбинированного типа. Место установки защиты зависит от вида защищаемого оборудования. Установка может осуществляться как наружно, так и внутри помещений. Способ установки аппаратов может быть стационарным либо переносным. Виды защит, содержащиеся в приборе, могут составлять комбинации из схем различных типов:

  • защиты теплового типа;
  • защиты, реагирующей на появление токов утечки;
  • защиты от сверхтока.

Степень защиты по IP должна соответствовать условиям эксплуатации. Приборы могут питаться переменным или постоянным током.

Правила и особенности установки

Установку устройств защиты от перенапряжения регламентируют Правила устройства электроустановок (ПУЭ), являющиеся основным нормативным документом в вопросах безопасного обслуживания электрических установок. Согласно требованиям ПУЭ, устройства защиты от перенапряжения подлежат обязательной установке на объектах с предусмотренной системой молниезащиты, а также в домах, электроснабжение которых осуществляется по проводам воздушных линий, в регионах, с годовой продолжительностью грозовых периодов, превышающих 25 часов.

Необходимость подключения УЗИП на объектах в районах, где грозы не являются частым явлением, носит рекомендательный характер, однако, учитывая, к каким разрушительным последствиям может привести прямой удар молнии, целесообразно выполнить все необходимые мероприятия для защиты от данного вида стихии даже для негрозоопасной местности.

Защита от импульсных напряжений промышленных и административных зданий, многоквартирных домов входит в сферу деятельности электромонтажных организаций. Установка и подключение УЗИП в частном доме или в квартире ложится на плечи хозяина жилья, поэтому каждому домовладельцу необходимо, хотя бы в общих чертах, знать основные правила обустройства защиты от импульсных перенапряжений, а также как установить и как подключить необходимое для этого оборудование.

Монтаж УЗИП необходимо выполнить соблюдая требования технических нормативов, которые предусматривают 3 уровня защиты. В качестве первого уровня защиты находят применение вентильные разрядники, которые относятся к категории УЗИП 1 класса. Они обеспечивают защиту от непосредственных грозовых воздействий на линии электропередач и устанавливаются в ВРУ (вводных распределительных устройствах). Дополнительная защита от удара молний и коммутационных процессов в понижающих трансформаторных подстанциях обеспечивается защитными аппаратами 2 класса, которые устанавливаются и подключаются в распределительных щитах дома или квартиры. Для защиты электроники и электротехники, чувствительной даже к незначительным импульсным перенапряжениям служат УЗИП 3 класса, подключение которых производится в щитке питания потребителей в непосредственной близости от них.

Как установить оборудование для того, чтобы обеспечить трехступенчатую защиту от импульсных перенапряжений, показано на схеме:

Более доступное объяснение:

Виды УЗИП и принципы работы

Все приборы УЗИП имеют одно назначение, защиту оборудования в электросетях от импульсного перенапряжения. Достижение этой цели осуществляется разными путями, поэтому изделия отличаются по принципу работы и конструкции.

На графиках справа показано как УЗИП срезает импульс перенапряжения

Искровые разрядники – работают по принципу искрового разряда в промежутках между проводниками фазы и заземления.

В перемычку между этими линиями ставится разрядник с разрывом цепи, воздушный зазор рассчитан на пороговое значение перенапряжения. При превышении установленного порога, воздушный зазор пробивается, ток с фазного проводника уходит в контур заземления, не доходя до бытовой техники и другого оборудования.

Вентильные разрядники – работают по такому же принципу, но с одной стороны воздушного зазора находится сопротивление, которое рассеивает энергию импульса напряжения.

Модели УЗИП на разрядном принципе имеют большие габариты, используются в сетях высокого напряжения на участках между ЛЭП и трансформаторных подстанций, это старые, но надежные конструкции. Постепенно их вытесняют ОПН (Ограничители напряжения).

Ограничители перенапряжения — в данном случае в качестве перемычки ставят варисторы обладающие свойствами нелинейного резистора. Для не посвященных, варисторы обладают уникальными вольт — амперными характеристиками для пропускания больших токов высокого напряжения.

Основой состава варистора является оксид цинка с добавлением окисей разных металлов, в такой смеси создается структура последовательности p-n переходов. Пропорции состава примесей и концентрация определяют пороговое напряжение, при котором p-n переходы открываются и ток устремляется в заземляющий контур. После снижения напряжения до установленной нормы p-n переходы закрываются, ток снижается до нулевого значения. Таким образом, импульсы перенапряжения отводятся от цепи потребителей.

Виды малогабаритных варисторов

Преимущество последней технологии в том, что она позволяет изготовить приборы компактные приборы в широком диапазоне величин напряжения, которые можно устанавливать в РЩ квартир и частных домов.

Недостаток приборов на варисторах в том, что элементы тепловой защиты после срабатывания подлежат замене, это снижает ресурс работы до 20 срабатываний. Для быстрого извлечения и установки УЗИП в цепи предусматривают специальные съемники.

Защитные устройства

Можно выделить несколько разновидностей устройств защиты. Отличаются они выполнением разных функций и разной стоимостью.

Сетевой фильтр является самым простым и недорогим средством защиты бытовой техники с небольшой мощностью. Он превосходно справляется с бросками, достигающими 450 В.

Основным элементом защиты сетевика является варистор – полупроводник, способный менять сопротивление в зависимости от возникающего напряжения. Именно этот элемент фильтра возьмет на себя удар при серьезном скачке.

Кроме того, фильтр способен защитить технику от помех высокой частоты. Помимо указанных защитных узлов фильтр оснащен плавким предохранителем, который сработает при коротком замыкании.

В качестве защиты электросети на разных ее уровнях – от перехода с воздушной линии на кабельную до конкретных приборов внутри дома – используют модульные ограничители перенапряжения. Являясь по сути разрядником для защиты от перенапряжений, ограничитель в качестве главного рабочего органа имеет все тот же варистор.

Стабилизатор способен выровнять скачущее напряжение в соответствии с номинальным. Если установить рамки, к примеру, в диапазоне от 200 до 250 В, то качественное устройство будет выдавать необходимые 220 В до тех пор, пока напряжение не выйдет за пределы указанного диапазона. Прибор отключит подачу питания до тех пор, пока напряжение не вернется в заданные границы.

Для сельской местности монтаж стабилизатора иногда является единственным средством повышения напряжения до необходимых значений. Стабилизаторы бывают двух видов:

  • линейные – к ним можно подключить несколько бытовых приборов;
  • магистральные – монтируются на входе электрической сети в дом или квартиру.

Источники бесперебойного питания продолжают подачу напряжения к подключенным приборам даже после срабатывания защитной системы или отключения электроэнергии. Время работы будет зависеть от аккумулятора и мощности потребителей.

Зачастую к ним подключают компьютеры с целью избежать потери данных во время внезапного сбоя. Среди современных устройств зарекомендовали себя модели, способные через USB-порт контролировать редактор текстов (например, сохранить файл) в случае возникновения внештатной ситуации.

Устройства защиты от импульсных перенапряжений в отличие от вышеперечисленных средств превосходно справляются с высоким напряжением. На основе таких устройств можно организовать защиту всех внутренних линий электропередачи частного дома.

Импульсы, которые могут возникнуть из-за грозы, превосходят способности этого устройства. Поэтому сфера применения реле защиты от перенапряжения – электрическая сеть внутри дома.

Для защиты частного дома от скачков напряжения устанавливаются специальные устройства, выбор которых велик. Будет лучше, если работу выполнят профессионалы, поскольку в домашних условиях вряд ли позволят настроить разработанную схему подключения защиты от перенапряжения и тем более провести ее тест в режиме критической ситуации.

Следует также помнить, что все операции с щитком, проводкой и приборами нужно проводить строго при выключенном электропитании.

Виды ОПН

Конструкции ОПН, предлагаемые производителями энергетикам весьма разнообразны, их различают по следующим признакам:

  1. Типу изоляции (фарфор или полимер).
  2. Конструктивному исполнению (одна или несколько колонок).
  3. Величине рабочего напряжения.
  4. Месту установки ограничителя.

Если говорить об ограничителях перенапряжения, устанавливаемых на DIN-рейку, то тут устройства первоначально разделяются на однофазные и трехфазные. Помимо этого модульные ОПН (они же УЗИП), делятся на три основных класса: B, C и D. Ограничители класса B устанавливаются на вводе в здание, C — непосредственно в распределительном щите квартиры либо дома, D — на отдельное оборудование, которое нужно защитить от помех, если с этим не справились ОПН класса B и C. Подробнее о модульных ограничителях перенапряжения вы можете узнать из видео:

Длительные перенапряжения и провалы из-за недостатка напряжения

Как правило, причиной длительных перенапряжений в сетях становится обрыв нулевого провода. В этом случае нагрузка на фазные жилы распределяется неравномерно, что приводит к перекосу фаз, когда разность потенциалов смещается к проводнику с максимальной нагрузкой.

Таким образом, неравномерный трехфазный ток, воздействуя на нулевой кабель, находящийся без заземления, способствует концентрации на нем избыточного напряжения. Этот процесс будет продолжаться до полного устранения неисправности или до тех пор, пока линия окончательно не выйдет из строя.

Другим опасным состоянием сети является провал или недостаток напряжения. Подобные ситуации очень часто возникают в сельской местности. Суть явления заключается в падении напряжения ниже допустимой величины. Такие проседания представляют серьезную опасность и реальную угрозу для оборудования. Многие современные приборы оборудованы несколькими блоками питания и недостаточное напряжение приводит к кратковременному выключению одного из них.

В результате, последует незамедлительная реакция электронной аппаратуры в виде ошибки, выведенной на дисплей, и полной остановки рабочего процесса. Если подобная ситуация сложилась с отопительным котлом в зимнее время года, тогда отопление дома будет прекращено. Устранить проблему возможно с помощью стабилизатора, фиксирующего такие проседания и поднимающего напряжение до номинальной величины.

Как работает УЗИП?

УЗИП устраняет перенапряжения:

  • Несимметричный (синфазный) режим: фаза — земля и нейтраль — земля.
  • Симметричный (дифференциальный) режим: фаза — фаза или фаза — нейтраль.

В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. В симметричном режиме отводимая энергия направляется на другой активный проводник.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника

В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

Часто задаваемые вопросы

  1. Есть ли смысл устанавливать плавкий предохранитель на линию нейтрали?

Да, при обрыве линий ЛЭП фаза часто попадает на нейтраль или заземление, в этом случае на розетку могут прийти две разные фазы это 380В. В нейтральную жилу или в заземление может попасть молния это сотни тысяч вольт.

  1. Если через УЗИП при скачке напряжения проходит сотни тысяч вольт, какого сечения провода надо ставить?

Провода устанавливаются с расчетным сечением для всего дома на вводной автомат, если УЗИП ставится на отдельную группу освещения или розеток, то сечение такое же, как и в проводах этой группы. На вводе обычно 10 -16 мм2,

Группы освещения 07-1,5 мм2, розетки 2.5 – 4 мм2.

Варианты подключения

Одним из важнейших вопросов является, как подключить УЗИП в щитке. Практически все варианты подключения идентичны и указаны в техническом паспорте изделия. Способы монтажа приборов защиты могут отличаться, в зависимости, где они будут установлены, в однофазной или трехфазной сети, также в зависимости от системы заземления.

Самой современной и отвечающая всем требованиям безопасности является система заземления tn-s, при которой нулевой рабочий (N) и нулевой защитный (PE) провод во всей системе энергоснабжения работают раздельно. Система tn-c-s представляет комбинированный вариант, при котором N и PE от источника питания до ВРУ дома объединены в один провод, после которого начинается разделение нулевого и защитного проводника. Следует помнить, что данная схема не будет работать без заземления, поэтому необходимо обязательно произвести его обустройство. Система tn-c наиболее простая и распространенная в устаревшем жилом фонде система заземления, при которой роль нулевого и рабочего проводника выполняет один провод (PEN).

Ниже на схеме показано, как подключить УЗИП класса II в однофазной сети, установленного в щитке квартиры или частного дома с двумя вариантами системы заземления. Для такого варианта подключения необходимо подобрать простейший одноблочный защитный аппарат, с соответствующим рабочим напряжением.

Схема подключения с системой заземления tn-c:

Если предусмотрена система заземления tn-s, в данном случае потребуется установка и подключение УЗИП, состоящего из двух модулей, конструкцией которого предусмотрены отдельные клеммы, для подключения фазного, нулевого рабочего и защитного проводов, обозначенные соответствующей маркировкой.

Подключение УЗИП в трехфазной сети осуществляется так, как показано на фото:

При монтаже УЗИП следует предусмотреть средства защиты сети в случае короткого замыкания в приборе и произвести его подключение через автомат или через предохранитель. Установку аппарата можно производить до и после счетчика, во втором случае прибор учета электроэнергии останется не защищенным от импульсного перенапряжения.

На видео ниже наглядно демонстрируется, как подключить данный аппарат в щитке:

Вот мы и рассмотрели, как должно выполняться подключение УЗИП в щитке. Надеемся, предоставленная схема, видео и фото примеры пригодились вам и помогли понять, как подключить данный защитный аппарат.

Будет полезно прочитать:

  • Как сделать заземление в доме
  • Для чего нужно УЗО в квартире
  • Как сделать громоотвод своими руками
  • Схемы подключения реле напряжения

Модульные ограничители перенапряжения

Для защиты электросетей на распределительных подстанциях, а также непосредственно на воздушных линиях электропередач применяются нелинейные ограничители перенапряжений, так называемые ОПН. Основной конструктивный элемент данных защитных устройств – варистор, элемент с нелинейными характеристиками. Нелинейность характеристик заключается в изменении сопротивления варистора в зависимости от величины приложенного к нему напряжения.

   Модульный ограничитель перенапряжения

В нормальном режиме работы электросети, когда напряжение находится в пределах номинальных значений, ограничитель напряжения имеет большое сопротивление и не проводит ток. В случае возникновения импульса перенапряжения, который возникает при попадании молнии в провода электрической сети, сопротивление варистора ОПН резко снижается до минимальных значений и нежелательный импульс уходит в заземляющий контур, к которому подсоединен ограничитель перенапряжения.

Таким образом, ОПН ограничивает скачки напряжения до безопасного уровня. Тем самым защищая оборудование и потребителей от повреждения и других негативных последствий перенапряжений.

Для реализации защиты от перенапряжений в домашней электропроводке существуют компактные модульные ограничители перенапряжений. Такое защитное устройство устанавливается в домашний распределительный щиток и не занимает много места.

Модульный ОНП имеет такой же принцип работы, как и ограничители, применяемые в электросетях. Соответственно он будет работать только при наличии рабочего заземления электропроводки. В противном случае установка модульного ОПН будет бесполезна, так как в случае возникновения перенапряжения в сети опасный импульс не будет ограничен.

   Ограничитель импульсных перенапряжений ОПС1-С

То есть для реализации защиты домашней электропроводки от грозовых перенапряжений при помощи модульного ограничителя перенапряжений обязательным условием должно быть наличие работоспособного заземления.

Как подключить ОИН-1 в щитке

У этого устройства есть ряд функциональных аналогов от всех популярных производителей электротехники, поэтому и схемы их подключения в принципе аналогичны. В официальной документации схема подключения не слишком очевидна, она представлена в двух вариантах и выглядит следующим образом:

Обратите внимание первый вариант – подключение параллельно защищаемой цепи, а второй – последовательно с разъединителем. То есть в результате срабатывания ограничителя импульсных напряжений разъединитель должен разорвать цепь питания, чтобы избежать возгорания изделия и протекания тока по электрической дуге

Но приведенная схема совсем не наглядно и не понятно изображена, и сразу возникает вопрос о том, как правильно установить аппарат. Поэтому ознакомьтесь с несколькими примерами подключения УЗИП в электросеть.

На рисунке ниже изображена типовая схема из условий для подключения 3 фаз. Здесь более наглядно изображено подключение ограничителей напряжения до счётчика. В трёхфазной цепи с системой заземления TN-S или TN-C-S его подключают между фазами, нулём и землёй. Но подключение ОИН-1 после счетчика тоже допустимо как дополнительная ступень защиты.

Монтажная схема на примере подключения в двухпроводной электросети:

И напоследок рассмотрим схемы для четырёх разных схем электроснабжения (1 фаза, 3 фазы, объединённый и разъединённый защитные проводники), которые встречаются наиболее часто:

Разновидности УЗИП

Эти аппараты могут иметь один или два ввода. Включение как одновводных, как и двухвводных устройств всегда производится параллельно цепи, защиту которой они обеспечивают. В соответствии с типом нелинейного элемента УЗИП подразделяются на:

  • Коммутирующие.
  • Ограничивающие (ограничитель сетевого напряжения).
  • Комбинированные.

Коммутирующие защитные аппараты

Для коммутирующих устройств, находящихся в обычном рабочем режиме, характерно высокое сопротивление. Когда происходит резкое увеличение напряжения в электрической сети, сопротивление прибора мгновенно падает до минимального значения. Основой коммутирующих аппаратов защиты сети являются разрядники.

Ограничители сетевого перенапряжения (ОПН)

Ограничитель импульсных перенапряжений также характеризуется высоким сопротивлением, плавно снижающимся по ходу возрастания напряжения и повышения силы электротока. Постепенное снижение сопротивления – это отличительная черта ограничивающих УЗИП. Ограничитель сетевого перенапряжения (ОПН) имеет в своей конструкции варистор (так называется резистор, величина сопротивления которого находится в нелинейной зависимости от воздействующего на него напряжения). Когда параметр напряжения становится больше порогового значения, происходит резкое увеличение силы тока, проходящего через варистор. После сглаживания электрического импульса, вызванного коммутационной перегрузкой или ударом молнии, ограничитель сетевого напряжения (ОПН) возвращается в обычное состояние.

Комбинированные УЗИП

Устройства комбинированного типа сочетают в себе возможности коммутационных и ограничивающих аппаратов. Они могут как коммутировать разность потенциалов, так и ограничивать ее возрастание. При необходимости комбинированные приборы могут выполнять одновременно обе этих задачи.

Недостаток напряжения (провал)

Это явление особенно хорошо знакомо людям, проживающим в деревнях и селах. Провалом (проседанием) называется падение величины напряжения ниже допустимого предела.

Опасность проседаний заключается в том, что в конструкцию многих бытовых приборов входит несколько блоков электропитания, и недостаток напряжения приведет к тому, что один из них кратковременно выключится. Аппарат среагирует на это выдачей ошибки на дисплее и остановкой работы.

Если речь идет об отопительном котле, а неисправность произошла в зимнее время, то дом останется без отопления. Избежать такой ситуации поможет подключение стабилизатора. Этот прибор, зафиксировав проседание, повысит величину напряжения до номинала. Стабилизатор может спасти ситуацию, даже если напряжение в сети упало по вине трансформаторной подстанции.

Выбор, применение и обзор испытаний

Руководство по выбору, применению, техническому обслуживанию и тестированию ОПН.

Ограничители перенапряжения — это устройства ограничения напряжения, используемые для защиты электрической изоляции от скачков напряжения в энергосистеме.

Подобно тому, как предохранитель работает для защиты электрической системы от повреждений из-за условий перегрузки по току, задача ограничителя перенапряжения заключается в защите системы от повреждений из-за условий перенапряжения.

В прошлом разрядники для защиты от перенапряжений назывались молниеотводами, это название было основано на их основной цели защиты электрической изоляции от ударов молнии в системе.Более общий термин «разрядник для защиты от перенапряжения» теперь используется для обозначения условий перенапряжения, которые могут возникать из множества других источников, таких как операции переключения и замыкания на землю.

Все, от персональных компьютеров до систем передачи и распределения высокого напряжения, подвержено скачкам напряжения и их разрушительным эффектам.

Что такое скачок напряжения?

«Скачок» в электрической системе возникает в результате воздействия на систему энергии в какой-то момент, что может быть результатом ударов молнии или работы системы.Запечатленная энергия распространяется по системе в виде волн, скорость и величина которых меняются вместе с параметрами системы.

«Скачок» в электрической системе возникает из-за воздействия на систему энергии в какой-то момент, что может быть результатом ударов молнии или операций системы . Фотография: Schnider Electric.

Каждый тип перенапряжения может по-разному повлиять на ОПН и систему изоляции. Молния приводит к высокой скорости нарастания, потому что это настоящий источник кулоновской энергии, в то время как операции переключения приводят к относительно медленной скорости нарастания, потому что ее энергия хранится в магнитных полях системы.

Наряду с явлениями перенапряжения в системе также могут возникать более длительные перенапряжения из-за электрических неисправностей. В зависимости от конфигурации и заземления системы, одиночное замыкание на землю вызовет повышение напряжения системы на незатронутых фазах.


Конструкция, типы, классы и свойства ОПН

Согласно Национальному электротехническому кодексу (NEC) разрядник для защиты от импульсных перенапряжений определяется как: «Защитное устройство для ограничения импульсных перенапряжений путем разряда или обхода импульсного тока, а также предотвращает прохождение следящего тока, сохраняя при этом способность повторять эти функции» .

Первоначальный молниеотвод представлял собой не что иное, как искровой воздушный зазор, одна сторона которого была подключена к линейному проводнику, а другая сторона была подключена к заземлению. Когда напряжение между фазой и землей достигнет уровня искрового пробоя, скачок напряжения будет разряжаться на землю.

Старые разрядники для защиты от перенапряжений обычно состоят из блоков резисторов из карбида кремния, соединенных последовательно с воздушными зазорами, эти разрядники обычно не пропускают ток и имеют одно номинальное напряжение. За некоторыми исключениями, выбрать эти ОПН довольно просто:

Для глухозаземленных систем используется разрядник на следующий уровень выше, чем линейное напряжение системы.Для заземленных через сопротивление или незаземленных систем используется следующий более высокий номинал, превышающий линейное напряжение системы.

Металлооксидные ограничители перенапряжения содержат блоки из материала с переменным сопротивлением, обычно оксида цинка, без воздушных зазоров. Между линейным и заземляющим выводами разрядника непрерывно подается линейное напряжение, эти разрядники несут минимальный ток утечки, который можно выдерживать на постоянной основе.

Металлооксидные ограничители перенапряжения содержат блоки из материала с переменным сопротивлением, обычно оксида цинка, без воздушных зазоров.Фото: EATON / Cooper Power Systems.

При возникновении перенапряжения разрядник немедленно ограничивает или фиксирует состояние перенапряжения, проводя импульсный ток на землю. После прохождения скачка разрядник возвращается в исходное состояние.

Минимальный ток утечки ОПН в основном емкостный с небольшой резистивной составляющей.

Оксид металла имеет много преимуществ в качестве устройства защиты от перенапряжений, но его правильное применение несколько сложнее, чем у разрядников предыдущего поколения.Вместо одного номинального напряжения металлооксидные ОПН имеют три номинала:

  1. Номинальное напряжение
  2. Максимальное продолжительное рабочее напряжение (MCOV) — около 85% от номинального значения
  3. Возможность временного перенапряжения в течение одной секунды. — около 120% от номинала

Как это сделано: конструкция ограничителя перенапряжения

Классы разрядников

Класс разрядника, применяемого в системе, зависит от важности и стоимости защищаемого оборудования, уровня импульсной изоляции и ожидаемых разрядных токов, которые должен выдерживать ОПН.

Важно использовать ОПН с правильным номинальным напряжением. Фото: pxhere.

  • Разрядники станционного класса предназначены для защиты оборудования, которое может подвергаться значительному воздействию энергии из-за скачков при переключении линии и в местах, где имеется значительный ток короткого замыкания. Они обладают превосходными электрическими характеристиками, поскольку обладают большей способностью поглощать энергию. Разрядники станционного класса — лучший выбор для защиты ценного оборудования, где требуется высокая надежность.
  • Разрядники среднего класса предназначены для обеспечения экономичной и надежной защиты электрооборудования среднего класса напряжения. Промежуточные разрядники обычно используются для защиты сухих трансформаторов, для использования в коммутационном и секционирующем оборудовании, а также для защиты кабелей URD.
  • Разрядники распределительного класса можно найти на небольших жидкостных и сухих трансформаторах мощностью 1000 кВА и менее.Эти разрядники также могут быть использованы на зажимах вращающихся машин мощностью менее 1000 кВА, если они доступны с соответствующим номинальным напряжением. Распределительный разрядник часто используется на открытых линиях, которые напрямую подключены к вращающимся машинам.
  • Разрядники второго класса используются для напряжений 999 В или ниже. Они применяются в низковольтных распределительных сетях, электроприборах и обмотках низковольтных распределительных трансформаторов.

Выбор и применение разрядника

Основная цель разрядника — выбрать разрядник с наименьшим номиналом, который обеспечит адекватную защиту изоляции оборудования и будет иметь такой номинал, что он будет иметь удовлетворительный срок службы при подключении к энергосистеме.

Различные типы ограничителей перенапряжения. Фото: Wikimedia Commons.

Соответствующее номинальное напряжение разрядников для защиты от перенапряжений зависит от:

  1. Линейное напряжение системы
  2. Способ системного заземления
  3. Тип используемого ОПН

Лучшее место для установки разрядника для защиты от перенапряжений — как можно ближе к оборудованию, которое он защищает, предпочтительно на клеммах, где служба подключается к оборудованию.Важно использовать ограничители перенапряжения с правильным номинальным напряжением.

Защита оборудования и срок службы разрядника

Существует тонкий баланс между защитой оборудования и сроком службы ОПН:

  • Более низкие номиналы ОПН являются предпочтительными, поскольку они обеспечивают самый высокий запас защиты для системы изоляции оборудования, но увеличивают вероятность отказа.
  • Более высокие характеристики ОПН могут продлить срок службы ОПН, но снизить запас защиты, обеспечиваемый оборудованием, которое оно защищает.

При выборе ОПН следует учитывать как срок службы ОПН, так и защиту оборудования. Если требуются разные номиналы, следует выбрать самый высокий результирующий рейтинг ОПН.

Выбор ограничителя перенапряжения и процесс применения

Комплексный процесс выбора и подачи заявки на ОПН должен включать проверку:

  1. Все системные нагрузки (постоянное рабочее напряжение, временные перенапряжения и коммутационные скачки)
  2. Ожидаемые условия эксплуатации
  3. Конфигурация заземления системы (заземленное или эффективно незаземленное) в месте установки разрядника.

Знание конфигурации системы (звезда / треугольник, заземленный или незаземленный) является ключевым фактором при выборе номинала ОПН. Номинальные параметры разрядника для различных напряжений системы использования (между фазами) основаны на конфигурации заземления системы.

Выбор правильного номинала ОПН имеет решающее значение для предотвращения применения, в котором ОПН потенциально может иметь серьезный отказ. Любая система, отличная от конфигурации с глухим заземлением, считается фактически незаземленной, и следует выбирать более высокий номинал ОПН.


MCOV Рейтинг

Разрядники

в нормальном режиме работы постоянно подвергаются действию рабочего напряжения энергосистемы. Для каждого номинала ОПН существует рекомендуемый предел величины напряжения, которое может применяться непрерывно. Это называется максимальным непрерывным рабочим напряжением (MCOV).

Номинал ОПН выбирается таким образом, чтобы максимальное продолжительное напряжение системы электроснабжения, подаваемое на ОПН, было меньше или равно номиналу MCOV ОПН.Учитываются как конфигурация цепи (звезда или треугольник), так и подключение ОПН (линия-земля или линия-линия).

  • В большинстве случаев ОПН подключаются к земле.
  • Если ОПН подключаются линейно, необходимо учитывать межфазное напряжение.

Особое внимание следует уделить конфигурации заземления системы: либо жестко заземлено, либо эффективно незаземлено (заземленное сопротивление / сопротивление, незаземленное или временно незаземленное).Это ключевой фактор при выборе и применении разрядника.

Если конфигурация заземления системы неизвестна, предположим, что система не заземлена. Это приведет к выбору разрядника с более высоким постоянным напряжением системы и / или номиналом MCOV.

Номинал ОПН выбирается таким образом, чтобы максимальное продолжительное напряжение системы электроснабжения, подаваемое на ОПН, было меньше или равно номиналу MCOV ОПН. Фотография: General Electric.

MCOV Пример 1:13.Система с твердым заземлением 8 кВ

Длительное рабочее напряжение составляет 13 800, деленное на квадратный корень из 3, или 7970 В. Это выше MCOV 7650 В для разрядника на 9 кВ.

В зависимости от величины и продолжительности системных перенапряжений может потребоваться использование разрядника 10 кВ с MCOV 8,4 кВ или разрядника 12 кВ с MCOV 10,2 кВ.

MCOV Пример 2: Система 13,8 кВ с заземлением через сопротивление

В зависимости от времени, необходимого защитным реле для устранения замыканий на землю в системе, выбор будет между разрядниками на 12 кВ, 15 кВ и 18 кВ.

MCOV Пример 3: Незаземленная система 13,8 кВ

MCOV 12,7 кВ ОПН на 15 кВ не подходит для номинального напряжения 13,8 кВ. Используйте разрядник на 18 кВ с MCOV 15,3 кВ.


Временные перенапряжения (TOV) Рейтинг

Временные перенапряжения могут быть вызваны многочисленными системными событиями, такими как скачки переключения, замыкания на землю, сброс нагрузки и феррорезонанс. Конфигурация системы и методы эксплуатации оцениваются для выявления форм и причин TOV.

Основным эффектом временных перенапряжений в металлооксидных разрядниках является повышенный ток, рассеиваемая мощность и повышенная температура разрядников. Эти условия влияют на характеристики защиты и живучести ОПН.

Фото: EATON / Cooper Power Systems.

TOV ОПН должен соответствовать или превышать ожидаемые временные перенапряжения системы.


Базовый импульсный уровень (BIL) и ограничители перенапряжения

Ограничители перенапряжения выбираются в соответствии со стандартными уровнями изоляции электрического оборудования, чтобы они защищали изоляцию от перенапряжения.Эта координация основана на выборе разрядника, который будет разряжаться при более низком уровне напряжения, чем импульсное напряжение, необходимое для пробоя изоляции.

Большинство электрического оборудования рассчитано на уровни импульсов, определенные отраслевыми стандартами. Базовый уровень импульсной изоляции (BIL) оборудования определяется путем приложения к изоляции оборудования двухполупериодного скачка напряжения определенного пикового значения, это называется импульсным испытанием.


Отказ разрядника и сброс давления

Если эксплуатационные возможности разрядника превышены, металлооксидный диск (диски) может треснуть или проколоть, уменьшив внутреннее электрическое сопротивление разрядника.Это снижение сопротивления ограничит способность ОПН выдерживать перенапряжения в будущем, но не поставит под угрозу изоляционные свойства ОПН.

Пример паспортной таблички ограничителя перенапряжения и номинальных характеристик. Фото: EATON / Cooper Power Systems.

В случае выхода разрядника из строя разовьется дуга между фазой и землей, и давление будет расти внутри разрядника

Длина, критический параметр при установке разрядников

При установке устройства защиты от перенапряжения следует учитывать золотое правило длины кабеля и зазоров: «чем короче, тем лучше».

Длина и расстояние определяют способность ОПН к поглощению перенапряжения

Когда вы устанавливаете ограничитель перенапряжения, самым важным параметром является длина кабеля — к сети и к устройству, которое он должен защищать.

Длины кабелей ограничителей перенапряжения — это как хорошие шутки. Чем короче, тем лучше. Однако, в отличие от шуток, длина — не повод для смеха. Причина? Слишком длинный кабель может повредить груз. В условиях быстрого нарастания индуктивность увеличивается и вызывает образование высоких переходных напряжений в длинных кабелях.

Действительно, чем короче соединение, тем эффективнее защита. В большей степени, чем любой другой параметр, длина кабеля определяет способность разрядника рассеивать перенапряжения до заданного значения.

Правило установки на 50 сантиметров

Эмпирическим правилом для определения длины кабеля между ограничителем перенапряжения и сетью электроснабжения является так называемое «правило 50 сантиметров». Точно так же длина кабеля, соединяющего разрядник с оборудованием, не должна превышать 1 0 метров.

С другой стороны, необходимо учитывать, что чувствительное электрическое оборудование разрушается, если его номинальное выдерживаемое импульсное напряжение (Uw) превышает 1500 В, (Uw, импульсное выдерживаемое напряжение, назначенное изготовителем оборудованию или его части, характеризующее указанное выдерживает способность его изоляции от перенапряжений).

Все, что выше этого, и груз уничтожается.

Возьмем, например, ограничитель перенапряжения с заземляющим кабелем общей длиной 1 м. Если импульсный ток молнии 10 кА проходит через него в течение 10 микросекунд, разность потенциалов между двумя его концами составляет 1000 В.

Рис. 1. Нарушение правила 50 сантиметров

Однако напряжение 1000 В превышает максимальную разность потенциалов 1500 В уровня защиты разрядника перенапряжения (U spd ) и его размыкающего выключателя (разъединитель U ).Чувствительная нагрузка будет думать, что перенапряжение от тока молнии составляет, скажем, 2500 В. И поскольку ее импульсное выдерживаемое напряжение составляет всего 1500 В, она будет испаряться.

Как показано на Рисунке 2, можно сократить длину кабеля за 3 шага.

Рисунок 2. Укорачивание кабелей ограничителя перенапряжения

  1. Подключите устройство защиты от перенапряжения как можно ближе к клеммной колодке заземления электросети.
  2. Установите автоматический выключатель. Наиболее эффективное устройство — это ограничитель перенапряжения, включающий в себя размыкающий выключатель.
  3. Установите промежуточную клемму заземления как можно ближе к клеммной колодке заземления SPD, затем подключите ее к основному кабелю защиты заземления от земли. Пропустите другой кабель от промежуточной клеммы заземления к клеммной колодке заземления SPD и подключите промежуточную клемму заземления к основной клемме заземления.

Правило установки на 10 метров

Тот же принцип применяется к кабелям между ограничителями перенапряжения и частями оборудования.Если они длиннее 10 метров, вам следует установить второй разрядник как можно ближе к оборудованию. Используйте ограничители перенапряжения той же марки и придерживайтесь согласованной таблицы производителя.

И не забывайте. Переходные люди могут проникнуть в здание или объект через телефонные линии, компьютерные сети, системы видеонаблюдения — вы называете это. Итак, устанавливайте ограничители перенапряжения на любое устройство или систему, которые подвержены перенапряжению или особенно чувствительны.

Применяемые стандарты

Хотя вы устанавливаете устройства защиты от перенапряжения в соответствии с национальными стандартами (например,г. Франция NF C 15-100, Испания REBT, Италия CEI 99), все страны применяют международный стандарт IEC 60364. И все национальные правила включают разделы IEC 60364 в соответствии с их потребностями.

Ограничитель перенапряжения HAW562 для монтажа на DIN-рейку

  • — выбранная кодировка

    — выбранный ярлык

  • — выбранная кодировка

    — выбранный ярлык

или же

Индивидуальная конфигурация

Продолжите свой выбор из всех возможных вариантов

Ограничитель перенапряжения HAW569 для полевого монтажа

  • — выбранная кодировка

    — выбранный ярлык

  • — выбранная кодировка

    — выбранный ярлык

или же

Индивидуальная конфигурация

Продолжите свой выбор из всех возможных вариантов

Как работает ограничитель перенапряжения

Ограничитель перенапряжения для домовладельцев в Далласе

Не все ОПН защищают системы от молнии.В то время как разрядники тока молнии (класс 1) используются для защиты от прямых импульсных токов молнии, разрядники перенапряжения (класс 2) защищают оборудование от наведенных скачков напряжения в электропроводке. Ограничители перенапряжения и разрядники тока молнии DEHN обеспечивают надежную защиту от этих опасностей.

Краткий и простой обзор молниеотвода для нетехнических специалистов.

Как работает ограничитель перенапряжения?

Назначение ограничителя перенапряжения — защитить изоляцию / компоненты от высоких значений DV / DT, которые достигают пика при мгновенных значениях, превышающих пробой изоляции или компонента.Молния — одна из частых причин скачков напряжения. Другая частая причина — переключение в индуктивной цепи.

Есть возможность зафиксировать возникновение скачка напряжения. Некоторые ОПН оснащены «счетчиками импульсных перенапряжений», которые фиксируют тот факт, что ОПН разрядил ток. Также можно использовать другие явления (измерение звука, измерение света, измерение электрического поля и т. Д.), Чтобы зафиксировать возникновение разряда. Метеорологи регулярно регистрируют и регистрируют разряды молний с помощью как наземных, так и спутниковых приборов.

Также можно фиксировать и записывать скачки напряжения, но здесь технология усложняется. Распространенной проблемой является то, что скачок напряжения по своей природе является высокочастотным явлением, и для того, чтобы зафиксировать и зарегистрировать (то есть количественно оценить) событие, измерительная система должна иметь высокочастотный отклик. Инструменты, которые обычно используются для измерения напряжения основной частоты, не обладают достаточной частотной характеристикой для точного захвата и регистрации высокочастотных переходных процессов напряжения.Они могут быть в состоянии зафиксировать возникновение события, но не всегда возможно точно количественно оценить событие с помощью этих устройств.

Ограничитель перенапряжения — это устройство, которое защищает системы электроснабжения от повреждений, вызванных молнией. Типичный ограничитель перенапряжения имеет как заземляющий, так и высоковольтный зажим. Когда мощный электрический скачок проходит от энергосистемы к ограничителю перенапряжения, ток высокого напряжения направляется непосредственно на изоляцию или на землю, чтобы избежать повреждения системы.

Молнии и электрические скачки

Когда мощный импульс или молния поражает определенную электрическую систему, она повреждает всю систему и любые электрические устройства, подключенные к системе. Электрооборудование работает в определенном диапазоне напряжений. Когда эти устройства получают напряжение, намного превышающее указанное напряжение, достаточное для их работы, они взрываются или повреждаются. Однако электрические системы, защищенные разрядником для защиты от перенапряжений, не повреждаются, поскольку разрядник гарантирует, что высокое напряжение не попадет в электрическую систему.

Отвод освещения и электрических скачков с помощью MOV

Ограничитель перенапряжений не поглощает все проходящее через него высокое напряжение. Он просто отводит его на землю или зажимает, чтобы минимизировать проходящее через него напряжение. Секрет успеха разрядника в отводе молнии или сильных скачков напряжения — это MOV или металлический оксидный варистор. MOV — это полупроводник, который очень чувствителен к напряжению. При нормальном напряжении MOV работает как изолятор и не пропускает ток.Но при высоких напряжениях MOV действует как проводник. Он работает как переключатель, который открывается при наличии стандартного переменного напряжения, и как переключатель, который замыкается при наличии молнии или высокого напряжения.

Значение ограничителя перенапряжения

Разрядник перенапряжения — это устройство, активируемое напряжением, которое защищает компьютеры и другое электронное оборудование от скачков или переходных напряжений в электрических кабелях или кабелях данных, будь то от молнии или импульсного перенапряжения. Разрядник перенапряжения работает, отводя дополнительное напряжение в заземляющий провод, а не проходя через электронные устройства, в то же время позволяя нормальному напряжению продолжать свой путь.Позвоните нам по телефону (214) 238-8353, чтобы получить обслуживание и ремонт на дому.

Для получения дополнительных статей и информации посетите https://www.berkeys.com/category/electrical/

Решения по применению электрического испытательного оборудования от Megger

Ограничители перенапряжения устанавливаются на трансформатор для защиты его от переходных перенапряжений. Ограничитель перенапряжения подключается к каждому фазному проводу непосредственно перед тем, как он входит в трансформатор. Разрядник для защиты от перенапряжения заземлен, тем самым обеспечивая путь к земле с низким импедансом для энергии от переходного процесса перенапряжения, если он возникает.При нормальном рабочем напряжении ограничитель перенапряжений должен вести себя как изолятор, изолируя фазный провод от земли. Эти противоположные характеристики обычно достигаются за счет использования варистора (разрядников MOV), который имеет разные сопротивления при разных напряжениях.

Существует два основных типа разрядников для защиты от перенапряжений. Сегодня применяются только металлооксидные (ZnO) варисторные (MOV) разрядники. Более старый тип — это разрядники с зазором из карбида кремния, и многие из них до сих пор используются.Однако учтите, что разрядники с зазором старше 25 лет рекомендуется заменять из-за их возраста; некоторые предлагают еще более строгую политику, которая заменяет разрядники с зазором из карбида кремния через 13 лет из-за их склонности к проникновению влаги (д-р М. Дарвениза, IEEE Transaction on Power Delivery, октябрь 1996 г.).

Диагностика ограничителей перенапряжения

  • (Вт) измерение потерь и тока: потери (в ваттах) и ток, измеренные при испытании коэффициента мощности / коэффициента рассеяния на ОПН, являются надежными индикаторами загрязнения (особенно попадания влаги) или износа и полезны для определения физических изменений в разрядник.Испытание предназначено для оценки изолирующих характеристик разрядника, поскольку он «видит» рабочие напряжения на протяжении большей части срока службы. Хотя это измерение не проверяет характеристики прямого замыкания разрядника на землю, оно статистически более убедительно доказало, что, когда способность разрядника изолировать фазное напряжение от земли оказывается под угрозой, его рабочие характеристики также не работают. Потери, превышающие нормальные, могут указывать на загрязнение (например, влагу) или корродированные зазоры (в разрядниках MOV из карбида кремния или ранней конструкции).Более низкие, чем обычно, потери могут указывать на плохой контакт или обрыв цепи между элементами, на сломанные шунтирующие резисторы в разряднике из карбида кремния, а также на разрывы во внутренней электрической конструкции разрядника MOV.
  • Визуальный осмотр; разрядник должен быть осмотрен на предмет обнаружения трещин в фарфоре, пятен и любых других ненормальных физических состояний.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *