Какой конденсатор нужен для двигателя: Расчёт ёмкости конденсатора онлайн / Калькулятор / Элек.ру

Содержание

Расчет емкости конденсатора для трехфазного двигателя

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Ознакомьтесь также с этими статьями

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Онлайн калькулятор расчета емкости конденсатора

Советуем к прочтению другие наши статьи

Расчет емкости конденсатора22:

 

фото и видео-инструкция по подключению

Автор Aluarius На чтение 6 мин. Просмотров 4.7k. Опубликовано

Часто для подключения асинхронного трехфазного двигателя в бытовую электросеть используются конденсаторы для запуска электродвигателя. Для них рабочим является напряжение 380 В, которое применяется во всех сферах производства.

Но рабочее напряжение бытовой сети у нас 220 В. И для того, чтобы подключить промышленный трехфазный двигатель к обычной потребительской сети, используются фазосдвигающие элементы:

  • пусковой конденсатор;
  • рабочий конденсатор.
Пусковой конденсатор.

Схемы подключения при рабочем напряжении в 380 В

Выпускаемые промышленностью асинхронные трехфазные двигатели возможно подключить двумя основными способами:

  • соединение «звездой»;
  • соединение «треугольником».

Электродвигатели конструктивно выполняются из подвижного ротора и корпуса, в который вставлен находящийся неподвижно статор (может быть собран непосредственно в корпусе или вставляться туда). Статор имеет в своем составе 3 равнозначные обмотки, специальным образом намотанные и расположенные на нем.

При соединении «звездой» концы всех трех обмоток двигателя соединяются вместе, а к их началам подаются три фазы. При соединении обмоток «треугольником» конец одной соединяется с началом следующей.

Соединение треугольник и звезда.

Принцип работы двигателя

При работе электродвигателя, подключенного к трехфазной сети 380 В, в каждую из его обмоток последовательно подается напряжение и по каждой из них протекает ток, создающий переменное магнитное поле, которое воздействует на ротор, закрепленный подвижно на подшипниках, который заставляет его вращаться. Для запуска при таком варианте работы никаких дополнительных элементов не нужно.

Если один из трехфазных асинхронных электродвигателей подключить к однофазной сети 220 В, то вращающий момент не возникнет и двигатель не запустится. Для запуска от однофазной сети трехфазных устройств, придумано множество различных вариантов.

Одним из самых простых и распространенных среди них является применение фазового сдвига. Для этого используются различные фазосдвигающие конденсаторы для электродвигателей, через которые подключается контакт третьей фазы.

Кроме этого, обязательно наличие еще одного элемента. Это пусковой конденсатор. Он предназначен для запуска самого двигателя и должен работать только в момент запуска порядка 2-3 секунд. Если его оставить включенным на длительное время, то обмотки двигателя быстро перегреются и он выйдет из строя.

Чтобы это реализовать, можно использовать специальный выключатель, у которого есть две пары включаемых контактов. При нажатой кнопке одна пара фиксируется до последующего нажатия кнопки «Стоп», а вторая будет замкнута только тогда, когда нажимается кнопка «Пуск». Это предотвращает выход электродвигателя из строя.

Схемы подключения для рабочего напряжения в 220 В

Из-за того, что существует два основных варианта подключения обмоток электродвигателей, схем подвода бытовой сети будет тоже две. Обозначения:

  • «П» – выключатель, осуществляющий пуск;
  • «Р» – специальный переключатель, предназначенный для реверса двигателя;
  • «Сп» и Ср» – пусковой и рабочий конденсаторы соответственно.

При подключении к сети 220 В у трехфазных электродвигателей появляется возможность менять направление вращения на противоположное. Это можно осуществлять при помощи тумблера «Р».

Схема подвода бытовой сети.

Внимание! Менять направление вращения можно лишь при отключении питающего напряжения и полной остановке электродвигателя, чтобы не сломать его.


«Сп» и «Ср» (рабочие и пусковые конденсаторы) можно рассчитать по специальной формуле: Ср=2800*I/U, где I – потребляемый ток, U – номинальное напряжение электродвигателя. После вычисления Ср можно подобрать и Сп. Емкость конденсаторов пусковых должна быть больше минимум в два раза, чем у Ср. Для удобства и упрощения выбора можно принять за основу следующие значения:

  • М = 0,4 кВт Ср = 40 мкФ, Сп = 80 мкФ;
  • М = 0,8 кВт Ср = 80 мкФ, Сп = 160 мкФ;
  • М = 1,1 кВт Ср = 100 мкФ, Сп = 200 мкФ;
  • М = 1,5 кВт Ср = 150 мкФ, Сп = 250 мкФ;
  • М = 2,2 кВт Ср =230 мкФ, Сп = 300 мкФ.

Где М – номинальная мощность используемых электродвигателей, Ср и Сп – рабочие и пусковые конденсаторы.

Некоторые особенности и советы при работе от бытовой сети в 220 В

При использовании асинхронных электродвигателей, рассчитанных для рабочего напряжения 380 В в бытовой сфере, подключив их к сети 220 В, вы теряете около 50% номинальной мощности двигателей, но при этом скорость вращения ротора остается неизменной. Помните об этом, выбирая необходимую для работы мощность.

Уменьшить потери мощности можно, применив соединение обмоток «треугольником», при нем КПД электродвигателя останется где-то на уровне 70%, что будет ощутимо выше, чем при соединении обмоток «звездой».

Поэтому если технически осуществимо в распределительной коробке самого электродвигателя поменять соединение «звезда» на соединение «треугольник», то сделайте это. Ведь приобретение «дополнительных» 20% мощности будет хорошим шагом и помощью в работе.

При выборе конденсаторов пусковых и рабочих имейте в виду, что их номинальное напряжение должно быть минимум в 1,5 раза больше, чем напряжение в сети. То есть для сети в 220 В желательно для запуска и стабильной работы использовать емкости, рассчитанные на напряжение 400 – 500 В.

Двигатели с рабочим напряжением 220/127 В можно подключать только «звездой». При использовании другого соединения вы при пуске его просто сожжете, и останется только сдать все в утиль.

Если вы не можете подобрать конденсатор, использующийся для пуска и при работе, то можно взять их несколько и соединить параллельно. Общая емкость в этом случае подсчитывается следующим образом: Собщ = С1+С2+….+Ск, где к – необходимое их количество.

Иногда, особенно при значительной нагрузке, он сильно перегревается. В этом случае степень нагрева можно попытаться уменьшить, меняя емкость Ср (рабочего конденсатора). Ее постепенно снижают, проверяя при этом нагрев двигателя. И наоборот, если рабочая емкость недостаточна, то выходная мощность, выдаваемая устройством, будет маленькой. В этом случае можно попробовать увеличить емкость конденсатора.

Для более быстрого и легкого пуска устройства, если существует такая возможность, отключайте от него нагрузку. Это касается именно тех двигателей, которые были переделаны с сети 380 В на сеть 220 В.

Заключение по теме

Если вы хотите использовать для своих нужд промышленный трехфазный электродвигатель, то к нему нужно собрать дополнительную схему подключения, учитывая все необходимые для этого условия. И обязательно помните, что это электрическое оборудование и необходимо соблюдать все нормы и правила безопасности при работе с ним.

: Маленькие хитрости :: BlogStroiki

     Вопрос №125: Какой нужен рабочий и пусковой конденсатор для двигателя 1.1 киловатт(Валерий      Ответ: В тех случаях, когда требуется подключить электродвигатель трехфазный к сети 220 вольт (однофазной) используют два типа схем для подключения –«треугольником» или «звездой». Конечно лучше использовать  «треугольник», в таком случае потеря мощности трехфазного двигателя меньше 50%.


Расчет емкости рабочего конденсатора в таком случае проводим по такой формуле:
Срабоч.=k*Iфаз./Ucет., к-коэффициент схемы подключения(  для  « звезды»=2800, для «треугольника»=4800; Iфаз.-паспортный номинальный ток двигателя,А; U-сетевое питающее напряжение напряжение, В.
Если запуск трехфазного двигателя проходит без нагрузки, то пусковую емкость можно не ставить. Например ,если у вас система передачи крутящего момента от вала двигателя к циркулярной пиле идет с помощью плоского ремня или клинообразного  и натяжение его осуществляется  весом двигателя(двигатель крепится на пластине с одной стороны закрепленной к станине циркулярной пилы и в момент старта вы просто приподнимаете пластину с двигателем сняв нагрузку с оси двигателя а по мере набора мощности опускаете ее и  подключаете саму пилу).
Что бы получить близкую к номинальной пусковую мощность устанавливают как обычно емкость пускового конденсатора  в два три раза больше чем рабочая емкость. Сп.=(2-3)*Срабоч.
Что касается номинального напряжения устанавливаемых конденсаторов, оно должно быть 1.5-2 раза выше, чем напряжение используемой сети. Это связано с тем, что при запуске двигателя с помощью конденсатора в этой обмотке протекает повышенный ток по сравнению с обмотками прямого включения в сеть на 30-40% от номинала. Таким образом применять можно конденсаторы с рабочим напряжением не менее 350 вольт не ниже, лучше конечно на 450 вольт.
Исходя из практики принимается следующее решение, при выборе пускового и рабочего конденсаторов исходить надо из следующего: на один киловатт мощности двигателя надо брать 200 мкф на пусковой конденсатор и 100 мкф на рабочий.
В вашем случае Сраб.=1.1кВтх100 мкф=110 мкф,  и Спуск.=200 мкф.х1.1кВт=220мкф. Вам достаточно будет 100 мкф на работу и 200 мкф на запуск. Если нагрузка на двигатель будет незначительная, то в процессе работы можно уменьшить емкость рабочего конденсатора до 50 мкф.
Если не найдете подходящие бумажные конденсаторы такой емкости можно использовать и электролитические(схема ниже) , главное правильно их подключить, при неправильной сборке они могут закипеть и взорваться!!!!!

По материалам сайта :http://blogstroiki.ru/emkosti-rabochego-i-puskovogo-kondensatorov-dlya-dvigatelya-moshhnostyu-3-kvt/#more-14223

Добавлено: 08.07.2014 23:08

Конденсатор для пуска электродвигателя, как рассчитать мощность

Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

Конденсатор для пуска электродвигателя

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Неполярный конденсатор

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Описание разновидностей конденсаторов

Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

Различные виды конденсаторов

Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

Выбор емкости

С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.

Для рабочего конденсатора

Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.

На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.

Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.

Для пускового конденсатора

Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий  конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.

Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.

Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.

Простые способы подключения электродвигателя

Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение  частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.

Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.

При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем

  • треугольник;
  • звезда.

Подключение двигателя по схемам «звезда» и «треугольник»

При реализации подключения этими способами важно свести к минимуму потери по мощности.

Схема подключения «треугольник»

Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый

Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.

В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.

Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A  до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Рабочее напряжение

После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.

Оптимальный запас по напряжению — 15-20%.

Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.

Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подобрать конденсатор для трехфазного электродвигателя

Для вычисления емкости основного конденсатора применяют формулу:

C = (k×Iφ)/U

Где

  • k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
  • Iφ-ток статора, его берут из паспорта или таблички на корпусе;
  • U- напряжение сети.

Трехфазный электродвигатель

Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.

Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.

Емкость пускового накопителя принимают в 2-3 раза больше основного.

Подключение трехфазного электродвигателя к сети

После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.

Как подобрать пусковой конденсатор для однофазного электромотора

До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.

При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.

Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.

Конструкция асинхронного однофазного электродвигателя

Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

В трехфазном двигателе обмотки и так размещены под углами 120°. Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить  пусковой момент вращения.

Подбор рабочего конденсатора к трехфазному электродвигателю


Для ответа на вопрос, как подобрать конденсатор для асинхронных двигателей и чем конденсаторы отличаются друг от друга, соберем стенд из обычного трехфазного двигателя мощностью 250 Вт. В качестве нагрузки используем стандартный генератор от автомобиля ВАЗ.

Подключим через автоматы три разных конденсатора. Включение/отключение автоматов даст возможность проверить возможности конденсаторов.

Подбираем конденсатор


Для эксперимента выберем три конденсатора емкостью 10, 20 и 50 микрофарад. Наша задача заключается в попытке запуска электродвигателя с каждого конденсатора по очереди.

Конденсатор на 10 мкФ


При подключении к сети 220 В и включения первого конденсатора емкостью 10 микрофарад электродвигатель включается только после толчка рукой. Автоматического запуска не происходит.

Вывод: для электродвигателя мощностью 250 Вт емкости конденсатора в 10 микрофарад недостаточно.

Конденсатор на 20 мкФ


При попытке запустить электродвигатель от конденсатора емкостью 20 МкФ включение двигателя в работу происходит автоматически.

Вывод: при емкости конденсатора 20 микрофарад электродвигатель запустился без проблем.

Конденсатор на 50 мкФ



При продолжении эксперимента с конденсатором емкостью 50 микрофарад электродвигатель запускается автоматически, однако работает с высоким уровнем шума и просто трясется.
Вывод: емкость последнего испытанного конденсатора велика для установленного электродвигателя.
Подбирая конденсатор для маломощного трехфазного электродвигателя, отдавайте предпочтение устройству с номинальной емкостью (как в нашем эксперименте), соответствующей мощности двигателя. Конденсатор малой емкости электродвигатель не запускает, слишком большой емкости – вызывает нагрев двигателя и большой шум в работе. Оптимально себя в эксперименте зарекомендовал конденсатор емкостью 20 МкФ, который сразу запустил двигатель и не вызвал его перегрева.

Заключение


Для запуска трехфазного электродвигателя в сети 220 В рабочий конденсатор подбирается исходя из мощности двигателя. При возрастании мощности на каждые 100 Вт емкость должна возрастать на 7-10 микрофарад. Например, для двигателя мощностью 0,5 КВт можно подобрать конденсатор емкостью в пределах 35-50 МкФ.
Также нужно учитывать такой параметр, как номинальное напряжение устройства (то есть то напряжение, которое способен выдержать конденсатор). В работе рекомендуется применять конденсаторы с параметрами, на 100% превышающими реальное напряжение, прилагаемое к устройству. Для данного примера это 450 В.

Смотрите подробное видео


Зачем нужен пусковой конденсатор

Конденсаторные двигатели — разновидность асинхронных двигателей, в обмотки которого включены конденсаторы для создания сдвига фазы тока. [1] Подключаются в однофазную сеть посредством специальных схем. По количеству фаз статора делятся на двухфазные и трёхфазные.

Существует разные схемы подключения, больше вариантов для трёхфазных двигателей, различающиеся способом соединения обмоток двигателя и составом дополнительных элементов, но минимальная работоспособная схема содержит один конденсатор, от чего и происходит название.

Как правило, одна из обмоток («фаза двигателя») запитывается напрямую от однофазной сети, а другие обмотки запитывается через электрический конденсатор, который сдвигает фазу подводимого тока почти на +90°, или через катушку индуктивности, которая сдвигает фазу почти на −90°. Чтобы результирующее вращающееся магнитное поле не было эллиптическим, последовательно с конденсатором включается переменный проволочный резистор, с помощью которого добиваются кругового вращающегося магнитного поля.

Содержание

Применение [ править | править код ]

Промышленные конденсаторные двигатели имеют в основе, как правило, двухфазный двигатель (проще производство и схема подключения). Трёхфазные двигатели переделываются под однофазную сеть обычно в частном порядке или мелкосерийном производстве в силу массовости таких типов двигателей и сетей, выбирая при этом между сложностью схемы и недоиспользованием мощности двигателя.

Такие двигатели используются в основном в бытовой технике малой мощности: активаторных стиральных машинах, механизмах катушечных и стационарных кассетных магнитофонов, недорогих проигрывателях виниловых дисков, вентиляторах и другой подобной технике.

Также такие двигатели применяются в циркуляционных насосах водопроводных и отопительных систем (напр. компании Grundfos), и в воздуходувках и дымососах отопительных и водонагревательных агрегатов (напр. Buderus).

Трёхфазные асинхронные двигатели в однофазную электрическую сеть включают через фазосдвигающий конденсатор.

Первый вывод обмотки электродвигателя подключается к «фазовому» проводу, второй вывод — к нейтральному проводу. Третий вывод обмотки подключается через конденсатор, ёмкость которого подбирается по формулам, в зависимости от того, как соединены обмотки двигателя — звездой или треугольником.

Если обмотки соединены звездой, тогда ёмкость «рабочего» конденсатора должна быть

C W O R K / S T A R = 2800 I U <displaystyle C_=2800<frac >> .

Если обмотки соединены треугольником, тогда ёмкость «рабочего» конденсатора должна быть

C W O R K / T R I A N G L E = 4800 I U <displaystyle C_=4800<frac >> , где

U <displaystyle U> — напряжение сети, вольт;

I <displaystyle I> — рабочий ток двигателя, ампер;

При пуске двигателя кнопкой подключается пусковой конденсатор C L A U N C H <displaystyle C_> , ёмкость которого должна быть в два раза больше ёмкости рабочего. Как только двигатель наберёт нужные обороты, кнопку «Пуск» отпускают.

Переключатель B 2 <displaystyle B_<2>> позволяет изменять направление вращения электродвигателя. Выключатель B 1 <displaystyle B_<1>> отключает электродвигатель.

Используя паспортные данные электродвигателя, можно определить его рабочий ток I <displaystyle I> по формуле:

cos varphi >>> , где

P <displaystyle P> — электрическая мощность двигателя, Ватт;

U <displaystyle U> — напряжение сети, вольт;

cos ⁡ φ <displaystyle cos varphi > — коэффициент мощности.

Преимущества [ править | править код ]

Практически единственный способ реализации асинхронного двигателя в обычной бытовой однофазной сети.

Недостатки [ править | править код ]

Ёмкость конденсатора подобрана для случая оптимальной частоты вращения двигателя. В случае, если частота вращения ниже оптимальной (пуск или большая механическая нагрузка, особенно переменная) противо-ЭДС в обмотке, подключенной через конденсатор, отклоняется от идеального значения, что разбалансирует всю схему и приводит к появлению эллиптического магнитного поля с сильным падением мощности.

Поэтому схема применима только для небольших или для практически постоянных нагрузок, как, например, в проигрывателе виниловых дисков или же отопительном циркуляционном насосе. В пылесосе же, например, это невозможно, и потому там применяется коллекторный двигатель.

Кроме того, конденсаторный двигатель, как и любой асинхронный, предъявляет довольно высокие требования к качеству синусоиды и частоте питающего напряжения. Потому устройства, содержащие такие двигатели нельзя подключать к дешёвому «компьютерному» ИБП — в режиме работы от батарей такой ИБП дает часто не синус, а меандр, иногда с частотой куда выше 50 Гц. Такие устройства требуют online UPS.

Конденсатор представляет собой пассивный электронный компонент, который имеет два полюса с определенным или переменным значением емкости. Еще он обладает малой проводимостью. Важно разобраться, для чего нужно конденсатор в электродвигателе и автомобиле, поскольку согласно информации, представленной на форумах, у многих людей неправильное представление по этому поводу, и они просто недооценивают значимость этого устройства.

Для чего нужен конденсатор?

Устройство используется во всех электрических и радиотехнических схемах. Для каких целей в схему включают конденсатор:

  1. Выступает в роли сопротивления, что позволяет использовать его в качестве фильтра, чтобы подавлять ВЧ и НЧ помехи.
  2. Применяют для фотовспышек и лазеров, а все благодаря способности устройства накапливать заряд и быстро разряжаться, создавая импульс.
  3. Помогает компенсировать реактивную энергию, что позволяет использовать его в промышленности.
  4. Благодаря умению накапливать и долгое время сохранять заряд конденсатор можно использовать для сохранения информации и для питания маломощных устройств.

Для чего нужен автомобильный конденсатор?

Это устройство может выполнять несколько функций в автомобиле. Например, их используют, чтобы создать высокие показатели напряженности во всей электрической системе в авто. Чаще всего конденсатор применяют для автомобильной акустики. Говоря о том, зачем нужен конденсатов в автозвуке, заметим, что его основное предназначение заключается в помощи усилителю быстро отдавать имеющуюся мощность на пиках низких частот.

Если в акустической системе конденсатор не используется, тогда звук баса не будет таким четким, а также может возникать просадка в питании всей электрической сети автомобиля. Подобные скачки напряжения в итоге могут привести к тому, что сабвуфер попросту сломается.

При выборе конденсатора для автомобиля руководствуйтесь таким правилом, что на 1 кВт мощности должно приходиться 1 Ф. Выбирайте качественный конденсаторы и лучше всего, если у них будет смеха управления зарядом.

Стоит также выяснить, как правильно установить конденсатор. Лучше всего делать это максимально близко к сабвуферному усилителю, поскольку именно на него приходится самая большая нагрузка. Расстояние не должно быть больше 60 см. Тип подключения – параллельное.

Зачем нужен конденсатор в электродвигателе?

Для правильной работы некоторых двигателей необходимо использовать пусковой и рабочий конденсаторы. Основное предназначение пускового конденсатора заключается в повышении пусковых характеристик двигателя. Это устройство помогает уменьшить время входа двигателя в его рабочий режим, одновременно увеличить крутящийся момент и облегчить процесс запуска двигателя.

Что касается рабочего конденсатора, то он вовлечен в работу на протяжении всего времени работы двигателя. Это устройство обеспечивает допустимый нормами нагрев обмоток, оптимальную нагрузочную способность и экономичность электрического двигателя. Еще он способствует максимальному крутящему моменту и увеличению срока службы двигателя.

Теперь следует выяснить, какой конденсатор нужен для двигателя. Емкость этого устройства обычно выбирается из расчета, что на 100 Вт должно приходиться 6,6 мФ. Порой данное значение является некорректным, поэтому лучше всего подбирать емкость путем экспериментов. Есть несколько способ подбора, но наиболее точные значения можно получить благодаря подключению двигателя через амперметр. Важно проконтролировать потребляемый ток при разных емкостях. Задача заключается в том, чтобы найти, при какой емкости значение тока на амперметре будет минимальным.

Советы по личностному росту

Здесь вы найдете истории успеха, последние тренды моды, гороскоп, диеты и многое многое другое. Обязательно загляните!

Свежие записи

Если мы обратим свой взгляд на всевозможную технику, используемую в нашем в мире, то обнаружим, что в ней нередко используются электродвигатели асинхронного типа. Чтобы подобный электродвигатель вращался часто, необходимо наличие обязательного вращающегося магнитного поля. Подобные агрегаты отличаются:

  1. простотой
  2. малым уровнем шума
  3. хорошими характеристиками
  4. а также легкостью в эксплуатировании

Чтобы такое магнитное поле было создано, требуется трехфазная сеть. В случае этого в статоре электродвигателя достаточно расположить 3 обмотки, которые будут размещены под углом сто двадцать градусов относительно друг друга, после чего подключить к ним необходимое и соответствующее напряжение. Именно тогда круговое вращающееся поле станет способно вращать статор.

В быту же зачастую используются приборы у которых имеется только лишь однофазная электрическая сеть. Для таких приборов применяются наиболее распространённые в этой сфере однофазные двигатели асинхронного типа.

Когда мы помещаем в статор электродвигателя обмотку, то магнитное поле в ней сможет образоваться только конкретно при протекании переменного синусоидального тока. Это поле, тем не менее заставить ротор вращаться, к сожалению, не сможет. Чтобы произвести запуск двигателя , вам надо выполнить два действия. Во-первых, разместить на статоре дополнительную обмотку под углом 90 градусов относительно рабочие обмотки. А во-вторых включить фазосдвигающий элемент непосредственно последовательно с дополнительной обмоткой. Таким элементом может быть конденсатор.

Пусковые и рабочие типы подключения схем

Когда вы выполните требуемые действия, в электродвигателе возникнет круговое магнитное поле, соответственно и в роторе возникнут соответствующие токи. Взаимодействие тока и поля статора сможет привести к вращению ротора. Существует несколько способов подключения конденсаторов к электродвигателю.

В зависимости от способа различают разные типы схем. В этих схемах может использоваться, во-первых, пусковой конденсатор, во-вторых, рабочий конденсатор, а также одновременно пусковой и рабочий конденсатор сразу. При этом самым распространенным методом является подключение с пусковым конденсатором.

Использование пускового конденсатора

Когда мы производим запуск двигателя, тогда и включаются конденсатор и пусковая обмотка. Связано это с тем свойством, что агрегат продолжает своё вращение даже в том случае, когда отключают дополнительную обмотку. Для такого запуска чаще всего используют реле и кнопку.

Из-за того, что пуск однофазного электродвигателя с конденсатором происходит достаточно быстро, дополнительная обмотка часто работает весьма небольшое время . Благодаря этому для экономии её возможно выполнять из провода с относительно меньшим сечением, нежели сама основная обмотка. Чтобы предупредить и предотвратить перегрев дополнительной обмотки, в схему практически всегда добавляют термореле или же центробежный выключатель. Благодаря этим устройствам при наборе электродвигателем определенной скорости или при достижении сильного нагрева становится возможно регулирующее отключение .

Схема, которая использует пусковой конденсатор имеет довольно хорошие пусковые характеристики электродвигателя, но при этом рабочие характеристики несколько ухудшаются.

Преимущества схемы с рабочим типом элемента

Значительно более хорошие рабочие характеристики вы можете получить, если использовать схему с рабочим конденсатором. После запуска электродвигателя конденсатор в такой схеме не отключается. Правильный подбор конденсатора для однофазного электродвигателя может дать большие преимущества. Главное из них — это компенсация искажения поля и повышение КПД агрегата. Однако, как и следовало ожидать, в такой схеме ухудшаются пусковые характеристики.

Стоит учитывать также, что при выборе величины емкости искомого конденсатора для электродвигателя производится исходя из определенного тока нагрузки. Если ток изменяется относительно расчетного значения, то, следовательно, поле будет переходить от круговой к эллиптической форме, а вследствие этого характеристики агрегата будут ухудшаться. Для обеспечения высоких хороших характеристик, в принципе, необходимо только при изменении нагрузки электродвигателя изменить величину емкости конденсатора. Однако, это может чересчур усложнить схему включения.

Наиболее компромиссным вариантом решения данной задачи является выбор схемы, обладающей пусковым и рабочим конденсаторами одновременно. В такой схеме пусковые и рабочие характеристики будут средними относительно рассмотренных ранее схем. В целом же, если при подключении однофазного двигателя требуется важный большой пусковой момент, то в таком случае выбирается схема конкретно с пусковым элементом. Если же такая необходимость отсутствует, то соответственно, используется рабочий элемент.

Несколько общих советов по эксплуатации

При выборе схемы пользователь всегда имеет возможность выбрать ту схему, которая конкретно ему подходит. Однако, обычно же все выводы искомых обмоток выводы конденсатора для электродвигателя выведены в клеменную коробку.

Если вам надо модернизировать систему, а возможно что и самостоятельно сделать требуемый расчет конденсатора для вашего используемого однофазного двигателя, то можно дать вам совет. Исходить надо из того, что на каждый киловатт мощности вашего агрегата требуется гарантированно определённая емкость в 0,7 — 0,8 мкФ относительно рабочего типа или же, соответственно, в два с половиной раза большая емкость относительно типа пускового .

При проверке технического состояния двигателя нередко вы можете заметить, что после достаточно продолжительной работы появился посторонний шум и неприятная вибрация. Ротор же трудно проверить. Причиной может быть плохое состояние подшипника. Беговые дорожки оказались покрыты ужасной ржавчиной , царапинами , вмятинами . Повреждены некоторые шарики и сепаратор. Во всех этих случаях вам необходимо детально рассмотреть и устранить у вас имеющиеся неисправности. Тем не менее, при незначительном повреждении часто достаточно:

  1. внимательно и тщательно промыть подшипники бензином;
  2. затем смазать их;
  3. очистить корпус вашего двигателя от пыли и грязи.

  • Автор: Евгений Сергеевич Сидорков

Как выбрать и подобрать конденсаторы для запуска электродвигателя

Чтобы подключить трехфазный двигатель к однофазной сети используют конденсаторы для запуска электродвигателей. Они могут быть разной модификации, поэтому вопрос о том, как их правильно рассчитать и на что обращать внимание при выборе, совсем не праздный. Перед тем как ответить на вопрос, какой конденсатор необходим, стоит вспомнить, что же это вообще такое?

Устройство и принцип работы

Устройство конденсатора и его изображение на схемах

Конденсатор использует свойство проводников заряжаться, находясь на близком расстоянии друг от друга. Это называется поляризацией. Но чтобы этот заряд можно было снять, используют две пластины, одна напротив другой, с диэлектриком между ними. Если их разъединить, заряд снять не удастся.

Современные технологии позволяют выпускать емкостные приборы всевозможных моделей и назначений. Это и приборы, работающие только в цепях постоянного тока, и для запуска электродвигателей, и выравнивающие модели. Все, что остается конечному потребителю – выбрать подходящий, произвести расчет параметров и поставить в электрическую схему.

Практическое применение

Электродвигатели делятся на две большие категории: постоянного и переменного тока. Каждая категория, в свою очередь, тоже имеет свои деления. Как пример, электромашины переменного тока: однофазные и трехфазные, синхронные и асинхронные, с фазным ротором и короткозамкнутые. Многие из этих моделей можно подключать к сети различным образом, отличающимся от паспортных данных.

Во многих случаях используют фазосдвигающий конденсатор, который позволяет произвести пуск двигателя в однофазной сети 220в. Чтобы рассчитать его значения, необходимо учитывать некоторые параметры, а именно: какой тип электродвигателя используется, его мощность, потребляемый ток. Однофазная сеть в нашей местности преимущественно 220 вольт, поэтому расчет емкостей тоже будет описан именно для этого напряжения.

Существует большой выбор типов этих накопительных приборов. Очень хорошо, если кроме расчета параметров, учитывается также этот момент.

Самый удачный вариант – бумажный, типа МБГЧ. Его цена, в зависимости от емкости, будет несколько варьироваться, однако всегда можно найти элементы б/у. В некоторых случаях допустимо использовать приборы постоянного тока, однако стоит знать о некоторых особенностях их использования.

Трехфазная сеть

Трехфазные двигатели

Схема включения трехфазных электродвигателей по звезде

Основные схемы включения трехфазных электродвигателей: звезда и треугольник. Для их работы предпочтительнее будет «треугольник». Формула расчета: Сраб.=k*Iф / U сети. Теперь немного подробнее.

  • Iф – значение тока, которое потребляет электродвигатель в номинальном режиме. Проще всего посмотреть на нем самом. Иногда, если есть возможность, измерить клещами.
  • Uсети – с этим все понятно. Это напряжение питания – 220 вольт.
  • K – специальный коэффициент. Для треугольника он равен 4800, а для звезды – 2800. Он просто подставляется к формуле расчета.

В некоторых случаях, а именно когда пусковые характеристики достигают значительных величин (пуск двигателя под нагрузкой), необходимо использовать дополнительные, пусковые, конденсаторы для запуска электродвигателя. Их параметры считают так: берут рабочий элемент и умножают его значения на 2,5…3. Также рабочее напряжение этой запчасти должно быть минимум в 1,5 раза выше сетевого.

Стоит отметить, что при включении трехфазного двигателя к 220в происходит потеря мощности до 30% и с этим ничего не сделать.

Однофазные двигатели

Также существует большая группа асинхронных машин, изначально рассчитанных на работу в однофазной сети. Их, как правило, подключают на 220 вольт, но это не значит, что все так гладко. Хотя они, в отличие от трехфазников, момент не теряют, однако момент пусковой у них достаточно низок, а значит конденсаторы необходимы и для этих двигателей.

На поверку, это двухфазные электродвигатели: у них две обмотки, смещенные на 90 градусов друг относительно друга. И если подать 220в с таким же смещением, то никакой фазосдвигатель для запуска не нужен!

Но такого не происходит и поэтому для его запуска на 220 нужен пусковой элемент

Один конденсатор рабочий, для постоянного подключения, другой – пусковой. Он отключается после разгона электродвигателя до расчетных значений и больше схеме 220 вольт не нужен. В качестве приборов запуска на 220в применяются только в приводах до 1 кВт. Дело в том, что при более высоких мощностях цена на необходимые фазосдвигатели настолько высока, что их применение экономически невыгодно.

Что касается расчета основной емкости, то можно пользоваться такой зависимостью: на каждые 100 ватт берется 1 мкФ. Дальше – дело арифметики уровня второго класса. Значение пускового прибора – в 2…2,5 раза выше.

Обратите внимание! Это не значение отдельного конденсатора, а общей емкости Сраб+Спуск.!

Для 220 вольт необходимо брать элементы запуска с напряжением хотя бы на 450 вольт, так как на них напряжение отличается от сетевого 220в!

Другие виды двигателей

Какой конденсатор необходим для запуска двигателя постоянного тока? Такие двигатели в емкостных элементах для этой цели не нуждаются. Их ставят на щеточный механизм для того, чтобы устранить искрение и помехи в сеть. Работают же такие электрические машины несколько по иному принципу.

Электролитические емкости

Схема электролитического катализатора

В некоторых маломощных двигателях для их запуска в работу используют электролитические конденсаторы. Иногда некоторые неопытные электрики, увидев такое устройство у соседа, сталкиваются с проблемой: нагрев и взрыв элемента. В чем же дело, какой вариант необходим?

Электролитические конденсаторы – приборы постоянного напряжения. Для использования их в качестве фазосдвигающих элементов необходимо выполнить подключение по специальной схеме.

При параллельном соединении емкость суммируется, при последовательном – вычитается. Однако для кратковременного включения на 220в такие элементы использовать допускается.

Конденсаторы, несмотря на кажущуюся простоту, требуют тщательного подбора. При включении двигателя к 220 вольтам нужно все внимательно посчитать, выбрать нужные элементы и тогда проблем не возникнет.

Руководство по выбору пускового конденсатора

Руководство по выбору пускового конденсатора

Пусковой конденсатор используется для кратковременного сдвига фазы в пусковой обмотке однофазного электродвигателя с целью увеличения крутящего момента. Пусковые конденсаторы обладают очень большим значением емкости для своего размера и номинального напряжения. В результате они предназначены только для периодического использования. Из-за этого пусковые конденсаторы выйдут из строя после того, как будут слишком долго оставаться под напряжением из-за неисправной пусковой цепи на двигателе.

Индекс

Обзор
Пусковые и рабочие конденсаторы »
Резисторы и их размеры»
Устранение неисправностей »

Технические характеристики
Напряжение»
Емкость »
Частота (Гц)»
Тип клеммы подключения »Форма корпуса
» Размер корпуса
»


Обзор

Пусковые и рабочие конденсаторы

Пусковые конденсаторы дают большое значение емкости, необходимое для запуска двигателя в течение очень короткого (секунд) периода времени.Они предназначены только для прерывистого режима работы и катастрофически выйдут из строя, если будут находиться под напряжением слишком долго. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме. Как правило, они имеют гораздо меньшее значение емкости.


Взаимозаменяемы ли пусковой и рабочий конденсаторы?

Да и нет. В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов.Номинальные значения емкости и напряжения должны соответствовать оригинальной спецификации пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно (всего пару секунд).

Посмотрите видеоинструкцию ниже, чтобы узнать о различиях между пусковыми и рабочими конденсаторами.


Что такое резистор и нужен ли он?

Большинство заменяемых пусковых конденсаторов не имеют резистора.Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора — сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя. Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы сделать это. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.

Узнайте, как установить спускной резистор на пусковой конденсатор.


Поиск и устранение неисправностей

Как узнать, неисправен ли мой пусковой конденсатор?

Большинство отказов конденсатора электродвигателя может быть одного из двух типов:

«Стартовый колпачок вырвался наружу!» Это то, что мы называем катастрофическим отказом. Обычно это вызвано тем, что пусковая цепь электродвигателя задействована слишком долго для кратковременного режима работы пускового конденсатора.Верхняя часть стартовой крышки буквально сорвана, а внутренности частично или полностью выброшены.

Разрыв пузыря сброса давления Точно так же, но не столь драматично, на стартовой крышке может быть только разорванный пузырек сброса давления. В любом случае легко сказать, что стартовый колпачок нуждается в замене.

Мой мотор медленно заводится. Мой пусковой конденсатор плохой?

Ответ на этот вопрос — «возможно». Возможно, ваш пусковой конденсатор потерял свою номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя.

Посмотрите видео ниже о том, как заменить пусковой конденсатор.


Технические характеристики

В большинстве пусковых конденсаторов используется емкость 50–1200 мкФ и напряжение 110/125, 165, 220/250 и 330 В переменного тока. Они также обычно всегда рассчитаны на 50 и 60 Гц. Корпуса обычно имеют круглую форму и отлиты из черного фенольного или бакелитового материалов.Концевые заделки обычно представляют собой нажимные клеммы ¼ «с двумя клеммами на каждый соединительный столб.

Напряжение

Выберите конденсатор с номинальным напряжением, равным или превышающим исходный конденсатор. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт. Блок на 440 вольт действительно прослужит дольше. Конденсатор будет иметь маркированное напряжение, указывающее допустимое пиковое напряжение, а не рабочее напряжение.

Емкость

Выберите конденсатор со значением емкости (указанным в MFD, мкФ или микрофарадах), равным исходному конденсатору.Не отклоняйтесь от исходного значения, так как оно задает рабочие характеристики мотора.

Частота (Гц)

Выберите конденсатор с номинальной частотой Гц оригинала. Почти все заменяемые конденсаторы будут иметь маркировку 50/60.

Тип соединительной клеммы

Почти каждый конденсатор будет использовать вставной соединитель в виде флажка размером ¼ «. Следующий вопрос:« Сколько клемм на клеммную колодку необходимо для двигателя приложения? »Большинство пусковых конденсаторов имеют две клеммы на клемму, и большинство рабочих конденсаторов будут иметь 3 или 4 терминала на столб.Убедитесь, что выбранный конденсатор имеет как минимум такое же количество соединительных клемм на соединительную клемму, как и у оригинального конденсатора двигателя.

Форма корпуса

Практически все пусковые конденсаторы имеют круглый корпус. Конденсаторы круглого сечения являются наиболее распространенными, но многие двигатели по-прежнему имеют овальную конструкцию. С точки зрения электричества разницы нет. Подгонка — единственный вопрос здесь. Если пространство в монтажной коробке не ограничено, стиль корпуса значения не имеет.

Размер корпуса

Как и форма корпуса, электрические габариты не имеют значения.Выберите конденсатор, который поместится в отведенном для этого месте.


Выбор продукции

110/125 В переменного тока

220/250 В переменного тока

165V

330В

Подбор размеров однофазных конденсаторов — Центр электротехники

При установке двигателя, использующего конденсатор для запуска или работы, мы должны определить номинальный ток конденсатора, подходящий для двигателя, чтобы получить правильный пусковой момент и избежать перегрева обмотки, который может вызвать повреждение.

Это в основном вопрос конструкции двигателя. Не существует прямой закономерной зависимости между емкостью и мощностью двигателя в кВт.

При замене этих конденсаторов значение емкости и напряжение следует брать с заводской таблички на двигателе или со старого конденсатора. Это значение должно быть правильным в пределах ± 5%, а иногда оговаривается с точностью до долей мкФ. рабочий конденсатор даже более ограничен, чем пусковой конденсатор.

Как правильно подобрать пусковой конденсатор?

1) За прошедшие годы было разработано эмпирическое правило, которое поможет упростить этот процесс.Чтобы выбрать правильное значение емкости, начните с 30–50 мкФ / кВт и при необходимости отрегулируйте значение при измерении мощности двигателя.

Мы также можем использовать эту базовую формулу для расчета размера конденсатора:

2) Определите номинальное напряжение конденсатора.

Когда мы выбираем номинальное напряжение для конденсатора, мы должны знать значение нашего источника питания. В целях безопасности умножьте напряжение источника питания на 30%. Факторы, которые влияют на выбор правильного номинального напряжения конденсатора, включают:
• Коэффициент снижения напряжения
• Требования агентства по безопасности.
• Требования к надежности
• Максимальная рабочая температура
• Свободное место

Как определить размер рабочего конденсатора?

При выборе конденсаторов работы двигателя все перечисленные выше требуемые параметры должны быть определены в рамках организованного процесса. Помните, что важны не только физические и основные электрические требования.

Но следует изучить тип диэлектрического материала и технику металлизации.Неправильный выбор здесь может отрицательно повлиять на общую производительность конденсаторов. Пожалуйста, обратитесь к паспортной табличке двигателя или обратитесь к поставщику или производителю, чтобы получить точное значение конденсатора. Пусковые конденсаторы двигателя

— Caldwell Electric

Пусковые конденсаторы

используются для увеличения пускового момента однофазных электродвигателей за счет увеличения тока через пусковые обмотки во время запуска. Обычно они остаются в цепи всего несколько секунд, прежде чем отключатся центробежным или электронным переключателем внутри двигателя.Если ваш однофазный двигатель не запускается, очень часто пусковой конденсатор (если он есть) может быть неисправен. Это типичный вид отказа однофазных двигателей.

Однофазный двигатель обычно имеет как пусковые, так и рабочие конденсаторы. Рабочие конденсаторы имеют меньшую емкость, чем пусковой конденсатор, и предназначены для непрерывной работы, поскольку они все время остаются в цепи. Важно никогда не использовать пусковой конденсатор вместо рабочего конденсатора, потому что пусковые конденсаторы не предназначены для непрерывной работы.

Caldwell Electric может диагностировать проблемы с электродвигателем и предложить решения для ремонта или замены. Пусковые конденсаторы также можно приобрести непосредственно на нашем веб-сайте на этой странице.

Выбор пускового конденсатора

Двумя наиболее важными показателями при замене конденсатора являются емкость и номинальное напряжение. Физический размер — третий критерий.

  • Емкость: Для электродвигателей это измеряется в мкФ. Это обычно печатается на конденсаторе в виде числа или диапазона чисел, за которым следуют буквы MFD или мкФ. Заменяемый конденсатор должен почти точно соответствовать первоначальной емкости.
  • Номинальное напряжение: Запасной конденсатор должен иметь номинальное напряжение , по крайней мере, на больше, чем у оригинального конденсатора. Это нормально и даже лучше, если запасной конденсатор будет иметь на более высокое номинальное напряжение , чем исходный. Однако более высокое номинальное напряжение обычно приводит к образованию конденсатора большой емкости.Так что размер также следует учитывать.
  • Размер: Физический размер заменяемого конденсатора должен быть таким, чтобы он мог поместиться в корпус конденсатора двигателя. Обычно увеличение емкости или напряжения приводит к увеличению емкости конденсатора.

Калькулятор расчета конденсатора однофазного двигателя

Однофазный двигатель Расчет емкости конденсатора:

Введите входное напряжение, мощность двигателя в ваттах, КПД в процентах, частоту, затем нажмите кнопку расчета, вы получите требуемое значение емкости.

Формула для расчета конденсатора однофазного двигателя:

Первоначально однофазный двигатель требует небольшого толчка ротора для вращения ротора с номинальной частотой вращения. Выбор правильного конденсатора для однофазного двигателя действительно сложен, он может привести к запуску двигателя или нет.

Однофазная емкость C (мкФ) в микрофарадах равна 1000 произведению мощности P (Вт) в ваттах и ​​КПД η, деленных на произведение напряжения V (В) в квадрате вольт и частота F (Гц) .Формула для расчета емкости конденсатора

C (мкФ) = (P (W) x η x 1000) / (V (V) x V (V) x f)

Посмотрите на формулу, требуемое значение емкости прямо пропорционально мощности двигателя. Следовательно, при увеличении размера двигателя размер емкости также будет увеличиваться.

Расчет номинального напряжения конденсатора:

Номинальное напряжение конденсатора равно произведению напряжения, измеренного на обоих концах основной обмотки, в вольтах, на корень из единицы и отношение витков n квадрат.

В (К) = Vp √ (1 + n 2 )

n равно отношению витков основной / вспомогательной обмотки. Вышеприведенная формула используется для определения приблизительного напряжения на конденсаторе.

Пример 1:

Рассчитайте требуемое значение номинальной емкости для однофазного двигателя, 220 В, 1 л.с., 50 Гц, 80% двигателя.

1 л.с. = 746 Вт.

Воспользуйтесь нашей формулой расчета емкости.

C (мкФ) = 746 x 80 x 1000 / (220 x 220 x 50) = 24.66 мкФ.

Следовательно, двигателю мощностью 1 л.с. требуется емкость 24,66 мкФ для плавного пуска двигателя. Но на рынке можно получить 25 мкФ.

Диапазон напряжения конденсатора должен составлять 440 В мин.

Пример 2:

Таким же образом возьмем другой пример:

Рассчитайте пусковую емкость для однофазного вентилятора 70 Вт, 220 В, 50 Гц, КПД 85%.

C (мкФ) = 70 x 80 x 1000 / (230 x 230 x 50) = 2,459 мкФ.ок. 2,5 мкФ.

Следовательно, вы можете проверить наш расчет с вашим вентилятором.

Диапазон напряжения конденсатора должен составлять 440 В мин.

Как узнать, когда конденсатор вашего двигателя выходит из строя

Если вы читаете это, то, вероятно, подозреваете, что что-то не так с конденсатором вашего двигателя.

Вам интересно, как определить, что ваш конденсатор вышел из строя?

В этой полезной статье вы узнаете:

— Что такое конденсатор

— Что конденсатор делает для вашего двигателя

— Два основных типа конденсаторов двигателя

— Как определить, неисправен ли ваш конденсатор

Во-первых, давайте поговорим о том, что такое конденсатор и что он делает для вашего двигателя.

Что такое конденсатор?

Конденсатор — это устройство, накапливающее электричество. Он может быть большим или маленьким, в зависимости от его использования. Конденсаторы можно найти в чем угодно, от электронной схемы до силовой установки.

Для чего нужен конденсатор двигателя?

В однофазных двигателях конденсаторы используются для облегчения их запуска и для экономии энергии.

Существует два основных типа моторных конденсаторов:

1. Пусковые конденсаторы

2.Рабочие конденсаторы

Теперь, когда вы знаете два основных типа моторных конденсаторов, давайте поговорим о том, что делает каждый тип конденсатора и как он влияет на ваш двигатель.

Пусковые конденсаторы

Пусковой конденсатор используется, чтобы дать двигателю дополнительный электрический толчок для запуска его вращения. Пусковой конденсатор используется в цепи двигателя только на секунду или две, когда он впервые начинает вращаться.

Когда двигатель набирает скорость, пусковой конденсатор отключается и не используется снова до следующего запуска двигателя.Если пусковой конденсатор выйдет из строя, двигатель не сможет начать вращаться.

Рабочие конденсаторы

Рабочие конденсаторы — это энергосберегающее устройство, которое постоянно находится в цепи двигателя.

Если рабочий конденсатор выходит из строя, двигатель может отображать различные проблемы, включая отсутствие запуска, перегрев и вибрацию. Плохой рабочий конденсатор лишает двигатель полного напряжения, необходимого для правильной работы.

Разница между пусковыми и рабочими конденсаторами

Пусковые и рабочие конденсаторы сделаны одинаково, но рабочие конденсаторы намного более надежны, чем пусковые конденсаторы, поскольку рабочий конденсатор всегда используется при работающем двигателе.

По этой причине нельзя использовать пусковой конденсатор для замены рабочего конденсатора. В двигателях могут использоваться конденсаторы одного или обоих типов в зависимости от того, для чего они предназначены.

Отказ конденсатора: неисправен ли ваш конденсатор?

Если вы подозреваете, что у вас неисправный конденсатор, вам следует обратить внимание на несколько симптомов неисправности конденсатора двигателя.

Признаки отказа конденсатора

— Ваш двигатель запускается медленно

— Ваш двигатель не перестанет гудеть

Это не ваш конденсатор Когда…

Если ваш мотор полностью остановился (не двигается и вообще не издает шума), то проблема больше, чем в конденсаторе.

Как проверить свой конденсатор

Вы хотите определить, правильно ли работает ваш конденсатор?

Вы можете проверить свой конденсатор с помощью высококачественного электросчетчика.

Единица измерения емкости — микрофарада. На конденсаторах указано, какое значение микрофарад (сокращенно mfd или uf) должно быть.

Если ваш электросчетчик показывает слишком высокое или слишком низкое значение в микрофарадах, это признак того, что ваш конденсатор неисправен.

Перед проверкой конденсатора обязательно закоротите клеммы с помощью отвертки с изолированной ручкой. Это поможет вам удалить любую накопленную мощность.

Емкость конденсатора должна быть в пределах указанного диапазона, чтобы она была хорошей.

Имейте в виду, что у конденсаторов нет полярности, поэтому не имеет значения, с какой стороны идут провода.

Однако, если у вас было более двух проводов, идущих к конденсатору, провода, спаренные вместе с одной стороны, всегда должны быть спарены вместе.

Напоминание о безопасности конденсаторов

Как и в случае с любым другим электрическим устройством, отключите питание двигателя перед его обслуживанием и разрядите конденсаторы перед тем, как обращаться с ними.

По-прежнему испытываете проблемы с конденсатором?

Pumps Plus компании Cape Coral — ведущий поставщик услуг для электродвигателей на юго-западе Флориды.

Если у вас все еще возникают проблемы с конденсатором двигателя, позвоните нам по телефону 239-574-4499 или посетите наш магазин по адресу 958 Country Club Blvd. в Кейп-Корал, Флорида.

Зачем двигателю переменного тока для запуска нужен конденсатор?

, Джон ПапевскиОбновлено 16 марта 2018 г.

Электродвигатели подразделяются на несколько основных типов: постоянного тока (DC), однофазного переменного тока (AC) и многофазного переменного тока. Каждый из этих типов имеет множество дизайнов. Двигатели переменного тока, используемые в вашей посудомоечной машине, пылесосе и стиральной машине, работают от однофазного переменного тока.Хотя однофазные двигатели переменного тока работают эффективно, их невозможно запустить без посторонней помощи. Конденсатор добавляет временную дополнительную фазу для запуска двигателя.

Магнитное отталкивание

Большинство электродвигателей переменного или постоянного тока используют силы противоположных магнитных полей для вращения ротора. Для этого у двигателя есть набор магнитных полей на роторе и набор вокруг него. Когда ротор вращается, магнитные поля переключаются, как магнитные полюса (север с севером, юг с югом), обращенные друг к другу.Поскольку одинаковые полюса отталкиваются друг от друга, это заставляет ротор продолжать вращаться. Силы магнитного отталкивания сохраняются на протяжении всего вращения ротора на 360 градусов.

Двигатели переменного тока

Простейшим электродвигателям переменного тока для работы требуется трехфазное электричество. Многофазный двигатель использует три перекрывающихся цикла тока, называемых фазами, для управления магнитными силами в двигателе. Каждая из трех отдельных фаз подключается к набору магнитных катушек, разнесенных на 120 градусов.Хотя это нормально для коммерческих и промышленных помещений, электрический ток, поступающий в ваш дом, имеет только одну или две фазы. Однофазный двигатель требует дополнительных деталей для правильной работы.

Проблема с одной фазой

Катушки двигателя, приводимые в действие одной фазой переменного тока, все чередуются одновременно, меняя местами северный и южный полюса в унисон. Это создает проблему, называемую нулевым пусковым моментом. Хотя он может запускать двигатель, который уже вращается, у него нет «толчка», чтобы заставить двигатель повернуться с полной остановки.Вы можете запустить его, вращая вручную, но кто захочет запускать пылесос вручную?

Пусковой конденсатор и переключатель

Конденсатор, подключенный к отдельной катушке двигателя, создает переменный электрический ток, опережающий главную фазу на 90 градусов. Это происходит потому, что ток через конденсатор опережает напряжение на 90 градусов. Во время запуска двигателя переключатель подключает к двигателю конденсатор и специальную пусковую катушку. Когда двигатель достигает своей рабочей скорости, выключатель отключает конденсатор.Если конденсатор остается подключенным к двигателю, это снижает его эффективность.

Конденсаторы Run-Start

В другой, немного более дорогой конструкции используются два конденсатора: один большего номинала для запуска двигателя и один меньшего размера для поддержания его работы. В этой конструкции также используется переключатель для управления запуском двигателя. Для более крупных однофазных двигателей это помогает повысить мощность.

Что должен знать каждый инженер-конструктор о конденсаторах двигателя

Энтони Колон, Genteq

Если говорить о конденсаторных продуктах и ​​множестве производителей в мире, есть ли разница в качестве? Короткий ответ: да.Конденсатор — это электрический компонент, который временно хранит электрический заряд. Самая простая форма конденсатора — это две проводящие пластины, разделенные изоляционным материалом или диэлектриком. Когда напряжение подается на проводящие пластины, конденсатор начинает накапливать заряд для возможного высвобождения энергии.

Многие двигатели в сегменте HVACR оснащены рабочим конденсатором. Металлизированный пленочный конденсатор, предназначенный для непрерывной работы, позволяет однофазному электродвигателю переменного тока работать с высокой эффективностью, всегда оставаясь под напряжением и подключенным к его электрической цепи.Типичный рабочий конденсатор находится в диапазоне от 2 мкФ до 80 мкФ и рассчитан на 370 В переменного тока или 440 В переменного тока. Рабочий конденсатор надлежащего размера увеличит эффективность работы двигателя за счет обеспечения правильного «фазового угла» между напряжением и током для создания вращательного электрического поля, необходимого для двигателя.

Почему так важно качество

Ключом к качеству конденсатора, помимо использования качественных материалов при его производстве, являются конструкция, системы контроля качества и испытания производительности на протяжении всего производственного процесса, которые гарантируют, что конденсатор будет соответствовать отраслевым стандартным требованиям для долговременной работы.Большинство, если не все конденсаторы, будут тестировать одно и то же в готовом виде, но в течение срока службы конденсатора между производителями будет разница в производительности. Именно здесь отраслевой стандарт может помочь предоставить руководство по оценке качества и долговременной надежности оцениваемого или аттестованного конденсатора.

Отраслевые стандарты

За прошедшие годы было разработано несколько отраслевых стандартов, но наиболее строгим, тщательным и широко признанным является EIA-456-A.Это основа большинства стандартов надежности OEM для конденсаторов.

EIA-456-A был создан Альянсом электронной промышленности (EIA). Этот стандарт в основном используется в США и является всеобъемлющим стандартом для металлизированных пленочных конденсаторов переменного тока. Он не только охватывает приложения для запуска двигателей, но также включает конденсаторы, используемые в системах освещения с высокой интенсивностью разряда, а также в приложениях общего назначения, таких как источники питания и блоки коррекции коэффициента мощности.

EIA-456-A установил стандарт надежности, включающий испытание на срок службы (HALT), в котором конденсаторы подвергаются 125% номинального напряжения и температуре на 10 ° C выше номинальной в течение 2000 часов. Этот тест моделирует 60 000 часов полевого срока службы.

Например, конденсатор, рассчитанный на 5 мкФ / 440 В переменного тока, с рабочей температурой 70 ° C, испытывается при 550 В переменного тока и 80 ° C в течение 2000 часов. Если вы оцениваете 5 000 часов работы конденсатора в год, конденсатор на 60 000 часов может прослужить около 12 лет в полевых условиях.EIA-456-A требует, чтобы частота отказов в первый год составляла не более 0,50 процента, и рейтинг выживаемости не менее 94 процентов в конце 60 000 часов эксплуатации в полевых условиях.

На рис. 1 показано количество времени тестирования и его срок службы в полевых условиях.

Общая стоимость владения

Две ключевые составляющие совокупной стоимости владения приобретенным продуктом — это начальная цена покупки и стоимость гарантии. Первоначальная закупочная цена просто состоит из авансовых затрат на получение продукта, в то время как стоимость гарантии — это связанные с этим затраты на преждевременные отказы в полевых условиях после установки, когда компания должна будет исправить проблему.

На рис. 2 показаны продукты нескольких производителей конденсаторов, которые были отобраны случайным образом и протестированы с помощью цифрового мультиметра TPI 135. Следует отметить, что все 3 конденсатора дают одинаковые показания. Типично видеть, что производитель указывает емкость конденсатора на этикетке продукта с номиналом в микрофарадах и допуском +/- процентов. Наиболее распространенный допуск, предусмотренный в сегменте HVACR для конденсаторов, составляет +/- 6 процентов. Все три показания находятся в пределах допуска 45 мкФ +/- 6 процентов.Конденсатор считается проходящим, если его показания в микрофарадах находятся в пределах диапазона допуска — в данном случае от 42,3 мкФ до 47,7 мкФ. Как показано на рисунке 2, все конденсаторы соответствуют критериям.

К сожалению, первоначальные показания не отражают долгосрочную надежность продукта. Тест EIA-456-A HALT — это то, как мы определяем надежность. В следующем примере предполагается, что гарантийный срок для продукта, в котором используется конденсатор, покрывает как детали, так и работу в течение первого года.По истечении первого года гарантия распространяется только на детали. Три конденсатора, показанные на рисунке 2, были испытаны на соответствие стандарту EIA-456-A. Для каждого из трех производителей были протестированы десять частей одного и того же рейтинга. Ниже приведены результаты испытаний каждого конденсатора за один, пять и десять лет имитированной полевой надежности. Как указывалось ранее, расчетное время работы конденсатора в год составляет 5000 часов.

На рис. 3 показано моделирование одного, пяти и десяти лет эксплуатации конденсатора и показано, что со временем частота отказов конденсатора начинает увеличиваться в зависимости от производителя.Результаты тестирования показывают, что после 12 месяцев работы в полевых условиях (предполагалось, что 5 000 часов работы в год) у одного производителя не было отказов, у одного — 40 процентов отказов, а у третьего — 10 процентов.

Хотя у Mfg C был только один отказ, на рисунке 4 показаны очень реальные эффекты 10-процентной частоты отказов, а также истинная общая стоимость владения одним отказавшим конденсатором для бизнеса. Анализ результатов на Рисунке 4 показывает, что кажущаяся низкая частота отказов, составляющая 10 процентов, обойдется бизнесу примерно в 3500 долларов только на гарантийных расходах.

Как показано на Рисунке 5, более дорогие конденсаторы будут стоить дороже, но при этом покупается качество и надежность. Если конденсаторы не соответствуют указанным характеристикам и характеристикам надежности, это может повлиять на всю систему. Неисправный конденсатор приведет к увеличению нагрева двигателя, износу подшипников и изоляции и увеличению уровня шума. И в конечном итоге это приведет к отказу двигателя.

Продукты

, такие как конденсаторы, могут показаться логичным местом для экономии нескольких долларов за счет перехода на самый дешевый продукт в сегменте HVACR.Хотя вы можете сэкономить несколько долларов на первоначальных затратах, связанные с этим гарантийные расходы в конечном итоге приведут к созданию конденсатора с самой высокой общей стоимостью. Вдобавок к этим затратам существуют нематериальные долгосрочные эффекты, связанные с отказами на местах, такие как репутация компании в отрасли, повышенное внимание к сбоям в продуктах поставщика по сравнению с улучшениями в конструкции OEM и потерями. продажи из-за возможных сбоев на местах.

Энтони Колонин из Genteq является автором этой статьи для Appliance Design.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *