Подключение теплового реле: Подключение теплового реле. Основная функция и принцип работы

Содержание

Подключение теплового реле. Основная функция и принцип работы

Автор newwebpower На чтение 7 мин. Просмотров 1.5k. Опубликовано Обновлено

Для защиты электродвигателя от недопустимых длительных токовых перегрузок, которые могут возникнуть при увеличении нагрузки на вал или потери одной из фаз применяется тепловое защитное реле. Также защитное реле защитит обмотки от дальнейшего разрушения при возникшем междувитковом замыкании.

Тепловым данное реле (сокращенно ТР) называют из-за принципа действия, который схож с работой автоматического выключателя, в котором изгибающиеся при нагреве электрическим током биметаллические пластины разрывают электрическую цепь, надавливая на спусковой механизм.

Особенности теплового реле

Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает

цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.

Тандем контактора и теплового реле

Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.

Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.

Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.

Нормально разомкнутые и нормально замкнутые контакты

Характеристики теплового реле

Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:

  • Номинальный ток защиты;
  • Предел регулировки уставки тока срабатывания;
  • Напряжение силовой цепи;
  • Количество и тип вспомогательных контактов управления;
  • Мощность коммутации контактов управления;
  • Порог срабатывания (коэффициент отношения к номинальному току)
  • Чувствительность к асимметричности фаз;
  • Класс отключения;

Схема подключения

В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).

Схема подключения ТР к контактору в магнитном пускателе

Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.

Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.

В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».

Тепловое реле в схеме реверсивного подключения контакторов
Элементы подключения, управления и настройки ТР

По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).

На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.

Кнопка «Стоп» служит для ручного выключения устройства защиты.

Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.

Управление повторным взводом

Уставка тока срабатывания позволяет сделать выбор значения перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.

Регулировка уставки срабатывания относительно метки

При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.

Графики времятоковой характеристики

Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.

Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.

Также у некоторых тепловых реле имеется флажок срабатывания защиты.

Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,

Защита настроек и маркировка

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.

Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:

  • Устанавливаемые рядом с магнитным пускателем, и подключаемые при помощи перемычек (ТРН, РТТ).

    Реле РТТ, подключенное при помощи жестких пластинчатых перемычек

  • Монтируемые непосредственно на контактор магнитного пускателя (современные модели).

    Реле устанавливается непосредственно на контакторе

Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.

Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.

Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.

Элемент крепежа на корпусе теплового релеСпециальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».

ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.

Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.

Система рычагов

Если убрать рычаги, то будут видны контактные группы теплового реле.

Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.


Схема подключения теплового реле для электродвигателя

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле


В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test. Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop. Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Обратите внимание! Описание приводится для теплового реле LR2 D1314. Другие варианты имеют схожее строение и схему подключения.

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset. Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset. Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Обратите внимание! Тепловое реле не предназначено для защиты двигателя от короткого замыкания. Это связано с высокой скоростью пробоя. Пластины просто не успевают отреагировать. Для этих целей необходимо предусматривать специальные автоматические выключатели, которые также включаются в цепь питания.

Характеристики реле


При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения


Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме


Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Отправить комментарий

Схема подключения магнитного пускателя и теплового реле

Магнитный пускатель— это электротехнический препарат, предназначенный для дистанционного запуска, поддержания работы, остановки и защиты асинхронного электрического двигателя. Нередко пускатели применяются и для автоматического (с помощью датчиков света, таймеров и т. п.) или удаленного включения мощных линий освещения, электрообогревателей и т. п.

Для того, что бы разобраться в том, как подключить магнитный пускатель, необходимо вначале узнать как он работает и на какие характеристики стоит обратить внимание при покупке. Повторяться не буду, потому что об этом подробно рассказано в предыдущей статье.

Подключить пускатель своими руками несложно, как это сделать Мы расскажем дальше, но можно поступить проще и купить один пускатель или реверсивный сразу в сборе в металлическом, но лучше в пластиковом корпусе. В нем уже полностью собрана схема и подключены кнопки управления на крышке. Вам только остается подключить кабели электропитания сверху и отходящий кабель к нагрузке.

Подготовительные работы

Перед тем как приступить к сборке схемы подключения необходимо:

  1. Обесточить участок работы и проверить отсутствие напряжения индикаторной отверткой.
  2. Определить величину рабочего напряжения катушки, которая указывается всегда не на корпусе пускателя, а на самой катушке. Тут 2 варианта- 220 или 380 Вольт. Если 220 В, тогда на контакты катушки подается фаза и ноль. Если 380- 2 разноименные фазы. Это важно, а иначе при неправильном подключении катушка может перегореть или будет не включать силовые контакты до конца.
  3. Вам понадобится одна кнопка «Стоп» красного цвета с постоянно замкнутыми контактами и одна кнопка «Пуск» черного или зеленного цвета с постоянно разомкнутыми контактами.
  4. Запомните, что силовые контакты включают или выключают только фазы, а приходящие и отходящие нули и заземляющие проводники всегда соединяются между собой на клеммнике в обход пускателя. Они не коммутируются, для подключения катушки на 220 Вольт дополнительно с клеммника берется ноль в схему управления пускателем.

 

Схема подключения магнитного пускателя

Основная схема состоит из 2-ух частей:

  1. Силовых 3 пар контактов, которые подают электропитание на электрооборудование.
  2. Схемы управления, которая состоит из катушки, кнопок и дополнительных контактов, которые участвуют в поддержании работы катушки или блокируют ошибочные включения.

Самая распространенная схема подключения с одним пускателем. Она самая простая с ней самостоятельно справится любой человек. Для ее сборки нам понадобится 3 жильный кабель до кнопок и одна пара нормально разомкнутых контактов в отключенном положении пускателя.

Рассмотрим схему с подключением катушки на 220 вольт, если у Вас на 380 Вольт тогда вместо синего ноля необходимо подключить другую разноименную фазу. В нашем случае черного или красного цвета. В качестве блок контакта будет использоваться четвертая свободная пара, которая включается вместе с тремя парами силовых. Они все расположены сверху, но могут дополнительные находится и сбоку.

На силовые контакты пускателя с автомата приходят  три фазы A, B и C. Для того, что бы при нажатии кнопки «Пуск» они включились, необходимо подать 220 Вольт напряжения на катушку, которая при этом потянет якорь и подвижные контакты сомкнуться с не подвижными. Цепь замкнется, а для того что бы ее разомкнуть понадобится отключить катушку.

Для того чтобы собрать цепь управления необходимо одну фазу, в нашем случае зеленную, подключить сразу напрямую к контакту катушки, а со второго №5- подключаем проводом к контакту №4 пусковой кнопки. Так же со второго контакта катушки пускаем еще один провод (на схеме желтого цвета) через блок контакты на другой парный разомкнутый контакт кнопки «Пуск». С него же делается перемычка (синего цвета) на замкнутый контакт кнопки «Стоп», на второй контакт которой подключается ноль от электропитания.

Принцип работы прост. При нажатии кнопки «Пуск» замыкаются ее контакты и на катушку подается 220 Вольт- она включает основные и дополнительные контакты. Отпускаем кнопку- размыкаем  контакты пусковой кнопки, но пускатель остается включенным, потому что ноль подается на катушку через замкнутые блок контакты.

Для отключения необходимо разорвать ноль- это делается при помощи размыкания контактов кнопки «Стоп». Обратно пускатель не включится, потому что ноль будет разорван на блок контактах. Для включения понадобится снова нажать кнопку «Пуск».

Главное отличие магнитного пускателя от рубильника или автомата: при пропадании электричества пускатель всегда отключится и для повторного включения необходимо опять нажать на кнопку «Пуск».

Для реверсивной схемы подключения асинхронного двигателя необходимо собрать схему из одной кнопки «Стоп», 2 пускателей и кнопок «Пуск». Об этом Вы узнаете из этой нашей статьи.

Как подключить тепловое реле

Между магнитным пускателем и асинхронным электродвигателем подключается последовательно тепловое реле, которое подбирается под рабочий ток каждого конкретного двигателя. Тепловое реле защищает мотор от поломки и работы в аварийном режиме, например пропадании одной из трех фаз.

Тепловое реле подключается к выходу с магнитного пускателя на электродвигатель,  ток в нем проходит последовательно через нагреватели термореле, и далее-  к электромотору.

На тепловом реле сверху есть дополнительные контакты, которые последовательно соединяются с катушкой пускателя.

Принцип работы. Нагреватели теплореле рассчитаны на определенную максимальную величину, проходящего через них тока. В опасных ситуациях для электродвигателя, когда электрический ток в одной или нескольких фазах вырастает выше безопасных пределов- нагреватели воздействует на биметаллические контакты, которые разрывают цепь управления катушкой, тем самым отключая пускатель. Для повторного включения необходимо будет включить кнопкой биметаллические контакты.

Учитывайте, что сверху на тепловом реле есть  регулятор тока срабатывания в небольших пределах. Если его часто выбивает после установки, рекомендую увеличить регулятором значение тока.

Как подключить тепловое реле к двигателю

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Реле тепловое устанавливается для недопущения воздействия на электродвигатели от значительных и продолжительных токовых перегрузок, образующихся при обрыве одной из фаз либо перегрузки вала. Также при помощи ТР осуществляется защита обмотки от последующего повреждения после междувиткового замыкания. Читайте также статью ⇒ Реле напряжения.

Что такое тепловое реле?

Реле называется тепловым из-за его принципа действия, во многом подобного на принцип работы выключателя-автомата, в котором биметаллические пластины, нагретые электротоком, выполняют разрыв цепи и давят на механизм спуска.

Так как тепловое реле в схемах требуется подключать за магнитным пускателем, отсутствует необходимость дублирования функции контактора после размыкания цепей в аварийных случаях. Выбор в пользу такой защиты позволяет достичь существенной экономии материала для силовых контактных групп. Ведь гораздо проще коммутировать малые токи единой управляющей цепи, чем разрывать сразу три контакта под высокой токовой нагрузкой.

Совет №1: При подключении прибора следует помнить, что тепловым реле силовые цепи не разрываются напрямую, им подается управляющий сигнал при повышении нагрузок.

Обычно в конструкции тепловых реле предусмотрено наличие двух контактов:

  • нормально замкнутого;
  • разомкнутого в нормальном положении.

После сработки реле оба этих контакта одновременно изменяют сове положение.

Устройство и виды

Реле тепловые выпускаются нескольких типов, для каждого из них характерны свои конструктивные особенности и область использования. Основными типами являются следующие реле:

РТЛ представляют собой 3-х фазные устройства, предназначенные для защиты электродвигателей от перегрузок, заклинивания ротора, продолжительного пуска, фазного перекоса. Устройства ставятся на клеммные контакты пускателя ПМЛ. Могут самостоятельно работать как защитный прибор с клеммами типа КРЛ.

Реле типа РТТ — также трехфазное устройство, обеспечивающее защиту короткозамкнутых двигателей от затяжных пусков, заклинивания, токовых перегрузок, иных, не менее опасных аварийных ситуаций. Благодаря особенностям конструкции реле крепятся к корпусу магнитных пускателей типов ПМА и ПМЕ, а также в качестве отдельного устройства на специальной панели.

Трехфазные реле РТИ используются для защиты электромотора от перегрузок, перекосов фаз, стопорения и других тяжелых режимов функционирования. Крепятся к корпусу пускателей КМТ и КМИ.

ТРН — тепловой 2-х фазное реле, посредством которого осуществляется контроль за пуском и работой приборов. Оснащается механизмом ручного возврата клемм в первоначальное положение, при этом температура среды на эффективность функционирования реле не влияет.

Реле перезагрузки тепловое РТЛ с уровнем защиты IP20 на номинальный ток 100А

Твердотельные реле — 3-х фазные устройства, конструкция которого не предусматривает наличия подвижных частей. Реле также не восприимчивы к воздействию окружающей среды, применяются в местах с риском разрыва.

В реле типа РТК контроль температуры выполняется посредством щупа, размещенного в корпусе прибора.

Термореле типа РТЭ состоит из проводника, изготовленного из специального сплава. При достижении температуры порового значения проводник плавится, тем самым разрывая цепь. Встраивается в конструкцию электромотора. Читайте также статью ⇒Как работает реле контроля напряжения?

Как выбрать реле по характеристикам?

При подборе реле следует изначально разобраться в его основных параметрах:

  • значению номинального тока;
  • диапазона регулирования тока сработки;
  • сетевого напряжения;
  • тип и количество клемм;
  • расчетной мощности подключаемого устройства;
  • минимальной границы сработки;
  • класса устройства;
  • реакции на фазный перекос.

Номинальный ток реле должен быть идентичным указанному на электромоторе, к которому устройство будет подсоединяться. Величину тока двигателя можно увидеть на планке, размещенной на его крышке или корпусе.

Сетевое напряжение для реле должно быть равным значению сети, в которой оно будет располагаться — 220 либо 380/400 В. Также значение имеет тип и число клемм, так как в контакторах различных типов реализованы различные способы подсоединения.

Реле также должно выдерживать мощность электромотора для недопущения ложной сработки. Для двигателей трехфазных следует подбирать реле, обеспечивающее дополнительную защиту от фазного перекоса.

Особенности подключения

Обычно монтаж теплового реле осуществляется вместе с магнитным пускателем, выполняющим соединение и запуск электродвигателя. Выпускаются также и устройства, устанавливающиеся как самостоятельный прибор на DIN-рейке либо на монтажной панели — ТРН или РТТ.

Если у реле ТРН присутствует лишь пара входящих подключений, фаз в нем все равно три. Отключенный фазный провод выходит с пускателя к двигателю, минуя устройство. Изменение тока в электромоторе происходит пропорционально во всех фазах, потому достаточно выполнять контроль только за двумя из них.

Устройства снабжаются двумя группами клемм в нормально открытой и нормально замкнутой группах.

Структурная схема подключения теплового реле согласно требований ГОСТ с обозначениями

Ниже представлена схема управления, отключающая мотор от сети при возникновении нештатной ситуации от обрыва фазы либо перегрузки. Вращение двигателя осуществляется в одну сторону, управление включением выполняется с одного места посредством кнопок ПУСК и СТОП.

Включение реле в 3-х фазную сеть, управление выполняется через кнопки Стоп и Старт

Автомат подключен и к верхним контактом поступает напряжение. После нажима кнопки ПУСК происходит подключение катушки пускателя А1 и А2 к сети L1 и L2. В представленной схеме установлен пускатель, катушка которого рассчитана на 380 В.

При включении пускателя катушкой происходит замыкание дополнительных контактов 13 и 14. Кнопку ПУСК теперь можно отпустить, но контактор останется включенным. Такая схема получила название «Пуск с самоподхватом».

Для отключения электромотора от сети нужно обесточить катушку. Проследив на представленной схеме направление течения тока, можно заметить, что отключение произойдет при нажиме кнопки СТОП либо размыкании клемм теплового реле (на схеме прибор обозначен прямоугольником красного цвета).

Таким образом, при возникновении нештатной ситуации при сработке реле разрывается цепь, пускатель снимается с самоподхвата, обесточивая при этом электромотор. Перед повторным пуском после сработки необходимо выполнить осмотр механизма для выявления причин внепланового отключения и не включать вновь до их устранения.

Зачастую причиной сработки служит повышенная температура внешнего воздуха — такой момент также следует учесть при настройке механизмов и их эксплуатации.

Совет№2: В домашних хозяйствах область использования тепловых реле не ограничивается лишь станками и иными механизмами собственного производства. Не лишним было бы применять устройства для установки в системах, контролирующих ток в насосах отопительной системы.

Работа циркуляционного агрегата выполняется весьма специфическая. Дело в том, что на улитке и лопастях со временем появляется известковый налет, служащий одной из причин заклинивания и выхода из строя электродвигателя. Применяя приведенные схемы подключения можно собственными силами собрать контролирующий блок и блок защиты. В питающей цепи достаточно выставить номинал теплового реле и подключить контакты.

Помимо этого, не менее интересна схема подсоединения теплового реле посредством токовых трансформаторов, предназначенная для применения при подключении мощных двигателей, например, поливочных систем крупных фермерских хозяйств. При добавлении в питающую цепь трансформатор следует иметь в виду параметр трансформации, равный, например, 60/5. Этот параметр означает, что при поступлении через первичную обмотку тока в 60 А, на вторичной обмотке его величина будет равна 5 А. Использование такой схемы позволит сократить расходы на приобретение комплектующих без снижения эксплуатационных характеристик. Читайте также статью ⇒ Подключение указательное реле.

Схема, при помощи которой осуществляется контроль работы посредством трансформаторов тока

Красным цветом на схеме указаны трансформаторы тока, подключающиеся к амперметру и реле контроля, для визуального представления о проходящих в цепи процессов. Подключение трансформатора выполняется по схеме «звездочка» с одной общей точкой.

Обзор моделей

В таблице приведен краткий сравнительный обзор моделей тепловых реле с указанием основных параметров и примерной стоимости.

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле


В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test . Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop . Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset . Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset . Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Характеристики реле


При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения


Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме


Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Тепловое реле

2016-07-01 Статьи  

Тепловое реле, или как его еще называют реле перегрузки — это коммутационное устройство, предназначенное для защиты электродвигателей от токовой перегрузки и в случае обрыва фазы. При превышении потребляемого двигателем тока нагрузки тепловое реле разомкнет цепь, отключит магнитный пускатель, тем самым защитив двигатель.

Тепловое реле не предназначено для защиты от короткого замыкания, поэтому в цепь питания перед магнитным пускателем устанавливают автоматический выключатель.

Принцип работы теплового реле

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух пластин, которые сварены из металлов с разными коэффициентами теплового расширения. При воздействии высокой температуры биметаллическая пластина изгибается в сторону металла с меньшим коэффициентом расширения. Достигнув определённой температуры, пластина давит на защёлку расцепителя и под действием пружины происходит размыкание подвижных контактов реле и следовательно размыкание всей электрической цепи.

Если реле находится в режиме автоматического включения, то после остывания биметаллического элемента исполнительный механизм и подвижные контакты реле вернутся в исходное положение. При этом электрическая цепь восстановится и контактор будет готов к работе. Если же реле находится в ручном режиме, то после каждого срабатывания перевод реле в исходное положение должен осуществляться ручным воздействием.

Выбирая тепловое реле, надо исходить из номинального тока нагрузки плюс небольшой запас. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока. Например, если на шильде электродвигателя указан ток 16А, то выбираем тепловое реле с запасом примерно на 18-20А.

Таблица по выбору тепловых реле РТИ

Устройство и подключение теплового реле

На примере РТИ 1312 покажу устройство теплового реле.

РТИ1312 подключается к контактору непосредственно своими штыревыми контактами.

В зависимости от величины и типа пускателей первый и второй контакты теплового реле могут регулироваться вправо-влево. Сбоку на наклейке указано, какой тип контакторов подходит для данного реле.

В зависимости от величины протекающего тока в реле предусмотрена регулировка уставки срабатывания по току с помощью поворотного регулятора, расположенного на передней панели реле. Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.

Также на панели управления расположена кнопка «TEST»,имитирующая срабатывание защиты реле и проверки его работоспособности. Выступающая красная кнопка «STOP»предназначена для принудительного размыкания нормально-замкнутого контакта NC. При этом питание на катушке контактора пропадает и нагрузка отключается.

Электротепловое реле может работать в ручном или автоматическом режиме. Режим работы реле задается поворотным переключателем «RESET». При автоматическом режиме переключатель утоплен и при срабатывании теплового реле оно автоматически включится после остывания биметаллической пластины. Для перевода реле в ручной режим необходимо повернуть переключатель против часовой стрелки.

Автоматический режим

Ручной режим

После того, как тепловое реле настроено, его можно закрыть прозрачной защитной крышкой и при необходимости опломбировать. Для этого на передней панели и крышке имеются специальные проушины.

Электрическая схема реле РТИ

Входное напряжение подходит на контакты 1,3,5, а выходное напряжение на нагрузку поступает с контактов 2, 4, 6. Кнопки «TEST» и «RESET» меняют положение подвижных контактов реле, а кнопкой «STOP» меняется положение только нормально-замкнутого контакта (95 — 96).

Нормально-замкнутые контакты применяются в схемах управления электродвигателями через магнитный пускатель, а нормально-разомкнутые контакты — в основном в цепях сигнализации, например для вывода световой индикации на панель оператора.

Схема подключения нереверсивного магнитного пускателя с тепловым реле

Типичная схема подключения нереверсивного пускателя с тепловым реле выглядит так:

Подробнее о работе данной схемы вы можете прочитать в статье Магнитный пускатель, здесь же я хочу остановиться только на подключении теплового реле. Как видно из схемы на силовые контакты теплового реле подключаются только две фазы, а третья идет напрямую на двигатель. В современных тепловых реле задействованы все три фазы. Также используется дополнительный нормально-замкнутый контакт реле. При перегрузки двигателя он разомкнется и разорвет цепь питания катушки контактора.

При срабатывании теплового реле не стоит сразу же пытаться включать его снова, необходимо выждать время пока биметаллические пластины не остынут. Кроме того стоит определить причину срабатывания — проверить всю схему подключения, подтянуть контакты, проверить температуру двигателя, потребление тока по каждой фазе двигателя.

Тепловое реле | Заметки электрика

Здравствуйте, уважаемые посетители и гости сайта «Заметки электрика».

В этой статье я расскажу Вам про назначение, устройство, схему подключения теплового реле на примере LR2 D1314 от фирмы «Schneider Electric». Тепловой компонент рассматриваемого реле имеет номинальный ток 10 (А), а токовый диапазон уставок его составляет от 7 до 10 (А). Об остальных технических характеристиках поговорим чуть позже. А теперь давайте перейдем к определению и назначению теплового реле.

Как Вы уже знаете, тепловое реле, или другими словами реле перегрузки, устанавливается в схемах магнитного пускателя, как нереверсивного типа, так и реверсивного.

Более подробно об этом Вы можете ознакомиться здесь:

Назначение теплового реле

Тепловое реле — это электрический коммутационный аппарат, который предназначен для защиты трехфазных двигателей от токовой перегрузки недопустимой продолжительностью (например, при заклинивании ротора или механической его перегрузки), а также от обрыва любой из фаз питающего напряжения (по функции аналогично реле контроля фаз).

Вот список самых распространённых (известных) серий тепловых реле: ТРП, ТРН, РТТ, РТИ (аналог LR2 D13), РТЛ

О каждой серии тепловых реле я постараюсь написать отдельную статью, подписывайтесь на рассылку новостей сайта «Заметки электрика».

Прошу заметить, что тепловое реле не защищает электродвигатель от коротких замыканий по причине того, что оно срабатывает с выдержкой времени, т.е. не мгновенно — это отчетливо можно увидеть по графику (кривой) срабатывания теплового реле. Для защиты двигателя от короткого замыкания в силовую цепь перед магнитным пускателем устанавливаются автоматические выключатели или предохранители.

 

Технические характеристики теплового реле LR2 D1314

Вот его внешний вид:

Вид сбоку:

Я уже говорил выше, что тепловое реле LR2 D1314 имеет конструктивное исполнение один в один, как у теплового реле РТИ.

Ниже я приведу основные технические характеристики, рассматриваемого в данной статье, теплового реле LR2 D1314 от компании «Schneider Electric»:

  • номинальный ток теплового компонента — 10 (А)
  • предел регулирования тока уставки теплового расцепителя — 7-10 (А)

  • напряжение силовой (главной) цепи — 220 (В), 380 (В) и 660 (В)

  • два вспомогательных контакта — нормально-замкнутый NC (95-96) и нормально-разомкнутый NO (97-98)

  • коммутируемая мощность вспомогательных контактов — около 600 (ВА)
  • порог срабатывания — 1,14±0,06 от номинального тока
  • чувствительность к асимметрии фаз — срабатывает при 30% от номинального тока по одной фазе, при условии, что по другим фазам протекает номинальный ток
  • класс отключения — 20 (см. график кривой срабатывания теплового реле)

Кривая срабатывания теплового реле с классом отключения 20 — показывает среднее время срабатывания реле в зависимости от кратности тока уставки:

Согласно ГОСТ 30011.4.1-96 (п.4.7.3, таблица 2) время срабатывания теплового реле (класс 20) при кратности тока уставки реле 7,2 составляет 6 — 20 секунд.

Рассмотрим устройство передней панели теплового реле LR2 D1314

Рассмотрим устройство передней панели.

На ней имеется кнопка-переключатель (синего цвета) режима повторного взвода (включения) реле:

  • «А» — автоматический взвод
  • «Н» — ручной взвод

На данный момент выставлен автоматический режим повторного взвода — синяя кнопка-переключатель утоплена. Это значит, что при срабатывании теплового реле схему питания двигателя можно беспрепятственно и повторно включить.

Чтобы переключиться на ручной режим, нужно открыть защитное стекло и повернуть синюю кнопку-переключатель влево — он выступит наружу. В ручном режиме после срабатывания теплового реле необходимо в ручную нажать синюю кнопку-переключатель, иначе нормально-замкнутый контакт NC (95-96) останется разомкнутым, тем самым не даст собрать схему питания и управления электродвигателя.

Также на передней панели теплового реле LR2 D1314 располагается красная кнопка «Тест» («Test»). С помощью нее имитируется работа внутренних механизмов реле и его вспомогательных контактов.

Кнопку «Test» я нажимаю с помощью небольшой отвертки.

У данного типа теплового реле имеется индикация срабатывания в виде желтого (оранжевого) флажка в окошке. Также по этому флажку можно ориентироваться о текущем состоянии вспомогательных контактов реле. Когда в окошке находится желтый флажок, то значит нормально-замкнутый контакт NC (95-96) находится в разомкнутом состоянии, а нормальный-разомкнутый контакт NO (97-98) — в замкнутом.

Ну вот мы плавно подобрались к красной кнопке «Стоп». Красная кнопка «Стоп» выполнена в виде выступающего «грибка» и нужна для принудительного размыкания нормально-замкнутого контакта NC (95-96). При этом катушка магнитного пускателя теряет питание и двигатель отключается от сети.

Еще на передней панели теплового реле LR2 D1314 имеется регулятор уставки, с помощью которого регулируется и настраивается уставка срабатывания теплового реле. В нашем случае ток уставки реле находится в пределах от 7 до 10 (А). Регулировка производится путем поворота регулятора до совмещения нужной уставки реле и риски-треугольника.

После всех настроек и регулировок защитная крышка теплового реле закрывается и пломбируется. Для этого на ней имеется специальное «ушко». Таким образом, доступ к регулировке уставок реле будет закрыт и никто из посторонних в процессе эксплуатации не сможет их изменить.

Схема подключения теплового реле LR2 D1314

Представляю Вашему вниманию схему теплового реле LR2 D1314:

Входные силовые цепи (медные выводы) не маркируются и подключаются непосредственно к пускателю или контактору. Маркировка выходных главных (силовых) цепей теплового реле имеют маркировку: T1 (2), Т2 (4), Т3 (6) и к ним подключается электродвигатель.

У данного типа реле существует две пары вспомогательных контактов:

  • нормально-замкнутый NC (95-96)
  • нормально-разомкнутый NO (97-98)

Нормально-замкнутый контакт используется в схеме управления магнитным пускателем и подключается, например, перед кнопкой «Стоп». Нормально-разомкнутый контакт чаще всего используется в цепях сигнализации для вывода световой индикации на панель оператору или диспетчеру при срабатывании теплового реле.

Для примера я подключил тепловое реле на выводы T1 (2), Т2 (4), Т3 (6) магнитного пускателя ПМЛ-1100. Вот так это выглядит:

Крепится тепловое реле к пускателю с помощью силовых выводов и специального крючка, который плотно фиксирует корпус реле в неподвижном состоянии.

В зависимости от величины и типа пускателей или контакторов выводы («ножки») теплового реле регулируются путем изменения своего межосевого расстояния.

На корпусе есть «подсказка» с рекомендациями по выставлению «ножек» теплового реле в зависимости от типа пускателя или контактора.

 

Конструкция и внутреннее устройство теплового реле LR2 D1314

Ну чтож, заглянем внутрь реле.

Для этого открутим 3 крепежных винта.

Затем тонкой отверточкой очень аккуратно вскроем защелки по периметру корпуса. Почему аккуратненько — да потому что корпус выполнен из пластика, который очень хрупкий и можно с необычайной легкостью сломать крепежные защелки.

Снимаем верхнюю крышку реле.

На фотографии видны три биметаллические пластины, которые установлены в каждом полюсе (фазе).

Откручиваем винты выходных клемм и вытаскиваем из корпуса биметаллические пластины.

Затем снимаем спусковой механизм теплового реле.

Принцип работы системы рычагов спускового механизма.

Вот так выглядит тепловое реле LR2 D1314 без биметаллических пластин и спускового механизма.

Чтобы добраться до контактной системы теплового реле, нужно снять регулятор уставок и выкрутить винт.

На фотографии ниже изображены контакты теплового реле в режиме готовности.

А сейчас показаны контакты при срабатывании теплового реле:

Я уже упоминал в начале статьи, что при нажатии на кнопку «Стоп» принудительно размыкается нормально-замкнутый контакт NC (95-96), при этом нормально-разомкнутый контакт не изменяет своего положения. Вот подтверждение моих слов.

А вот фотография всех деталей теплового реле LR2 D1314.

 

Принцип работы теплового реле LR2 D1314

Несколько слов о конструкции биметаллической пластины.

Биметаллическая пластина состоит из 2 пластин разных материалов, у которых коэффициент линейного теплового расширения значительно отличается друг от друга. Например:

  • сплав железа с никелем (инвар) со сталью
  • ниобий со сталью

Соединяются эти две пластины с помощью сварки или клепки.

Один конец биметаллической пластины закреплен (неподвижный), а другой — подвижный и соприкасается со спусковым механизмом теплового реле. Когда биметаллическая пластина нагревается от проходящего через нее тока, она начинает изгибаться в сторону материала, у которого коэффициент линейного теплового расширения меньше.

А теперь рассмотрим принцип работы теплового реле LR2 D1314.

В нормальном режиме работы электродвигателя через биметаллические пластины трех полюсов (трех фаз) протекает ток нагрузки электродвигателя — пластины нагреваются до определенной начальной температуры, которая не вызывает их изгиб. Предположим, что по некоторой причине ток нагрузки двигателя увеличился, соответственно, по биметаллическим пластинам будет протекать ток больше номинального, который и вызовет их подогрев (температура станет больше начальной). При этом подвижная часть биметаллических пластин начнет изгибаться и приведет в действие спусковой механизм теплового реле.

После срабатывания теплового реле нужно подождать определенное время, пока не остынут биметаллические пластины и не разогнутся в нормальное положение. Да и включать сразу же электродвигатель в сеть после срабатывания теплового реле совершенно нецелесообразно, ведь в первую очередь нужно определить причину и устранить ее.

P.S. Пожалуй на этом я закончу статью о тепловом реле LR2 D1314 от фирмы «Schneider Electric». В следующих статьях я расскажу Вам как правильно выбрать тепловое реле, а также покажу как его настроить и проверить на стенде. Если у Вас имеются вопросы по материалу статьи, то готов выслушать Вас — форма комментариев всегда открыта.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


особенности конструкции, виды, принцип работы и схемы подключения

Для защиты электромоторов от перегрузок активно используются тепловые реле.

Хотя было создано довольно много видов этих приборов, область их применения практически аналогична.

При выборе теплового реле для электродвигателя необходимо знать особенности конструкции устройства, а также принцип его работы.

Начинающим электрикам, кроме этого, предстоит разобраться со схемами подключения прибора.

Конструктивные особенности

В основе устройства и принципа действия теплового реле (ТР) лежит закон Джоуля-Ленца — выделяемое на участке электроцепи количество тепла пропорционально сопротивлению этого участка и квадрату силы тока. Это физическое явление сегодня активно применяется в тепловых разъединителях. Небольшой участок электрической цепи, выступающий в роли излучателя, наматывается на изолятор спиралью.

Проходящий через электрооборудование ток протекает и в этом участке. Рядом со спиралью расположена пластина, изготовленная из биметаллического сплава. При достижении определенной температуры она изгибается и воздействует на группу контактов.

Особенность пластины заключается в том, что она изготовлена из двух металлов, обладающих разными показателями коэффициента теплового расширения, которые составляют один элемент.

Конструкция прибора показана на рисунке.

К проводникам подсоединены три фазы питания электромотора. Обмотка нагрева находится над биметаллической пластиной, что позволяет уменьшить число ложных срабатываний прибора. Пластины упираются в подвижный элемент конструкции, который воздействует на механизм разъединителя. В верхней части прибора расположены две группы контактов (закрытые NC и открытые NO), а также регулятор токовой нагрузки пружинного типа.

Основные виды

Так как существует довольно много видов электротеплового реле, то стоит познакомиться с ними. Они различаются областью применения и даже имеют собственную классификацию. Среди основных типов ТР выделяют:

  • РТЛ — трехфазный прибор, обеспечивающий защиту электромотора от перекоса фаз, заклинивания ротора, а также затянутого пуска. Реле этого типа может монтироваться на контакты пускателя типа ПМЛ либо работать самостоятельно с клеммником КРЛ.
  • РТТ — устройство предназначено для работы в трехфазной электросети и выполнения функций, аналогично РТЛ. Прибор может использоваться самостоятельно при монтаже на панели либо устанавливаться на пускатели типов ПМЕ и ПМА.
  • РТИ — трехфазное реле, необходимое для защиты двигателей от асимметрии фаз, заклинивания и длинного пуска. Его можно монтировать на пускатели двух типов — КМИ либо КМТ.
  • ТРН — твердотельный прибор предназначен для применения в двухфазных электросетях. Он позволяет контролировать режим пуска и работы электродвигателя. Устройство оснащено ручным механизмом возврата контактов в начальное положение. Особое внимание нужно уделить тому факту, что на работу реле температура внешней среды практически не оказывает никакого влияния.
  • РТК — для контроля температуры используется щуп, расположенный в корпусе электрооборудования. Это реле тепловое, оно способно контролировать только один параметр.
  • РТЭ — прибор плавления сплава. Его главный проводник изготовлен из определенного металла, который при достижении конкретной температуры плавится. В результате происходит разъединение электроцепи.

Таким образом, несмотря на имеющееся различия, все эти приборы предназначены для решения одной задачи — защиты электрического оборудования.

Принцип работы

Познакомившись с конструкцией и типами устройств, необходимо разобраться с принципом работы теплового реле. На каждом электромоторе производитель устанавливает табличку с техническими характеристиками. Одной из наиболее важных среди них является показатель номинального рабочего электротока. Сегодня используется много агрегатов, во время пуска или работы которых это значение может существенно превышаться.

Если перегрузки наблюдаются в течение длительного временного отрезка, то возможен перегрев катушек, разрушение изоляционного слоя и последующий выход мотора из строя. Защитные ТР способны влиять на цепь управления, размыкая контакты либо подавая предупреждающий сигнал обслуживающему персоналу. Приборы монтируются в силовую электроцепь перед двигателем, чтобы иметь возможность контролировать показатель проходящего через агрегат тока.

Во время настройки защитного устройства параметры выставляются в бо́льшую сторону от номинального паспортного значения на величину от 10 до 20%. К вопросу настройки реле нужно подходить ответственно, так как разъединение цепи при перегрузке происходит не мгновенно. В зависимости от различных факторов для этого может потребоваться 5−20 минут.

Схемы подключения

Чаще всего при подключении ТР к магнитным пускателям используется группа нормально замкнутых контактов. При этом к кнопке «Стоп» они подсоединяются последовательно. Если используется такая схема, то нормально разомкнутые контакты можно задействовать в системе сигнализации срабатывания устройства. В более сложных автоматизированных системах эта группа контактов часто применяется для активации аварийных протоколов остановки конвейерных цепей обслуживания.

Подключение ТР можно выполнить самостоятельно, но предварительно нужно разобраться с конструктивными особенностями прибора и принципом его функционирования. Независимо от типа используемого устройства и количества клемм магнитного пускателя, сложностей с внедрением ТР в схему возникнуть не должно.

Прибор монтируется перед электромотором, а его нормально замкнутые контакты должны быть последовательно соединены с кнопкой остановки оборудования.

Рекомендации по выбору

При выборе прибора необходимо ориентироваться на область его использования, а также имеющийся функционал. Проблем с поиском нужного защитного устройства практически никогда не возникает. Особое внимание в это время нужно уделить следующим моментам:

  • Однофазные ТР с автоматическим сбросом возвращаются в исходное состояние по истечении определенного отрезка времени. Если электродвигатель в этот момент еще перегружен, прибор сработает повторно.
  • Реле, имеющие систему компенсации температуры окружающей среды, способны работать в широком температурном диапазоне.
  • Некоторые модели приборов обладают способностью контролировать состояние фаз. Они сработают не только при перегреве мотора, но также, если был обнаружен обрыв фаз, их разворот либо дисбаланс.
  • Существуют ТР, способные срабатывать при недогрузке электрооборудования. Такая ситуация возможна, например, когда насос начал функционировать всухую.

Стоимость реле находится в широком ценовом диапазоне. Во время выбора прибора нужно внимательно изучить его технические характеристики. В паспорте можно также найти и рекомендации по подключению ТР. Впрочем, этот процесс не является сложным, и проблемы возникают крайне редко.

Схема подключения, типы и применение

Реле перегрузки — это электрическое устройство, используемое для защиты электродвигателя от перегрева. Поэтому очень важно иметь достаточную защиту двигателя. Электродвигатель может безопасно эксплуатироваться с помощью реле перегрузки, предохранителей или автоматических выключателей. Но это реле защищает двигатель, в то время как автоматический выключатель в противном случае защищает цепь. Точнее, предохранители, а также автоматические выключатели предназначены для обнаружения перегрузки по току в цепи, тогда как реле предназначено для обнаружения перегрева, если электродвигатель нагревается.Например, реле перегрузки можно исследовать без отключения выключателя (выключателя). Одно не восстанавливает другое. В этой статье обсуждается обзор реле перегрузки, типов и его работы.

Что такое реле перегрузки?

Реле перегрузки можно определить как , это электрическое устройство, в основном предназначенное для имитации нагревательных прототипов электродвигателя, а также прерывания протекания тока, когда устройство обнаружения тепла в реле достигает фиксированной температуры. .Конструкция реле перегрузки может быть выполнена с нагревателем в сочетании с обычно закрытыми соединениями, которые разблокируются, когда нагреватель становится слишком горячим. Это реле можно подключать последовательно, а также размещать между двигателем и контактором, чтобы избежать перезапуска двигателя при срабатывании перегрузки.


Схема подключения

Схема подключения реле перегрузки показана ниже, а соединения реле перегрузки с символом могут выглядеть как два противоположных знака вопроса, иначе как символ «S».Реле перегрузки работает / функция обсуждается ниже.

Несмотря на то, что на рынке доступно несколько типов реле перегрузки, наиболее частым типом реле является «биметаллическое тепловое реле перегрузки». Конструирование этого реле может быть выполнено с использованием двух разных видов металлических полос, и эти полосы могут быть соединены друг с другом, а также увеличиваться с различной скоростью при нагревании. Всякий раз, когда полоса нагревается до определенной температуры, полоса может закручиваться достаточно далеко, чтобы разорвать эту цепь.Схема подключения реле перегрузки

Когда ток, протекающий по направлению к двигателю, превышает то, за что заряжены нагреватели, перегрузка обнаруживается позже, чем через несколько секунд. Классы реле перегрузки можно разделить на три типа в зависимости от продолжительности исследования реле. Реле перегрузки классов 10, 20 и 30 можно исследовать позже, чем через 10 секунд, 20 секунд и 30 секунд соответственно. Одной из основных характеристик безопасности этого реле является то, что двигатель не запускается немедленно.Например, когда реле перегрузки исследует биметаллическое реле, то биметаллические соединения NC (нормально замкнутые) разблокируют цепь до тех пор, пока полоса не остынет. Если кто-нибудь попытается нажать пусковой выключатель, чтобы замкнуть переключатели контактора, двигатель не включится.

Реле перегрузки работает

Принцип работы реле перегрузки зависит от электротермических свойств биметаллической ленты. Расположение этого в цепи двигателя может быть выполнено так же, как протекание тока к двигателю может осуществляться с помощью его полюсов.Когда ток увеличивает фиксированное значение, биметаллическая полоса нагревается и изгибается.

Эти реле всегда работают с подрядчиками. Как только биметаллические полоски нагреваются, может сработать контактный расцепитель, который прерывает подачу питания на катушку контактора, деактивирует его и прерывает прохождение тока к двигателю. Время, необходимое для отключения, всегда обратно пропорционально протеканию тока через реле. Поэтому эти реле называются токовозависимыми, а также реле с обратной выдержкой времени.

Это реле может быть подключено к двигателю последовательно, так что ток будет течь по направлению к двигателю. Когда мотор активируется, тогда движущийся мотор через OLR будет там. Как только избыточный ток протекает через реле, оно срабатывает на определенном уровне, поэтому цепь между источником питания и двигателем размыкается. По истечении заранее установленного периода это реле может сброситься автоматически или вручную. Как только перегрузка будет обнаружена и устранена, двигатель снова будет активирован.

Детали реле перегрузки

Помимо контактов, а также биметаллической планки, в реле перегрузки есть еще несколько деталей, которые обсуждаются ниже.

Клемма

На схеме реле входные клеммы обозначены L1, L2 и L3, которые устанавливаются непосредственно на контактор. Электропитание двигателя может быть подключено к клеммам T1, T2 и T3.

Установка диапазона ампер

На СТАРОМ можно установить вращающуюся ручку.Используя это, можно установить номинальный ток, протекающий по направлению к двигателю. Подача тока может быть установлена ​​в одном из указанных верхних и нижних пределов. В электронном OLD также предусмотрена дополнительная ручка для отключения по выбору класса.

Кнопка сброса

Эта кнопка доступна поверх СТАРОГО, и используется для сброса реле после отключения и устранения неисправности.
Кнопка выбора ручного или автоматического сброса

С помощью этих кнопок можно выбрать ручной или автоматический сброс реле после отключения.Как только устройство настроено на автоматический сброс, возможен удаленный сброс реле.

Вспомогательный контакт

Это реле включает в себя два вспомогательных контакта, например, один нормально разомкнутый, а другой — нормально замкнутый. Для сигнализации о срабатывании используется нормально разомкнутый контакт, при отключении подрядчика — нормально замкнутый контакт. Контакты NC могут напрямую переключать катушки контактора.

Кнопка тестирования

Кнопка тестирования используется для проверки проводки управления.

Типы реле перегрузки

Они подразделяются на два типа, а именно: тепловое реле перегрузки и магнитное реле перегрузки .

Тепловое реле перегрузки

Тепловое реле представляет собой защитное устройство, которое в основном предназначено для отключения электроэнергии, когда двигатель использует слишком большой ток в течение длительного периода времени.

Для этого в этих реле есть реле NC (нормально замкнутое). Как только в цепи двигателя подается экстремальный ток, реле размыкается из-за повышения температуры двигателя, температуры реле, в противном случае обнаруживается ток перегрузки в зависимости от типа реле.

Тепловое реле перегрузки

Эти реле относятся к автоматическим выключателям как по конструкции, так и по применению; однако большинство автоматических выключателей нарушают работу цепи, если даже на мгновение происходит перегрузка. Они одинаково предназначены для расчета профиля нагрева двигателя; таким образом, перегрузка должна произойти в течение всего периода, прежде чем цепь разомкнется. Реле тепловой перегрузки подразделяются на два типа, а именно: паяльные ванны и биметаллические ленты.

Магнитное реле перегрузки

Магнитное реле перегрузки может работать, определяя напряженность магнитного поля, создаваемого током, протекающим по направлению к двигателю.Это реле может быть построено с переменным магнитным сердечником внутри катушки, которая удерживает ток двигателя. Расположение потока внутри катушки тянет сердечник вверх. Когда ядро ​​увеличивается достаточно далеко, он отключает набор соединений на вершине реле.

Магнитное реле перегрузки

Основное различие между реле теплового типа и реле магнитного типа заключается в том, что реле перегрузки магнитного типа не реагирует на температуру окружающей среды. Как правило, они используются в областях, где наблюдаются резкие перепады температуры окружающей среды.Магнитные реле перегрузки подразделяются на два типа: электронные и приборные.

Биметаллическое тепловое реле перегрузки

Работа биметаллического теплового реле перегрузки в основном зависит от нагревательных свойств биметаллической ленты. В методе прямого нагрева полный поток тока к двигателю может быть обеспечен с помощью реле перегрузки, которое также называется OLR. В результате он непосредственно нагревается за счет протекания тока.

Однако, в случае непрямого нагрева, полоса может быть расположена в плотном контакте через проводник внутри реле.Сильный поток тока к электродвигателю нагревается проводником и биметаллической полосой. Здесь проводник должен быть изолирован, чтобы ток не проходил по всей полосе.

Электронное реле перегрузки

Обычно электронные реле перегрузки называют твердотельными реле перегрузки. Внутри этих типов реле нет биметаллической полосы. В качестве альтернативы он включает в себя трансформаторы тока или датчики температуры, чтобы определять сумму тока, протекающего по направлению к двигателю.Для защиты в этом виде реле используется технология, основанная на микропроцессоре. Здесь PTC играет ключевую роль в обнаружении температуры, а также в отключении цепи при возникновении ошибок перегрузки. Некоторые типы реле перегрузки поставляются с датчиками Холла, а также трансформаторами тока для непосредственного обнаружения протекания тока.

Основным преимуществом электронного реле перегрузки по сравнению с тепловым реле перегрузки является отсутствие биметаллической полосы, что приводит к меньшим тепловым потерям в реле. Кроме того, эти типы реле более точны по сравнению с тепловыми реле.

Некоторые производители электронных устройств OLD включают дополнительные функции, такие как защита от замыкания на землю и остановки двигателя. Электронные реле перегрузки используются там, где часто требуется запуск и остановка двигателей. Эти реле могут быть спроектированы таким образом, чтобы выдерживать начальный ток двигателя в течение ограниченного периода времени.

Реле эвтектической перегрузки

Реле эвтектической перегрузки включает в себя нагреватель обмотки, эвтектический сплав и механическое устройство для активации отключающего механизма.Здесь эвтектический сплав представляет собой смесь двух других материалов, которые в противном случае плавятся, затвердевают при определенной температуре. В OLR эвтектический сплав заключен в трубку для частого использования через храповое колесо, нагруженное пружиной, чтобы активировать отключающее устройство на протяжении всего процесса перегрузки.

Ток в двигатель подается через небольшую обмотку нагревателя во время перегрузки, трубка из эвтектического сплава может нагреваться через обмотку нагревателя, и сплав растворяется из-за тепла, так что храповое колесо вращается.Это действие начинает размыкать замкнутые вспомогательные контакты в OLR. Реле такого типа можно просто сбросить вручную после отключения. Таким образом, обычно этот сброс может быть выполнен с помощью кнопки сброса, которая расположена на крышке реле. Нагреватель, подключенный через реле, можно выбрать в зависимости от тока полной нагрузки двигателя.

Реле перегрузки холодильника

В цепи компрессора холодильника используется защитное устройство, такое как реле перегрузки. Питание на обмотки двигателя компрессора подается от перегруженной машины.Этот тип реле в основном используется для включения пусковой обмотки в цепь до тех пор, пока компрессор не достигнет рабочей скорости.

Каким образом OLR защищает от сбоев фазы?

При нормальной работе OLR ток через каждый полюс электродвигателя остается одинаковым. Если какая-либо фаза прерывается, ток через оставшиеся две фазы увеличивается до обычного значения. Поэтому реле нагревается и срабатывает. Обрыв фазы также называют обрывом фазы, иначе однофазным двигателем.

Эти реле не могут защищать от коротких замыканий, но они должны использоваться через устройства защиты от короткого замыкания, чтобы защитить их, иначе любые короткие замыкания в электродвигателе могут легко повредить их. Эти реле могут защищать от потери фаз, дисбаланса фаз, перегрузок, но не от коротких замыканий.

Что вызывает отключение OLR?

Из приведенного выше обсуждения можно выделить три основных состояния избыточных отключений:

  • Перегрузка двигателя.
  • Обрыв фазы на входе
  • Дисбаланс фаз

А также есть некоторые дополнительные функции защиты, доступные, но меняются от одного разработчика к другому.

Срабатывание реле перегрузки

Время, используемое для разблокировки контактора при перегрузках, может быть обозначено через класс срабатывания. Как правило, оно делится на разные классы, такие как Class5, 10, 20 и 30. Это реле срабатывает через 5 секунд, 10 секунд, 20 секунд и 30 секунд соответственно при токе полной нагрузки на электродвигатель.

Обычно используемые реле перегрузки относятся к классам 10 и 20, тогда как OLR класса 30 в основном используются для защиты двигателей при работе с нагрузками с высокой неактивной нагрузкой.Реле типа 5 в основном используются для двигателей, которые требуют очень быстрого отключения.

Приложения

Приложения реле перегрузки включают следующее.

  • Он широко используется для защиты двигателя.
  • Его можно использовать для обнаружения как условий перегрузки, так и состояния отказа, а затем объявления команд отключения для защитного устройства.
  • Это реле используется в микропроцессорных системах, а также в полупроводниковой электронике.
  • Эти реле отключают устройство, когда оно потребляет слишком большой ток.

Итак, это все о реле перегрузки. Из приведенной выше информации, наконец, можно сделать вывод, что это электромеханические устройства защиты от перегрузки , используемые для схем. Эти устройства обеспечивают надежную защиту двигателей при обрыве фазы, в противном случае происходит перегрузка. Вот вам вопрос, какова функция реле перегрузки?

Источники изображений: Temco Industrial

Принцип работы теплового реле перегрузки

Привет друзья, в этой статье я рассказываю о принципе работы теплового реле перегрузки и его функции в пускателе прямого включения.Я надеюсь, что вы найдете эту статью информативной и полезной.

Реле тепловой перегрузки работает на тепле, выделяемом чрезмерным током перегрузки. Тепло, выделяемое током перегрузки, используется для отключения цепи двигателя. В основном они используются для защиты низковольтных асинхронных двигателей с короткозамкнутым ротором или двигателей постоянного тока с более низкой выходной мощностью.



Функция теплового реле перегрузки, используемого в цепях пускателя двигателя, заключается в предотвращении потребления двигателем чрезмерного тока, который вреден для изоляции двигателя.

Он подключается либо напрямую к линиям двигателя, либо косвенно через трансформаторы тока. Он обесточивает стартер и останавливает двигатель при чрезмерном потреблении тока.


Всякий раз, когда двигатель перегружен, он будет потреблять больше тока из линии и будет постепенно нагреваться. Реле перегрузки предназначено для защиты двигателя от длительных перегрузок.

Реле перегрузки установлено в цепи управления двигателем, чтобы установить контакт в цепи отключения или механически управлять шиной отключения, таким образом отключая двигатель в случае чрезмерной нагрузки.

Состоит из биметаллических полос. Тепло, выделяемое током перегрузки, используется для нагрева биметаллических полос.

При нормальных условиях эксплуатации полоса остается прямой, но под действием тока короткого замыкания полоса нагревается и изгибается, а контакты реле разъединяются, что обесточивает цепь управления двигателем.

Усилие, необходимое для изгиба биметаллических полос, можно отрегулировать с помощью регулятора. Другими словами, его можно настроить на работу при разных токах перегрузки.

Тепловое реле перегрузки не обеспечивает защиты от короткого замыкания, так как для размыкания контактов требуется достаточно времени. Следовательно, этот тип реле используется вместе с предохранителями для защиты цепи от перегрузки и короткого замыкания.

Эти реле имеют обратнозависимые временные характеристики, т.е. время отключения становится меньше при перегрузке и, следовательно, увеличивается ток. Они оцениваются по классу поездки. Класс отключения определяет период времени, который потребуется для работы в условиях перегрузки.Наиболее распространены классы 5, 10, 20 и 30. Реле перегрузки классов 30, 20, 10 и 5 срабатывают в течение 30, 20, 10 и 5 секунд соответственно при 600% тока полной нагрузки двигателя.

Функция реле перегрузки в DOL-стартере




Принципиальная схема прямого пускателя для трехфазного асинхронного двигателя показана на рисунке. Пускатель состоит из набора кнопок «пуск» и «стоп» с соответствующими контактами, устройствами защиты от перегрузки и пониженного напряжения.

Кнопка пуска (S 1 , обычно зеленого цвета) представляет собой выключатель с мгновенным контактом, который удерживается нормально разомкнутым с помощью пружины. Кнопка останова (S 2 , обычно красного цвета) представляет собой выключатель с мгновенным контактом, который удерживается нормально замкнутым с помощью пружины. Операция следующая.

Когда нажимается кнопка пуска S 1 , на рабочую катушку «C» (или главный контактор) подается питание через контакт перегрузки «D» (нормально замкнутый). Это замыкает три основных контакта «M», которые подключают двигатель к источнику питания.В то же время вспомогательный контакт «А» также замыкается.

Когда вспомогательный контакт замкнут, новая цепь устанавливается через кнопку останова, вспомогательный контакт и рабочую катушку «C». Поскольку рабочий контур теперь поддерживается вспомогательным контактом, двигатель продолжает работать даже после отпускания кнопки пуска.

Если питание отсутствует или напряжение в сети падает ниже определенного значения, главные и вспомогательные контакты размыкаются. При возврате питания контактор не может замкнуться, пока не будет снова нажата кнопка пуска.

Когда двигатель перегружен, он потребляет ток, превышающий его нормальный рабочий ток. Этот ток перегрузки нагревает биметаллическую полосу теплового реле перегрузки.

Теперь из-за этого тепла биметаллическая полоса начинает гнуться. Через некоторое время он достаточно изгибается, и цепь управления двигателем размыкается в точке «D» (точка показана на рисунке). Он отключает рабочую катушку от питания. В результате мотор останавливается.

Спасибо, что прочитали о принципе работы теплового реле перегрузки .

Трехфазный асинхронный двигатель | Все сообщения

© https://yourelectricalguide.com/ Принцип работы теплового реле перегрузки.

Как устроено тепловое реле?

Тепловое реле обычно состоит из нагревательного элемента, управляющего контакта и системы действия, механизма сброса, устройства установки тока и элемента температурной компенсации. Когда деформация достигает определенного расстояния, шатун толкается, чтобы размыкать цепь управления, так что контактор теряет питание и главная цепь отключается, тем самым реализуя защиту двигателя от перегрузки.

При фактической работе двигателя, такой как перетаскивание производственного оборудования на работу, если машина неисправна или цепь ненормальная, двигатель столкнется с перегрузкой, скорость двигателя уменьшится, ток в обмотке увеличится, и температура обмотки двигателя увеличится. Если ток перегрузки небольшой и время перегрузки короткое, а обмотка двигателя не превышает допустимого превышения температуры, перегрузка допустима. Однако, если время перегрузки велико и ток перегрузки велик, повышение температуры обмотки двигателя превысит допустимое значение, что приведет к старению обмотки двигателя, сокращению срока службы двигателя и даже сгоранию обмотки двигателя в серьезных случаях. .Поэтому такую ​​перегрузку мотор не переносит. В тепловом реле используется принцип теплового воздействия тока для отключения цепи двигателя в случае перегрузки, которую двигатель не может выдержать, чтобы обеспечить защиту двигателя от перегрузки. (Каков принцип работы теплового реле?)

Схема принципа работы теплового реле

Когда тепловое реле используется для защиты двигателя от перегрузки, термоэлемент подключается последовательно с обмоткой статора двигателя , нормально замкнутый контакт теплового реле включен последовательно в цепь управления электромагнитной катушкой контактора переменного тока, а ручка регулировки тока установки регулируется так, чтобы шток переключения в елочку и шток толкателя находились на нужном расстоянии .

Когда двигатель работает нормально, термический элемент нагревается током термического элемента, то есть номинальным током двигателя. Биметаллический лист изгибается после нагрева, так что толкатель только контактирует со штоком переключения передач в елочку, но не может толкать рычаг в елочку. В это время нормально замкнутый контакт находится в замкнутом состоянии, контактор переменного тока остается замкнутым, и двигатель работает нормально.

Если двигатель перегружен, ток в обмотке увеличивается, а также ток в термоэлементе, температура биметаллического листа повышается, а степень изгиба увеличивается.Он толкает стержень переключения передач в елочку, который толкает нормально замкнутый контакт, так что контакт размыкается, что приводит к отключению цепи катушки контактора переменного тока, размыканию контактора и отключению питания двигателя, а двигатель защищен остановившись.

1 — Кулачок регулирования тока, 2 — Листовая пружина (2a, 2b), 3 — Кнопка ручного сброса, 4 — Дуговая пружина, 5 — Основной металлический лист, 6 — Наружная направляющая пластина, 7 — Внутренняя направляющая пластина, 8 — Нормально закрытый статический контакт, 9 — Подвижный контакт, 10 — Рычаг, 11 — Нормально открытый статический контакт (регулировочный винт сброса), 12 — Компенсирующий биметаллический лист, 13 — Толкатель, 14 — Шатун, 15 — Нажимная пружина

Термический элемент

Тепловой элемент является сердцем теплового реле :

1.В тепловом реле прямого нагрева используется биметаллический лист в качестве теплового элемента, позволяющего напрямую пропускать электрическую серу. Поскольку сам биметаллический лист имеет определенное сопротивление, он может выделять тепло, когда через него проходит ток. Поскольку биметаллический лист используется как в качестве чувствительного, так и в качестве нагревательного элемента, этот метод нагрева имеет характеристики простой конструкции, небольшого объема, экономии материала, небольшой постоянной времени нагрева и быстрого изменения температуры.

2.Косвенный нагрев — это выделение тепла через термоэлемент, который электрически не связан с биметаллическим листом. Термоэлементы имеют нитевидную форму или обвязаны биметаллическим листом. Поскольку тепло, генерируемое термоэлементом, передается биметаллическому листу через воздух, постоянная времени нагрева велика, а скорость, отражающая изменение температуры, относительно мала .

3. Комбинированный нагрев фактически представляет собой комбинацию прямого и косвенного нагрева.Постоянная времени нагрева смеси находится между двумя вышеуказанными формами. Величину сопротивления можно легко отрегулировать путем параллельного или последовательного соединения различных сопротивлений, и он имеет преимущества прямого и косвенного нагрева, поэтому получил широкое распространение.

4. Нагрев трансформатора тока в основном используется для теплового реле большой мощности и пускового теплового реле большой нагрузки.

Управляющий контакт и система действия

В настоящее время широко используемая конструкция теплового реле представляет собой подвижный контакт пружинного типа.Когда двигатель перегружен, нормально замкнутый контакт будет отключен. После остановки двигателя биметаллический лист теплового реле охладится и вернется в исходное состояние. Подвижный контакт нормально замкнутого контакта автоматически возвращается в исходное положение под действием пружины. Однако пружина подвижного контакта традиционного пружинного типа легко отпадает, в результате чего вспомогательный контакт не электризуется, в результате чего тепловое реле не может использоваться. Существующий более безопасный метод заключается в модернизации подвижного контакта пружинного типа до динамического контакта с листовой пружиной и установке контактного моста в контактный мост с листовой пружиной , чтобы вибрация подвижного контакта была больше, когда он контактирует с статический контакт.Из-за влияния инерции движения и столкновения контактный мост пружинного типа будет производить динамическую упругую деформацию. В разные динамические моменты исходный контактный мост с плоской листовой пружиной будет отличаться, а кривизна вызывает движение изгиба и растяжения, что дополнительно приводит в движение сферический подвижный контакт для создания фрикционного качения относительно статического контакта, что приводит к более полному повреждению сопротивления поверхностной мембраны обеспечивает эффект контактной проводимости и повышает надежность оборудования.

Механизм сброса и защита от обрыва фазы

После того, как термоэлемент нагревается и изгибается, ток в главной цепи отключается путем нажатия пускового устройства, чтобы сработало тепловое реле. Биметаллический лист охлаждают, восстанавливая исходное состояние. Очевидно, на это нужно время. Существует два способа сброса теплового реле: ручной и автоматический. Ручной сброс обычно составляет не менее 5 минут, автоматический сброс — не более 10 минут.

Режим сброса можно выбрать с помощью кнопки сброса. В нормальном состоянии, когда кнопка сброса указывает на A (автоматический сброс), NC замкнут, а NO отключен; в состоянии отключения, когда кнопка сброса указывает на A, NC размыкается, а NO закрывается. После отключения и остановки двигателя подвижный контакт не может быть сброшен. Подвижный контакт можно сбросить только после нажатия кнопки сброса. В это время тепловое реле находится в состоянии ручного сброса. Если перегрузка двигателя является неисправностью, чтобы избежать легкого повторного запуска двигателя, тепловое реле должно перейти в режим ручного сброса.В состоянии ручного сброса принцип сброса такой же. Чтобы переключить тепловое реле из режима ручного сброса в режим автоматического сброса, просто поверните кнопку сброса в положение A (автоматический сброс).

Некоторые типы тепловых реле также имеют защиту от обрыва фазы. Структурная схема представлена ​​на рисунке ниже. Функция защиты от обрыва фазы теплового реле обеспечивается механизмом дифференциального усиления, состоящим из внутренних и внешних толкателей. Когда двигатель работает нормально, ток теплового элемента через тепловое реле нормальный, и как внутренний, так и внешний толкающие стержни перемещаются вперед в соответствующее положение; при обрыве фазы источника питания ток фазы равен нулю, а биметаллический лист фазы охлаждается и сбрасывается, что заставляет внутренний толкатель перемещаться вправо, а биметаллический лист двух других фаз увеличивает степень изгиба из-за увеличения тока, который заставляет внешний толкатель перемещаться влево Функция дифференциального усиления подталкивает нормально замкнутый контакт к размыканию через короткое время после обрыва фазы, так что контактор переменного тока размыкается и двигатель защищается при сбое питания.

Установка тока устройства и температурной компенсации

Установочный ток относится к максимальному току, который проходит через нагревательный элемент в течение длительного времени без срабатывания теплового реле. Когда ток, проходящий через нагревательный элемент, превышает 20% установленного значения тока, тепловое реле срабатывает в течение 20 минут. Установочный ток теплового реле можно изменить, установив ручку тока. При выборе и настройке теплового реле значение тока настройки должно соответствовать номинальному току двигателя.

Конструкция высокоточной установки тока реле тепловой перегрузки включает в себя опору (1), компенсирующее двойное золото (3), регулировочный винт (4) и установочный кулачок (5).

Тепловое реле перегрузки является наиболее широко используемым электрическим компонентом для защиты двигателя. В процессе эксплуатации заказчику необходимо отрегулировать значение тока уставки теплового реле перегрузки в соответствии с фактическим рабочим состоянием двигателя. Если точность настройки теплового реле перегрузки невысока, это легко может вызвать аварийное отключение или перегрев двигателя.

Левый рычаг тяги переключения передач в елочку также изготовлен из биметаллического листа. При изменении температуры окружающей среды биметаллический лист в главной цепи будет в определенной степени деформироваться и изгибаться. В это время левый рычаг стержня переключения в елочку также будет деформироваться и изгибаться в том же направлении, чтобы сохранить расстояние между рычагом в виде елочки и толкателем в основном неизменным, чтобы обеспечить точность срабатывания теплового реле. Этот эффект называется температурной компенсацией.

Из рисунка ниже видно, как решить проблему низкой общей точности традиционной структуры за счет компенсации двойного золота.

Отверстие для заклепки и резьбовое отверстие устанавливаются на компенсационном двойном металле. Отверстие для клепки совпадает с бобышкой для клепки, а отверстие с резьбой соединяется с резьбой регулировочного винта. На двойном компенсационном металлическом элементе отверстие для элемента, совмещенное с заклепочной втулкой, спроектировано таким образом, что компенсационный двойной металл и U-образные части склепываются и фиксируются.

Под действием опорного шага плоскости и горячей клепки формирования характеристик, компенсация двухкомпонентная золота обеспечивает точность позиционирования, тем самым улучшая текущую точность настройки, вызванные операции установки кулачка, и решает проблему низкого тока точности настройки традиционной структуры .

Рекомендовать артикул:

Каков принцип и функция реле?

Как выбрать реле?

Каковы общие неисправности реле?

Основы выбора реле перегрузки

Когда дело доходит до производства, двигатели заставляют мир вращаться.Это делает правильную защиту двигателя критически важной. Введите реле перегрузки. Реле перегрузки защищают двигатель, считывая ток, идущий к двигателю. Во многих из них используются небольшие нагреватели, часто биметаллические элементы, которые изгибаются при нагревании током, подаваемым в двигатель.

Когда ток слишком велик в течение слишком длительного времени, нагреватели размыкают контакты реле, проводя ток к катушке контактора. Когда контакты размыкаются, катушка контактора обесточивается, что приводит к отключению основного питания двигателя.Эти контакты не влияют на управляющую мощность (которая часто составляет 120 В), поэтому не предполагайте отсутствие потенциально смертельного тока без надлежащей блокировки / маркировки.

Типы реле. Реле перегрузки и их нагреватели относятся к одному из трех классов, в зависимости от времени, которое требуется им для реакции на перегрузку в двигателе. Само реле перегрузки будет иметь маркировку, указывающую, к какому классу оно принадлежит. К ним относятся классы 10, 20 и 30. Номер класса указывает время ответа (в секундах).Немаркированное реле перегрузки всегда относится к классу 20. Типичные реле перегрузки с номиналом NEMA относятся к классу 20, но вы можете настроить многие из них примерно на 15% выше или ниже их нормального тока срабатывания. Реле IEC обычно относятся к классу 10, и вы можете настроить их на 50% выше их нормального тока срабатывания.

При замене нагревателей перегрузки всегда заменяйте весь комплект. Почему? Потому что есть некоторые повреждения оставшихся двух обогревателей, и вы можете закончить игру с музыкальными стульями, поскольку они по очереди выходят из строя преждевременно.

Выбор нагревателя. Выбор несложен, если вы можете использовать тот же бренд и размер. Однако, это не всегда возможно. Если вам необходимо выбрать другой обогреватель, обратитесь к таблицам выбора производителя. Ваш выбор будет зависеть от максимальной силы тока нагрузки (FLA) двигателя и используемого пускателя двигателя.

Например, предположим, что вам нужно выбрать замену перегрузки для 100-сильного двигателя с током 162A при полной нагрузке. Допустим, у вас есть контроллер NEMA Size 5.Мы будем использовать выдержку из действительного каталога таблиц производителя (см. Таблицу выше). В этом примере показано, как взаимодействуют критерии выбора. Индексы и таблицы всех производителей просты в использовании, но давайте проведем пробный запуск с этим примером.

Чтобы сделать правильный выбор от этого производителя, начните с номера бюллетеня (левый столбец). Это приведет вас к нужной таблице (правый столбец). В этом случае указатель говорит вам использовать таблицу номер 147 для 506 серии A. В таблице производителя 147 вы должны найти FLA двигателя в столбце для контроллеров NEMA Size 5.Если FLA вашего двигателя не совсем соответствует FLA таблицы, просто выберите ближайший нагревательный элемент: в данном случае W38. Это предполагает, что ваш двигатель и контроллер работают при одинаковой температуре. Если есть небольшая разница температур (менее 15 градусов по Фаренгейту) между двигателем и контроллером, выберите нагреватель на основе контроллера. Выберите большее число нагревателя, если контроллер теплее двигателя. Выберите меньшее количество нагревателей, если контроллер холоднее двигателя. Если существует значительная разница температур (15 градусов по Фаренгейту или более) между двигателем и контроллером, проконсультируйтесь с производителем или поставщиком.Надежная защита двигателя от перегрузки потребует дополнительных корректировок в процессе выбора.

Примечание редактора: не путайте защиту двигателя от перегрузки с защитой выключателя, потому что они служат двум разным целям. Ваша защита двигателя от перегрузки отключит питание двигателя, чтобы защитить только двигатель. Ваш автоматический выключатель сработает, чтобы защитить распределение мощности к двигателю. Вы должны делать и то, и другое, и ни одно устройство не выполняет и то и другое. Вы должны выбрать такую ​​защиту цепи, чтобы защитить фидеры, и согласовать защиту фидера двигателя со схемой выключателя на входе.—M.L.L.

% PDF-1.4 % 129 0 объект > эндобдж xref 129 84 0000000016 00000 н. 0000002817 00000 н. 0000002959 00000 н. 0000003003 00000 п. 0000003425 00000 н. 0000003508 00000 н. 0000003647 00000 н. 0000003785 00000 н. 0000003924 00000 н. 0000004063 00000 н. 0000004200 00000 н. 0000004338 00000 п. 0000004476 00000 н. 0000004615 00000 н. 0000005336 00000 н. 0000005389 00000 н. 0000005426 00000 п. 0000005504 00000 н. 0000005581 00000 п. 0000005838 00000 н. 0000009946 00000 н. 0000010378 00000 п. 0000010767 00000 п. 0000012353 00000 п. 0000014304 00000 п. 0000016246 00000 п. 0000018167 00000 п. 0000020218 00000 п. 0000022060 00000 п. 0000022593 00000 п. 0000023111 00000 п. 0000024261 00000 п. 0000024600 00000 п. 0000036223 00000 п. 0000036752 00000 п. 0000037148 00000 п. 0000037311 00000 п. 0000040153 00000 п. 0000040500 00000 н. 0000040871 00000 п. 0000042552 00000 п. 0000044787 00000 п. 0000047480 00000 п. 0000048436 00000 п. 0000048512 00000 п. 0000048663 00000 п. 0000050427 00000 н. 0000050759 00000 п. 0000051125 00000 п. 0000090871 00000 п. 0000090910 00000 п. 0000105231 00000 п. 0000105270 00000 п. 0000131630 00000 н. 0000131669 00000 н. 0000131716 00000 н. 0000131773 00000 н. 0000131831 00000 н. 0000131890 00000 н. 0000131948 00000 н. 0000132007 00000 н. 0000132066 00000 н. 0000132125 00000 н. 0000132197 00000 н. 0000132309 00000 н. 0000132389 00000 н. 0000132445 00000 н. 0000132548 00000 н. 0000132604 00000 н. 0000132700 00000 н. 0000132756 00000 н. 0000132848 00000 н. 0000132904 00000 н. 0000132999 00000 н. 0000133055 00000 н. 0000133162 00000 н. 0000133218 00000 н. 0000133307 00000 н. 0000133362 00000 н. 0000133463 00000 н. 0000133518 00000 н. 0000133615 00000 н. 0000133670 00000 н. 0000001976 00000 н. трейлер ] / Назад 858567 >> startxref 0 %% EOF 212 0 объект > поток hb«b` (b`c`cb @

Обучение техников по обслуживанию: Электричество для обслуживающего персонала, часть 22

Электрические цепи, продолжение: Схемы фиксации контактора

Автор Gary Weidner / Опубликовано в марте 2014 г.

Любая коммерческая или промышленная машина, имеющая знакомые кнопки «пуск» и «стоп», почти наверняка использует в своей работе схему фиксации.Поскольку фиксирующие цепи очень распространены и используются во многих аппаратах для мытья под давлением, их понимание является обязательным для специалиста по обслуживанию.





Принцип фиксации

Напомним, что контактор — это устройство, подобное электромагнитному клапану. Когда его катушка находится под напряжением, магнетизм катушки заставляет поршень двигаться. В случае контактора движение плунжера приводит в действие переключатели в контакторе, работающие в тяжелых условиях.

Цепь фиксации выполняет следующие функции:

• Позволяет активировать контактор нажатием кнопки «пуск» (или любой из нескольких кнопок в разных местах).

• Позволяет обесточить контактор нажатием кнопки «стоп» (или любой из нескольких кнопок в разных местах).

• Функции кнопок «пуск» и «стоп» также могут выполняться автоматическими переключателями, которые являются частью органов управления мойки высокого давления. Например:

~ Контактор может быть включен при нажатии на спусковой крючок пистолета с помощью реле потока или давления («автозапуск»).

~ Контактор может быть обесточен любым устройством, которое может размыкать цепь фиксации.Примерами таких устройств являются реле перегрузки, таймеры отключения, датчики тепловой перегрузки двигателя, датчики давления воды на входе и реле высокого давления («автоматическое отключение»).

Как это делается

На рисунке 1 представлена ​​основная схема фиксации. Показанная схема рассчитана на однофазное напряжение 120 вольт. Однофазная схема на 240 вольт внешне идентична. Однако есть два отличия: магнитная катушка контактора должна быть рассчитана на работу при том же напряжении, что и источник питания, 120 вольт или 240 вольт.Кроме того, главные контакты контактора должны быть рассчитаны на пропускание тока двигателя насоса. (Помните, двигатель потребляет в два раза больше тока при 120 вольт, чем при 240 вольт.)

Несколько слов о терминологии. Клеммы контактора для подключения входящего питания почти всегда имеют маркировку L1, L2 и так далее. Примечание: контактор может быть предназначен для переключения более двух линий, как при трехфазном использовании. Клеммы контактора для подключения проводов двигателя почти всегда имеют маркировку T1, T2 и т. Д.

Многие производители контакторов используют обозначения A1 и A2 для клемм, которые подключают питание к магнитной катушке. Точно так же многие производители используют обозначения 13 и 14 для клемм нормально разомкнутых вспомогательных контактов. Вспомогательные контакты управляются магнитной катушкой так же, как и главные контакты. Разница в том, что они меньше по размеру и легче и не предназначены для передачи основного потока энергии.

Последовательность операций следующая: (Предположим, что двигатель насоса не работает.) Одна сторона катушки контактора (A2) подключена непосредственно к одной из входящих линий питания. Другая сторона катушки (A1) имеет два возможных пути для завершения соединения с другой входящей линией питания.

Один путь проходит через нормально разомкнутый мгновенный (подпружиненный) «пусковой» переключатель. Когда оператор нажимает переключатель «пуск», катушка подключается к обеим сторонам линии, и контактор находится под напряжением.

Вот умная часть: когда нажата кнопка «пуск» и контактор включен, создается второй путь от A1 к линии электропередачи.Обратите внимание, что когда контактор приводится в действие нажатием кнопки «пуск», нормально разомкнутый контакт между клеммами 13 и 14 замыкается. Замыкание этого контакта создает путь от A1 до 13–14 и нормально замкнутого переключателя «стоп» к линии электропередачи. Таким образом, когда оператор убирает большой палец с кнопки «пуск», контактор остается под напряжением.

Когда оператор нажимает нормально замкнутый переключатель мгновенного действия (подпружиненный) «стоп», соединение от A1 к линии электропередачи разрывается.Катушка обесточивается, контакт 13–14 размыкается. Когда оператор убирает большой палец с кнопки «стоп», контактор остается обесточенным, потому что контакт 13–14 разомкнут, нарушая один путь, а переключатель «пуск» разомкнут, нарушая другой путь.

Трехфазная схема фиксации

На рисунке 2 представлена ​​трехфазная версия предыдущей схемы. Единственное отличие состоит в том, что контактор переключает три линии питания вместо двух, а также добавляется реле перегрузки.

Однофазные двигатели мойки высокого давления обычно имеют встроенную защиту от перегрузки (знакомая кнопка сброса). Трехфазные двигатели обычно не имеют внутренней защиты. Обычно для них требуются отдельные внешние защитные устройства. Это работа реле перегрузки. Схема на рис. 2 , где реле перегрузки подключается к выходным клеммам контактора, довольно распространена.

Реле перегрузки работает как трехполюсный автоматический выключатель, за исключением того, что оно не размыкает линии электропередач.(Зачем встраивать набор мощных силовых контактов в реле перегрузки, если он уже есть в подключенном контакторе?) Поскольку мощность течет от клемм T1, T2, T3 контактора через реле перегрузки и выходит из его T1, Клеммы T2, T3, реле контролирует ток, протекающий через него на каждой линии.

Если ток в любой из линий становится чрезмерным, реле размыкает внутренний нормально замкнутый контакт, который соединяет клеммы 95 и 96. Как вы можете видеть на Рисунок 2 , размыкание нормально замкнутого контакта между 95 и 96 имеет точно такое же эффект как нажатие нормально замкнутого переключателя «стоп»: контактор обесточен.

В некоторых европейских машинах функцию реле перегрузки вместо этого выполняет датчик перегрузки, встроенный в двигатель насоса. Датчик имеет нормально замкнутый контакт, который работает так же, как соединение 95–96 на реле перегрузки.

Несколько заметок

В отличие от однофазных внутренних устройств защиты от перегрузки двигателя, трехфазные реле перегрузки обычно производятся с регулировкой тока срабатывания. Также, как и в случае клемм A1, A2 и 13-14 на контакторе, обозначение 95–96 не является универсальным.Наконец, входящие линии электропередач на рис. 2 отмечены «230 вольт, 3 Вт». Символ w (греческая буква фи) широко используется для обозначения слова «фаза».

В следующей главе: подробнее о схемах контакторов.

Ключевые понятия

• Обязательно ознакомьтесь с принципом фиксации; он широко используется.
• Цепь фиксации контактора может включаться или отключаться различными внешними переключателями, такими как таймеры отключения или реле давления или температуры.
• Однофазные двигатели обычно имеют внутреннюю защиту от перегрузки. Трехфазные двигатели обычно этого не делают, поэтому для защиты трехфазного двигателя требуется реле перегрузки контактора.

% PDF-1.2 % 163 0 объект > эндобдж xref 163 80 0000000016 00000 н. 0000001969 00000 н. 0000002115 00000 н. 0000002259 00000 н. 0000002778 00000 н. 0000003161 00000 п. 0000003245 00000 н. 0000003360 00000 н. 0000003416 00000 н. 0000003501 00000 н. 0000003587 00000 н. 0000003688 00000 н. 0000003748 00000 н. 0000003849 00000 н. 0000003909 00000 н. 0000004010 00000 н. 0000004070 00000 н. 0000004171 00000 п. 0000004231 00000 п. 0000004332 00000 н. 0000004392 00000 н. 0000004493 00000 н. 0000004553 00000 н. 0000004654 00000 н. 0000004714 00000 н. 0000004815 00000 н. 0000004875 00000 н. 0000004976 00000 н. 0000005036 00000 н. 0000005137 00000 н. 0000005197 00000 н. 0000005297 00000 н. 0000005357 00000 п. 0000005457 00000 н. 0000005517 00000 н. 0000005617 00000 н. 0000005677 00000 н. 0000005777 00000 н. 0000005837 00000 н. 0000005937 00000 н. 0000005997 00000 н. 0000006097 00000 н. 0000006157 00000 н. 0000006257 00000 н. 0000006316 00000 н. 0000006416 00000 н. 0000006475 00000 н. 0000006534 00000 н. 0000006595 00000 н. 0000006626 00000 н. 0000006745 00000 н. 0000007853 00000 п. 0000007968 00000 п. 0000008247 00000 н. 0000008269 00000 н. 0000009031 00000 н. 0000009154 00000 н. 0000009176 00000 н. 0000010013 00000 п. 0000010035 00000 п. 0000010829 00000 п. 0000010851 00000 п. 0000011652 00000 п. 0000011674 00000 п. 0000012473 00000 п. 0000012495 00000 п. 0000013332 00000 п. 0000014449 00000 п. 0000014737 00000 п. 0000015016 00000 п. 0000016127 00000 п. 0000016149 00000 п. 0000016999 00000 н. 0000017021 00000 п. 0000018008 00000 п. 0000018030 00000 п. 0000018684 00000 п. 0000018748 00000 п. 0000002315 00000 н. 0000002756 00000 н. трейлер ] >> startxref 0 %% EOF 164 0 объект > эндобдж 165 0 объект VQ [QZ! Yf E0 $> T !;) / U (W] [$ m70H {PtSM \)) / P 65508 >> эндобдж 166 0 объект > эндобдж 241 0 объект > поток B m [Z] c ܳ KNHSvc [exCoa \ @ UJH0vESŦza ޗ FlK? VHo) 5] (Oj @:} 䭠 I (ŋOlxU |] = j_S0S) x ֝ vwZR * g / [g} l9’28A {BzDQvi {R ~ * _, 2Yc, пп5лК5’х ߗ wD ;., إ g @ gr xƼ1AQtS / h0O @} ܅ [r3 겅 F 9а конечный поток эндобдж 242 0 объект 340 эндобдж 167 0 объект > / XObject> / ProcSet [/ PDF / Text / ImageB] >> / Содержание [217 0 220 0 руб. 222 0 руб. 224 0 руб. 226 0 руб. 228 0 руб. 234 0 руб. 236 0 руб.] / CropBox [32 0 615 794] / Повернуть 0 / Большой палец 115 0 R / Аннотации 211 0 R >> эндобдж 168 0 объект > эндобдж 169 0 объект Т% D) / Родитель 168 0 R / А 170 0 Р / Первые 171 0 руб. / Последний 172 0 руб. / Граф 20 >> эндобдж 170 0 объект > эндобдж 171 0 объект yU) / А 210 0 Р / Родитель 169 0 R / След. 207 0 руб. >> эндобдж 172 0 объект > эндобдж 173 0 объект > эндобдж 174 0 объект > эндобдж 175 0 объект ZU) / След. 173 0 руб. / Назад 177 0 руб. / Родитель 169 0 R / A 178 0 R >> эндобдж 176 0 объект > эндобдж 177 0 объект ) / След. 175 0 R / Назад 179 0 руб. / Родитель 169 0 R / А 180 0 Р >> эндобдж 178 0 объект > эндобдж 179 0 объект ) / След. 177 0 руб. / Назад 181 0 руб. / Родитель 169 0 R / A 182 0 R >> эндобдж 180 0 объект > эндобдж 181 0 объект > эндобдж 182 0 объект > эндобдж 183 0 объект Y) / След. 181 0 R / Назад 185 0 руб. / Родитель 169 0 R / A 186 0 R >> эндобдж 184 0 объект > эндобдж 185 0 объект > эндобдж 186 0 объект > эндобдж 187 0 объект ) / След. 185 0 R / Назад 189 0 руб. / Родитель 169 0 R / А 190 0 руб. >> эндобдж 188 0 объект > эндобдж 189 0 объект , Y) / След. 187 0 руб. / Назад 191 0 R / Родитель 169 0 R / А 192 0 Р >> эндобдж 190 0 объект > эндобдж 191 0 объект Q> эндобдж 192 0 объект > эндобдж 193 0 объект > эндобдж 194 0 объект > эндобдж 195 0 объект bS) / След.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *