Подключение твердотельного реле: Схемы подключения и управление твердотельными реле переменного и постоянного тока – СамЭлектрик.ру

Содержание

устройство, принцип работы, виды, схемы подключения

При организации логических схем управления оборудованием в качестве коммутаторов используются различные виды реле. В связи с развитием и совершенствованием полупроводниковых приборов на смену классическим логическим элементам пришло твердотельное реле (ТТР). Для чего используется, как устроен и как функционирует данный вид устройств, мы рассмотрим в данной статье.

Назначение

Сфера применения твердотельного реле достаточно обширна и охватывает самые разнообразные отрасли промышленности и народного хозяйства. Их используют в таких системах, где по условиям эксплуатации можно исключить периодический контроль состояния коммутатора. Твердотельные приборы устанавливаются в оборудовании с частыми коммутациями, где классические подвижные контакты не справляются с работой и перегорают. Или в таких электроустановках, где недопустимо искрообразование при разрывании или замыкании цепи контактной группой.

Помимо этого твердотельные реле характеризуются малыми габаритами, что делает их весьма привлекательной альтернативой для слаботочного оборудования. Они применяются в электронике и бытовых устройствах, а также труднодоступных местах, где после ввода прибора в работу отсутствует возможность технического обслуживания.

Основными направлениями, в которых вы часто встретите твердотельное реле, являются:

  • нагревательные электроприборы с ТЭНами, спиралями для контроля температуры нагревания;
  • контроль температурных режимов в технологических процессов;
  • отслеживание рабочих режимов силовых трансформаторов;
  • регулировка степени освещенности или включение освещения в зависимости от времени суток;
  • применение в качестве датчика движения;
  • включение и отключения электродвигателей, переключение различных режимов их работы;
  • в качестве электронных ключей силовых и слаботочных электроустановок;
  • как коммутаторы станочного оборудования, в котором нужна высокая частота срабатывания;
  • для переключения позиций в источниках бесперебойного питания.

Стоит отметить, что повсеместная автоматизация технологических процессов все чаще задействует твердотельное реле в качестве коммутационного устройства.

Устройство

Конструктивно твердотельное реле представляет собой расширенный вариант полупроводникового ключа. В состав устройства входят резисторы, транзисторы, симисторы или тиристоры, которые и лежат в основе их работы. За счет того, что вся конструкция имеет монолитную структуру – единый блок, реле  и получило название твердотельного.

Рис. 1. Устройство твердотельного реле

Условно все устройство можно разделить на несколько блоков:

  • Входной узел – используется для подачи управляющего сигнала. В состав узла входит токоограничивающий резистор и устройство для передачи сигнала на коммутирующий элемент.
  • Триггерный узел – применяется для обработки получаемых сигналов. Как правило, является частью линии оптической развязки, но может устанавливаться и отдельно от нее.
  • Узел оптической развязки – осуществляет гальваническое разделение основного участка и контролирующего. Является неотъемлемой составляющей реле переменного тока. От конструктивных особенностей этого узла напрямую зависит принцип действия коммутатора.
  • Цепь коммутации – производит включение и отключение линии питания нагрузки. Функционирует по принципу запирания и отпирания p-n перехода, поэтому классического переключения в твердотельных реле не происходит.
  • Цепи защиты – осуществляют устранение помех, защищают твердотельное реле от перегрузок и токов коротких замыканий. По месту расположения бывают внутренней и внешней установки.
  • Выходной узел – используется для подключения нагрузки, как правило, представлен парой контактов или клемм.

Следует отметить, что в зависимости от типа твердотельного реле, состав основных блоков может существенно отличаться. Поэтому определенные модели могут обходиться без некоторых из вышеперечисленных узлов.

Принцип работы

В зависимости от вида твердотельного реле, может отличаться и принцип его действия. В основе работы лежит два сигнала – управляющий и управляемый, которые могут генерироваться и передаваться различным способом. Поэтому в качестве примера мы рассмотрим одну из разновидностей данного устройства, функционирующего посредством оптрона.

Рис. 2. Принцип действия твердотельного реле

Оптрон, в соответствии с п.1.1 ГОСТ 29283-92 осуществляет генерацию электромагнитных или световых импульсов с определенными параметрами. В соответствии с которым и происходит взаимодействие его компонентов. Конструктивно оптрон представляет собой оптическую пару – светодиод и фотодиод, установленные в разных блоках твердотельного реле.

При подаче питания на входной узел твердотельного реле начнется протекание тока через цепь светодиода. В результате чего световое излучение попадет на фотодиод. При достижении световым потоком заданной интенсивности, фотодиод установит рабочие параметры для цепи нагрузки и произведет коммутацию нагрузки.

Отличия от электромеханических реле

Рис. 3. Отличия между электромеханическим и твердотельным реле

Если рассматривать основные отличия, то они заключаются в принципе реализации логических операций. Так, в соответствии с п. 3.1.1 ГОСТ IEC 61810-7-2013 под электромеханическим реле следует понимать такое устройство, в котором операции производятся за счет движения механических элементов. В частности, на катушку индуктивности подается управляющий импульс, который создает достаточный электромагнитный поток для перемещения сердечника. Механически сердечник соединяется с контактной группой, которая замыкается и размыкается в зависимости от управляющего сигнала.

Твердотельное реле, в свою очередь, не имеет подвижных частей, а изменение логического состояния производится путем перевода полупроводникового элемента из открытого состояния в закрытое, и, наоборот. Поэтому основным отличием от электромеханических моделей является отсутствие подвижных контактов.

Технические характеристики

При выборе конкретной модели для замены вышедшего со строя твердотельного реле или для установки в новом оборудовании необходимо руководствоваться основными характеристиками прибора.

К основным параметрам относятся:

  • Класс и величина напряжения на входе и выходе устройства;
  • Сопротивление твердотельного элемента или потребляемая мощность;
  • Ток срабатывания – определяет рабочие параметры перехода из одного логического состояния в другое;
  • Перегрузочная способность – кратная величина номинальному току;
  • Электрическая прочность изоляции;
  • Тип монтажа – наличие крепежных деталей или пайка на выводы;
  • Материал, из которого изготовлено реле;
  • Габаритные размеры;
  • Наличие дополнительных функций.

Все характеристики твердотельных реле будут отличаться в зависимости от вида конкретного устройства.

Виды

Разделение по видам обуславливается как рабочими параметрами некоторых устройств, так и сферой их применения. Поэтому, классификация твердотельных реле осуществляется по нескольким факторам, определяющим тот или иной параметр.

Так, все логические элементы, в зависимости от рода тока, подразделяются на две группы – реле постоянного и переменного тока. Первые отличаются высокой надежностью и отлично справляются с поставленными задачами, как при низких, так и при высоких температурах. Второй вид обладает высокой скоростью срабатывания.

В зависимости от количества подключаемых фаз все твердотельные реле подразделяются на однофазные и трехфазные. Первый вид обеспечивает питание однофазной нагрузки или устройств постоянного тока. Трехфазные, в большинстве случаев, используются для питания электродвигателей, но встречаются коммутаторы и для других типов оборудования.

Рис. 4. Трехфазные и однофазные твердотельные реле

По типу управления различают следующие виды:

  • Фазовое – плавно изменяет напряжение на выходе в процентном соотношении;
  • Мгновенное – производит переключение мгновенно;
  • При переходе через 0 – переключение осуществляется только при достижении синусоидой нулевого значения.

В зависимости от пропускаемой нагрузки, все устройства могут подразделяться на слаботочные и силовые. Первые устанавливаются в цепи управления, вторые используются для питания мощного бытового и промышленного оборудования.

Схемы подключения

На практике существует несколько вариантов подключения твердотельного реле к цепи питания и управления. Так, в зависимости от величины и рода питающего напряжения выделяют схему постоянного и переменного тока:

Рис. 5. Схема подключения твердотельного реле на 230 В

Как видите, здесь от фазного и нейтрального проводника напряжение подается и на цепь управления (выводы 3 и 4), и к нагрузке. Через выводы 1 и 2 фазный проводник устанавливается в коммутацию твердотельного реле для питания потребителя. Включение и отключение производится путем замыкания контактной группы К1 в цепи управления.

Еще один вариант схемы – управление нагрузкой посредством низковольтного сигнала:

Рис. 6. Питание твердотельного реле низким напряжением

В таком случае напряжение сети изначально подается на блок питание, где оно преобразуется и понижается. А затем через контакты К1 поступает в цепь управления твердотельного реле на выводы 3 и 4. Питание нагрузки происходит по тому же принципу, что и в предыдущем случае.

Помимо этого схемы подключения твердотельных реле подразделяются на две категории – нормально открытые и нормально закрытые. Первый вариант подразумевает такой принцип действия, когда подача напряжения на цепь управления подает напряжение к нагрузке.

Рис. 7. Нормально открытая схема твердотельного реле

Второй вариант схемы при подаче напряжения в цепь управления отключает питание нагрузки.

Рис. 8. Нормально закрытая схема твердотельного реле

Помимо этого существует трехфазная схема питания для соответствующего типа нагрузки:

Рис. 9. Трехфазная схема подключения твердотельного реле

Как видите на схеме, здесь используется трехфазное твердотельное реле. Для цепи управления используется пониженное напряжение, подаваемое от преобразователя. Линия трехфазного питания подключается к выводам A1, B1, C1, а трехфазный электродвигатель к выводам A2, B2, C2.

Достоинства и недостатки

Данный вид логических элементов характеризуется рядом плюсов и минусов в эксплуатации. К основным преимуществам твердотельных реле относятся:

  • Длительный срок эксплуатации в сравнении с электромеханическими моделями;
  • Может выполнять значительно больше коммутаций до наработки на отказ;
  • Бесшумность в работе;
  • Небольшой размер и вес;
  • Отсутствует механический износ контактной группы из-за их отсутствия;
  • Возможность установки в пожароопасных и взрывоопасных зонах за счет отсутствия искр в процессе коммутации;
  • Может работать без скачков напряжения и тока, чем в значительной мере нивелирует переходные процессы;
  • Внутреннее сопротивление практически не меняется в процессе эксплуатации;
  • Практически невосприимчивы к воздействию вибрации, оседанию пыли, электромагнитным полям.

Но, вместе с тем, твердотельные реле обладают и некоторыми недостатками. Существенной проблемой является нелинейная вольтамперная характеристика. В отключенном состоянии сопротивление p-n хоть и большое, но не бесконечное, чем обуславливаются токи утечки. Во включенном состоянии сопротивление полупроводника обуславливает нагрев твердотельного элемента и необходимость его принудительного охлаждения в силовых реле.

Также к недостаткам относят необходимость принятия мер против ошибочного срабатывания. При пробое твердотельные реле часто остаются во включенном состоянии, что создает опасность для оборудования и эксплуатационного персонала. За счет наличия p-n перехода пропускание тока в обратном направлении происходит не мгновенно. Одной из наибольших проблем является перегрузка, из-за которой реле мгновенно выходит со строя.

Твердотельное реле: схема, принцип работы, подключение

Чтобы обеспечить бесконтактную коммуникацию различных устройств без использования электромагнитов применяют твердотельное реле. Об особенностях, принципе действия и схеме подключения данного устройства поговорим далее.

Оглавление:

  1. Твердотельное реле - принцип работы
  2. Преимущества и сфера использования твердотельного реле
  3. Разновидности твердотельных реле
  4. Выбор и покупка твердотельного реле
  5. Особенности подключения твердотельного реле

Твердотельное реле - принцип работы

Твердотельное реле - это устройство, обеспечивающее контакт между низковольтными и высоковольтными электрическими цепями.

Рассматривая структуру данного прибора, большинство моделей схожи между собой, имеют незначительные отличия, которые никак не влияют на принцип их работы.

Структура твердотельного реле включает наличие:

  • входа,
  • оптической развязки,
  • триггерной цепи,
  • цепи переключателя,
  • цепи защиты.

Входом является первичная цепь, которая характеризуется наличием резистора на постоянном изоляторе, который имеет последовательное подключение. Основная функция цепи входа состоит в принятии сигнала и передаче команды устройству твердотельного реле, которое коммутирует нагрузку.

В качестве изоляции входной и выходной сети с переменным током используется устройство оптической развязки. От типа данного компонента, зависит вид реле и его принцип работы.

Для обработки входного сигнала и переключения выхода используется конструкция триггерной цепи. Она выступает, как отдельный элемент, а в некоторых моделях входит в состав оптической развязки.

Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор.

Чтобы защитить твердотельное реле от сбоев в работе или возникновения ошибок, используется отдельная защитная цепь. Это устройство бывает двух видов: внутреннего и внешнего.

Твердотельное реле схема состоит из:

  • системы контроля,
  • устройства твердотельного реле,
  • двигателя, насоса, сварочного аппарата, трансформатора или нагревателя.

Чтобы коммутировать индуктивную нагрузку с помощью твердотельного реле следует увеличить запас тока в 6-8 раз.

Принцип работы твердотельного реле состоит в замыкании или размыкании контактов, которые передают напряжение непосредственно на реле. Чтобы привести в действие контакты необходимо наличие активатора. Его роль в твердотельном реле выполняет полупроводник или твердотельный прибор. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током - транзистор.

Прибор, который характеризуется наличием ключевого транзистора, является твердотельным реле. Это, например, датчик движения или света, который с помощью транзистора осуществляет передачу напряжения.

Между напряжением в катушке и силовых контактах появляется действие гальванической развязки, которое исчезает в следствие наличия оптической цепи.

Преимущества и сфера использования твердотельного реле

Твердотельное реле часто заменяет обычные контактеры из-за большого количества преимуществ перед ними. Рассмотрим основные достоинства твердотельного реле:

1. Небольшое потребление энергии - из-за отсутствия электромагнитного разнесения, электромагнитное реле потребляет много электроэнергии, так как в твердотельном реле используется полупроводник, количество электроэнергии для его работы меньше на 90%.

2. Твердотельное реле малогабаритное устройство, это качество позволяет его легко транспортировать и устанавливать.

3. Данное устройство характеризуется высоким уровнем быстродействия и не требует ожидания для запуска.

4. Низкая шумопроизводительность - еще одно преимущество твердотельного реле перед контактерами.

5. Такие приборы отличаются более длительным сроком эксплуатации и не требуют дополнительного технического обслуживания.

6. Имеют большую сферу использования и подходят для разных приборов.

7. Твердотельное реле позволяет включать цепь не допуская помех электромагнитного характера.

8. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства.

9. Твердотельное реле позволяет осуществить более миллиарда срабатываний.

10. Наличие надежной изоляции между цепями входа и коммутации повышает производительность прибора.

11. Реле отличается наличием компактной герметичной конструкции и стойкой вибрацией перед ударами.

Сфера использования твердотельного реле достаточно широкая. Их используют в том случае, если возникает необходимость в коммутации индуктивной нагрузки. Рассмотрим основные области применения данного устройства:

  • система, в которой производится регулировка температуры при помощи тэна;
  • чтобы поддержать постоянную температуру в технологическом процессе;
  • для коммутирования цепи управления;
  • при выполнении замены пускателей бесконтактного реверсного типа;
  • управление электрическими двигателями;
  • контроль нагрева, трансформаторов и других технических приборов;
  • регулирование уровня освещения.

Разновидности твердотельных реле

Есть несколько разновидностей твердотельного реле, которые отличаются особенностями контролирующего и коммутируемого напряжения:

1. Твердотельные реле постоянного тока - используется при действии постоянного электричества в диапазоне от 3 до 32-х Вт. Характеризуется высокими удельными характеристиками, светодиодной индикацией, высокой надежностью. Большинство моделей имеют широкий диапазон рабочих температур от -30 до +70 градусов.

2. Твердотельные реле переменного тока отличается низким уровнем электромагнитных помех, отсутствием шума во время работы, низким потреблением электроэнергии и высокой скоростью работы. Рабочий интервал составляет 90-250 Вт.

3. Твердотельные реле с ручным управление, позволяют настраивать тип работы.

В соотношении с типом нагрузки выделяют:

  • однофазное твердотельное реле,
  • трехфазное твердотельное реле.

Однофазное реле позволяет коммутировать электричество в диапазоне 10-120 А, или в диапазоне 100-500 А. Фазовое управление осуществляется при помощи аналогового сигнала и переменного резистора. Трехфазные реле применяют для коммутации тока сразу на трех фазах одновременно. Они имеют рабочий интервал от 10 до 120 А. Среди трехфазных реле выделяют устройства реверсивного типа, которые отличаются маркировкой и бесконтактной коммукацией. Их функция состоит в надежной коммутации каждой цепи отдельно. Специальные устройства способны надежно защищать реле от ложных включений.

Они используются во время запуска и работы асинхронного двигателя, который производит их реверс. При выборе данного устройства необходимо соблюдать большой запас мощности тока, который безопасно и эффективно эксплуатирует устройство.

Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия.

Трехфазные реле отличаются более длительным сроком эксплуатации, чем однофазные. Коммукация происходит в следствие перехода тока через ноль и светодиодную индикацию.

В соотношении с методом коммукации выделяют:

  • устройства, выполняющие нагрузки емкостного типа, редуктивного типа, слабой индукции;
  • реле со случайным или мгновенным включением, используются в том случае, когда требуется мгновенное срабатывание;
  • реле с наличием фазового управления, позволяют производить настройку нагревательных элементов, ламп накаливания.

В соотношении с конструкцией твердотельные реле бывают:

  • монтируемые на Д И Н рейки,
  • универсальные, устанавливаемые на планки переходного типа.

Выбор и покупка твердотельного реле

Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью.

Твердотельное реле цена определяется такими характеристиками:

  • тип устройства,
  • наличие крепежных элементов,
  • материал, из которого изготовлен корпус,
  • мгновенное или постепенное включение,
  • наличие дополнительных функций,
  • производитель,
  • мощность,
  • потребление электроэнергии,
  • габариты прибора.

Во время покупки твердотельного реле, следует учесть один очень важный момент. Данные устройства должны работать с запасом мощности, который превышает мощность устройства в несколько раз. Если не придерживаться этого правила, при небольшом повышении мощности, прибор мгновенно выйдет из строя.

Рекомендуется использование специальных предохранителей, которые помогут избежать поломки реле.

Есть несколько разновидностей предохранителей:

  • g R - используются во широком диапазоне мощностей, отличаются быстрым действием;
  • g S - используются во всем диапазоне тока, защищаю элементы полупроводников от повышенных нагрузок электросети;
  • a R - защищают элементы полупроводникового типа от возникновения коротких замыканий.

Такие устройства имеют достаточно высокую стоимость, которая приравнивается к стоимости самого реле, но они обеспечивают высокоэффективную защиту устройства от поломки.

Существуют другие предохранители, которые относятся к классу В, С и D. Они отличаются меньшим спектром защиты и более дешевой стоимостью.

Во время эксплуатации твердотельного реле, следует учесть, что данный прибор очень быстро нагревается. Если корпус устройства очень сильно нагрелся, то оно не способно коммутировать ток в обычном режиме, количество тока очень сильно снижается. Если температура нагрева достигнет 65 градусов, то прибор сгорит.

Поэтому во время использования реле обязательно требуется установка охлаждающего радиатора. И запас тока должен быть в три, четыре раза выше. Если производится регулировка двигателей асинхронного типа, то запас тока увеличивается в восемь-десять раз.

Особенности подключения твердотельного реле

Рекомендации по самостоятельному подключению твердотельного реле:

1. Соединения не требуют использования пайки, а осуществляются винтовым способом.

2. Чтобы избежать повреждения прибора нельзя допускать попадания в него пыли или элементов металлического происхождения.

3. Не разрешается прилагать недопустимые внешние воздействия на корпус устройства.

4. Не размещайте твердотельное реле рядом с легко воспламеняющимися предметами, а также не прикасайтесь к прибору, в то время когда он работает, чтобы избежать получения ожогов.

5. Перед включением реле следует убедиться в правильной коммутации соединений.

6. В случае нагрева корпусы выше 60 градусов, рекомендуется установка реле на радиатор охлаждения.

7. Чтобы избежать повреждения прибора нельзя допускать возникновения короткого замыкания на выходе.

 

Практическое применение и схемы подключения твердотельного реле


Классические пускатели и контакторы постепенно уходят в прошлое. Их место в автомобильной электронике, бытовой технике и промышленной автоматике занимает твердотельное реле – полупроводниковое устройство, в котором отсутствуют какие-либо подвижные части.

Приборы имеют различные конструкции и схемы подключения, от которых зависят их сферы применения. Прежде чем использовать устройство, необходимо разобраться в его принципе действия, узнать об особенностях функционирования и подключения разных видов реле. Ответы на обозначенные вопросы подробно изложены в представленной статье.

Содержание статьи:

Устройство твердотельного реле

Современные твердотельные реле (ТТР) представляют собой модульные полупроводниковые приборы, являющиеся силовыми электропереключателями.

Ключевые рабочие узлы этих устройств представлены симисторами, тиристорами или транзисторами. ТТР не имеют подвижных частей, чем отличаются от электромеханических реле.

Размер твердотельного реле во многом зависит от максимально допустимой нагрузки и возможности отводить тепло путем теплопередачи и конвекции (+)

Внутреннее устройство этих приборов может сильно различаться в зависимости типа регулируемой нагрузки  и электрической схемы.

Простейшие твердотельные реле включают такие узлы:

  • входной узел с предохранителями;
  • триггерная цепь;
  • оптическая (гальваническая) развязка;
  • переключающий узел;
  • защитные цепи;
  • узел выхода на нагрузку.

Входной узел ТТР представляет собой первичную цепь с последовательно подключенным резистором. Предохранитель в эту цепь встраивается опционально. Задача узла входа – принятие управляющего сигнала и передача команды на коммутирующие нагрузку переключатели.

При переменном токе для разделения контролирующей и основной цепи применяют гальваническую развязку. От её устройства во многом зависит принцип работы реле. Ответственная за обработку входного сигнала триггерная цепь может включаться в узел оптической развязки или располагаться отдельно.

Защитный узел препятствует возникновению перегрузок и ошибок, ведь в случае поломки прибора может выйти из строя и подключенная техника.

Основное предназначение твердотельных реле – замыкание/размыкание электрической сети с помощью слабого управляющего сигнала. В отличие от электромеханических аналогов, они имеют более компактную форму и не производят в процессе работы характерных щелчков.

Принцип работы ТТР

Работа твердотельного реле довольно проста. Большинство ТТР предназначено для управления автоматикой в сетях 20-480 В.

Оптическая развязка позволяет создавать управленческие сигналы минимальной мощности, что критически важно для датчиков, работающих от автономных источников питания (+)

При классическом исполнении в корпус прибора входит два контакта коммутируемой цепи и два управляющих провода. Их количество может изменяться при увеличении количества подключенных фаз. В зависимости от наличия напряжения в управляющей цепи, происходит включение или выключение основной нагрузки полупроводниковыми элементами.

Особенностью твердотельных реле является наличие небесконечного сопротивления. Если контакты в электромеханических устройствах полностью разъединяются, то в твердотельных отсутствие тока в цепи обеспечивается свойствами полупроводниковых материалов.

Поэтому при повышенных напряжениях возможно появление небольших токов утечки, которые могут негативно сказаться на работе подключенной техники.

Классификация твердотельных реле

Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

По количеству подключенных фаз

Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

  • однофазные;
  • трехфазные.

Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

По виду рабочего тока

Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

  • постоянным;
  • переменным.

Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

По конструктивным особенностям

Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

По типу схемы управления

Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

  1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
  2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
  3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

Твердотельные реле различаются и по многим другим, менее значимым, параметрам. Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство.

Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

Преимущества и недостатки ТТР

Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.

Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек

К таким достоинствам относят:

  1. Низкое потребление электроэнергии (на 90% меньше).
  2. Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
  3. Высокая скорость запуска и отключения
  4. Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
  5. Не предполагается техническое обслуживание.
  6. Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
  7. Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
  8. Отсутствие электромагнитных помех при срабатывании.
  9. Исключается порча контактов вследствие их механического удара.
  10. Отсутствие прямого физического контакта между цепями управления и коммутации.
  11. Возможность регулирования нагрузки.
  12. Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
  13. Возможность использования во взрывоопасных средах.

Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.

Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)

ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.

К минусам относят:

  1. Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
  2. Высокая стоимость.
  3. Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
  4. Ограничения по использованию в условиях повышенной влажности.
  5. Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
  6. Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
  7. Возможность расплавления устройства от нагрева при коротком замыкании.
  8. Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.

Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.

Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.

Возможные схемы подключений

Схемы подключения твердотельных реле могут быть самые разнообразные. Каждая электрическая цепь строится, исходя из особенностей подключаемой нагрузки. В схему могут добавляться дополнительные предохранители, контроллеры и регулирующие устройства.

Благодаря тому, что цепи управления и нагрузки в приборе не перекрываются, их электрические характеристики могут отличаться любыми параметрами (+)

Далее будут представлены наиболее простые и распространенные схемы подключения ТТР:

  • нормально-открытая;
  • со связанным контуром;
  • нормально-закрытая;
  • трехфазная;
  • реверсивная.

Нормально-открытая (разомкнутая) схема – реле, нагрузка в котором находится под напряжением при наличии управляющего сигнала. То есть подключенная техника оказывается в отключенном состоянии при обесточенных входах 3 и 4.

 

Перед покупкой реле необходимо определиться с требуемым типом его первоначального состояния (замкнутое или разомкнутое), чтобы обеспечить правильную работу подключенной техники (+)

Нормально-замкнутая схема – подразумевается реле, нагрузка в котором находится под напряжением при отсутствии управляющего сигнала. То есть подключенная техника оказывается в рабочем состоянии при обесточенных входах 3 и 4.

Существует схема подключения твердотельного реле, в которой управляющее и нагрузочное напряжение одинаково. Такой способ можно использовать одновременно для работы в сетях постоянного и переменного тока.

Трехфазные реле подключаются несколько по иным принципам. Контакты могут соединяться в вариантах «Звезда», «Треугольник» или «Звезда с нейтралью».

Выбор трехфазной схемы подключения реле во многом зависит от особенностей работы техники, подключенной к нему в качестве нагрузки

Реверсные твердотельные реле применяются в электродвигателях в соответствующем режиме. Они изготавливаются в трехфазном варианте и включают два контура управления.

Если для реле важно соблюдение полярности подключения контактов, то на маркировке всегда будет указано, куда подключать фазу и ноль

Собирать электрические цепи с ТТР необходимо только после их предварительной прорисовки на бумаге, потому что неверно подключенные устройства могут выйти из строя из-за короткого замыкания.

Практическое применение устройств

Сфера использования твердотельных реле довольно обширна. Из-за высокой надежности и отсутствия потребности в регулярном обслуживании их часто устанавливают в труднодоступных местах оборудования.

Во многих реле подключение проводов управляющего контура требует соблюдения полярности, что необходимо учитывать в процессе монтажа оборудования

Основными же сферами применения ТТР являются:

  • система терморегуляции с применением ТЭНов;
  • поддержание стабильной температуры в технологических процессах;
  • контроль работы трансформаторов;
  • регулировка освещения;
  • схемы датчиков движения, освещения,  и т.п.;
  • управление электродвигателями;
  • .

С увеличением автоматизации бытовой техники твердотельные реле приобретают все большее распространение, а развивающиеся полупроводниковые технологии постоянно открывают новые сферы их применения.

При желании, собрать твердотельное реле можно собственноручно. Подробная инструкция представлена в .

Выводы и полезное видео по теме

Представленные видеоролики помогут лучше понять работу твердотельных реле и ознакомиться со способами их подключения.

Практическая демонстрация работы простейшего твердотельного реле:

Разбор разновидностей и особенностей работы твердотельных реле:

Тестирование работы и степени нагрева ТТР:

Смонтировать электрическую цепь из твердотельного реле и датчика может практически каждый человек.

Однако планирование рабочей схемы требует базовых знаний в электротехнике, потому что неправильное подключение может привести к удару током или короткому замыканию. Зато в результате правильных действий можно получить массу полезных в быту приборов.

Есть, что дополнить, или возникли вопросы по теме подключения и применения твердотельных реле? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования таких устройств. Форма для связи находится в нижнем блоке.

Твердотельное реле | Практическая электроника

Что такое твердотельное реле

Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) – это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, но имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют  своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.

Виды твердотельных реле


Выглядеть ТТР могут по-разному. Ниже на фото слаботочные реле

Такие релe используются в печатных платах и предназначены для коммутации (переключения)  малого тока и напряжения.

На ТТР строят также сразу готовые модули входов-выходов, которые используются в промышленной автоматике

А вот так выглядят реле, используемые в силовой электронике, то есть в электронике, которая коммутирует большую силу тока. Такие реле используется в промышленности в блоках управления станков ЧПУ и других промышленных установках

Слева однофазное реле, справа трехфазное.

Если через коммутируемые контакты силовых  реле будет проходить приличный ток, то корпус реле будет очень сильно греться. Поэтому, чтобы реле не перегревались и не выходили из строя, их ставят  на радиаторы, которые рассеивают тепло в окружающее пространство.

Твердотельные реле по типу управления

ТТР могут управляться с помощью:

1) Постоянного тока. Его диапазон составляет от 3 и до 32 Вольт.

2) Переменного тока. Диапазон переменного тока составляет от 90 и до 250 Вольт. То есть такими реле можно спокойно управлять с помощью сетевого напряжения 220 В.

3) С помощью переменного резистора. Значение переменного резистора может быть в диапазоне от 400 и до 600 Килоом.

Твердотельные реле по типу переключения

С коммутацией перехода через ноль

Посмотрите внимательно на диаграмму

Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток  достигнет нуля. Выключение происходит подобным образом.

Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.

Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:

управление постоянным токомуправление переменным током

Мгновенного включения

Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.

В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока,  а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.

Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:

С фазовым управлением

Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.

Примерная схема подключения выглядит вот так:

Работа твердотельного реле

В гостях у нас ТТР фирмы FOTEK:

Давайте разберемся с его обозначениями.  Вот небольшая табличка-подсказка для этих типов реле

Давайте еще раз взглянем на наше ТТР

SSR – это значит однофазное твердотельное реле.

40 – это на какую максимальную силу тока она рассчитана. Измеряется в Амперах и в данном случае составляет 40 Ампер. 

D – тип управляющего сигнала. От значения Direct Current – что с буржуйского – постоянный ток. Управление ведется постоянным током от 3 и до 32 Вольт. Этого диапазона хватит самому заядлому разработчику радиоэлектронной аппаратуры. Для особо непонятливых даже написано Input, показан диапазон и фазировка напряжения. Как вы видите, на контакт №3 мы подаем “плюс”, а на №4 мы подаем “минус”.

А – тип коммутируемого напряжения. Alternative current – переменный ток. Цепляемся в этом случае к выводам №1 и №2. Можем коммутировать диапазон от 24 и  до 380 Вольт переменного напряжения.

Для опыта нам понадобится лампа  накаливания на 220 Вольт и простая вилка со шнуром. Соединяем лампу со шнуром только в одном месте:

В разрыв вставляем наше  твердотельное реле

Втыкаем вилку в розетку и…

Нет… не хочет… Чего-то не хватает…

Не хватает управляющего напряжения! Выводим напряжение от Блока питания  от 3 и до 32 Вольт постоянного напряжения. В данном случае я взял 5 Вольт. Подаю на управляющие контакты и…

О чудо! Лампочка загорелась!  Это значит, что контакт №1 замкнулся с контактом №2. О срабатывании реле нам также говорит и светодиод на корпусе самого реле. 

Интересно, какую силу тока потребляют управляющие контакты реле? Итак, имеем на блоке 5 Вольт.

А сила тока получилась 11,7 миллиампер! Можно управлять хоть микроконтроллером!

Плюсы и минусы твердотельного реле

Плюсы

  • включение  и выключение цепей без электромагнитных помех
  • высокое быстродействие
  • отсутствие шума и дребезга контактов
  • продолжительный период работы (свыше МИЛЛИАРДА срабатываний)
  • возможность работы во взрывоопасной среде, так как нет дугового разряда
  • низкое энергопотребление (на 95% (!) меньше, чем у обычных реле)
  • надёжная изоляция между входными и коммутируемыми цепями
  • компактная герметичная конструкция, стойкая к вибрации и ударным нагрузкам
  • небольшие размеры и хорошая теплоотдача (если конечно использовать термопасту и хороший радиатор)

Минусы:

Твердотельное реле: принцип работы, схема подключения

ТТР (Твердотельное реле) (англ. SolidStateRelay (SSR) – полупроводниковое устройство, рассчитанное на управление изменений электрического тока. Главное назначение устройства – изоляция между цепями напряжения.

ТТР – регулятор мощности напряжения, обеспечивает правильную функциональность электрических систем различного оборудования, контролирует и управляет включением и выключением приборов.

Принцип действия

Схема всех SSR практически одинаковая, даже если есть разница, она никак не влияет на принцип действия.

Схема SSR постоянного тока

Принцип действия механизма заключается в замыкании и размыкания контактов, которые передают напряжение. Выполняется это с помощью активатора, то есть твердотельного прибора.В зависимости от характера тока (переменного или постоянного) используется тип силового элемента (полупроводниковый прибор).  Для постоянного тока используются транзисторы, для переменного – симисторы и тиристоры. Транзистор пропускает постоянный ток. Симистор проводит ток в двух направлениях, а тиристор может проводить напряжение и в 1ом и в 2х направлениях.

Схема твердотельного реле переменного тока

Схема цепей

На вход поступает электрический сигнал, дальше он подаётся на оптический светодиод. Оптическая развязка обеспечивает изоляцию между входной, промежуточной и выходной цепью. В работу включается триггерная цепь. Она управляет переключением выхода ТТР. Переключающая цепь передает напряжение на нагрузку, которая представлена транзистором, тиристором или симистором. Защитная цепь нужна для надежной работы ТТР при различных нагрузках.

Для предотвращения сгорания контактов устройства, рекомендуется установка предохранителя.

Виды устройства

SSR различаются по следующим свойствам.

  1. Характер тока в сети
  • Однофазное реле способно коммутировать электрический ток от 10 до 120 А или от 100 до 500 А. Управление проводится через фазу с помощью аналогового сигнала (непрерывный по времени) и переменного резистора (элемент электрической цепи). Как правило, корпус однофазного SSR стандартный, модульный (завершенная конструкция).

Однофазное реле используется в бытовых приборах.

Рекомендация. Установка однофазного ТТР в электрическую систему обезопасит домашнюю технику от поломки.

  • Трехфазное релекоммутирует электричество на трёх фазах сразу. Диапазон напряжения 10 – 120 А. Отдельными характеристиками обладает реверсивное трехфазное ТТР. Выделяется надёжной коммутацией цепей. Сфера использования – непостоянная работа двигателя.

Чтобы не происходило перенапряжение, используется варистор (полупроводниковый резистор)или предохранитель. Трёхфазное SSR имеет долгий срок использования в сравнении с однофазным устройством.

  1. Способ управления
  • Коммутация постоянного тока. Применяется при постоянном напряжении от 3 до 32 вольт. Отличаются высокой надежностью работы. Поддержка температур от -30 до +70 соблюдается практически у всех моделей.
  • Коммутация переменного тока. SSR переменного тока характеризуется маленьким соотношением электромагнитных помех, бесшумностью, экономным энергопотреблением и оперативной работой. Диапазон напряжения от 90 до 250 вольт.
  • Реле, управляемое вручную. Оно позволяет управлять настройками.

Коммутация – процесс переключение  и отключение напряжения. Происходит моментально при замыкании и размыкании цепей.

  1. Тип коммуникации
  • Конструкция с фазовым регулятором мощности. Тип коммуникации – изменения на выходе нагрузки с управлением мощности, нагреванием (уровень освещения).
  • Прибор, контролируемый нулевым регулятором мощности. Область использования –коммутация ёмкостных (конденсатных) резистивных (лампы и нагреватели) слабо индуктивных приборов. SSR с нулем необходимы для коммутации индуктивных (трансформаторы, двигатели) и резистивных нагрузок при необходимости мгновенного действия.
  1. По конструкции
  • Устанавливаемые на одну рейку.
  • Монтируемые на планки переходного типа.

Сферы применения

Твердотельное реле 12в

SSR не заменит полностью электромагнитный аналог, но во многих областях превосходит его в применении.

Сфера применения достаточно обширная. Его устанавливают в том оборудования, где нужно надежное и длительное использование системы.

  • Для поддержания постоянной температуры в технологическом процессе.
  • Регулятор мощности тока.
  • При замене пyскателя реверсивного типа.
  • Электрический двигатель.
  • Датчик движения.
  • Датчик освещения.
  • Диммер (выключатель с регулировкой яркости лампы).
  • Производственные станки.
  • Регулятор температуры камеры.

Далеко не весь список использования.

Преимущества использования

Твердотельное реле применяется в различных электрических цепях- низковольтных, высоковольтных. От простейшего бытового прибора, которое имеется в каждом доме до крупного промышленного объекта.

  • Компактный размер даёт возможность использования в ограниченных пространством условиях, и перемещать его.
  • Более точный и стабильный регулятор температуры по сравнению с электромагнитным устройством.
  • Скорость быстрого включения в работу без потребности долгого запуска.
  • Экономия электроэнергии из-за использования полупроводников вместо электромагнитного разнесения.
  • Надёжность работы. Реле может выполнить более миллиарда срабатываний.
  • Долгий срок эксплуатации без необходимости прохождения постоянного технического обслуживания.
  • Отсутствие источников искр.
  • Включение в цепь без помех из-за герметичной конструкции.
  • Бесшумность работы.
  • Не происходит дребезжания благодаря быстрому старту.
  • Широкая сфера применения. ТТР используется для регулятора работы многих устройств.

Как выбрать полупроводниковое устройство?

Покупая твердотельное реле нужно обратить внимание на его основные характеристики:

  • Вид SSR.
  • Материал корпуса.
  • Тип включения – быстрый или постепенный.
  • Производитель.
  • Наличие крепежей.
  • Уровень потребления электроэнергии.
  • Размер ТТР.
  • Необходимо учесть коммутируемый регулятор напряжение.

Важно! Реле должно иметь большой запас мощности напряжения для его надежного и продолжительного использования. Иначе при скачке напряжения произойдёт поломка.

Выполняя работы по проведению электрической системы помещения и устанавливая оборудование, вне зависимости от его масштабов, важно чтобы всё работало надежно и исправно. Осуществлению этого способствует полупроводниковое устройство. При верном подборе типа SSR и правильной установке, оно будет долговечно.

схема подключения, устройство, характеристики и управление

На чтение 9 мин Просмотров 273 Опубликовано Обновлено

Для контроля различного электронного оборудования требуется прибор, отличающийся миниатюрными размерами и высокой степенью надежности. К таким устройствам относятся твердотельные реле постоянного и переменного тока. Они нашли свое применение в бытовых и промышленных условиях. Реле можно самостоятельно собрать и установить своими руками без особых трудностей. Единственный критерий, препятствующий широкому распространению устройства – его стоимость. Прежде чем использовать твердотельное реле, нужно разобраться с его параметрами, принципом работы, конструкцией.

Принцип работы

Устройство твердотельного реле

Твердотельное реле – это модульный полупроводниковый прибор, используемый для замыкания и размыкания электрических сетей. Он представлен в виде транзисторов, симисторов, тиристоров. Твердотельные реле также называются SSR (solid state relay).

Основные компоненты, из которых состоит реле:

  • входной узел;
  • предохранители;
  • триггерная цепь;
  • развязка;
  • узел переключения;
  • защитная цепь;
  • выходной узел.

Большая часть твердотельных реле применяется для автоматики, подключенной к электросети 20-480 Вольт.

Принцип действия устройства прост. В корпус реле входят два контакта и два управляющих провода. Их число может изменяться в зависимости от фаз, которые были подключены. Под действием напряжения происходит переключение основной нагрузки.

Работая с реле, нужно учитывать, что под высокими напряжениями есть риск появления небольших токов утечки, которые могут навредить технике. Это связано с тем, что в реле остается небольшое сопротивление.

Известные модели

Расшифровка маркировки

Основные характеристики зависят от многих факторов. К популярным отечественным моделям, произведенным фирмами КИПпрбор, Протон, Cosmo, относятся:

  • ТМ-О. Устройства со встраиваемой схемой «ноль», через которую проходит переход фазы.
  • ТС. Модели, которые выключаются в любой момент времени.
  • Наиболее популярные и используемые – ТМВ, ТСБ, ТСМ, ТМБ, ТСА. Они обладают выходной RC цепью.
  • Тс/ТМ – силовые. Токи достигают значений 25 мА.
  • ТСА, ТМА – применяются в чувствительных приборах.
  • ТСБ, ТМБ – низковольтные модели. Напряжение не превышает 30 В.
  • ТСВ, ТМВ – высоковольтные. Напряжение достигает 280 В.

К иностранным аналогам относятся изделия, произведенные фирмами Carlo Gavazzi, Gefran, CPC.

Расшифровка

Модели SSR, TSR (однофазные и трехфазные соответственно) являются самыми популярными. Их сопротивление равно 50 Мом и более при напряжении 500 В.

Записывается обозначение как SSR -40 D A H. SSR или TSR обозначает число фаз. 40 – нагрузка в Амперах. Буквой обозначается сигнал на входе (L 4-20 мА, D – 3-32 В при постоянном токе, V – переменное сопротивление, A – 80-250 В при переменном токе). Следующая буква – входное напряжение (А – переменное, D – постоянное). Последняя буква – диапазон выходных напряжений (Н – 90-480 В, нет буквы – 24-380 В).

Особенности работы с устройством

Реле однофазное 220В

При работе с твердотельным реле 220в (управление 220), нужно придерживаться следующих правил:

  • Соединение должно осуществляться винтовым способом. Оно является достаточно надежным. Спайка частей не нужна, скрутка запрещена.
  • Нельзя допускать попадания пыли, воды и металлических предметов на реле. Они приводят к выходу из строя компонента.
  • Нельзя прикладывать недопустимые внешние воздействия на корпус. К ним относятся заливание жидкостью, удары, вибрации, падения.
  • Не трогать прибор во время работы. Корпус нагревается, из-за чего человек может получить ожог.
  • Не устанавливать реле рядом с легковоспламеняемыми предметами.
  • Перед подключением цепи следует убедиться в корректности собранных соединений.
  • При нагреве корпуса выше 60 градусов требуется установка дополнительного охлаждения с помощью радиаторов.
  • Нельзя допускать появления короткого замыкания на выходе.

При соблюдении требований к эксплуатации реле будет выполнять свою работу надежно и качественно весь заявленный срок.

Преимущества и недостатки

Твердотельные реле имеют ряд положительных качеств перед электромеханическими аналогами. К ним относятся:

  • Долговечность. Полупроводниковый прибор способен выдержать до десятков тысяч циклов включения и выключения.
  • Создается качественное подключение.
  • Грамотный контроль нагрузки.
  • Высокое быстродействие.
  • Отсутствие электромагнитных помех в замкнутой сети.
  • Быстрое срабатывание.
  • Бесшумность работы.
  • Миниатюрные размеры.
  • Отсутствие дребезгов контактов.
  • Высокая производительность.
  • Возможность плавного перехода между сетями постоянного и переменного тока. Зависит от мощности и типа прибора.
  • Широкая область применения.
  • Выдерживает перегрузки в 2000.
  • Защита от резких и больших скачков напряжения и тока.

Есть и ряд минусов, из-за которых электромеханическое реле может быть выгоднее в применении. В первую очередь это высокая стоимость изделия и сложность его покупки. Приобрести твердотельные реле можно только в профессиональном специализированном магазине электронных компонентов. Сложности возникают и при первичной коммутации – могут появиться высокие скачки тока. Возникающие в процессе работы микротоки также негативно сказываются на реле.

На работу устройства накладываются и эксплуатационные требования – в помещении должен быть нормальный уровень пыли и влажности. Оптимальные значения можно найти в документации к реле.

Твердотельные реле не могут работать с приборами, напряжение которых превышает 0,5 кВ. Повышение рекомендуемых значений может привести к расплавлению контактов.

Области применения

Область применения

Несмотря на высокую цену, твердотельные реле активно применяются в различных сферах. Они успешно справляются со следующими задачами:

  • Регулирование температуры с помощью тэна.
  • Поддержка нужной температуры в технологических процессах.
  • Коммутация управляющих цепей.
  • Замена пускателей бесконтактного типа.
  • Управление электрическими двигателями.
  • Контроль нагрева трансформаторов.
  • Регулирование уровня подсветки.

В каждом случае используется определенный тип реле.

Классификация твердотельных реле

Трехфазное реле

Полупроводниковые твердотельные реле можно классифицировать по разным показателям. По особенностям контролирующего и коммутируемого напряжения выделяют:

  • Твердотельные реле постоянного тока. Их используют в цепях постоянного электричества с мощностью от 3 до 32 Ватт. Отличаются высокими удельными характеристиками, наличием светодиодной индикации, надежностью. Рабочий температурный диапазон достаточно широк и составляет от -30 до +70 градусов.
  • Реле переменного тока. Они отличаются низким уровнем электромагнитных помех, отсутствием шумов, малым потреблением электроэнергии. Диапазон рабочих мощностей составляет от 90 до 250 Вт.
  • Реле с ручным управлением. С помощью таких устройств можно самостоятельно регулировать режим работы.

По типу напряжения выделяются однофазные и трехфазные реле. Однофазные приборы используются в сетях с силой тока от 100 до 120 А или от 100 до 500 А. В них управление осуществляется за счет получения аналогового сигнала и переменного резистора. Трехфазные реле используются для коммутации на трех фазах одновременно. Сила тока 10-120 А. Трехфазные модели служат дольше однофазных.

В отдельную группу из трехфазных твердотельных реле выделяют устройства реверсивного типа. Они отличаются маркировкой и бесконтактным соединением. Основной функцией является надежная коммутация каждой цепи по отдельности. Они защищают цепь от ложных срабатываний. Основное применение нашли в асинхронных двигателях. Для работы с реле необходима установка предохранителя или варистора.

По методу коммутации реле классифицируются так:

  • устройства емкостного или редуктивного типа, а также приборы слабой индукции;
  • со случайным или мгновенным срабатыванием;
  • с фазным управлением.

По конструкции можно выделить модели, устанавливающиеся на дин рейку и на специальную планку переходного типа.

Советы по выбору

Предохранитель от повышения нагрузок

Купить твердотельные реле можно только в специализированном магазине электронной техники.  Опытные специалисты помогут подобрать лучшее устройство для определенных целей. На стоимость изделия влияют следующие факторы:

  • тип реле;
  • наличие фиксирующих механизмов;
  • материал корпуса;
  • время включения;
  • фирма-изготовитель и страна производства;
  • мощность;
  • необходимая энергия;
  • габариты.

При покупке важно учесть, что должен быть запас по мощности, превышающий рабочую в несколько раз. Это убережет реле от поломок. Также дополнительно используются специальные предохранители. К самым надежным относятся:

  • G R – используются в широком диапазоне нагрузок, отличаются высоким быстродействием.
  • G S – работают во всем диапазоне токов. Надежно защищают устройство от превышения нагрузки электросети.
  • A R – защищают компоненты полупроводникового устройства от короткого замыкания.

Такие приборы обеспечивают высокую защиту от поломок. Их стоимость сопоставима с ценой самого реле. Меньшими защитными свойствами и, соответственно, меньшей стоимостью обладают предохранители классов B, C, D.

Для надежной и стабильной работы реле нужно подобрать охлаждающий радиатор. Особенно это актуально при превышении температуры выше 60 градусов. Запас тока для обычного реле должен превышать рабочие токи в 3-4 раза. При работе с асинхронными двигателями этот показатель должен увеличиться до 8-9 раз.

Схемы подключения

Существуют различные способы подключения твердотельных полупроводников. Они зависят от особенностей подключаемой нагрузки. Дополнительно в схему могут включаться различные элементы управления.

К наиболее используемым схемам относятся:

  • Нормально-открытая. Нагрузка находится под напряжением при наличии управляющего сигнала.
  • Нормально-закрытая. Нагрузка находится под напряжением при отсутствии управляющего сигнала.
  • Управляющее и нагрузочное напряжение равны. Используется для работы в сетях постоянного и переменного тока.
  • Трехфазное. Может подсоединяться по-разному – «звезда», «треугольник», звезда с нейтралью».
  • Реверсивное. Разновидность трехфазного реле. Включает в себя 2 контура управления.

Прежде чем собирать схему, ее нужно нарисовать на бумаге.

Подключение к сети производится через пускатели или контакты. При использовании трехфазного реле все 3 фазы должны быть подключены к соответствующим клеммам, расположенным сверху прибора. Маркируются верхние фазные контакты буквами A, B C, ноль – N.

На устройстве есть и нижние клеммы, маркирующиеся цифрами 1, 2, 3. Подключаются они по следующему алгоритму:

  • 1 – к выходу катушки в контакторе.
  • 3 – на любую фазу, которая проходит в обход реле.
  • 2 – к нулю сети.

Силовые элементы подключаются следующим образом: фазы под напряжением нужно подсоединить к соответствующим клеммам на контакторе; нагрузочные проводники – на выход контактора; нули объединяются на общей шине в распределительной коробке.

Настройка реле будет рассмотрена на примере VP 380 А:

  • Устройство включить в сеть.
  • Посмотреть на дисплей. При отсутствии напряжения будут мигать цифры. Появление черточек сигнализирует об изменении чередования фаз или отсутствии одной из них.

В нормальном состоянии электросети примерно через 15 секунд должны замкнуться контакты 1 и 3, подающие питание на катушку и в сеть.

Если подключение выполнено неверно, экран будет мигать. Тогда нужно проверить его правильность. Выставить необходимые настройки можно с помощью кнопок на корпусе. Кнопки с треугольниками отвечают за выставление нужных пределов.

Схемы подключения и особенности использования твердотельных реле | Электрик Инфо

Твердотельное реле — это устройство, построенное на полупроводниковых элементах и силовых ключах, таких как симисторы, биполярные или МОП-транзисторы. В англоязычных источниках твердотельные реле называют SSR от Solid State Relay (что в дословном переводе эквивалентно русскому названию).

Как и у электромагнитных реле и других коммутационных приборах они предназначены для управления слабым сигналом нагрузкой с бо́льшим напряжением или током.

На самом деле схема подключения твердотельных реле почти ничем не отличается от обычных. Как правильно подключить? Давайте разбираться.

Если вам нужно заменить обычное реле 220В с управлением от переменного тока 220В – используйте следующую схему, на примере LDG LDSSR-10AA-H. На схеме для примера изображено подключение через обычный выключатель или тумблер. Вместо этого сигнал включения может подаваться от термостата, регулятора и других устройств.

Если вам нужно управлять с помощью низковольтного сигнала цепью 220В, то можно использовать FOTEK HPR-80AA.

В этой схеме в качестве источника низкого напряжения постоянного тока используется блок питания 12VDC, которые широко распространены как блоки питания для светодиодных лент. Кстати вы даже можете управлять таким твердотельным реле подав на вход напряжение от зарядного устройства мобильного телефона, ведь на его выходе 5В, что больше минимального сигнала в 3В.

Учтите и то, что напряжение управления нужно отключать полностью, так как у каждого реле есть определенные параметры, при которых оно работает, например, у приведенного выше напряжение отключения порядка 1 вольта, а сработать оно может не при 3 номинальных вольтах, а уже при 2.5 (данные приведены усредненные, для примера, и могут отличаться в зависимости не только от конкретного изделия, но и от условий окружающей среды и монтажа.)

Но напомним, что есть и реле с фазовым методом управления. Схемы подключения таких реле проиллюстрированы далее (иллюстрация из инструкции к ним).

Вопрос – для чего нужны такие реле и где их используют? Поиск ответа на данный вопрос был недолгим, стоило мне ввести начало запроса и сразу выдало варианты использования в качестве силового ключа для управления нагревательными элементами от терморегуляторов с выходом 4-20 мА или 0-10В.

Кстати, для промышленного применения есть и отечественные разработки, например, ОВЕН ТРМ132 и другие модели, которые могут работать с выходными сигналами 4-20мА и 0-10В.

Однако использование твердотельного реле для управления мощной нагрузкой невозможно без охлаждения. Для этого используют пассивное (простой радиатор) или активное охлаждение (радиатор+кулер).

Рекомендации о выборе кулеров приводятся в технической документации на конкретное твердотельное реле, поэтому давать универсальные советы нельзя.

Заключение

Твердотельные реле могут использоваться как замена электромеханическим в ряде случаев. Самыми популярными вариантами в быту является замена контактора в электрокотле, по причине его громкого хлопка при включении, соответственно и включение ТЭНов станет бесшумным.

А также реализация различных мощных регуляторов мощности для тех же ТЭНов и прочего, для чего применяется твердотельное реле с аналоговым входом сигнала от переменного сопротивления (тип VA). 

Радиолюбители же могут собрать простейшее твердотельное реле, на основе оптодрайвера для симисторов с ZCC типа MOC3041 и подобных.

Я считаю, что это достойные изделия для использования их в различных средствах автоматизации, к тому же они не требуют обслуживания (разве что чистки радиаторов от пыли), а срок службы, можно сказать, что неограничен. Они прослужат в разы дольше чем контакторы при условии отсутствия перегрузок, перегрева, КЗ и импульсных перенапряжений!

Смотрите также:

Что такое твердотельное реле и как его правильно использовать

Устройство и примеры применения реле, как выбрать и правильно подключить реле

Как с помощью Ардуино безопасно управлять нагрузкой на напряжении 220 вольт

Донат на развитие проекта Электрик Инфо: Пожертвование на развитие сайта

Как использовать твердотельное реле | Схема подключения

Твердотельное реле или SSR - очень полезное электронное устройство. В этой статье мы узнаем, как использовать твердотельное реле , схему подключения твердотельного реле . На рынке доступны различные типы SSR. Чтобы использовать твердотельное реле в конкретном приложении, мы должны выбрать твердотельный реле надлежащего номинала, подходящего для этого конкретного приложения. Так что выбор SSR - очень важный фактор.

Обзор твердотельного реле

Твердотельное реле или SSR представляет собой статическое полупроводниковое переключающее устройство. Его основная функция - переключение электрического сигнала или мощности. SSR работает по принципу оптической связи, которая обеспечивает отличную изоляцию между входной и выходной цепями.

Твердотельное реле может работать с питанием от 3 В до 32 В постоянного тока и выдерживать очень высокий ток, чем обычное реле или электромагнитное реле. Твердотельное реле обеспечивает очень быстрое переключение и может очень эффективно работать с любыми устройствами программирования, такими как микропроцессоры, ПЛК, которые генерируют цифровые или высокочастотные сигналы.

Блок-схема твердотельного реле (SSR)

Здесь вы можете увидеть внутреннюю блок-схему твердотельного реле . Доступны разные типы SSR, их принципиальная схема также различается. Здесь дана только простая блок-схема, чтобы понять работу SSR.

Вот видите, там четыре блока. Его входная цепь подключена к светодиоду (обычно инфракрасному светодиоду), который излучает свет, когда его входная цепь подключена к источнику питания. Его выходная цепь соединена с фотодиодами и силовыми полевыми МОП-транзисторами.Как правило, полевые МОП-транзисторы подключаются вплотную в противоположном направлении. В нормальном состоянии MOSFET не проводит ток. Когда на вход SSR подается питание, его инфракрасный светодиод излучает свет, падающий на фотодиод. Фотодиод будет производить напряжение и ток, которые включают силовой полевой МОП-транзистор, и полевой МОП-транзистор начинает проводить ток.

Почему мы должны использовать твердотельное реле (SSR)?

Использование твердотельного реле дает так много преимуществ.

1.Это обеспечивает очень быстрое переключение.

2. Нет проблем с фиксацией.

3. Может работать с очень низким напряжением и током, чем обычное электромагнитное реле.

4. Во время работы не возникает дуги или искрения.

5. Оно может выдерживать большую силу тока, чем электромагнитное реле.

Где мы можем использовать твердотельное реле (SSR)?

1. Мы можем использовать твердотельное реле для высокочастотных приложений, а также для цифровых сигналов.

2. Мы можем использовать твердотельное реле с микропроцессором, ПЛК и т. Д.

3. Поскольку твердотельное реле предлагает большее сопротивление в своей выходной цепи, оно не подходит для цепей с высоким импедансом, поэтому мы можем использовать твердотельные реле. реле состояния в цепях с низким сопротивлением.

4. Твердотельное реле обеспечивает больше преимуществ при переключении питания переменного тока, поэтому мы можем использовать управление двигателем, управление электрическим нагревателем и т. Д.

Как выбрать твердотельное реле?

Выбор правильного твердотельного накопителя очень важен для использования в конкретном приложении, поэтому при выборе SSR следует учитывать некоторые важные факторы,

AC VS DC SSR: Это первый важный фактор при выборе SSR.Доступны два типа SSR в зависимости от характеристик переключения переменного и постоянного тока. Если вы хотите переключать сигналы переменного тока, вы должны выбрать SSR переменного тока или, если вы хотите переключать сигналы постоянного тока, вам следует использовать SSR постоянного тока.

Если вы возьмете твердотельное реле переменного тока для переключения сигнала постоянного тока, оно не будет работать, потому что в их выходной цепи используются симисторы и тиристоры. Таким образом, он не отключит нагрузку до тех пор, пока постоянный ток не упадет до нуля, даже если вы удалите входной сигнал с SSR.

Также проверьте тип входного сигнала, необходимого для SSR, потому что большинство SSR предназначены для работы с входным сигналом постоянного тока, даже если они переключают питание переменного тока.Поэтому, если вы не обнаружили SSR, который может работать при входных сигналах переменного тока, вам потребовались дополнительные электронные компоненты для создания схемы выпрямителя. Вы можете преобразовать входной сигнал переменного тока в постоянный, а затем подать его на SSR.

При выборе SSR переменного тока необходимо проверить, встроена ли в него защита от перенапряжения, поскольку в случае переменного тока возникает импульсное напряжение.

Напряжение SSR: Правильный выбор номинального напряжения также очень важный фактор. Большинство SSR рассчитаны на работу при входном напряжении от 3 до 32 В постоянного тока.Так что входное напряжение не имеет значения, вы можете подавать любое напряжение от 3 до 32 В. Напряжение переключения более важно. Всегда выбирайте твердотельное реле с номинальным напряжением на 25% выше, чем напряжение, которое вы хотите переключить. А также проверьте, какой тип напряжения вы хотите переключить, переменный или постоянный.

Ток переключения: Его также можно назвать током нагрузки. Любая электрическая нагрузка потребляет более высокий пусковой ток, чем средний ток нагрузки в момент пуска. Поэтому, когда вы выбираете твердотельное реле для конкретной нагрузки, следует помнить о том, сколько пускового тока может выдержать эта нагрузка в момент пуска.

Итак, когда вы выбираете реле, прочтите обе спецификации, это означает спецификацию конкретной нагрузки и спецификацию SSR. После прочтения обеих спецификаций сравните их характеристики, значит ток, напряжение и т. Д., А затем выберите SSR для конкретного приложения.

Как использовать твердотельное реле?

Сначала выберите подходящее твердотельное реле, подходящее для вашего приложения, затем расположите компоненты и материалы. Выполните правильное соединение с цепями входного сигнала SSR и нагрузки.Кроме того, расположите радиатор для SSR, если вы работаете с большим током.

Схема подключения твердотельного реле

Здесь приведен один пример использования SSR. Здесь вы можете увидеть схему подключения твердотельного реле для автоматического управления электронагревателем.

Здесь вы можете видеть, что нагреватель работает от сети 230 В переменного тока. В нормальных условиях измеритель температуры подает непрерывный входной сигнал на SSR, и он включает нагреватель.Как только тепло, выделяемое нагревателем, превысит определенный предел, измеритель температуры прекратит подачу входного сигнала на SSR, поэтому SSR выключится, и нагреватель также выключится.

Спасибо, что посетили сайт. продолжайте посещать для получения дополнительных обновлений. Руководство по твердотельным реле

- Phidgets Support

Введение

«Хоккейная шайба» SSR, названная так из-за ее толстой формы и черного цвета. Они специально разработаны для переключения нагрузок переменного или постоянного тока, но никогда того и другого одновременно.

Твердотельные реле (SSR) включают или выключают питание, подаваемое на другие устройства, аналогично физическому переключателю. Однако вместо того, чтобы переключаться при взаимодействии человека, как физический переключатель, SSR переключаются электронным способом. С помощью SSR вы можете управлять сильноточными устройствами, такими как осветительные приборы или приборы с слаботочными сигналами, такими как стандартный сигнал постоянного тока с цифрового выхода. Многие SSR включаются при напряжении 3 В и выше. Это делает их идеальными для использования с выходами на Phidget InterfaceKits или любых других устройствах с цифровым выходом, таких как OUT1100 - Digital Output Phidget.Использование портов VINT Hub в режиме цифрового вывода может не работать, поскольку они могут не обеспечивать достаточной мощности для активации SSR. Если ваш цифровой выход недостаточно мощный, вы можете подключить внешний полевой МОП-транзистор, чтобы переключить более подходящий источник питания для управления SSR. ТТР

выполняют ту же работу, что и механические реле, но имеют следующие преимущества:

  • SSR во время работы создают меньше электромагнитных помех, чем механические реле. В основном это связано с отсутствием явления, называемого контактной дугой, которое присутствует только в механических реле, когда физические контакты реле имеют тенденцию к искрению внутри при переключении.Уменьшение помех также можно объяснить тем фактом, что в SSR не используются электромагниты для переключения.
  • Переключающие контакты механического реле со временем изнашиваются из-за дуги. SSR будет иметь более длительный срок службы, потому что его внутреннее устройство полностью цифровое. При правильном использовании они прослужат миллионы циклов.
  • ТТР
  • включаются и выключаются быстрее, чем механические реле (≈1 мс по сравнению с ≈10 мс).
  • ТТР
  • менее восприимчивы к физическим вибрациям, чем механические реле.
  • Поскольку переключатель внутри SSR не является механическим переключателем, он не страдает от дребезга контактов и работает бесшумно.

Однако, по сравнению с механическими реле, твердотельные реле:

  • Дороже.
  • Будет рассеивать больше энергии в виде тепла (1-2% энергии, предназначенной для питания нагрузки).

Как работают твердотельные реле

Концептуальная схема внутренней части SSR.

Управляющие входы внутри подключены к светодиоду, который светит через воздушный зазор на световые датчики.Датчик освещенности подключен к транзисторам, которые открываются или закрываются, питая нагрузку реле. Когда транзистор закрыт , ток может свободно течь через реле, вызывая подключение нагрузки и источника питания. Когда транзистор открыт , почти весь ток блокируется, в результате чего нагрузка отключается от источника питания. Соединение светодиода с датчиками света называется оптопарой и является распространенным методом соединения двух частей схемы без прямого электрического соединения.

Базовое использование

Управление SSR не сложнее, чем включение и выключение светодиода. Включите, выключите, это так просто.

Способность SSR переключать нагрузку очень похожа на механическое реле или простой переключатель. Включая и выключая цифровой выход, управляющий реле, вы контролируете, подключена ли нагрузка к источнику питания.

Задача состоит в том, чтобы выбрать подходящий тип SSR для вашего приложения. Не существует единого SSR, идеально подходящего для всех приложений.Чтобы выбрать SSR для вашего конкретного приложения, следуйте инструкциям в разделе «Выбор SSR».

Безопасность

Две принципиальные схемы, показывающие неправильные и правильные способы переключения электросети с помощью реле.

Поскольку реле переключают большие токи и напряжения, применяются стандартные меры предосторожности при работе с электричеством. Никогда не касайтесь клемм, когда реле находится под напряжением. Если ваш SSR поставляется с пластиковой крышкой, используйте ее. Даже когда SSR выключен, будет течь очень небольшой ток.

При включении реле в цепь всегда рекомендуется размещать его между источником питания и нагрузкой, особенно при использовании более высоких напряжений. Если вместо этого реле поместить между нагрузкой и землей, схема будет работать так же, но когда реле разомкнуто, нагрузка по-прежнему будет напрямую подключена к источнику питания. Это может вызвать проблемы с безопасностью, потому что кто-то может прикоснуться к клеммам на нагрузке, считая это безопасным, потому что устройство кажется выключенным. Если электричество найдет путь к земле через их тело, они будут поражены электрическим током.Если реле расположить между источником питания и землей, поражение электрическим током может возникнуть только в том случае, если прикоснуться к клемме реле, находящейся под напряжением. Опять же, клеммы реле всегда должны быть должным образом закрыты, чтобы избежать риска поражения электрическим током.

Когда SSR выходит из строя, он чаще всего выходит из строя навсегда и закрывается. Это связано с тем, что, когда внутренний транзистор выходит из строя из-за чрезмерного тока или тепла, он обычно замыкается, позволяя току беспрепятственно проходить через него. Это означает, что пока источник питания остается включенным, нагрузка будет запитана, что может привести к пожару или угрозе безопасности.

Выбор SSR

Определите ваше напряжение

Сначала определите, нужно ли переключать напряжение постоянного или переменного тока. Электрическая сеть и, следовательно, ваша настенная розетка работают от переменного тока, тогда как батареи и большинство небольших источников питания работают от постоянного тока.

Затем определите максимальное количество вольт, которое вы будете переключать. Если вы переключаете постоянный ток, особенно с батареями, предположите, что ваше напряжение как минимум на 25% больше, чем рассчитано на вашу батарею. На переменном токе возникают еще большие колебания, но твердотельные реле переменного тока предназначены для того, чтобы справляться с этими скачками.Типичное напряжение переменного тока от настенной розетки в Северной Америке составляет 110 В переменного тока, тогда как в Европе оно обычно составляет 220 В переменного тока. Если вы переключаете напряжение переменного тока из розетки, проверьте, какой стандарт используется в вашей стране, и используйте это число в качестве напряжения.

Определите ваш текущий

Ток, потребляемый вашей нагрузкой при включении, влияет на размер SSR, который вам нужен, и на то, насколько он будет горячим при использовании. Если вы знаете, сколько тока в среднем потребляет ваша нагрузка, это то, что мы называем Средний ток нагрузки .Если вы не знаете средний ток, но знаете мощность (номинальную мощность) вашей нагрузки, вы можете рассчитать средний ток нагрузки следующим образом:

Средний ток нагрузки = Ватт Рабочее напряжение {\ displaystyle {\ text {Средний ток нагрузки}} = {\ frac {\ text {Ватт}} {\ text {Рабочее напряжение}}}}

Затем вам нужно знать ток, потребляемый вашей нагрузкой при ее первом включении. Многие нагрузки требуют значительного скачка тока при первом включении. Это создает значительную нагрузку на электронику внутри SSR.Если вы когда-нибудь замечали, что свет в доме на секунду приглушается при запуске печи, это вызвано запуском двигателя вентилятора. Точно так же, как требуется большое усилие, чтобы вывести тяжелый объект из состояния покоя, изначально требуется большой ток для включения вентилятора или лампы накаливания. Очень сложно измерить саму Surge Current , поэтому мы используем множитель в зависимости от типа вашего устройства. Импульсный ток также обозначается как пусковой ток .

Заявка Множитель
Лампы накаливания 6x
Двигатели 6x
Светодиоды 1x
Комплексная электроника i.е., контроллеры моторов, фиджи 6x
Люминесцентные светильники (только переменного тока) 10x
Трансформаторы 20x
Обогреватели 1x

Умножьте свой средний ток нагрузки на множитель для вашего типа устройства, чтобы вычислить импульсный ток.

Мне нужно переключить AC

Большинство приложений переменного тока будут переключать питание от сети с напряжением 110 до 240 вольт.Если это вы, перейдите в раздел «Напряжение сети (110–240 В переменного тока)».

Мы также покрываем низковольтные системы переменного тока - 28 В переменного тока (Вольт переменного тока) или менее. Для получения дополнительной информации посетите раздел SSR переменного / постоянного тока.

Мне нужно переключить DC

Если вам нужно переключить только небольшой ток - 9 А или меньше, рассмотрите наши компактные, экономичные SSR переменного / постоянного тока.

Если вам нужно переключить более 9 ампер, вам понадобится серьезный SSR постоянного тока.

Если вам нужно переключить до 4 небольших нагрузок 8 А или меньше, вы можете использовать цифровые выходы с открытым коллектором (с внешним питанием) на REL1100 - 4x изолированном SSR Phidget, которые могут быть подключены так, чтобы вести себя аналогично реле.Если вам нужно еще больше реле, обратите внимание на REL1101 - 16x Isolated SSR Phidget.

Мне нужно постепенное затемнение

Вместо простого включения / выключения нагрузки, если вы хотите постепенно уменьшить ее, вы можете использовать SSR с пропорциональным управлением. Они способны постепенно снижать среднюю мощность нагрузки пропорционально силе входного сигнала. Для получения дополнительной информации вы можете посетить раздел «Пропорциональный контроль SSR».

Напряжение сети (от 110 до 240 В переменного тока)

Мы продаем ТТР переменного тока на 120 или 240 В переменного тока.Если вы не уверены, какое напряжение вам может понадобиться переключить, реле на 240 В переменного тока можно без проблем использовать для переключения 120 В переменного тока. Обратите внимание, что мы очень консервативны в оценке SSR - наши реле на 120 В переменного тока рассчитаны производителем на 240 В переменного тока, а 240 В переменного тока - на 480 В переменного тока. Мы настоятельно не рекомендуем использовать их при номинальном напряжении производителя. Чтобы понять, почему, прочтите раздел «Защита SSR переменного тока».

Тип нагрузки - индуктивная или резистивная

Этот график показывает разницу между нулевым переходом и случайным включением.Синяя линия представляет собой колебательное напряжение нагрузки переменного тока, а заштрихованные области представляют участки, когда реле включено и пропускает ток. Как вы можете видеть, SSR случайного включения сразу же открывается при активации, в то время как SSR включения с нулевым переходом ожидает, пока напряжение не пересечет нулевое значение перед размыканием.
Полноразмерное изображение

Если ваша нагрузка индуктивная, вам нужно выбрать реле Random Turn On . Если ваша нагрузка резистивная, выберите реле Zero Crossing .

Ваша нагрузка, вероятно, будет индуктивной, если она построена на большой катушке с проволокой - типичными примерами являются двигатели и трансформаторы. Нагрузка, считающаяся резистивной, также может иметь петли из проволоки - например, фены, тостеры, лампы накаливания используют элементы из скрученной проволоки для генерации тепла. Индуктивная нагрузка будет состоять из тысяч проводов - это вопрос масштаба. Не существует такой вещи, как полностью резистивная нагрузка, но нагрузка должна быть очень индуктивной, чтобы вызвать сбой в работе SSR при переходе через ноль.

SSR предназначены либо для немедленного включения ( Random Turn On ), либо для ожидания следующего «чередования» напряжения ( Zero Crossing ). При включении твердотельные реле с нулевым переходом создают меньше электромагнитного «шума». Их лучше всего использовать с резистивными нагрузками - ТТР с нулевым переходом не могут отключать некоторые индуктивные нагрузки. Очень сложно определить, какие индуктивные нагрузки будут создавать проблемы - это выходит далеко за рамки этого документа. Если у вас индуктивная нагрузка, мы рекомендуем покупать SSR Random Turn On .

Заявка Тип нагрузки
Лампы накаливания резистивный
Люминесцентные светильники Индуктивный или резистивный *
Двигатели индуктивный
Трансформаторы индуктивный
Обогреватели резистивный
Компьютер / Электроника резистивный
Источники питания переменного / постоянного тока (кирпичный) индуктивный
Источники питания переменного / постоянного тока (облегченные переключатели) резистивный

* Для люминесцентных светильников старые блоки (магнитный балласт) могут быть индуктивными, а новые блоки часто резистивными (электронный балласт).

Выбор SSR переменного тока

Теперь, когда вы определили рабочее напряжение, средний и импульсный ток, а также тип нагрузки (индуктивную или резистивную), вы можете создать короткий список реле,

  • Максимальное напряжение нагрузки больше или равно вашему рабочему напряжению,
  • Максимальный импульсный ток больше или равен вашему импульсному току, и
  • Тип нагрузки соответствует тому, что вы выбрали для случайного включения / перехода через ноль.

Теперь сравните Максимальный ток нагрузки без радиатора значение для SSR в вашем списке со своим Средним током нагрузки. Если ваш средний ток нагрузки больше, вам может понадобиться радиатор. Для выбора радиатора обратитесь к разделу «Выбор радиатора». В качестве альтернативы, посмотрите на другие SSR в вашем списке - там может быть SSR, который может справиться с вашим средним током нагрузки без радиатора.

На этом этапе вы знаете, какой SSR вам нужен.

Вместо простого включения / выключения нагрузки, если вы хотите постепенно уменьшать яркость, вы можете использовать SSR с пропорциональным управлением.Они способны постепенно снижать среднюю мощность нагрузки пропорционально силе входного сигнала. Для получения дополнительной информации вы можете посетить раздел «Пропорциональный контроль SSR».

Если вы хотите узнать больше о SSR в целом, ознакомьтесь с нашим разделом «Знаете ли вы?» раздел.

AC SSR Защита

MOV, который поставляется в комплекте с реле AC "Hockey Puck".

Ваш AC SSR от Phidgets поставляется с круглым диском на двух ножках (на фото). Это металлооксидный варистор (MOV), который должен быть установлен на клеммах нагрузки (большего размера) вашего SSR.MOV - это классический сетевой фильтр - недорогой компонент, который поглощает выбросы высокого напряжения. Скачки высокого напряжения вызываются индуктивными нагрузками, когда они выключены, а также очень часто возникают в электрической сети, когда работают близлежащие устройства. Даже если ваша нагрузка резистивная, используйте MOV для защиты SSR.

Сопоставить MOV с SSR непросто - вот почему мы включаем MOV с вашим SSR. Если MOV выбран из-за слишком низкого скачка напряжения, он быстро изнашивается.Если он выбран из-за слишком высокого скачка напряжения, он не защитит ТТР должным образом. Чтобы сбалансировать защиту SSR от срока службы MOV, мы обнаружили, что необходимо использовать SSR, рассчитанные на 240 В переменного тока в приложениях на 120 В переменного тока, и SSR, созданные на 480 В переменного тока в приложениях на 240 В переменного тока. Если вам необходимо использовать наши SSR переменного тока при более высоком напряжении, чем мы рекомендуем, не используйте прилагаемый MOV.

По мере того, как MOV изнашиваются от использования, они становятся более чувствительными к обычным скачкам напряжения, что приводит к их более быстрому износу.Когда они полностью выйдут из строя, произойдет короткое замыкание, потенциально создающее опасность пожара. MOV, входящий в комплект вашего SSR, имеет встроенный предохранитель, который отключит MOV, когда он станет опасным. На всякий случай не устанавливайте SSR рядом с легковоспламеняющимися материалами.

Для справки: номер детали MOV, поставляемого с нашими SSR переменного тока, - TMOV20RP200E .

Пропорциональный регулятор SSR

Пропорциональные управляющие реле

(часто называемые просто «управляющие реле») - это твердотельные реле, которые можно использовать для управления мощностью нагрузки.Вместо того, чтобы снижать напряжение или каким-либо образом ограничивать ток - что было бы очень дорогим решением, пропорциональный SSR снижает мощность, быстро включая / выключая нагрузку, подавая полную мощность короткими импульсами.

Пропорциональные SSR управляются переменным напряжением - по мере увеличения управляющего напряжения нагрузка становится доступной для большей мощности. Наш продукт PhidgetAnalog может использоваться для управления пропорциональными SSR, поскольку аналоговый выход может выводить различные величины напряжения, в отличие от цифрового выхода, который имеет только два состояния - высокое и низкое.Мы не продаем пропорциональные SSR, но их можно купить в Digikey, где они называются SSR с линейным управлением переменного тока.

Быстрое и грязное решение для диммирования с помощью Phidgets - это использование сервомотора RC с контроллером PhidgetAdvancedServo для вращения ручки на диммере. Из программного обеспечения серводвигатель RC поворачивается в желаемое положение, поворачивая ручку при ее повороте. Хотя это может показаться окольным путем достижения пропорционального управления, диммеры, как правило, намного дешевле, потому что они менее специализированы и производятся в большем количестве.

Примеры схем с ТТР переменного тока

Схема SSR переменного тока, переключающего общую нагрузку. К нагрузке добавлен металлооксидный варистор для защиты SSR.
Полноразмерное изображение

При подключении цепи переменного тока, особенно для долгосрочной установки, вам может быть полезно купить книгу по электропроводке в жилых помещениях в местном хозяйственном магазине. Существует множество соглашений о подключении (и часто юридических кодексов), которые помогут вам спланировать ваш проект, а юридические кодексы часто являются отличным источником мудрости.

SSR постоянного тока (от 0 до 50 В постоянного тока)

Мы продаем ТТР постоянного тока для этого переключателя с максимальной нагрузкой 50 вольт. Если вы не уверены, какие напряжения вы можете переключать в будущем, можно использовать твердотельные реле постоянного тока с более высоким напряжением для переключения более низких напряжений. Обычной инженерной практикой является покупка SSR, рассчитанного на напряжение на 50–100% выше, чем напряжение, которое вы планируете переключать. Например, если вы переключаете 24 В, разумно использовать SSR на 50 В.

Выбор DC SSR

Теперь, когда вы определили рабочее напряжение, среднее значение и импульсный ток, вы можете создать короткий список реле,

  • Максимальное напряжение нагрузки больше или равно вашему рабочему напряжению,
  • Максимальный импульсный ток больше или равен вашему импульсному току, а
  • Максимальный средний ток больше или равен вашему среднему току.

Теперь сравним Max. Ток нагрузки без радиатора Значение для SSR в вашем списке соответствует среднему току нагрузки. Если ваш средний ток нагрузки больше, вам может понадобиться радиатор. Для выбора радиатора обратитесь к разделу «Выбор радиатора». В качестве альтернативы, посмотрите на другие SSR в вашем списке - там может быть SSR, который может справиться с вашим средним током нагрузки без радиатора. SSR, рассчитанные на большую нагрузку, чем нагрузка, которую вы используете, будут более эффективными (что означает меньшие потери энергии в виде тепла), чем SSR, работающий при максимальной нагрузке.

На этом этапе вы знаете, какой SSR вам нужен.

Если вы хотите узнать больше о SSR в целом, ознакомьтесь с нашим разделом «Знаете ли вы?» раздел.

Защита от ТТР постоянного тока

Диод, входящий в комплект наших ССР постоянного тока "хоккейная шайба". Катод отмечен линией. Синий символ показывает эквивалентную схему диода.
Полноразмерное изображение SSR постоянного тока, переключающий электродвигатель. Набор 1018 Phidget InterfaceKit управляет SSR с помощью своих цифровых выходов. На двигателе показан диод, а между источником питания и остальной частью цепи включен предохранитель.
Полноразмерное изображение

Ваш DC SSR от Phidgets поставляется с диодом. Этот диод должен быть установлен поперек вашей нагрузки, а катод должен быть установлен в сторону положительной клеммы источника питания (как показано на схеме).

Если диод установлен в обратном направлении, при включении SSR произойдет короткое замыкание нагрузки, что, вероятно, приведет к выходу из строя диода, SSR или источника питания. Предохранитель, защищающий источник питания, - это всегда хорошая идея. Вы можете поместить предохранитель между положительной клеммой источника питания и положительной клеммой на стороне нагрузки SSR.

Диод защищает SSR от сильных остаточных токов после выключения SSR. Пока ваша нагрузка приводится в движение, индуктивность создает магнитные поля вокруг проводки. Каждая нагрузка в некоторой степени индуктивна, и когда SSR выключается, магнитные поля будут проталкивать ток по теперь открытому SSR, легко повреждая его. Диод позволяет этим токам рециркулировать в нагрузке до тех пор, пока они не потеряют свою энергию.

Для справки, номер детали диода, поставляемого с нашими SSR постоянного тока, - 10A02-T .

Примеры схем с ТТР постоянного тока

Схема SSR постоянного тока, коммутирующего общую нагрузку, которая защищена диодом, включенным параллельно. Схема защищена плавким предохранителем, включенным последовательно после источника питания.
Полноразмерное изображение

Гальваническая развязка, встроенная в SSR постоянного тока, позволяет размещать их в цепи, как выключатель. Поскольку он изолирован, вам не нужно беспокоиться о заземлении или смещении напряжения.

При использовании ТТР постоянного тока всегда проверяйте, что положительная клемма нагрузки (помечена +) обращена к положительной клемме источника питания.Если клеммы нагрузки перевернуты, ваша нагрузка немедленно включится. Внутри SSR есть диод, который позволяет току свободно течь через него, когда SSR подключен неправильно. Эта функция включена, потому что в противном случае подобная ошибка при подключении могла бы разрушить транзистор в DC SSR.

SSR постоянного тока можно установить с любой стороны нагрузки, и он будет работать правильно, но есть преимущество в установке SSR между источником питания и нагрузкой. Если нагрузка подключена к источнику питания, на ней всегда будет потенциально опасное напряжение, даже когда она не работает.

SSR переменного / постоянного тока (от 0 до 40 В постоянного тока / от 0 до 28 В переменного тока)

Небольшой универсальный ТТР переменного / постоянного тока, установленный на плате Phidgets для легкого доступа к контактам.

Наши SSR AC / DC построены на небольшой печатной плате, что делает их физически меньше, чем SSR с большой «хоккейной шайбой», и дешевле. Они ограничены более низкими токами и не могут быть установлены на радиаторе.

Мы продаем SSR переменного / постоянного тока, которые могут переключать до 40 В постоянного тока или 28 В переменного тока. Это указано на страницах продукта SSR в разделе «Максимальное напряжение нагрузки».Нет нижнего предела для напряжений, которые могут переключать SSR переменного / постоянного тока. Если у вас напряжение близкое - будьте осторожны. Например, 36-вольтовая система, построенная из 3-х свинцово-кислотных аккумуляторов, может достигать 45 вольт при зарядке.

Выбираем AC / DC SSR

Теперь, когда вы определили рабочее напряжение, среднее значение и импульсный ток, вы можете создать короткий список реле,

  • Максимальное напряжение нагрузки больше или равно вашему рабочему напряжению,
  • Максимальный импульсный ток больше или равен вашему импульсному току, а
  • Максимальный средний ток больше или равен вашему среднему току.

Если вас интересует минимальная стоимость, вы, скорее всего, выберете самый дешевый вариант, соответствующий этим критериям. Если вы заинтересованы в высокоэффективной работе и меньшем тепловыделении, подумайте о покупке SSR с более высоким номинальным током.

Ваш SSR переменного / постоянного тока от Phidgets имеет встроенную защиту от статического электричества и опасных остаточных токов после выключения SSR. Если переключаемая нагрузка питается от источника постоянного тока, установка диода поперек нагрузки обеспечит еще большую защиту.Обратитесь к разделу Защита SSR постоянного тока для получения дополнительной информации.

Чтобы узнать больше о SSR в целом, посетите "Знаете ли вы?" раздел.

Примеры цепей с SSR переменного / постоянного тока

Универсальный SSR переменного / постоянного тока, переключающий нагрузку постоянного тока. Клеммы нагрузки двунаправленные, поэтому не имеет значения, каким образом вы их подключаете. Дополнительный диод может быть добавлен для защиты SSR при переключении нагрузок постоянного тока.
Полноразмерное изображение

Гальваническая развязка, встроенная в SSR переменного / постоянного тока, позволяет размещать их в цепи, как выключатель.Цепи без гальванической развязки требуют гораздо большей осторожности - правильного заземления, тщательного учета смещений напряжения.

Использование радиаторов с хоккейной шайбой SSR

«Хоккейная шайба» ССР с пластиковой крышкой (слева), термопрокладка (справа). Все SSR для хоккейных шайб, продаваемые на Phidgets, поставляются с обоими этими аксессуарами, а также с диодом или варистором для защиты SSR. «Хоккейная шайба» SSR закреплена на небольшом радиаторе двумя винтами. Термопрокладка зажата между ТТР и радиатором. Твердотельные реле

смогут обеспечить надежность и долгий срок службы только в том случае, если они будут храниться в прохладном месте.Холодность, конечно, относительна, но хорошее практическое правило - держать металлическую основу SSR при температуре ниже 85 ° C (185 ° F). Термопару можно использовать для точного измерения температуры металлического основания.

Избыточное тепло обычно происходит из-за слишком большого тока и слишком малого радиатора. Также можно выделить много тепла при частом включении и выключении реле. Если ваше реле работает в течение коротких периодов времени, вам может не понадобиться такой большой радиатор - при условии, что реле никогда не оставляют случайно включенным на длительное время.Если пространство не вызывает беспокойства, лучше проявить осторожность.

Перед покупкой радиатора подумайте, действительно ли он вам нужен. Если ваше приложение работает при комнатной температуре, а ваш средний ток меньше, чем Max. Ток нагрузки без радиатора. Согласно спецификации вашего SSR, радиатор вам не понадобится. В качестве альтернативы, если в вашем проекте есть большое металлическое шасси, к которому может крепиться SSR, его можно использовать в качестве радиатора.

Каждый SSR, подходящий для использования с радиаторами, будет включать в себя спецификацию того, какой ток он может переключать с каждым радиатором, который мы продаем.В этой спецификации предполагается, что над радиатором достаточный поток воздуха, и что он имеет комнатную температуру. У наших SSR есть лист металла внизу, где сосредоточено тепло - здесь также измеряется тепло, чтобы определить, слишком ли горячий SSR. В комплект Phidgets входит термопрокладка с нашими SSR Hockey Puck (см. Изображение). Вы помещаете эту площадку под SSR при установке на радиаторе или на больших металлических поверхностях, которые могут рассеивать тепло. Прокладка выполняет ту же функцию, что и термопаста - помогает проводить тепло между основанием SSR и радиатором.Если вы предпочитаете использовать термопасту, вы можете использовать ее вместо прокладки. В наши радиаторы входят винты для крепления твердотельных реле. При затягивании SSR на радиаторе используйте отвертку хорошего размера, чтобы обеспечить хорошую проводимость.

Вы можете увидеть нашу подборку радиаторов в категории реле нашего магазина.

Подключение проводов к хоккейной шайбе SSR

ТТР переменного тока с нормально подключенными проводами и MOV, установленным на стороне нагрузки. Монтажные наконечники TRM6, подключенные к ТТР постоянного тока.

При подключении нагрузки к SSR провод закручивается по часовой стрелке вокруг клеммы, поэтому, когда винт затягивается, он затягивает провод сильнее.Мы рекомендуем использовать провода сечением до 10 AWG - если больше, на винтах не останется достаточной резьбы для затяжки, и они разорвутся. Провода большего размера можно прикрепить с помощью кабельного наконечника. Проушина зажимается под винт SSR, а провод присоединяется к проушине.

Ширина клеммной колодки (мм / порт) Рекомендуемый калибр проводов (AWG)
3,81 с 16 по 26
5,0 с 12 до 24
9.5 от 10 до 26

Ослабленные соединения проводов могут выделять много тепла - используйте достаточно большую отвертку при зажатии проводов нагрузки, чтобы убедиться, что винты затянуты достаточно сильно.

Знаете ли вы?

  • Напряжение сети ТТР переменного тока не может переключать постоянный ток. Они никогда не выключат нагрузку. SSR переменного тока выключаются дважды за цикл переменного тока, когда ток меняет направление и на мгновение становится нулевым. Например, в Северной Америке переменный ток составляет 60 Гц, поэтому SSR переменного тока имеет 120 возможностей выключения в секунду (SSR будет только оставаться выключенным , если управляющий сигнал низкий).Если SSR работает от постоянного тока, ток будет протекать непрерывно, и нагрузка не отключится, даже если управляющий вход отключен.
  • AC SSR отключается автоматически каждый раз, когда ток нагрузки достигает нуля. Он снова включится почти сразу, пока сигнал, управляющий SSR, будет высоким. На самом деле SSR переменного тока будет иметь низкое ненулевое значение тока, которое он считает «нулевым». В технических данных эта спецификация обычно называется «Минимальный ток нагрузки».Если ваша нагрузка требует меньше этого минимального тока, ваш SSR никогда не включится или не будет надежно включаться. Самое простое решение этой проблемы - подключить другую нагрузку параллельно первой, увеличив ток, необходимый для нагрузки.
  • SSR Производители начали добавлять простую схему внутри SSR переменного тока, через клеммы нагрузки, называемую демпфером. Демпфер поглощает очень быстрые электрические изменения, которые обычно могут вызвать случайное включение AC SSR .Когда включен SSR переменного тока, разница напряжений между клеммами небольшая, поэтому демпфер оказывает очень небольшое влияние. Когда AC SSR выключен, демпфер активно защищает SSR, но за свою цену, поскольку пропускает через SSR небольшой ток, который тратится впустую.
  • AC SSR использует биполярные транзисторы - старая технология, которая была заменена транзисторами CMOS в современных цифровых схемах. Биполярные транзисторы по-прежнему лучше справляются с высокими напряжениями.Биполярные транзисторы и более сложные транзисторы, построенные на их основе, будут терять постоянное напряжение при протекании через них тока. Набор транзисторов в вашем SSR потеряет около 1,7 вольт, поэтому в системе 120 В переменного тока вы потеряете около 1,5% в SSR. Эта энергия преобразуется в тепло внутри SSR, и нагрев этих транзисторов является причиной того, что SSR часто нуждаются в радиаторах.
  • SSR и полупроводники в целом обычно выходят из строя из-за короткого замыкания. Короткое замыкание - это цепь, внутренние детали которой повреждены, и ток может свободно течь по ней.Это означает, что ваша нагрузка, вероятно, будет постоянно включаться (до тех пор, пока вы не отключите источник питания) - убедитесь, что это не создает угрозы безопасности. Например, нагреватели для сауны имеют простое механическое отключение с термическим срабатыванием, которое защищает их в случае выхода из строя управляющей электроники.
  • SSR постоянного тока (по крайней мере, те единицы, которые мы продаем) используют полевые транзисторы на основе металлооксидных полупроводников (MOSFET). МОП-транзисторы не теряют постоянное напряжение - вместо этого, когда они включаются, они действуют как очень небольшое ограничение для потока тока - резистор.При малых токах небольшое ограничение расходует очень мало энергии, обеспечивая высокий КПД и часто не требуя радиатора. Этот КПД теряется по мере увеличения тока - удвоение тока увеличивает выработку тепла в четыре раза.
  • Обычно полевой МОП-транзистор может блокировать ток только в одном направлении - как только напряжение меняется на противоположное, ток течет через диод, идущий параллельно полевому МОП-транзистору. Если бы для переключения переменного тока использовался полевой МОП-транзистор, нагрузка включалась бы половину времени.Распространенным решением является использование двух полевых МОП-транзисторов вплотную друг к другу - именно это мы и делаем с нашими SSR AC / DC .

Что такое твердотельные реле | DigiKey

Поскольку электронное управление распространяется на потребительские, коммерческие, медицинские и промышленные применения, возрастает потребность в схемах низкого напряжения или низкого тока для переключения цепей высокого напряжения или высокого тока. В то время как электромеханические реле (EMR) имеют свое место, твердотельные реле (SSR) часто предпочтительнее из-за их небольшого размера, более низкой стоимости, высокой скорости, низкого электрического и звукового шума и надежности.

Хотя они могут быть популярными, чтобы правильно применять твердотельные реле, проектировщикам необходимо понимать нюансы их физических и электрических операций и характеристик. Затем они могут тщательно согласовать правильный SSR с входом, выходом, нагрузкой и температурной ситуацией приложения, чтобы обеспечить успешный дизайн.

В этой статье обсуждаются нюансы SSR, как их правильно применять, а также представлены некоторые из последних решений SSR по проблеме переключения более высоких напряжений и токов.

Основы SSR

У

SSR есть множество других названий в зависимости от производителя или поставщика. Например, Omron называет их MOS FET реле, а Toshiba называет их фото реле (Таблица 1).

Производитель Наименование в каталоге
Toshiba Фото реле
Matsushita Electric Works Фото MOS реле
OKI Electric Industry Реле MOSFET
OKI Electric Industry Фото MOS Switch
Завод Окита Фото реле DMOS-FET
л.с. Твердотельное реле
ОМРОН MOS FET реле

Таблица 1. Хотя основной принцип работы одинаков, разные поставщики используют различные обозначения для своих SSR, некоторые подчеркивают свою уникальную или запатентованную реализацию SSR.(Источник изображения: Omron Corp.)

Независимо от используемой номенклатуры принцип действия остается неизменным и является расширением хорошо известной и широко используемой оптопары (также называемой оптоизолятором). В простейшей форме это светодиод на входной стороне и фототранзистор на выходной стороне, разделенные оптическим путем порядка миллиметров (рисунок 1). В зависимости от уровней напряжения и тока вместо фототранзистора можно использовать светочувствительный тиристор или симистор.

Рис. 1. Физическая конструкция оптоизолятора обманчиво проста: светодиод преобразует электрическую энергию в фотоны, которые, в свою очередь, возбуждают фототранзистор, обеспечивая низкое падение напряжения V BE ; оптический путь обеспечивает гальваническую развязку. (Источник изображения: Technogumbo)

Когда светодиод находится под напряжением, генерируемые им фотоны активируют фототранзистор, который затем переходит в проводящий режим, позволяя току течь к нагрузке. Это называется состоянием «включено».Когда светодиод не горит, фототранзистор выключен или не проводит ток и выглядит как исправная (но не идеальная) разомкнутая цепь.

Гальваническая развязка между светодиодом и фототранзистором обычно находится в диапазоне нескольких тысяч вольт из-за разделения светодиода / фототранзистора, а также оптически прозрачного изолирующего барьера. Обратите внимание, что изоляция - это параметр пробоя напряжения и не то же самое, что сопротивление входа и выхода, которое составляет от 1000 до 1 миллиона МОм (часто называемое «бесконечным» сопротивлением).Время переключения между включенным и выключенным состояниями обычно составляет несколько микросекунд.

Однако полный SSR - это больше, чем просто светодиод и фототранзистор или светочувствительный SCR / TRIAC. Это также требует дополнительных схем и функций как со стороны входного светодиода, так и со стороны выходного светочувствительного элемента (рисунок 2).

Рис. 2: Полный SSR требует дополнительных схем и функций как со стороны входного светодиода, так и со стороны выходного светочувствительного элемента. (Источник изображения: Omron Corp.)

Хотя твердотельные реле являются относительно простыми устройствами, существуют конструктивные особенности, связанные с входом, величиной и типом изолированной нагрузки, а также особые обстоятельства, которые следует учитывать при их использовании.

При выборе SSR разработчик должен знать уровень и тип входного привода (переменный или постоянный ток), а также характеристики нагрузки, включая максимальный ток, максимальное напряжение и тип (опять же, переменный или постоянный ток). Доступны SSR, которые могут приводиться в действие от нескольких вольт до десятков и даже более высоких напряжений, хотя входы с более низким напряжением становятся все более распространенными и более совместимы с современной электроникой как по соображениям безопасности, так и по соображениям эффективности.

Если входным драйвером является постоянный ток, он может напрямую управлять входным светодиодом SSR. Если это переменный ток, разработчик должен добавить мостовой выпрямитель перед SSR. Вполне вероятно, что в остальном идентичный SSR доступен с мостом, уже встроенным в устройство. Параметр внутреннего исправления часто является разумным выбором, поскольку он позволяет избежать тонких проблем с компоновкой, а также обеспечивает полностью заданную производительность ввода / вывода. Типичная входная чувствительность SSR составляет около 6 милливатт (мВт).

Сторона выхода SSR несколько сложнее, чем вход, в зависимости от характера нагрузки. Если выходом SSR является просто транзистор, полевой транзистор или одиночный тиристор, он может работать только в одном направлении. Таким образом, его можно использовать только с нагрузками постоянного тока, примерами которых являются нагреватели без питания от сети. Для нагрузок переменного тока используется пара TRIAC или SCR. Продавцы обычно предлагают аналогичные SSR с выходами только постоянного или переменного тока. В общем, SSR на выходе переменного тока также можно использовать для постоянного тока. Выходные характеристики варьируются от нескольких вольт или ампер до десятков и сотен вольт или ампер.

Опции

SSR: контакты NO / NC и многополюсный

Стандартный SSR имеет один нормально разомкнутый (NO) выход. Однако во многих приложениях требуется обратная, нормально замкнутая (NC) конфигурация с размыканием выходного каскада при подаче питания на входной каскад. Кроме того, существуют конструкции, в которых одновременно требуется как нормально разомкнутый, так и нормально замкнутый контакт, и даже комбинация одного нормально разомкнутого, одного нормально замкнутого контакта и, возможно, нескольких других контактных полюсов.

Чтобы удовлетворить потребность в нескольких полюсах, а также в нормально разомкнутых и нормально замкнутых контактах, пользователи могут добавить специализированную схему вывода, но при таком подходе есть как минимум четыре проблемы.Во-первых, это часто бывает при высоком напряжении и / или сильном токе, поэтому конструкция имеет множество неотъемлемых проблем. Во-вторых, он должен соответствовать различным регулирующим стандартам безопасности и быть одобренным. В-третьих, это другое дело в проекте. В-четвертых, проверка полученных результатов - сложная задача.

В качестве альтернативы, пользователи могут инвертировать входной сигнал через небольшую схему, так что NO SSR будет замкнут, без сигнала и разомкнут, при подаче входного сигнала.Однако это создает потенциальные проблемы безопасности в отношении состояния выхода SSR при сбое питания на стороне входа, поскольку выход реле вернется в свое «исходное» состояние NO. Напомним, что входная мощность SSR и выходные источники питания независимы по определению изоляции. Таким образом, разработчик может быть не в состоянии гарантировать известный отказоустойчивый режим вывода.

Когда требуется более одного полюса, несколько SSR могут включаться последовательно или параллельно. Это жизнеспособное решение, но оно требует тщательного рассмотрения требуемого тока и напряжения привода, а также последствий отказа устройства в последовательной или параллельной топологии.Использование нескольких SSR также добавляет к спецификации и занимает больше места на плате.

Признавая эти потребности NO / NC и многополюсности, поставщики добавили дополнительные схемы в SSR, чтобы обеспечить различные схемы вывода с полным тестированием и сертификацией. Многие из этих SSR доступны через семейства с аналогичными спецификациями, за исключением специфики выходной конфигурации, которая упрощает их выбор и использование.

Например, IXYS Integrated Circuits Division предлагает три SSR с почти одинаковой производительностью и развязкой входа / выхода 3750 В RMS , но с разными структурами выходов:

• LAA110 содержит два однополюсных реле NO (1-Form A), каждое из которых рассчитано на 350 В / 120 мА (переменного или постоянного тока), и доступен в 8-контактных корпусах DIP, SMT и плоских корпусах (рис. 3).

Рис. 3. LAA110 от IXYS - это базовый двухканальный SSR с двумя независимыми входами и соответствующими им NO-выходами. (Источник изображения: IXYS)

• LCC110 имеет одну пару контактов NO / NC (1-Form-C), управляемую одним входом с такими же характеристиками и корпусами, что и LAA110 (Рисунок 4).

Рисунок 4: LCC110 от IXYS - это базовый двухканальный SSR с одним входом, управляющим одним нормально разомкнутым и одним нормально замкнутым выходным полюсом. (Источник изображения: IXYS)

• LBA110 состоит из двух независимых реле: однополюсного, нормально разомкнутого (1-Form-A) реле и однополюсного, нормально замкнутого (1-Form-B) реле, опять же с такими же общими характеристиками и вариантами комплектации. (Рисунок 5).

Рис. 5. Еще одним членом семейства является IXYS LBA110, двухканальный SSR с отдельными входами для каждого из выходных полюсов NO и NC. (Источник изображения: IXYS)

Аналогичный набор опций доступен для большинства семейств SSR повышенной мощности. Может возникнуть соблазн просто соединить несколько выходов SSR параллельно для достижения требуемого номинала, если текущий рейтинг одного SSR с меньшим током недостаточен. В целом, однако, это не лучшая инженерная практика по нескольким причинам.

Во-первых, даже SSR с одинаковым номинальным рейтингом не идеально подходят. Таким образом, один SSR может в конечном итоге выдержать больший ток, чем другой, что приведет к превышению его предельных значений тока и температуры, что приведет к преждевременному выходу из строя. Во-вторых, если один из нескольких SSR выйдет из строя по какой-либо причине, другие будут нести чрезмерный ток и вскоре выйдут из строя в каскадной последовательности. По этим причинам лучше выбрать один SSR с подходящей выходной мощностью.

Защита и ограничения SSR

Хотя SSR довольно прочные, бывают ситуации, когда им нужна дополнительная защита.Для SSR, которые переключают резистивные (неиндуктивные) нагрузки переменного тока, такие как нагреватели ламп накаливания, может потребоваться указать, что синхронный SSR включает / выключает выход только при нулевом пересечении линии переменного тока, независимо от входа. синхронизация сигнала управления (рисунок 6).

Рис. 6. Синхронный SSR предназначен для переключения своего выхода только при переходах через ноль линии переменного тока для минимизации генерации электромагнитных помех: a) формы сигналов несинхронного SSR для резистивной нагрузки; б) синхронные формы сигналов SSR для резистивной нагрузки.(Источник изображения: Crydom, через Omega Engineering)

Переключение только при пересечении нуля минимизирует или устраняет линейный и излучаемый шум, возникающий в результате инициирования или прекращения сигнала на выходе переменного тока в середине цикла. Однако разработчикам необходимо знать, что SSR с переходом через ноль могут не отключиться при высокоиндуктивных нагрузках. Чтобы учесть это, поставщики SSR также предлагают так называемые SSR со случайным переключением, которые включаются / выключаются в момент, требуемый входным переходом. Опять же, разработчик должен понимать нагрузку и выбирать соответствующий SSR из каталога поставщика.

При использовании SSR также необходимо учитывать тепловые характеристики из-за внутренних потерь. Даже когда выход включен, на активном элементе есть небольшое, но критическое падение, как, например, было бы для полевого МОП-транзистора, управляющего двигателем. Возникающее тепло должно рассеиваться SSR. По этой причине поставщики предлагают твердотельные реле со спецификациями, определяющими допустимую рабочую температуру при максимальной нагрузке, а также кривые теплового снижения характеристик. Тепловую среду SSR можно смоделировать с помощью стандартных инструментов.В более крупных твердотельных реле с более высоким уровнем генерируемого тепла могут потребоваться более сложные устройства для отвода тепла, в то время как в более мелких твердотельных реле часто могут использоваться стандартные радиаторы на интегральных схемах.

Твердотельные реле

для больших нагрузок с повышенными требованиями к тепловыделению также имеют все более крупные физические конфигурации. SSR доступны в корпусах от 6-выводных SOIC для небольших нагрузок до больших модулей для больших нагрузок, а также в корпусах, которые могут быть смонтированы на панели, на рейке или отдельно.

Например, Vishay Lh2510 SSR, устройство SPST-NO (1-Form-A), рассчитано на работу до 200 В при 200 мА и размещено в стандартном 6-выводном корпусе SMT или DIP (рисунок 7).Его можно использовать с нагрузками переменного или постоянного тока (Рисунок 8). Несмотря на свой миниатюрный размер, этот SSR предлагает номинальные характеристики изоляции 5300 В, RMS, для непрерывных и 8000 В, RMS, , переходных пиковых значений.

Рис. 7. Маломощный Vishay Lh2510 SSR представляет собой устройство SPST-NO, рассчитанное на 200 В при 200 мА, и доступно в 6-выводном корпусе для поверхностного монтажа, а также в корпусе DIP. (Источник изображения: Vishay Semiconductors)

Рисунок 8: Из-за количества доступных выводов корпуса Lh2510 может быть сконфигурирован для требований к выходу AC / DC или только DC, но с немного разными спецификациями для каждого режима.(Источник изображения: Vishay Semiconductors)

Напротив, серия EL240A SSR для монтажа на панели переменного тока от Crydom / Sensata Technologies поддерживает выходные номиналы 5 А, 10 А, 20 А и 30 А при 24-280 В переменного тока, с опциями для 5, 12 и 24 В постоянного тока. управляющие входы. Для этого количества мощности SSR поставляются в более крупных модулях размером 36,6 × 21,1 × 14,3 мм (мм) с быстроразъемными клеммами (рисунок 9). Обратите внимание, что общий физический размер не является показателем изоляции, поскольку этот больший модуль рассчитан на 3750 В, изоляция RMS , что несколько меньше, чем у гораздо меньшего 6-контактного корпуса Vishay.

Рис. 9. ТТР серии EL240A от Crydom / Sensata Technologies поддерживают токи до 30 А и управляющие входы до 24 В постоянного тока. (Источник изображения: Crydom / Sensata Technologies)

Нагрузка серии EL240A может быть подключена к любой выходной ветви, что обеспечивает гибкость конструкции (рисунок 10). Большой размер этих модулей позволяет производителю добавить светодиодный индикатор (также показанный на рисунке 10) для быстрой визуальной оценки состояния входа SSR.

Рис. 10: Нагрузка может быть подключена к любой выходной ветви серии EL240A, что обеспечивает большую гибкость конструкции. (Источник изображения: Crydom / Sensata Technologies)

Посмотрите и за пределы SSR

Как и в случае с большинством устройств, связанных с питанием, существуют проблемы, выходящие за рамки максимальной внешней мощности, напряжения, тока и тепловыделения. Физическая проводка SSR, шины или дорожки на печатной плате также должны быть рассчитаны на пропускание тока нагрузки без чрезмерного падения ИК-излучения.Аналогичным образом, для подключений к SSR, будь то через дискретные провода, розетки или пайку печатной платы, все они должны иметь соответствующие размеры и номиналы.

Даже при низких уровнях тока SSR может переключать более высокие напряжения. В этой ситуации важна безопасность пользователя, в том числе обязательные минимальные зазоры и путь утечки в зависимости от напряжения (рисунок 11). Такие требования определены в IEC / UL 60950-1, IEC 60601-1, EN 60664-1: 2007 и VDE 0110-1 среди множества стандартов.

Рис. 11: Зазор (вверху) - это кратчайший путь между двумя проводящими частями или между проводящей частью и ограничивающей поверхностью оборудования, измеренный по воздуху.Путь утечки (внизу) - это кратчайший путь между двумя токопроводящими частями или между токопроводящей частью и ограничивающей поверхностью оборудования, измеренный по поверхности изоляции между ними. (Источник изображения: Optimum Design)

Зазор определяется как кратчайший путь между двумя проводящими частями или между проводящей частью и ограничивающей поверхностью оборудования, измеренный по воздуху. Путь утечки определяется как кратчайший путь между двумя проводящими частями или между проводящей частью и ограничивающей поверхностью оборудования, измеренный по поверхности изоляции между ними.Соблюдение требований к этим двум параметрам помогает гарантировать отсутствие пробоя, искрения или воздействия на пользователя высокого напряжения.

Хотя сам SSR может быть рассчитан на обеспечение изоляции в несколько тысяч вольт, важно, чтобы любые соединения с SSR сохраняли необходимое расстояние для сертификации используемых напряжений.

SSR

также может нуждаться во внешней защите. SSR нагрузки переменного тока может видеть выбросы высокого напряжения при отключении собственной или близлежащей индуктивной нагрузки, что приводит к повреждению выходной структуры SSR.Наиболее распространенное решение - разместить один или несколько защитных элементов, таких как металлооксидный варистор (MOV) или ограничитель переходного напряжения (TVS), на клеммах нагрузки SSR в качестве фиксаторов напряжения (Рисунок 12).

Рис. 12. Для выхода SSR может потребоваться внешняя защита от скачков напряжения, например, возникающих при переключении индуктивных нагрузок. Эта защита может быть обеспечена MOV или TVS. (Источник изображения: Phidgets, Inc.)

Для определения размеров этих устройств требуется анализ величины нагрузки v = L (di / dt).Если номинальное напряжение MOV слишком высокое, оно не защитит от скачков более низких значений, которые все равно могут вызвать повреждение; и наоборот, если он слишком низкий, он будет часто «срабатывать», и MOV действительно ухудшаются и изнашиваются с повторяющимися скачками перенапряжения.

Кроме того, включение / выключение индуктивной нагрузки с использованием SSR переменного тока с TRIAC или тиристорным выходом вызовет переходный процесс напряжения du / dt, который может вызвать неправильное включение SSR. Хотя это ложное зажигание не повреждает SSR в отличие от скачка напряжения, вызванного di / dt, очевидно, что это все еще проблема.Чтобы предотвратить это явление, также добавляется RC-демпферная цепь для подавления внезапного повышения напряжения, наблюдаемого TRIAC (рисунок 13).

Рисунок 13: RC-демпфер на выходе SSR предотвращает ложное включение из-за индуктивных нагрузок. (Источник изображения: Omron Corp.)

Ситуация для SSR постоянного тока аналогична, но несколько проще. Если нагрузка индуктивна, всплеск тока, который она генерирует при выключении, может повредить теперь открытый выход SSR. Стандартным решением является соединение диода с катодом на положительной клемме, чтобы обеспечить путь вокруг SSR для протекания и рассеивания тока (тот же метод используется с катушками EMR и соленоидов).

Заключение

Твердотельные реле - чрезвычайно полезные и мощные компоненты для включения / выключения нагрузок переменного и постоянного тока, обеспечивая при этом гальваническую развязку между управлением и нагрузкой. Они по своей сути прочны и просты в применении, но разработчики должны тщательно оценить входные, выходные, нагрузочные и тепловые условия, чтобы выбрать подходящий SSR и использовать его для надежной реализации его рабочих характеристик.

Заявление об ограничении ответственности: мнения, убеждения и точки зрения, выраженные различными авторами и / или участниками форума на этом веб-сайте, не обязательно отражают мнения, убеждения и точки зрения Digi-Key Electronics или официальную политику Digi-Key Electronics.

Подключение твердотельного реле - модернизация

Хай Ангус,

Полупроводниковое реле не имеет механических частей, а использует оптрон (светодиод и датчик света). Он включается на пике синусоидального напряжения переменного тока и выключается, когда он находится в центре между пиками (отсутствие напряжения). Это сложный предмет, но, говоря вкратце, он прослужит намного дольше, и благодаря «чистому переключению» двигателей, трансформаторов и других устройств с ними они тоже будут работать дольше в теории. Механические реле не переключаются чисто.Также будьте осторожны с номиналом 25A, реле будет значительно нагреваться, и любые короткие замыкания в вашем оборудовании приведут к его выходу из строя в положении ON, в отличие от механического реле, которое перегорит, выключится и больше не включится.

Вместо того, чтобы включать все с помощью одного реле, подумайте вот о чем: используйте один SSR для каждого устройства, а затем используйте цепи низкого напряжения для включения устройств через SSR. Вы можете проложить более тонкую и менее дорогую проводку ко всем видам оборудования в своем магазине и управлять им из одного или нескольких мест, если хотите; Когда я включаю свой маршрутизатор, открываются воздушные заслонки к пылеуловителю, пылеуловитель срабатывает, и маршрутизатор включается с концевыми переключателями и светодиодами разных цветов, чтобы указать, в каком состоянии находятся устройства и их части ... Я могу используйте ножную педаль для запуска машин или передних панелей.Есть аварийные выключатели, светодиодное освещение, цифровые индикаторы… Все низковольтные и недорогие детали, на каждой машине работает один очень хороший, но не дешевый источник питания на 15 В. У меня есть дополнительная розетка 110 В переменного тока на большинстве машин, которую я могу использовать механический выключатель, чтобы отключить ее от SSR (удаленно), чтобы включить промышленный пылесос для некоторых из моих приспособлений или переключить его в ручной режим (ON), и подключите паяльник или другое устройство, чтобы использовать его, когда машина выключена. Затем я могу подойти к сверлильному станку или настольной пиле и сделать то же самое, и кто-то другой тоже сможет запускать вещи одновременно, не перегружая SSR.

Чего ты ожидал, я из рода Гленденингов!

Подключение твердотельных реле Crydom MOSFET


Рис. 1

Льюис Лофлин

На предыдущих веб-страницах мы изучали различные способы использования фотоэлектрических выходных оптопар для управления силовыми МОП-транзисторами.

Давайте кратко рассмотрим предыдущие идеи.

На рис. 1 показаны драйверы фотоэлектрических МОП-транзисторов серии PVI5050N. Они не включают в себя внутренний резистор для сброса затвора, который должен добавляться извне.

Для таких типов устройств, как PVI1050N, светодиоды могут быть включены одновременно, а выходные контакты 6 и 7 могут быть соединены вместе, чтобы генерировать более высокое напряжение, необходимое для некоторых силовых полевых МОП-транзисторов. Не забудьте добавить внешний резистор сброса давления на затвор.


Рис. 2

Рис. 2 иллюстрирует использование полевого МОП-транзистора в расширенном режиме с фотоэлектрическим выходным оптопарой. В отличие от более ранних транзисторных оптопар, проблема ограничений из-за пробоя C-E и Vgs устранена.Мы ограничены только номинальными значениями тока и напряжения сток-исток.

Это создает N.O. реле, которое включается при включении светодиодного излучателя.

Подробнее о полевых МОП-транзисторах см .:


Рис. 3

Рис. 3 иллюстрирует, как вышеуказанные идеи сочетаются с SSR типа Crydom D1D40. У нас есть входная цепь на 3,5–32 В, оптопара двойного типа, N-канальный силовой полевой МОП-транзистор и различные схемы защиты.


Рис. 4

Рис. 4 показывает, какой тип корпуса D1D40 можно прикрепить к корпусу болтами для отвода тепла.Они бывают рядами номинальных значений тока и напряжения.


Рис. 5

На Рис. 5 показано, как в общем случае подключать твердотельные реле. Это вход и выход постоянного тока - обратите внимание на полярность напряжения.


Рис. 6

На Рис. 6 показано крепление для печатной платы Crydom DM0063 SSR. Они бывают разных номиналов по току и напряжению.


Рис. 7

Рис. 7 внутренняя схема и электрические соединения Crydom DM0063. Опять же, это устройство ввода и вывода постоянного тока, поэтому соблюдайте полярность.

Ардуино

Другие схемы

Твердотельное реле VS Механическое реле

С момента появления твердотельных реле несколько десятилетий назад, споры о том, что лучше, твердотельное реле (SSR) или электромеханическое реле (EMR), продолжаются. Ответ отрицательный, поскольку каждый тип реле имеет положительные и отрицательные стороны. Но если учесть требования конкретного приложения, выявляются явные победители.

На самом деле, SSR вовсе не реле, а скорее электронные схемы.Управляющие входы подключены внутри к светодиоду, который светит через воздушный зазор на световые датчики. Датчик освещенности подключен к транзисторам, которые открываются или закрываются, питая нагрузку реле. Когда транзистор закрыт, ток может свободно течь через реле, вызывая подключение нагрузки и источника питания. Когда транзистор открыт, почти весь ток блокируется, в результате чего нагрузка отключается от источника питания. Соединение светодиода с датчиками света называется оптопарой и является распространенным методом соединения двух частей схемы без прямого электрического соединения.

В механических реле используется электромагнитная катушка для размыкания или замыкания цепи. Когда ток проходит через вход и возбуждает катушку, он создает небольшое магнитное поле, которое либо оттягивает плечо переключателя от другого контакта переключателя, либо толкает его вниз, чтобы замкнуть переключатель, в зависимости от того, как переключатель сделан. . Реле также служит изолятором, поскольку управляющий (вход) и нагрузочный (выходной) концы реле электрически не связаны. Это позволяет защитить устройство, которое вы используете для управления реле, от скачков напряжения в вашем приложении.

Когда следует использовать каждый тип?

Использование EMR или SSR зависит от ряда факторов, таких как среда приложения, электрические требования, а также стоимость или бюджет.

Используйте SSR для ...

  • Приложения, требующие высокой скорости и частых операций переключения.
  • Применяется в условиях высокой вибрации.
  • Приложение, в котором реле должно быть расположено рядом с чувствительными компонентами автоматизации, такими как ПЛК, HMI и контроллеры температуры.
  • Применяется в пыльной или влажной среде.
  • Приложения во взрывоопасных зонах (присутствие дыма или газов)

Используйте EMR для ...

  • Приложения, требующие широкого диапазона выходного сигнала от реле.
  • Применения, в которых используются двигатели и трансформаторы, требующие высокого пускового тока.
  • Приложения, в которых первоначальный бюджет на установку очень ограничен.

Приложения, подверженные скачкам тока и напряжения.

EMR или SSR ... в любом случае, мы предоставим вам все необходимое. Эти опции доступны на наших весах для чеквейеров, настольных весах и укомплектованных системах весов.

Твердотельное реле (SSR) - Типы реле SSR

Что такое твердотельное реле? Конструкция, работа, применение и типы реле SSR

В этой статье мы кратко обсудим твердотельное реле (твердотельное реле) , его конструкцию, работу, схемы и различные типы реле SSR в зависимости от его коммутационных свойств и входных данных. / выходные формы.Мы также обсудим преимущества и недостатки твердотельного реле (SSR) по сравнению с реле электромагнитных реле (EMR) .

Что такое твердотельное реле (SSR)?

Твердотельное реле ( SSR ) - это электронное переключающее устройство, изготовленное из полупроводников , которое переключает (включает и выключает) цепь высокого напряжения, используя низкое напряжение на клеммах управления.

В отличие от EMR (электромагнитное реле), которое имеет катушку и механический переключатель (физические контакты), реле SSR использует оптопару для изоляции цепи управления от управляемой цепи.

Разница между SSR и EMR

Работа SSR (твердотельного реле) и EMR (электромагнитного реле) или контактного реле одинакова, в то время как основное различие между SSR и EMR заключается в отсутствии механических частей и контактов в реле SSR. Обычно SSR имеет контакт 1a, тогда как EMR имеет несколько контактов.

Другим отличием твердотельного реле от электромагнитного реле является отсутствие скачков напряжения и шума во время работы SSR.Существует вероятность утечки тока от нескольких мкА до мА в реле SSR, в то время как значение тока утечки равно нулю (0) в EMR. С другой стороны, SSR отключает нагрузки переменного тока в точке нулевого тока нагрузки, что приводит к устранению шума, дребезга контактов и электрической дуги в случае индуктивной нагрузки по сравнению с реле EMR.

Конструкция SSR (твердотельного реле)
Клеммы SSR реле

SSR реле имеет два набора клемм, т.е. входные клеммы и выходные клеммы.Эти клеммы приведены ниже:

Клеммы ввода или управления

Эти две клеммы являются клеммой управления вводом. Он подключен к цепи малой мощности, которая управляет его переключением.

Клеммы и соединения реле SSR

Управляющий вход реле SSR разработан отдельно для цепей постоянного или переменного тока.

Выходные нормально открытые (NO) клеммы

Выходные клеммы реле SSR включаются и выключаются в зависимости от управляющего входа.

Обычно электрическое соединение между этими клеммами остается открытым. Когда реле срабатывает, эти клеммы соединяются вместе, обеспечивая замкнутый путь.

Выходные клеммы специально разработаны для цепи AC или DC . В отличие от реле EMR, реле SSR не может переключать сигнал постоянного и переменного тока с помощью одних и тех же клемм.

Клемма нормально замкнутого выхода (NC)

Эта клемма реле остается закрытой до тех пор, пока реле не сработает.Когда реле срабатывает, ток не течет. Он открывается при срабатывании реле.

ПРИМЕЧАНИЕ: Обычно используемые реле SSR не имеют клемм NC (нормально замкнутые). Но реле SSR форм B и C (обсуждается ниже) использует клемму NC.

Работа и работа реле SSR

Когда низкое напряжение подается на входные управляющие клеммы реле SSR , выходные клеммы нагрузки замыкаются электрически.

Вход реле SSR активирует оптопару, которая переключает цепь нагрузки.Оптопара не имеет физического соединения и изолирует цепь низкого напряжения от цепи высокого напряжения.

Оптопара имеет на входе светодиод , излучающий инфракрасный свет при подаче напряжения. Эти ИК-волны принимаются фотодатчиком (фототранзистор, фотодиод и т. Д.) На его выходе. Фотодатчик преобразует световой сигнал в электрический сигнал и включает цепь.

Чтобы активировать оптрон, его входное напряжение должно быть больше, чем его прямое напряжение .По этой причине реле SSR не срабатывают при напряжении ниже указанного.

Выходная схема реле SSR различается для цепей переменного и постоянного тока. Обычно он состоит из тиристоров TRIAC или для цепи переменного тока и силовых полевых МОП-транзисторов для цепи постоянного тока.

Схематическая модель реле SSR

Общая схема работы реле постоянного тока в переменный SSR Работа с модельной схемой приведена ниже:

Вход DC с достаточным напряжением подается на входные клеммы управления.Имеется диод для защиты от обратной полярности применен DC .

Когда напряжение подается на светодиод оптопары, он излучает инфракрасный свет.

С другой стороны, Opto-TRIAC (приемник) улавливает свет и включается. Как только оптопара включается, через него начинает течь ток на выходе AC

В свою очередь, выход этой оптопары активирует симистор . Таким образом разрешается протекание тока цепи нагрузки AC

Типы реле SSR

Существует различных типов реле SSR (твердотельных) .Они классифицируются либо по форме ввода / вывода, либо по свойству переключения.

Классификация на основе ввода / вывода

Ниже приведены некоторые из распространенных типов реле SSR, классифицированных на основе его входной и выходной цепи (AC / DC).

Реле постоянного тока в переменный ток

Это реле работает на входе постоянного тока для переключения цепи нагрузки переменного тока . Управляющий вход этого реле SSR работает только с входом DC .

Тот факт, что это реле не работает на входе AC , объясняется тем, что оптрон работает с DC . Его входные клеммы также являются направленными. Изменение полярности входа не активирует реле. Для защиты от обратной полярности входа используется диод.

Даже после подачи требуемого входа выходной переключатель этого SSR не активируется, а только тогда, когда на его выходные клеммы подается напряжение AC .

Ниже приведена схема реле SSR постоянного тока переменного тока.

Связанная публикация: Типы трансформаторов и их применение

Реле переменного тока в переменный ток SSR

Реле SSR работает только тогда, когда на входе и выходе обеих цепей установлено значение AC .

Как известно, оптопара работает от напряжения DC . Таким образом, перед оптопарой используется выпрямитель для преобразования AC в DC .

Когда на его входную управляющую клемму подается достаточное напряжение переменного тока, он активируется, обеспечивая прохождение тока нагрузки переменного тока .

Его схема приведена ниже.

Реле постоянного тока постоянного тока

Это реле может переключать нагрузку постоянного тока высокой мощности с использованием источника постоянного тока малой мощности.

Вход постоянного тока подается на оптрон, как описано в другом примере выше.

Однако для переключения нагрузки постоянного тока используется силовой полевой МОП-транзистор или IGBT .

Mosfet проводит ток только в одном направлении, поэтому также необходимо убедиться, что выходная нагрузка подключена с соблюдением правильной полярности.Защитный диод используется, чтобы избежать повреждения при обратной полярности.

Если есть индуктивная нагрузка, с нагрузкой следует использовать обратный диод.

Реле постоянного / переменного тока SSR

Этот тип реле SSR может переключать нагрузку AC и DC с помощью отдельных клемм.

В таких реле SSR используются полевые МОП-транзисторы , соединенные последовательно с общими клеммами источника для переключения цепей AC и DC .

Его схема приведена ниже.

На этой схеме показана матрица фотодиодных ячеек как светочувствительный элемент, который вырабатывает напряжение при активации светодиода. Это напряжение подается на затвор и исток N-MOSFET , соединенных последовательно.

Чтобы использовать это реле для цепи переменного тока , используются клеммы дренажа полевых МОП-транзисторов , а клеммы источника питания не должны использоваться.

При использовании цепи постоянного тока , Дренаж и исток клеммы полевых МОП-транзисторов используются для переключения.

Классификация на основе коммутационных свойств

SSR реле также классифицируются на основе их коммутационных свойств , которые приведены ниже.

Эти реле управляют цепями переменного тока и используются для управления желаемыми выходами в конкретном приложении.

Реле мгновенного включения SSR

Реле такого типа мгновенно переключает на цепь нагрузки при подаче достаточного входного напряжения. Он отключается при следующем переходе напряжения нагрузки через ноль после снятия управляющего входа.

Реле SSR с нулевым переключением

Реле этого типа включается, когда подается входное напряжение и переменное напряжение нагрузки пересекает следующее нулевое напряжение.

Он отключается как обычные реле SSR , когда входное напряжение снимается и напряжение переменного тока нагрузки достигает нуля вольт.

Работа реле переключения нуля достигается с помощью схемы, известной как схема перехода через нулевой уровень , которая обнаруживает переход через нулевой уровень и активирует TRIAC .

Пиковое реле SSR

Эти типы реле SSR включаются, когда выходное напряжение переменного тока достигает своего следующего пика после подачи необходимого входного управляющего напряжения.

Он также отключается после снятия входного напряжения и перехода через ноль выходного переменного тока.

В этих реле используется блок обнаружения пика, который срабатывает TRIAC , когда цикл выходного переменного тока достигает своего пика.

Реле аналогового переключения SSR

В то время как эти другие типы переключения SSR зависят от выходного цикла переменного тока, переключение этого реле зависит от его входной амплитуды.

Пусковое выходное напряжение аналогового реле SSR пропорционально входному управляющему напряжению.

Предположим, что 3-32 В постоянного тока входное реле 3 В представляет 0% и 32 В представляют 100% пикового напряжения переменного тока нагрузки.

При удалении управляющего входа реле выключается при следующем переходе через нуль переменного тока на выходе.

Классификация на основе полюсов и направления движения

Реле SSR подразделяются на три типа или « Forms », учитывая их полюса и конфигурацию хода.

Форма A или SPST NO Тип SSR

Форма A реле SSR - это реле SPST (однополюсное, одноходовое) с нормально разомкнутыми ( NO ) клеммами. Клеммы выходной нагрузки обычно разомкнуты, когда нет внешнего управляющего входа. Когда реле активируется, выходные клеммы соединяются вместе и пропускают ток.

На схеме ниже показано реле SSR, способное переключать переменный и постоянный ток на отдельных клеммах.

Фотодиодный элемент используется в качестве приемника света, а полевые МОП-транзисторы с общими источниками используются для переключения цепи нагрузки.

Форма B или SPST NC Тип SSR:

Форма B Реле SSR типа имеет нормально замкнутые клеммы нагрузки. Клеммы выходной нагрузки обычно подключены и пропускают ток при отсутствии управляющего входа. Предоставление управляющего входа откроет клеммы нагрузки и остановит прохождение тока.

Этот тип реле использует истощение MOSFET , которые включаются при нулевом входе и выключаются, когда его Vgs отрицательный.

На схеме ниже показано реле SPST NC формы B, использующее полевые МОП-транзисторы с истощением.

Форма C или SPDT Тип SSR:

Форма C Реле SSR типа имеет две переключающие клеммы.

Имеется три клеммы нагрузки, т. Е. Common, NC и NO .

Когда реле неактивно , общая клемма остается подключенной к клемме NC .

Когда реле активирует , общая клемма подключается к клемме NO .

Схема реле SPDT SSR приведена ниже.

Существует также управляющая схема переключения , которая предотвращает одновременное включение полевых МОП-транзисторов, обеспечивая временную задержку между их переключениями.

Преимущества и недостатки SSR (твердотельных) реле)
Преимущества:
  • Время переключения SSR на быстрее , чем реле EMR (электромеханическое реле).
  • Не имеет физических контактов .
  • Нет проблем с контактами искры и износ .
  • Они имеют более длительный срок службы , чем реле EMR.
  • Реле SSR Отключение при токе нагрузки 0 АС, что предотвращает возникновение дуги или электрических помех .
  • Вибрация или Перемещение не влияет на его работу.
  • Он имеет очень низкое энергопотребление по сравнению с реле EMR.
  • SSR реле очень легко управляется логикой схем ( микроконтроллеров )
Недостатки
  • Имеет сложную конструкцию по сравнению с реле напряжения EMR
  • Падение через его клеммы нагрузки.
  • Он имеет ток утечки во время выключенного состояния .
  • Реле SSR рассеивают слишком много тепла .
  • Он не может переключать с низким напряжением по сравнению с реле EMR.
  • Коммутация реле SSR зависит от напряжения управляемой цепи.

Сообщение по теме: Типы микросхем. Классификация интегральных схем и их ограничения

Применение твердотельных реле ( твердотельных) Реле

Ниже приведены распространенные применения твердотельных реле в области электротехники и электроники.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *