Позисторы термисторы: Позистор и термистор, в чем отличие?

Содержание

PTC термистор термочувствительное защитное устройство - термистор

 

Термисторы PTC-типа

Термистор относится к термочувствительным защитным устройства встраиваемой тепловой защите электродвигателя. Располагаются в специально предусмотренных для этой цели гнездах в лобовых частях электродвигателя (защита от заклинивания ротора) или в обмотках электродвигателя (защита от теплового перегруза).
Термистор — полупроводниковый резистор, изменяющие свое сопротивление в зависимости от температуры.
Термисторы в основном делятся на два класса:
PTC-типа — полупроводниковые резисторы с положительным температурным коэффициентом сопротивления;
NTC-типа — полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления.
Для защиты электродвигателей используются в основном PTC-термисторы (позисторы Positive Temperature Coefficient), обладающие свойством резко увеличивать свое сопротивление, когда достигнута некоторая характеристическая температура (см рис. 1). Применительно к двигателю это максимально допустимая температура нагрева обмоток статора для данного класса изоляции. Три (для двухобмоточных двигателей — шесть) PTC-термистора соединены последовательно и подключены к входу электронного блока защиты. Блок настроен таким образом, что при превышении суммарного сопротивления цепочки срабатывает контакт выходного реле, управляющий расцепителем автомата или катушкой магнитного пускателя. Термисторная защита предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру двигателя. Это касается прежде всего двигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременным режимом) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя системы принудительного охлаждения.

 

Рис.1 Зависимость сопротивления термистора PTC-типа от температуры PTC - полупроводниковый резистор

 

Недостатком данного вида защиты является то, что с датчиками выпускаются далеко не все типы двигателей. Это особенно касается двигателей отечественного производства. Датчики могут устанавливаться только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого двигателя. Они требуют наличия специального электронного блока: термисторного устройства защиты двигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

 

Характеристики термистора PTC-типа по DIN44081/44082

  

 

Внешний вид термисторов

 

 

Диаграмма РТС термисторов

Вариант применения РТС термисторов

 

Пример цветовой кодировки РТС термисторов в зависимости от температуры

Термистор . NTC термистор. Позисторы PTC

Измеритель с отрицательным ТКС называют NTC-термистор, где NTC – Negative Temperature Coefficient. При нагревании R полупроводника уменьшается. Это популярный узел среди радиолюбителей, который всегда применяется в создании каких-либо электронных аппаратов. Поэтому его будет полезно рассмотреть подробнее.

Принцип работы и все характеристики берут отсчет от свойств при комнатной температуре. Обычно за точку отсчета берется +25 С. При ней у резистора заявленные показатели. Чаще всего используют NTC 10 Ком и 100 Ком. Номинальное R при подогреве может изменяться в тысячу раз. Это касается термодатчиков, произведенных из проводников с плохой проводимостью. Если берут с хорошей, то отношение измеряется в пределах 10.

Зависимость электросопротивления для большинства таких устройств имеет нелинейную прогрессию. Поэтому необходимо иметь таблицу с расписанными данными по взаимосвязи этих показателей. Такие таблицы должны прилагаться к каждому виду терморезисторов. Параметры сопротивления полупроводников со временем практически не изменяются, поэтому их срок службы достаточно велик. Это при условии соблюдения температурного режима, который варьируется от -55 С до +300 С.

NTC-прибор используется в двух случаях: для стабилизации пускового напряжения, точнее для его сглаживания. И в качестве датчика температур, для ее измерения как внутри, так и замер внешних данных. Схема использования при запуске достаточна простая. При скачке пускового напряжения, электроток нагрузки проходит через NTC, который обладает определенным R при +25 С и он не дает большому скачку испортить весь электроприбор. При постепенном подогреве сопротивляемость падает, и оно выравнивается. Это свойство помогает запускать приборы плавно, не боясь перегорания диодных мостов и предохранителей.

Второй вариант использования – это датчик температуры. На основании показаний градуса разогревания можно настроить включение тех или иных элементов, например, электродвигателя, кулера, вентилятора. Также использовать для сигнализирования о перегреве системы или ее компонента. При небольшом значении проходящего электричества, терморезистор не будет нагреваться, а будет показывать градусы окружающей среды. Эта же функция используется в аккумуляторах для ноутбука. К элементу питания примотан такой элемент и при перегреве он подает сигнал, который сразу уменьшает подачу питания.

Полезное применение при конструировании 3D-принтеров, в частности подогреваемых столов к ним и экструдерах (Hot End) оценили все радиолюбители. В таких приборах используют приспособление на 100 Ком. Маленькие размеры позволяют крепить и размещать электродатчик на небольших площадях. Работа при высоких температурах имеет большое значение при выборе узла для данных аппаратов.

Для надежной и правильной работы термистора NTC уделите особое внимание калибровке, вне зависимости от назначения. Это важный этап в настройке всего механизма. Для этого необходимо использовать таблицу зависимости. При подключении к Arduino первым делом следует написать скетч. Который выведет такую зависимость на экран и можно будет свериться.

Как проверить позистор мультиметром: пошаговая инструкция

Неприхотливость и относительная физическая устойчивость позисторов позволяет их использовать в роли датчика для автостабилизирующихся систем, а также реализовать защиту от перегрузки. Принцип работы этих элементов заключается в том, что их сопротивление увеличивается при нагреве (в отличие от термисторов, где оно уменьшается). Соответственно, при проверке тестером или мультиметром позисторов на работоспособность, необходимо учитывать температурную корреляцию.

Различные виды позисторов и их графическое изображение в принципиальных схемах

Определяем характеристики по маркировке

Широкая сфера применения РТС-термисторов подразумевает их обширный ассортимент, поскольку характеристики этих устройств должны соответствовать различным условиям эксплуатации. В связи с этим для тестирования очень важно определить серию элемента, в этом нам поможет маркировка.

Для примера возьмем радиокомпонент С831, его фотография показана ниже. Посмотрим, что можно определить по надписям на корпусе детали.

Позистор С831

Учитывая надпись «РТС», можно констатировать, что данный элемент является позистором «С831». Сформировав запрос в поисковике (например, «РТС С831 datasheet»), находим спецификацию (даташит). Из нее мы узнаем наименование (B59831-C135-A70) и серию (B598*1) детали, а также основные параметры (см. рис. 3) и назначение. Последнее указывает, что элемент может играть роль самовосстанавливающегося предохранителя, защищающего схему от КЗ (short-circuit protection) и перегрузки (overcurrent).

Расшифровка основных характеристик

Кратко рассмотрим, данные приведенные в таблице на рисунке 3 (для удобства строки пронумерованы).

Рисунок 3. Таблица с основными характеристиками серии B598*1

Краткое описание:

  1. значение, характеризующее максимальный уровень рабочего напряжения при нагреве устройства до 60°С, в данном случае он соответствует 265 В. Учитывая, что нет определения DC/AC, можно констатировать, что элемент работает как с переменным, так и постоянным напряжением.
  2. Номинальный уровень, то есть напряжение в штатном режиме работы – 230 вольт.
  3. Расчетное число гарантированных производителем циклов срабатывания элемента, в нашем случае их 100.
  4. Значение, описывающее величину опорной температуры, после достижения которой происходит существенное увеличение уровня сопротивления. Для наглядности приведем график (см. рис. 4) температурной корреляции.
Рис. 4. Зависимость сопротивления от температуры, красным выделена точка температурного перехода (опорная температура) для С831

Как видно на графике, R резко возрастает в диапазоне от 130°С до 170°С, соответственно, опорной температурой будет 130°C.

  1. Соответствие номинальному значению R (то есть допуск), указывается в процентном соотношении, а именно 25%.
  2. Диапазон рабочей температуры для минимального (от -40°С до 125°С) и максимального (0-60°С) напряжения.

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).

Спецификация модельного ряда серии B598*1

Краткая расшифровка:

  1. Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
  2. Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
  3. Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А. Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
  4. Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
  5. Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
  6. Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели). Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
  7. Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).
Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов.

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Определение исправности по внешнему виду

В отличие от других радиодеталей (например, таких как транзистор или диод), вышедший из строя РТС-резистор часто можно определить по внешнему виду. Это связано с тем, что вследствие превышения допустимой мощности рассеивания нарушается целостность корпуса. Обнаружив на плате позистор с таким отклонением от нормы, можно смело выпаивать его и начинать поиск замены, не утруждая себя процедурой проверки мультиметром.

Если внешний осмотр не дал результата, приступаем к тестированию.

Пошаговая инструкция проверки позистора мультиметром

Для процесса тестирования, помимо измерительного прибора, потребуется паяльник. Подготовив все необходимое, начинаем действовать в следующем порядке:

  1. Подключаем тестируемую деталь к мультиметру. Желательно, чтобы прибор был оснащен «крокодилами», в противном случае припаиваем к выводам элемента проволоку и накручиваем ее на разные иглы щупов.
  2. Включаем режим измерения наименьшего сопротивления (200 Ом). Прибор покажет номинальную величину R, характерную для тестируемой модели (как правило, менее одного-двух десятков Ом). Если показание отличается от спецификации (с учетом погрешности), можно констатировать неисправность радиокомпонента.
  3. Аккуратно нагреваем корпус тестируемой детали при помощи паяльника, величина R начнет резко увеличиваться. Если она осталась неизменной, элемент необходимо менять.
  4. Отключаем мультиметр от тестируемой детали, даем ей остыть, после чего повторяем действия, описанные в пунктах 1 и 2. Если сопротивление вернулось к номинальному значению, то радиокомпонент с большой долей вероятности можно признать исправным.

Термистор - это... Что такое Термистор?

Датчик температуры на основе термистора Символ терморезистора, используемый в схемах Вольт-Амперная характеристика (ВАХ) для позистора. Зависимость сопротивления Термистора от температуры. 1:для R0

Термистор — полупроводниковый резистор, электрическое сопротивление которого существенно зависит от температуры.
Для термистора характерны большой температурный коэффициент сопротивления (ТКС) (в десятки раз превышающий этот коэффициент у металлов), простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени.

Терморезистор изготавливают в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок преимущественно методами порошковой металлургии. Их размеры могут варьироваться в пределах от 1—10 мкм до 1—2 см.

Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления, интервал рабочих температур, максимально допустимая мощность рассеяния.

Термистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году и имеет патент США номер #2,021,491.

Различают терморезисторы с отрицательным (термисторы) и положительным (позисторы) ТКС.
Терморезисторы с отрицательным ТКС изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoO?, NiO, CuO), легированных Ge и Si, полупроводников типа AIII BV, стеклообразных полупроводников и других материалов.

Различают терморезисторы низкотемпературные (рассчитанные на работу при температуpax ниже 170 К), среднетемпературные (170—510 К) и высокотемпературные (выше 570 К). Кроме того, существуют терморезисторы, предназначенные для работы при 4,2 К и ниже и при 900—1300 К. Наиболее широко используются среднетемпературные терморезисторы с ТКС от — 2,4 до −8,4 %/К и номинальным сопротивлением 1—106 Ом.

Режим работы терморезисторов зависит от того, на каком участке статической вольт-амперной характеристики (ВАХ) выбрана рабочая точка. В свою очередь ВАХ зависит как от конструкции, размеров и основных параметров терморезистора, так и от температуры, теплопроводности окружающей среды, тепловой связи между терморезистором и средой. Терморезисторы с рабочей точкой на начальном (линейном) участке ВАХ используются для измерения и контроля температуры и компенсации температурных изменений параметров электрической цепей и электронных приборов. Терморезисторы с рабочей точкой на нисходящем участке ВАХ (с отрицательным сопротивлением) применяются в качестве пусковых реле, реле времени, измерителей мощности электро-магнитного излучения на СВЧ, стабилизаторов температуры и напряжения. Режим работы терморезистора, при котором рабочая точка находится также на ниспадающем участке ВАХ (при этом используется зависимость сопротивления терморезистора от температуры и теплопроводности окружающей среды), характерен для терморезисторов, применяемых в системах теплового контроля и пожарной сигнализации, регулирования уровня жидких и сыпучих сред; действие таких терморезисторов основано на возникновении релейного эффекта в цепи с терморезистором при изменении температуры окружающей среды или условий теплообмена терморезистора со средой.
Изготовляются также терморезисторы специальной конструкции — с косвенным подогревом. В таких терморезисторах имеется подогревная обмотка, изолированная от полупроводникового резистивного элемента (если при этом мощность, выделяющаяся в резистивном элементе, мала, то тепловой режим терморезистора определяется температурой подогревателя, то есть током в нём). Таким образом, появляется возможность изменять состояние терморезистора, не меняя ток через него. Такой терморезистор используется в качестве переменного резистора, управляемого электрически на расстоянии.

Из терморезисторов с положительным температурным коэффициентом наибольший интерес представляют терморезисторы, изготовленные из твёрдых растворов на основе BaTiO3. Такие терморезисторы обычно называют позисторами. Известны терморезисторы с небольшим положительным температурным коэффициентом (0,5—0,7 %/К), выполненные на основе кремния с электронной проводимостью; их сопротивление изменяется с температурой примерно по линейному закону. Такие терморезисторы используются, например, для температурной стабилизации электронных устройств на транзисторах.

Стоит отметить, что график изображённый на рисунке «Вольт-Амперная характеристика (ВАХ) для позистора.» некорректен, так как неправильно расположены оси — нужно поменять их местами. Для получения ВАХ термистора график необходимо повернуть влево на 90 градусов и инвертировать по вертикали.

Литература

  • Шефтель И Т., Терморезисторы
  • Мэклин Э. Д., Терморезисторы
  • Шашков А. Г., Терморезисторы и их применение
  • Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов — 4-е перераб. и доп. изд. — М.: Высшая школа, 1987. — С. 401-407. — 479 с. — 50 000 экз.

См. также

Категории:
  • Полупроводниковые приборы
  • Электронные компоненты
  • Датчики

Wikimedia Foundation. 2010.

Термисторы, позисторы в Кривом Роге от компании "Электро Радио Груп

  • NTC-термистор 22 КОм 2мм

    4,28 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 5.0 Ом 11мм

    2,06 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 8.0 Ом 11мм

    2,06 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 22 Ом 9мм

    4,28 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор100 КОм 2мм

    4,28 грн.

    В наличии Оптом и в розницу

    Купить
  • Позистор 27R 3Pin

    14,50 грн.

    В наличии Оптом и в розницу

    Купить
  • Позистор 9R 2Pin

    14,47 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 10 Ом 15мм

    5,75 грн.

    В наличии Оптом и в розницу

    Купить
  • Позистор 18R 2Pin

    14,50 грн.

    В наличии Оптом и в розницу

    Купить
  • Позистор 12R 2Pin

    14,50 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 7.0 Ом 14.5мм B57237-S 709-M

    4,28 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 22 КОм 5мм

    4,28 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 47 КОм 5мм

    4,28 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 1.0 КОм 5мм

    4,28 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 470 Ом 5мм B57164K-471-K

    4,28 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 5.0 Ом 15мм

    9,30 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 5.6 КОм 2мм

    4,28 грн.

    В наличии Оптом и в розницу

    Купить
  • NTC-термистор 10 кОм 5мм

    4,28 грн.

    Нет в наличии Оптом и в розницу

    Написать

  • NTC-термистор 4.7 Ом 15мм

    8,45 грн.

    Нет в наличии Оптом и в розницу

    Написать

  • NTC-термистор 6.8 Ом 15мм

    12,15 грн.

    Нет в наличии Оптом и в розницу

    Написать

  • NTC-термистор 470 Ом 2мм

    4,28 грн.

    Нет в наличии Оптом и в розницу

    Написать

  • NTC-термистор 1.0 КОм 2мм

    4,28 грн.

    Нет в наличии Оптом и в розницу

    Написать

  • NTC-термистор 2.2 КОм 5мм

    4,28 грн.

    Нет в наличии Оптом и в розницу

    Написать

  • NTC-термистор 470 КОм 2мм

    4,28 грн.

    Нет в наличии Оптом и в розницу

    Написать

  • Где находят свое применение термисторы. Что такое термистор и позистор и где они применяются. Термистор: подробно простым языком

    Слово «термистор» понятно само по себе: ТЕРМический резИСТОР – устройство, сопротивление которого изменяется с температурой.

    Термисторы являются в значительной степени нелинейными приборами и зачастую имеют параметры с большим разбросом. Именно поэтому многие, даже опытные инженеры и разработчики схем испытывают неудобства при работе с этими приборами. Однако, познакомившись поближе с этими устройствами, можно видеть, что термисторы на самом деле являются вполне простыми устройствами.

    Вначале необходимо сказать, что не все устройства, изменяющие сопротивление с температурой, называются термисторами. Например, резистивные термометры , которые изготавливаются из маленьких катушек витой проволоки или из напыленных металлических плёнок. Хотя их параметры зависят от температуры, однако, они работают не так, как термисторы. Обычно термин «термистор» применяется по отношению к чувствительным к температуре полупроводниковым устройствам.

    Имеется два основных класса термисторов: с отрицательным ТКС (температурным коэффициентом сопротивления) и с положительным ТКС.

    Существуют два принципиально различных типа выпускаемых термисторов с положительным ТКС. Одни изготавливаются подобно термисторам с отрицательным ТКС, другие же делаются из кремния. Термисторы с положительным ТКС будут описаны кратко, а основное внимание будет уделено боле распространенным термисторам с отрицательным ТКС. Таким образом, если отсутствуют особые указания, то речь будет идти о термисторах с отрицательным ТКС.

    Термисторы с отрицательным ТКС являются высокочувствительными, нелинейными устройствами с узким диапазоном, сопротивление которых уменьшается при увеличении температуры. На рис.1 изображена кривая, показывающая изменение сопротивления в зависимости от температуры и представляющая собой типовую температурную зависимость сопротивления. Чувствительность – приблизительно 4-5 %/ о С. Имеется большой диапазон номиналов сопротивлений, и изменение сопротивления может достигать многих ом и даже килоом на градус.

    R R o

    Рис.1 Термисторы с отрицательным ТКС очень чувствительны и в значительной

    Степени нелинейны. R о может быть в омах, килоомах или мегоомах:

    1-отношение сопротивлений R/R о; 2- температура в о С

    По существу термисторы представляют собой полупроводниковую керамику. Они изготавливаются на основе порошков окислов металлов (обычно окислов никеля и марганца), иногда с добавкой небольшого количества других окислов. Порошкообразные окислы смешиваются с водой и различными связующими веществами для получения жидкого теста, которому придаётся необходимая форма и которое обжигается при температурах свыше 1000 о С.

    Приваривается проводящее металлическое покрытие (обычно серебряное), и подсоединяются выводы. Законченный термистор обычно покрывается эпоксидной смолой или стеклом или заключается в какой-нибудь другой корпус.

    Из рис. 2 можно видеть, что имеется множество типов термисторов.

    Термисторы имеют вид дисков и шайб диаметром от 2.5 до приблизительно 25.5 мм, форму стержней различных размеров.

    Некоторые термисторы сначала изготавливаются в виде больших пластин, а затем режутся на квадраты. Очень маленькие бусинковые термисторы изготавливаются путем непосредственного обжигания капли теста на двух выводах из тугоплавкого титанового сплава с последующим опусканием термистора в стекло с целью получения покрытия.

    Типовые параметры

    Говорить «типовые параметры» - не совсем правильно, так как для термисторов существует лишь несколько типовых параметров. Для множества термисторов различных типов, размеров, форм, номиналов и допусков существует такое же большое количество технических условий. Более того, зачастую термисторы, выпускаемые различными изготовителями, не являются взаимозаменяемыми.

    Можно приобрести термисторы с сопротивлениями (при 25 o С - температуры, при которой обычно определяется сопротивление термистора) от одного ома до десяти мегоом и более. Сопротивление зависит от размера и формы термистора, однако, для каждого определённого типа номиналы сопротивления могут отличаться на 5-6 порядков, что достигается путём простого изменения оксидной смеси. При замене смеси также и изменяется и вид температурной зависимости сопротивления (R-T кривая) и меняется стабильность при высоких температурах. К счастью термисторы с высоким сопротивлением, достаточным для того, чтобы использовать их при высоких температурах, также обладают, как правило, большей стабильностью.

    Недорогие термисторы обычно имеют довольно большие допуски параметров. Например, допустимые значения сопротивлений при 25 о С изменяются в диапазоне от ± 20% до ± 5%. При более высоких или низких температурах разброс параметров еще больше увеличивается. Для типового термистора, имеющего чувствительность 4% на градус Цельсия, соответствующие допуски измеряемой температуры меняются приблизительно от ± 5 о до ± 1,25 о С при 25 о С. Высокоточные термисторы будут рассматриваться в данной статье ниже.

    Ранее было сказано, что термисторы являются устройствами с узким диапазоном. Это необходимо пояснить: большинство термисторов работает в диапазоне от –80 о С до 150 о С, и имеются приборы (как правило, со стеклянным покрытием), которые работают при 400 о С и больших температурах. Однако для практических целей большая чувствительность термисторов ограничивает их полезный температурный диапазон. Сопротивление типового термистора может изменяться в 10000 или 20000 раз при температурах от –80 о С до +150 о С. Можно представить себе трудности при проектировании схемы, которая обеспечивала бы точность измерений на обоих концах этого диапазона (если не используется переключение диапазонов). Сопротивление термистора, номинальное при нуле градусов, не превысит значения нескольких ом при

    В большинстве термисторов для внутреннего подсоединения выводов используется пайка. Очевидно, что такой термистор нельзя использовать для измерения температур, превышающих температуру плавления припоя. Даже без пайки, эпоксидное покрытие термисторов сохраняется лишь при температуре не более 200 о С. Для более высоких температур необходимо использовать термисторы со стеклянным покрытием, имеющие приваренные или вплавленные выводы.

    Требования к стабильности также ограничивают применение термисторов при высоких температурах. Структура термисторов начинает изменяться при воздействии высоких температур, и скорость и характер изменения в значительной степени определяются оксидной смесью и способом изготовления термистора. Некоторый дрейф термисторов с эпоксидным покрытием начинается при температурах свыше 100 о С или около того. Если такой термистор непрерывно работает при 150 о С, то дрейф может измеряться несколькими градусами за год. Низкоомные термисторы (к примеру, не более 1000 Ом при 25 о С) зачастую ещё хуже – их дрейф может быть замечен при работе приблизительно при 70 о С. А при 100 о С они становятся ненадёжными.

    Недорогие устройства с большими допусками изготавливаются с меньшим вниманием к деталям и могут дать даже худшие результаты. С другой стороны, некоторые правильно разработанные термисторы со стеклянным покрытием имеют прекрасную стабильность даже при более высоких температурах. Бусинковые термисторы со стеклянным покрытием обладают очень хорошей стабильностью, так же, как и недавно появившиеся дисковые термисторы со стеклянным покрытием. Следует помнить, что дрейф зависит как от температуры, так и от времени. Так, например, обычно можно использовать термистор с эпоксидным покрытием при кратковременном нагреве до 150 о С без значительного дрейфа.

    При использовании термисторов необходимо учитывать номинальное значение постоянной рассеиваемой мощности . Например, небольшой термистор с эпоксидным покрытием имеет постоянную рассеивания, равную одному милливатту на градус Цельсия в неподвижном воздухе. Другими словами один милливатт мощности в термисторе увеличивает его внутреннюю температуру на один градус Цельсия, а два милливатта - на два градуса и так далее. Если подать напряжение в один вольт на термистор в один килоом, имеющий постоянную рассеивания один милливатт на градус Цельсия, то получится ошибка измерения в один градус Цельсия. Термисторы рассеивают большую мощность, если они опускаются в жидкость. Тот же вышеупомянутый небольшой термистор с эпоксидным покрытием рассеивает 8 мВт/ о С, находясь в хорошо перемешиваемом масле. Термисторы с большими размерами имеют постоянное рассеивание лучше, чем небольшие устройства. Например термистор в виде диска или шайбы может рассеивать на воздухе мощность 20 или 30 мВт/ о С следует помнить, что аналогично тому, как сопротивление термистора изменяется в зависимости от температуры, изменяется и его рассеиваемая мощность.

    Уравнения для термисторов

    Точного уравнения для описания поведения термистора не существует, – имеются только приближенные. Рассмотрим два широко используемых приближенных уравнения.

    Первое приближенное уравнение, экспоненциальное, вполне удовлетворительно для ограниченных температурных диапазонов, в особенности – при использовании термисторов с малой точностью.

    В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы - электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

    Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике - познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

    На принципиальных схемах терморезистор обозначается вот так.

    В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

    Основная характеристика терморезистора - это его ТКС . ТКС - это температурный коэффициент сопротивления . Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.

    У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

    На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

    Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

    Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор - контролирует температуру ключевых транзисторов.

    Второй. Это так называемый NTC-термистор (JNR10S080L ). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

    Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

    Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

    Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его "потроха". Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

    Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

    Прямой и косвенный нагрев.

    По способу нагрева терморезисторы делят на две группы:

      Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

      Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

    NTC-термисторы и позисторы.

    По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

    Давайте разберёмся, какая между ними разница.

    Своё название NTC-термисторы получили от сокращения NTC - Negative Temperature Coefficient , или "Отрицательный Коэффициент Сопротивления". Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается . Кстати, вот так обозначается NTC-термистор на схеме.

    Обозначение термистора на схеме

    Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

    На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР"а, только там он был серо-зелёного цвета.

    На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

    Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

    Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

    Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 - VD4).

    При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить "плавный запуск" электроприбора и уберечь от пробоя диоды выпрямителя.

    Понятно, что пока импульсный блок питания включен, NTC-термистор находится в "подогретом" состоянии.

    Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

    Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

    Позисторы. PTC-термисторы.

    Термисторы, сопротивление которых при нагреве растёт , называют позисторами. Они же PTC-термисторы (PTC - Positive Temperature Coefficient , "Положительный Коэффициент Сопротивления").

    Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

    Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

    На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

    Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

    Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

    Наверное, каждый помнит характерный звук "бдзынь", когда включается телевизор - это и есть тот момент, когда работает петля размагничивания.

    Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.

    Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-"таблеток", которые установлены в одном корпусе. На вид эти "таблетки" абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3 ~ 3,6 кОм, а у другой всего лишь 18 ~ 24 Ом.

    Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

    И конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.

    Встроенные терморезисторы.

    В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала , то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций , но там он является отдельным элементом.

    Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

    Теперь, когда мы познакомились с терморезисторами, пора .

    И относятся к категории приборов на основе полупроводников. Данные устройства получили широкое применение в электротехнике. Они изготавливаются из специальных полупроводниковых материалов с высоким отрицательным температурным коэффициентом. Во многих приборах используется термистор принцип работы которого основан на зависимости электрического сопротивления от температуры. Качество любого прибора, прежде всего, зависит от физических свойств полупроводника, а также от форм и размеров самого терморезистор а.

    Термисторы: устройство и принцип работы

    Термистор представляет собой терморезистор с отрицательным температурным коэффициентом сопротивления. Эти устройства изготавливаются в виде полупроводниковых стержней и покрываются защитным слоем эмалевой краски.

    Соединение с другими деталями осуществляется с помощью контактных колпачков и выводов, для которых подходит только сухая среда. Для размещения некоторых моделей термисторов используется металлический герметичный корпус. В этом случае они становятся устойчивыми к любым агрессивным воздействиям и могут эксплуатироваться даже при высокой влажности в помещении.

    Для того чтобы конструкция устройства была герметичной, применяется стекло и олово. Рабочие качества термисторов улучшаются, когда для оборачивания стержней применяется металлическая фольга. Токоотводы изготавливаются из никелевой проволоки. Номинальные значения сопротивления в различных устройствах находятся в пределах 1-200 кОм, а диапазон температур составляет от -100 до +1290С.

    Работа термисторов основана на свойствах отдельных видов проводников, изменять показатели сопротивления под действием различных температур. Основными проводниками, используемыми в этих приборах, является медь и платина в чистом виде. Следует отметить, что значение отрицательного температурного коэффициента термисторов значительно превышает такие же параметры, свойственные обычным металлам.

    Применение термисторов

    Терморезистор ы применяемые в качестве датчиков, могут работать в двух режимах. В первом случае температурный режим зависит лишь от температуры окружающей среды. Значение тока, проходящего через термистор, очень мало и нагревания устройства практически не происходит. Второй режим предполагает нагревание термистора электрическим током, проходящим внутри него. В данном случае значение температуры будет зависеть от различных изменяющихся условий тепловой отдачи. Это может быть плотность газовой среды, окружающей прибор, интенсивность обдува и другие факторы.

    Каждый термистор, принцип работы которого основан на снижении сопротивления при повышении температуры, используется в определенных сферах электротехники. Они применяются для измерения и компенсации температуры, в крупных бытовых электроприборах - холодильниках и морозильных камерах, посудомоечных машинах и другой технике. Эти устройства нашли широкое применение в автомобильной электронике. С их помощью измеряется температура охлаждающей жидкости или масла, а также температурные показатели других элементов автомобиля.

    В кондиционере термисторы устанавливаются в тепловом распределителе. Кроме того, они используются в качестве датчика слежения за температурой в комнате. С помощью термисторов осуществляется блокировка дверей нагревательных приборов, они устанавливаются в нагреватели теплых полов и в газовые котлы. Терморезисторы применяются, когда нужно определить уровень нестандартных жидкостей, например, жидкого азота. В целом, они получили самое широкое распространение в промышленной электронике.

    Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.

    Рис.1 Термистор

    Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.


    Рис.2 ТКС термистора

    Нас интересуют следующие параметры термистора:

      Сопротивление при 25˚С

      Максимальный установившийся ток

    Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

    1. Термистор достаточно долго остывает. Если выключить устройство и сразу включить опять, то термистор будет иметь низкое сопротивление и не выполнит свою защитную функцию.
    2. Нельзя соединять термисторы параллельно для увеличения тока – из-за разброса параметров ток через них будет сильно различаться. Но вполне можно соединять нужное к-во термисторов последовательно.
    3. При работе происходит сильный нагрев термистора. Греются также элементы рядом с ним.
    4. Максимальный установившийся ток через термистор должен ограничиваться его максимальной мощностью. Этот параметр указан в документации. Но если термистор используется для ограничения коротких бросков тока (например, при первоначальном включении блока питания и зарядке конденсатора фильтра), то импульсный ток может быть больше. Тогда выбор термистора ограничен его максимальной импульсной мощностью.

    Энергия заряженного конденсатора определяется формулой:

    E = (C*Vpeak²)/2

    где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

    Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

    Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

    Rном - номинальное сопротивление термистора при температуре 25°С

    Iмакс - максимальный ток через термистор (максимальный установившийся ток)

    Смакс - максимальная емкость в тестовой схеме, которую разряжают на термистор без его повреждения (тестовое напряжение 350v)

    Как проводится тестовое испытание, можно посмотреть на седьмой странице.

    Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

    Наименование

    Rном,

    Iмакс,

    Смакс,

    д иаметр 8мм

    диаметр 10мм

    диаметр 13мм

    диаметр 15мм

    диаметр 20мм

    Таблица параметров NTC термисторов фирмы Joyin

    Соединяя несколько одинаковых NTC термисторов последовательно, мы уменьшаем требования к максимальной импульсной энергии каждого из них.

    Приведу пример. Например, нам необходимо подобрать термистор для включения блока питания компьютера. Максимальная мощность потребления компьютера – 700 ватт. Мы хотим ограничить стартовый ток величиной 2-2.5А. В блоке питания установлен конденсатор фильтра 470мкФ.

    Считаем действующее значение тока:

    I = 700Вт/220В = 3.18А

    Как писал выше, для надежной работы термистора, выберем максимальный установившийся ток из документации на 20% больше этой величины.

    Iмакс = 3.8А

    Считаем нужное сопротивление термистора для стартового тока 2.5А

    R = (220В*√2)/2.5А = 124 Ом

    Из таблицы находим нужные термисторы. 6 штук последовательно включенных термисторов JNR15S200L подходят нам по Iмакс , общему сопротивлению. Максимальная емкость, которую они могут зарядить будет равна 680мкФ*6*0.65=2652мкФ, что даже больше, чем нам нужно. Естественно, при понижении Vpeak , понижаются и требования к максимальной импульсной мощности термистора. Зависимость у нас от квадрата напряжения.

    И последний вопрос по поводу выбора термисторов. Что, если мы подобрали необходимые по максимальной импульсной мощности термисторы, но они нам не подходят по Iмакс (постоянная нагрузка для них слишком велика), либо в самом устройстве нам не нужен источник постоянного нагрева? Для этого мы применим простое решение – добавим в схему еще один выключатель параллельно термистору, который включим после зарядки конденсатора. Что я и сделал в своем ограничителе. В моем случае параметры такие – максимальная мощность потребления компьютера 400вт, ограничение стартового тока – 3.5А, конденсатор фильтра 470мкФ. Я взял 6 штук термисторов 15d11 (15 ом). Схема приведена ниже.


    Рис. 3 Схема ограничителя

    Пояснения по схеме. SA1 отключает фазовый провод. Светодиод VD2 служит для индикации работы ограничителя. Конденсатор C1 сглаживает пульсации и светодиод не мерцает с частотой сети. Если он вам не нужен, то уберите из схемы C1, VD6, VD1 и просто соедините параллельно светодиод и диод по аналогии элементов VD4, VD5. Для индикации процесса зарядки конденсатора, параллельно термисторам включен светодиод VD4. В моем случае при зарядке конденсатора блока питания компьютера, весь процесс занимает менее секунды. Итак, собираем.


    Рис.4 Набор для сборки

    Индикацию питания я собрал непосредственно в крышке от выключателя, выкинув из нее китайскую лампу накаливания, которая бы прослужила недолго.


    Рис. 5 Индикация питания


    Рис.6 Блок термисторов


    Рис. 7 Собранный ограничитель

    На этом можно было бы закончить, если бы через неделю работы не вышли из строя все термисторы. Выглядело это так.


    Рис. 8 Выход из строя NTC термисторов

    Несмотря на то, что запас по допустимой величине емкости был очень большой – 330мкФ*6*0.65=1287мкФ.

    Термисторы брал в одной известной фирме, причем разных номиналов – все брак. Производитель неизвестен. Либо китайцы заливают в большие корпуса термисторы меньших диаметров, либо качество материалов очень плохое. В итоге купил даже меньшего диаметра - SCK 152 8мм. То же Китай, но уже фирменные. По нашей таблице допустимая емкость 100мкФ*6*0.65=390мкФ, что даже немного меньше, чем нужно. Тем не менее, все работает отлично.

    Развитие электроники с каждым годом набирает обороты. Но, несмотря на новые изобретения, в электрических схемах надёжно работают устройства, сконструированные ещё в начале XX века. Один из таких приборов - термистор. Форма и назначение этого элемента настолько разнообразны, что быстро отыскать его в схеме удаётся только опытным работникам сферы электротехники. Понять, что такое термистор, можно лишь владея знаниями о строении и свойствах проводников, диэлектриков и полупроводников.

    Описание прибора

    Датчики температуры широко используются в электротехнике. Почти во всех механизмах применяются аналоговые и цифровые микросхемы термометров, термопары, резистивные датчики и термисторы. Приставка в названии прибора говорит о том, что термистор - это такое устройство, которое зависит от влияния температуры. Количество тепла в окружающей среде - главенствующий показатель в его работе. Благодаря нагреванию или охлаждению, меняются параметры элемента, появляется сигнал, доступный для передачи на механизмы контроля или измерения.

    Термистор - это прибор электроники, у которого значения температуры и сопротивления связаны обратной пропорциональностью.

    Существуют и другое его название - терморезистор . Но это не вполне правильно, так как на самом деле термистор является одним из подвидов терморезистора . Изменение теплоты может влиять на сопротивление резистивного элемента двумя способами: либо увеличивая его, либо уменьшая.

    Поэтому термосопротивления по температурному коэффициенту подразделяются на РТС (положительные) и NTC (отрицательные). РТС - резисторы получили название позисторов, а NTC - термисторов.

    Отличие РТС и NTC приборов состоит в изменении их свойств при воздействии климатических условий. Сопротивление позисторов прямо пропорционально количеству тепла в окружающей среде. При нагреве NTC - приборов его значение уменьшается.

    Таким образом, повышение температуры позистора приведёт к росту его сопротивления, а у термистора - к падению.

    Вид терморезистора на электрических принципиальных схемах похож на обыкновенный резистор . Отличительной чертой является прямая под наклоном, которая перечёркивает элемент. Тем самым показывая, что сопротивление не постоянно, а может изменяться в зависимости от увеличения или уменьшения температуры в окружающей среде.

    Основное вещество для создания позисторов - титанат бария. Технология изготовления NTC - приборов более сложная из-за смешивания различных веществ: полупроводников с примесями и стеклообразных оксидов переходных металлов.

    Классификация термисторов

    Габариты и конструкция терморезисторов различны и зависят от области их применения.

    Форма термисторов может напоминать:

    Самые маленькие терморезисторы в виде бусинок. Их размеры меньше 1 миллиметра, а характеристики элементов отличаются стабильностью. Недостатком является невозможность взаимной подмены в электрических схемах.

    Классификация терморезисторов по числу градусов в Кельвинах:

    • сверх высокотемпературные - от 900 до 1300;
    • высокотемпературные - от 570 до 899;
    • среднетемпературные - от 170 до 510;
    • низкотемпературные - до 170.

    Максимальный нагрев хоть и допустим для термоэлементов, но сказывается на их работе ухудшением качества и появлением значительной погрешности в показателях.

    Технические характеристики и принцип действия

    Выбор терморезистора для контролирующего или измерительного механизма проводят по номинальным паспортным или справочным данным. Принцип действия, основные характеристики и параметры термисторов и позисторов похожи. Но некоторые отличия все же существуют.

    РТС - элементы оцениваются тремя определяющими показателями: температурной и статической вольт - амперной характеристикой, термическим коэффициентом сопротивления (ТКС).

    У термистора список более широкий.

    Помимо параметров, аналогичных позистору, показатели следующие:

    • номинальное сопротивление;
    • коэффициенты рассеяния, энергетической чувствительности и температуры;
    • постоянная времени;
    • температура и мощность по максимуму.

    Из этих показателей основными, которые влияют на выбор и оценивание термистора, являются:

    • номинальное сопротивление;
    • термический коэффициент сопротивления;
    • мощность рассеяния;
    • интервал рабочей температуры.

    Номинальное сопротивление определяется при конкретной температуре (чаще всего двадцать градусов Цельсия). Его значение у современных терморезисторов колеблется в пределах от нескольких десятков до сотен тысяч ом.

    Допустима некоторая погрешность значения номинального сопротивления. Она может составлять не более 20% и должна быть указана в паспортных данных прибора.

    ТКС зависит от теплоты. Он устанавливает величину изменения сопротивления при колебании температуры на одно деление. Индекс в его обозначении указывает на количество градусов Цельсия либо Кельвина в момент измерений.

    Выделение теплоты на детали появляется из-за протекания по ней тока при включении в электрическую цепь. Мощность рассеяния - величина, при которой резистивный элемент разогревается от 20 градусов Цельсия до максимально допустимой температуры.

    Интервал рабочей температуры показывает такое её значение, при котором прибор работает длительное время без погрешностей и повреждений.

    Принцип действия термосопротивлений основан на изменении их сопротивления под влиянием теплоты.

    Происходит это по нескольким причинам:

    • из-за фазового превращения;
    • ионы с непостоянной валентностью более энергично обмениваются электронами;
    • сосредоточенность заряженных частиц в полупроводнике распределяется другим образом.

    Термисторы используются в сложных устройствах, которые применяются в промышленности, сельском хозяйстве, схемах электроники автомобилей. А также встречаются в приборах, которые окружают человека в быту - стиральных, посудомоечных машинах, холодильниках и другом оборудовании с контролем температуры.

    Термисторная защита электродвигателей и реле термисторной защиты двигателя

    Термисторная (позисторная) защита электродвигателей

    Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя.  Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC). Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).

    Термочувствительные защитные устройства: термисторы, позисторы

     

    В качестве датчиков температуры получили применение термисторы и позисторы (РТС – резисторы) - полупроводниковые резисторы, изменяющие свое сопротивление от температуры. Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).

    Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

    Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

    Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

    Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

    Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

     

    Рассмотрим схему позисторной защиты, показанную на рисунке 2.

    К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.

    При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

    При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 - открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети, двигатель останавливается.

    Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

    После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

    В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

    Достоинства и недостатки термисторной (позисторной) защиты

    • Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.
    • Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя принудительного охлаждения. Следующей областью применения термисторной защиты является температурный контроль в трансформаторах, жидкостях и подшипниках для их защиты от перегрева.
    • Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.
    • Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

    Виды термисторных реле различных производителей:

    Реле термисторной защиты двигателя TER-7 ELCO (Чехия)

    • контролирует температуру обмотки электродвигателя в температ. интервале, данном сопротивл. PTC термистора фиксированный настроенный уровень коммутации
    • в качестве считывающего элемента применяетсчя термистор PTC встроенный в обмотку электродвигателя его производителем, возможно использование внешнего PTC сенсора
    • функция ПАМЯТЬ - реле в случае ошибки блокируется до момента вмешательства персонала (наж. кнопки RESET)
      RESET ошибочного состояния:
      a) кнопкой на передней панели
      b) внешним контактом (на расстоянии по двум проводам)
    • функция контроля короткого замыкани или отключения сенсора , состояние нарушения сенсора указывает мигающий красный светодиодный индикатор
    • выходной контакт 2x переключ. 8 A / 250 V AC1
    • состояние превышение температуры обмотки двигателя указывает светящийся красный светодиодный индикатор
    • универсальное напряжение питания AC/ DC 24 - 240 V
    • клеммы сенсора не изолированы гальванически, но их можно замкнуть с клеммой PE без поломки устройства, в случае питания от сети должен быть подключен нейтраль на клемму A2

    Реле термисторной защиты электродвигателя РТ-М01-1-15 (МЕАНДР, Россия)

     

    • контролирует температуру двигателей, оснащенные позисторами (термисторы с положительным температурным коэффициентом - РТС резисторы), встроенные в обмотку двигателя ( производителем).
    • коммутируемый ток 5А/250В (пиковый 16А), контакты реле 1з+1р
    • индикация рабочих состояний:
    • (напряжение питания, срабатывание реле, перегрев двигателя, КЗ датчиков)
    • напряжение питания АС 220, 100, 380 (по исполнениям)

    Реле контроля температуры двигателя E3TF01 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)

    • контролируемая величина PTC (контр. температуры двигателя  на повышение) от 6 PTC датчиков
    • диапазон измерения общее сопр. холодн. <1,5kΩ клеммы T1-T2 или T1-T3
    • напряжений питания    230V AC
    • максимальный коммутируемый ток 250V, 5A AC (1 перекидной)

    Реле контроля температуры двигателя G2TF02 (PTC), 2ПК (требуется модуль TR2) TELE Серия GAMMA (Австрия)

      

    • контролируемая величина PTC (контр. температуры двигателя  на повышение) от 6 PTC датчиков
    • диапазон измерения общее сопр. холодн. <1,5kΩ клеммы T1-T2
    • диапазон напряжений питания спомощью модуля питания TR2 или SNT2 * (устанавливается в реле)
    • напряжений питания    230V AC
    • максимальный коммутируемый ток 250V, 5A AC (2 перекидных)

    Реле термисторной защиты двигателя CR-810 F&F ЕвроАвтоматика (Белоруссия)

    • контроль температуры электродвигателей, генераторов, трансформаторов и защита их от перегрева
    • датчики РТС устанавливаются в обмотках электродвигателя производителем и в комплект не входят (термисторы РТС соединенные последовательно от 1 до 6 штук)
    • напряжение питания 230V AC и 24V AC/DC
    • максимальный комутируемый ток 16А, 1 переключающий контакт
    • контроль КЗ в цепи термисторных датчиков
    • с ростом температуры электродвигателя растет сопротивление цепи термисторных датчиков, при достижении более 3000 Ом питание отключается (реле разрывает цепь питания катушки контактора), включение происходит автоматически при снижении температуры и соответсвенно сопротивления до 1800 Ом.

    Реле контроля температуры двигателя MTR01, MTR02 BMR (Чехия)

    • Реле контролирует температуру обмотки электрического двигателя. Принцип действия основан на измерении сопротивления термистора, встроенного в двигатель.
    • Устройство также контролирует короткое замыкание или пропадание фазы. Реле имеет один выходной перекидной контакт на ток 8 А.
    • Модификация MTR01 24V/ MTR02 24V предназначена для напряжения питания 24 В. Остальные параметры.
    • MTR02 с гальванической изоляцией
    • Сопротивление PTC в раб. режиме 50 Ω < PTC < 3,3 кΩ
    • Сопротивление PTC в авар. режиме PTC > 3,3кΩ или PTC < 50Ω
    • Отключение аварийного режима PTC < 1,8 кΩ + RESET
    • Номинальный ток 8 A (15А - пиковый ток), 1 перекидной контакт

    Реле контроля температуры двигателя BTR-12E BTR Electronic Systems, "METZ CONNECT" (Германия)

    • реле термистор применяется для защиты моторов от термических перегрузок, возникающих при механических перегрузках в приводах или при использовании электродвигателей под перенапряжением. Для регистрации температуры применяется РТС = сопротивление с позитивным температурным коэффициентом, которые позиционируются в месте наибольшего нагрева.
    • выпускается с памятью ошибки и без ЗУ (запоминающее  устройство)
    • напряжение питания 230V AC / 24V AC/DC
    • предельно допустимый ток контактов 6А (1 или 2 переключающих контакта)

    Реле термической защиты Grundfos MS 220 C Grundfos/Ziehl (Германия)

    • Реле Grundfos MS 220C предназначено для преобразования термисторного сигнала в релейный и передачи его на пускатель в насосах с мощностью двигателя более 3.0 кВт.
    • напряжение питания AC/DC 24 - 240V (и др. в зависимости от исполнения 110,400V)
    • 1 CO, ток контактов 6А

    Реле контроля температуры двигателя серии 71.91 и 71.92 Finder (Италия)

    Термисторное реле определения температуры для промышленного применения.

    Реле Finder термисторной защиты двигателя [71.91.8.230.0300]

    • 1 нормально разомкнутый контакт, без памяти отказов
    • Питание 24 В переменного/постоянного тока или 230 В переменного тока
    • Защита от перегрузок в соответствии с EN 60204-7-3
    • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
    • Индикация состояния с помощью светодиода
    • Определение температуры с положительным температурным коэффициентом (PTC)
    • Выявление короткого замыкания с помощью PTC
    • Выявление обрыва провода с помощью PTC

    Реле Finder термисторной защиты двигателя (с памятью) [71.92.8.230.0401]

    • Термисторное реле с памятью отказов
    • 2 перекидных контакта
    • Питание 24 В переменного/постоянного тока или 230 В переменного тока
    • Защита от перегрузок в соответствии с EN 60204-7-3
    • Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
    • Индикация состояния с помощью светодиода
    • Определение температуры с положительным температурным коэффициентом (PTC)
    • Память отказов выбирается переключателем
    • Выявление короткого замыкания с помощью PTC
    • Выявление обрыва провода с помощью PTC

    Термисторы PTC (ПОЗИСТОР) | библиотека

    Отличительные характеристики «ПОЗИСТОРА» можно получить, добавив небольшое количество редкоземельных элементов в титанат бария (BaTiO3).
    Электроды изготавливаются из керамики, в которой титанат бария используется в качестве основного ингредиента для создания ПОЗИСТОРА, а также широко используются типы свинца и типы чипов.

    Три характеристики POSISTOR можно проиллюстрировать следующим образом.

    Сопротивление почти остается постоянным между комнатной температурой (25 ° C) и точкой Кюри.
    Когда температура превышает точку Кюри, сопротивление внезапно увеличивается. Используя эту характеристику, обнаруживаются ненормальные условия, когда контур перегревается сверх заданной температуры, и контур может быть отключен.

    Что можно сделать, используя эту характеристику?
    Когда температура становится больше, чем температура обнаружения, ПОЗИСТОР может уменьшить ток!

    Пример, светодиодные лампы;
    Светодиодные элементы, составляющие основу светодиодных ламп, представляют собой электронные компоненты, которые очень слабо нагреваются.
    Когда через светодиодный элемент протекает большой ток, когда к светодиодному элементу прилагается тепло, светодиодный элемент будет поврежден.

    ПОЗИСТОР вступает в игру в таких условиях! !

    ПОЗИСТОР определяет температуру вокруг светодиодного элемента, и когда температура достигает заданной температуры (температуры обнаружения), сопротивление ПОЗИСТОРА внезапно увеличивается, чтобы уменьшить ток. Соответственно, ПОЗИСТОР предотвращает повреждение светодиодных элементов нагреванием.

    Поскольку сопротивление ПОЗИСТОРА внезапно увеличивается, цифровое преобразование информации о температуре не требуется.
    Температуру можно определить с помощью простой схемы!

    Murata предлагает различные ПОЗИСТОРЫ, от 40 ° C до 130 ° C.

    Соотношение между током и напряжением при приложении напряжения к ПОЗИСТОРУ показано на следующем рисунке.

    На рисунке сплошной линией показаны характеристики ПОЗИСТОРА, а пунктирной линией показаны характеристики фиксированного сопротивления.
    Во-первых, давайте посмотрим на относительные значения сопротивления и температуры.

    Фиксированное сопротивление показывает почти постоянное сопротивление даже при повышении температуры. (Точка B)
    С другой стороны, сопротивление ПОЗИСТОРА внезапно увеличивается от до точки C (точка Кюри) (точка B)

    Теперь давайте посмотрим на соотношение между током и напряжением.

    Согласно закону Ома, ток фиксированного сопротивления увеличивается вместе с приложением напряжения.

    С другой стороны, ток в ПОЗИСТоре остается таким же, как фиксированное сопротивление до точки C, согласно закону Ома.
    Однако, когда ток превышает точку C из-за самонагрева, и сопротивление самого ПОЗИСТОРА увеличивается, ток ПОЗИСТОРА уменьшается вместе с увеличением напряжения.
    Таким образом, ПОЗИСТОР имеет свойство поддерживать постоянную электрическую мощность.

    Что можно сделать, используя эту характеристику?

    • Нагреватель
      ПОЗИСТОР используется в нагревательных элементах с постоянной температурой, нагревателях и т. Д., воспользовавшись этими характеристиками. ПОЗИСТОР отличается от нихромового нагревателя и т. Д. И поддерживает постоянную температуру без включения / выключения.
    • Максимальная токовая защита
      Когда в электронной цепи возникает аномалия, протекает большой ток (перегрузка по току). Используя эту характеристику, ПОЗИСТОР ограничивает ток в цепи, так что сверхток не протекает в другие электронные компоненты, когда этот сверхток проходит.ПОЗИСТОР ограничивает ток в цепи для защиты от сверхтоков.

    На следующем рисунке показана взаимосвязь между током и временем, когда на ПОЗИСТОР подается напряжение. Красная линия показывает характеристику ПОЗИСТОРА, а синяя линия показывает характеристику фиксированного сопротивления.

    Как показано на рисунке, постоянный ток течет при фиксированном сопротивлении независимо от прошедшего времени.

    С другой стороны, когда на ПОЗИСТОР подается напряжение, отображается характеристика, показанная на рисунке.Протекает большой ток, потому что в момент подачи напряжения сопротивление низкое, сопротивление увеличивается из-за самонагрева ПОЗИСТОРА вместе с истекшим временем, а ток, протекающий в ПОЗИСТОР, уменьшается.

    Многое можно реализовать с помощью ПОЗИСТОРА! !

    ПОЗИСТОР допускает начальный приток большого тока, который впоследствии может быть уменьшен за счет самонагрева.

    Например, компрессор, используемый в холодильниках.
    Компрессор оснащен двигателем, и для запуска двигателя требуется большой ток. ПОЗИСТОР используется, потому что требуются компоненты, которые допускают начальный приток большого тока и уменьшают ток по прошествии определенного времени!

    5.2.4 Термистор PTC (псевдоним позистор)

    Термистор - это тип резистора, сопротивление которого значительно зависит от температуры, в большей степени, чем у стандартных резисторов. Слово представляет собой сумку из терморезистора и резистора.Термисторы широко используются в качестве ограничителей пускового тока, датчиков температуры, самовосстанавливающихся устройств защиты от сверхтоков и саморегулирующихся нагревательных элементов.

    Многие люди несправедливо считают термисторы неточными датчиками. Это могло быть правдой в прошлом, когда термисторы имели допуск в лучшем случае 5%. Для обеспечения максимальной точности RTD по-прежнему является лучшим выбором, но современные термисторы не сильно отстают. Термисторы с точностью до 0,1 ° C сейчас широко доступны и по очень разумной цене. У них быстрое время отклика и большая мощность на ° C, чем у RTD.

    Термисторы

    отличаются от резистивных датчиков температуры (RTD) тем, что в термисторе обычно используется керамика или полимер, а в RTD используются чистые металлы. Температурный отклик также отличается; RTD полезны в более широких диапазонах температур, в то время как термисторы обычно обеспечивают более высокую точность в ограниченном диапазоне температур (обычно от -100 ° C до 150 ° C).

    Коммерческие термисторы PTC делятся на две основные категории. Первая категория состоит из термочувствительных кремниевых резисторов, иногда называемых «силисторами».Эти устройства демонстрируют довольно однородный положительный температурный коэффициент (около + 0,77% / ° C) на протяжении большей части своего рабочего диапазона, но также могут иметь область отрицательного температурного коэффициента при температурах, превышающих 150 ° C. Эти устройства чаще всего используются для температурной компенсации кремниевых полупроводниковых приборов в диапазоне от -60 ° C до + 150 ° C.
    Другая основная категория - это переключающие термисторы PTC. Эти устройства представляют собой поликристаллические керамические материалы, которые обычно обладают высоким сопротивлением, но становятся полупроводящими за счет добавления легирующих примесей.Чаще всего их производят с использованием композиций титанатов бария, свинца и стронция с такими добавками, как иттрий, марганец, тантал и кремнезем. Эти устройства имеют характеристику сопротивление-температура, которая показывает очень небольшой отрицательный температурный коэффициент, пока устройство не достигнет критической температуры, которая называется его «Кюри», температурой переключения или переходной температуры. По мере приближения к этой критической температуре устройства начинают демонстрировать повышающийся положительный температурный коэффициент сопротивления, а также значительное увеличение сопротивления.Изменение сопротивления может достигать нескольких порядков в диапазоне температур в несколько градусов. Большинство термисторов PTC предназначены для работы с температурой перехода от -60 ° C до 120 ° C, однако могут быть изготовлены устройства, которые могут переключаться от -100 ° C до 300 ° C.

    Реакция термистора нелинейна, и, как и в случае с RTD, мы должны избегать подачи слишком большого тока возбуждения через термистор из-за самонагрева.
    Подключение к приборам представляет собой простую 2-проводную конфигурацию, поскольку, в отличие от RTD, нам не нужно компенсировать сопротивление проводов: оно мало по сравнению с сопротивлением термистора (обычно от 1 до 100 кОм).Термисторы
    благодаря своей высокой чувствительности идеально подходят для обнаружения небольших изменений температуры, особенно когда важно изменение, а не абсолютное значение.

    позисторов - обзор | Темы ScienceDirect

    5.2.3 Проблемы пассивных и активных устройств

    В этом разделе мы начнем с обсуждения пассивных устройств, а затем обсудим характеристики активных устройств. В таблице 5.3 показаны некоторые пассивные элементы, используемые в конструкции PA, параметры, относящиеся к этому устройству, и влияние, которое каждый элемент может оказать на результирующую конструкцию.Для резисторов основными параметрами являются сопротивление листа ( R sh ), минимальная ширина или длина ( W min или L min ), изменение ширины ( dW ) и максимальное ток ( I макс ). Для базового балласта (где балластный резистор размещен на базе транзистора) резистор (часто используется с HBT, где бета уменьшается с температурой), более высокий R sh , меньший Вт мин и более высокий I max все приводит к меньшему размеру матрицы.Вариация R sh и dW (особенно для длинных тонких резисторов) может повлиять на выход. Аналогичную зависимость имеют резисторы смещения. Для балласта эмиттера номинал резистора обычно невелик, и важна минимальная длина, а не общая длина. В большинстве процессов III-V резисторы изготавливаются из тонкопленочного резистора с использованием нитрида тантала или нихрома [35]. Разброс этих резисторов составляет ± 5–10%. В кремниевых процессах для этих функций часто используются полупроводниковые резисторы, вариации которых составляют примерно ± 20–25% [36].Тонкопленочный резистор (за дополнительную плату) в SiGe BiCMOS составляет примерно ± 10% [37].

    Таблица 5.3. Пассивные элементы, их важные параметры и их возможное влияние на размер и выход штампа

    900 5 900 R1
    Элемент Параметр Размер штампа Выход
    Базовый балласт R 900 Вт мин. dW I макс. X X X X X
    Эмиттер балласт L мин. dW I макс. X X X X X
    Вт мин. dW I макс. X X X X X
    Колпачок C a W мин. X X X X
    Металл R sh W мин. S 15 мин. S 15 мин. X X X

    В большинстве полупроводниковых процессов используется несколько конденсаторов.В технологиях III-V они почти исключительно основаны на использовании нитридных материалов в качестве изоляционного материала [35]. Использование нитридов накладывает некоторые ограничения на значение емкости, достижимое при использовании двух металлических пластин, поэтому в этих технологиях популярны «пакетные» конденсаторы. Пример, который мы обсуждали ранее, с «потрясающим» определением плотности, не совпадающим с определением разработчика, в точности относится к пакетному конденсатору, поскольку он требует переходных отверстий для соединения различных пластин (это также верно и для кремниевых процессов).Ключевыми параметрами для конденсатора являются емкость на размер посадочного места ( C, a ), минимальный размер крышки (в случае, если требуются малые конденсаторы), dA - это изменение площади и наиболее важно для конденсаторов малой емкости. . V max - это напряжение, при котором может быть смещен конденсатор. Это повлияет на размер кристалла, потому что, если он недостаточно высок, необходимо будет последовательно соединить два конденсатора, чтобы выдержать напряжение. V max , на процессах с GaAs, напрямую зависит от плотности покрытия (от изолятора).В процессах с кремнием крышки MIM могут иметь более высокую плотность из-за использования других материалов, которые обеспечивают как высокую диэлектрическую постоянную (более высокую собственную плотность конденсатора), так и высокое напряжение пробоя. Другие колпачки, такие как поли-поли колпачки, также доступны в кремниевых процессах.

    Важными параметрами для металлизации являются сопротивление листа для различных металлов (это становится более важным при выходе усилителя мощности, где токи очень высоки), минимальная ширина ( Вт, мин. ) и минимальный зазор. , S мин .Воздействие обсуждалось в предыдущем разделе, как и максимальная способность выдерживать ток.

    5.2.3.1 Конденсаторы

    Как мы только что обсуждали, конденсаторы MIM являются наиболее важными для согласования в схеме. Об изменении очень важно сообщить дизайнерам, потому что это может повлиять на доходность и производительность. Для приложений согласования (предварительное согласование входных, межэтапных или выходных) следует использовать колпачки с более высоким коэффициентом качества ( Q ) (например, MIM). С точки зрения разработчика, конденсаторы следует сравнивать на основе занимаемой ими площади в компоновке, а не только значения, указанного в спецификации процесса.Для оценки технологий также важно учитывать это влияние компоновки, а не только делать предположения относительно Q . Одним из примеров являются две технологии, в которых плотность конденсатора у одной в 2 раза выше, чем у первой, но при этом сопротивление металлического листа в 2 раза превышает сопротивление одной из металлических пластин MIM. Дизайнеры автоматически предполагают, что Q будет хуже по второму процессу (исходя из сопротивления металла). Однако, сравнивая заглушки одного и того же значения, мы обнаруживаем, что заглушка составляет ½ длины, так что это не влияет на Q .Варианты могут различаться по типу, толщине пленки и расположению. Зависимость конденсатора от напряжения в настоящее время не вызывает большого беспокойства для PA, но может появиться в будущем с агрегацией несущих. В частности, проблема будет связана с линейностью при высоких мощностях. Для обхода источника питания Q не так важен, поэтому можно использовать конденсатор максимальной плотности, который доступен. Например, в этом приложении можно использовать поли-поли-колпачок (обычно нижний Q ) из ​​кремния. Некоторые другие соображения для сравнения конденсаторов заключаются в том, когда их физически разрешено размещать в цепи, и сколько масок требуется для их модификации в процессе.Размещение может быть очень важным, поскольку оно занимает большую площадь схемы [38]. Можно ли разместить колпачки под контактными площадками [39], над BSV или под медными столбами? А также, сколько слоев маски нужно изменить, чтобы модифицировать конденсатор? Меньшее количество позволяет редактировать металлическую маску, что действительно может ускорить время разработки. Это важные, но обычно не обсуждаемые особенности конденсаторов.

    5.2.3.2 Резисторы

    Резисторы могут быть полупроводниковыми или тонкопленочными (как обсуждалось ранее).Сопротивление листа - это основная информация о резисторе, но есть несколько других важных параметров, которые разработчики должны знать, чтобы сделать правильный выбор для конкретных приложений. Изменение процесса для резистора представляет собой комбинацию изменения сопротивления листа и изменений размеров геометрических элементов, которые происходят во всех процессах. В результате важно знать общее изменение резистора в зависимости от его геометрии. Многие в остальном хорошие схемы сильно пострадали из-за того, что не учли этот вариант.Температурный коэффициент сопротивления (TCR), обычно указываемый в частях на миллион на градус (ppm / ° C), также является важным параметром. Большинство полупроводниковых резисторов имеют положительный TCR, в то время как тонкопленочные резисторы могут иметь положительный или отрицательный TCR в зависимости от деталей обработки. Если имеются резисторы с противоположными TCR, композитный резистор может быть изготовлен с очень малым изменением температуры. Максимальный номинальный ток (обычно в мА / мкм) важен, как упоминалось ранее, для размера кристалла и надежности.Для полупроводниковых резисторов могут быть другие слои под резистором, которые вызывают спад сопротивления с частотой. Это означает, что необходимо знать полосу пропускания резистора и сравнивать ее с частотой приложения. Максимальное напряжение - это еще одно значение, которое необходимо знать для надежности.

    Для разработки PA существует два класса резисторов, необходимых для создания PA: балластные резисторы и резисторы смещения. Для балластного резистора важными характеристиками являются: малая площадь компоновки, способность выдерживать большие токи (особенно, если это балластный резистор эмиттера), положительный TCR (так что балласта увеличивается по мере того, как транзистор нагревается).Если резистор имеет ВЧ-спад, этот спад должен быть больше третьей гармоники полезного сигнала. Помимо небольшой площади разводки, также важно иметь небольшую зону, недоступную для других резисторов или активных устройств, чтобы можно было разместить небольшой массив. Для балластировки эмиттера используются маломощные резисторы в диапазоне 2–10 Ом. Ограничивающей особенностью для этих устройств обычно является расстояние между контактами на резисторе (это ограничивает длину резистора). Для полупроводниковых резисторов вторым ограничением длины может быть насыщение по скорости, которое начинает делать резистор нелинейным (поэтому на резисторе можно установить ограничение по минимальной длине, чтобы электрическое поле всегда находилось в линейной области подвижности).Эти резисторы, поскольку они должны поддерживать ток эмиттера, требуют способности выдерживать большие токи. Они учитывают такую ​​же желаемую ширину полосы РЧ, что и базовый балласт (> третья гармоника). Желаемая ширина компоновки ограничена на практике желанием, чтобы ширина резистора была примерно такой же, как ширина ячейки, которую он балластирует, для компоновки компактного массива. Также желательны положительный TCR и плотная упаковка.

    Наконец, для других резисторов, используемых в цепях смещения или других участках схемы (например, схемах детекторов), нам нужны резисторы малой площади (обычно это означает более высокое сопротивление листа), потому что эти резисторы могут иметь довольно большие значения (некоторые порядка 10 кОм).Желательна способность выдерживать высокие токи, и эти резисторы должны иметь низкое TCR, чтобы они не вносили вклад в дрейф точки смещения из-за температуры. Для резисторов могут быть полезны небольшие защитные области и малое расстояние между резисторами, поскольку они часто имеют змеевидную форму. Поскольку желательно иметь возможность «настраивать» резисторы с изменением металлической маски, следует также учитывать, сколько слоев маски необходимо изменить, чтобы изменить номинал резистора.

    5.2.3.3 Устройства, подобные индуктору

    Катушки индуктивности, ответвители, балуны и линии передачи изготавливаются из слоев металлизации.Изменение сопротивления металла, геометрии и толщины межуровневого диэлектрика (ILD) может быть важным. Количество предлагаемых металлических слоев, толщина металла (сопротивление листа) и толщина ILD (влияющих на межслойную емкость) определяют, какой тип индукторов будет полезен в данном процессе. Для GaAs наиболее популярны пакетные (просто наложение металлических слоев) и соленоид (наматывание одного индуктора на металлический, а затем на второй виток) [40]. Другие индукторы также обычно возможны, но обычно не требуются для применения в PA (симметричные индукторы, индукторы с переменной проводимостью и т. Д.). При сравнении катушек индуктивности в разных процессах хороший способ оценить возможности процесса - это построить график зависимости индуктивности Q от индуктивности для различных схем [41] на разных основных частотах. Это позволяет напрямую сравнивать возможности процесса, а не только нескольких индукторов. Следует также отметить, что не каждый индуктор усилителя мощности должен иметь низкие потери. Дроссели смещения, которые подают постоянный ток в массив, не требуют высокого Q .Для этого приложения больше внимания уделяется индуктивности на площадь разводки, чтобы размер микросхемы оставался небольшим. Для модулей PA многие индукторы фактически изготавливаются из ламината, потому что доступны очень толстые металлы с низкими потерями.

    5.2.3.4 Переходные отверстия на задней стороне (BSV) и металлизация

    Переходные отверстия в пластине (также называемые TSV, BSV или переходные отверстия в подложке) важны для обеспечения низкоиндуктивных соединений с землей [42]. Характеристики, связанные с BSV, важны для размера кристалла. Размер BSV, запретная область (расстояние между другими элементами должно быть от нее), шаг (расстояние от сквозного отверстия) и расстояние до края штампа - все это важно учитывать при рассмотрении процесса.Геометрия в сочетании с толщиной пластины определяет индуктивность. Основным преимуществом BSV по сравнению с соединением является то, что индуктивность заземления мала и воспроизводима. Также не требуется подкладка, которая физически соединяется с матрицей, что позволяет экономить размер матрицы. Типичные процессы III-V обычно предлагают BSV для пластин толщиной 3 или 4 мил. На кремнии типичный TSV находится на пластине толщиной 6 мил. Контактные площадки фактически считаются устройством, но обычно не важны до разводки цепи. Размер контактной площадки ограничен возможностями датчика и возможностью соединения проводов, а не производственными возможностями.Площадь основания контактной площадки является ключевым показателем качества, и ее также необходимо учитывать для контактных контактных площадок с несколькими связями. Поскольку контактные площадки будут влиять на общий размер кристалла, помимо размера контактной площадки существует множество важных функций: шаг (расстояние между контактной площадкой и контактной площадкой), расстояние до активной схемы, расстояние до края кристалла и возможность размещения схемы под ней. колодки? В кремниевых процессах очень типично размещать такие элементы, как схемы электростатического разряда, под контактными площадками. Для непланарных процессов GaAs это сложно.

    Мы вкратце упомянули о металлизации при обсуждении индукторов. В отличие от многих MMIC (которые используют микрополосковые линии), портативные PA обычно представляют собой плотные схемы, поэтому важны такие вещи, как минимальная ширина / шаг, количество слоев, толщина металла, толщина межуровневых диэлектриков. В идеале хотелось бы иметь небольшую минимальную ширину / шаг, возможность иметь несколько металлических слоев (если это приводит к усадке кристалла, дополнительные слои могут стоить дополнительных затрат), по крайней мере, два толстых металла и толстый диэлектрик с низкой диэлектрической проницаемостью между их.Одно интересное наблюдение заключается в том, что для металлизации кремниевых процессов используются схемы металлизации на основе алюминия или металлизации на основе меди. В большинстве соединений III-V (в частности, GaAs) в качестве соединительного металла используется золото. Золото обычно не проявляет проблем с электромиграцией и, как правило, не снижается в зависимости от температуры, как металлизация в процессах кремния. На рисунках 5.13A и B показана номинальная допустимая токовая нагрузка в зависимости от толщины металла для проводов из Au, Al и Cu. Самая удивительная особенность этого рисунка заключается в том, что при 125 ° C Cu едва ли лучше, чем Al, и далеко не так хорошо, как золото.Это делает медь плохим выбором для металлизации в энергетических процессах, когда металл должен находиться близко к источнику тепла (то есть к устройству). Это означает, что, хотя медь привлекательна по причинам снижения стоимости, для нее может потребоваться матрица большего размера из-за более низкого качества обработки тока. Рассмотрев пассивные элементы, доступные в технологии, мы теперь обсудим активные устройства.

    Рисунок 5.13. Токонесущая способность различной металлизации в зависимости от толщины металла при (A) 100 ° C и (B) 125 ° C.Эта возможность может ограничивать возможность создания небольших схем PA.

    Определение термистора, символ и типы

    А резистор это тип пассивного компонента, который ограничивает поток электрический ток до определенного уровня. Резисторы в основном делятся на два типа: постоянные резисторы и переменные резисторы.

    Фиксированный резистор - это тип резистора, который ограничивает только протекает электрический ток, но не контролирует (увеличивает и уменьшение) протекания электрического тока.С другой стороны, переменный резистор - это тип резистора, который управляет (увеличивает и уменьшает) поток электрического тока вручную уменьшая и увеличивая его сопротивление.

    В постоянных или переменных резисторах, если мы вручную установите сопротивление как постоянное, сопротивление изменится слегка при повышении или понижении температуры. Однако по используя специальный тип резистора, мы можем быстро изменить сопротивление резистора при изменении температуры.Этот специальный тип резистора называется термистором.

    Спрос на точные компоненты или устройств (термисторов) в последние годы увеличилось. Термисторы точно измеряют температуру и работают эффективно в течение многих лет.

    Термистор определение

    Термистор - это тип резистора, сопротивление быстро меняется при небольшом изменении температуры.Другими словами, это тип резистора, в котором изменяется поток электрического тока быстро при небольшом изменении температуры. Слово термистор происходит от словосочетания «тепловой» и «резистор».

    Термистор символ

    Американский стандарт и международный Стандартный символ термистора показан на рисунке ниже.

    Типы термисторов

    Термисторы делятся на два типа в зависимости от того, как они себя ведут при изменении температуры:

    • Термисторы с отрицательным температурным коэффициентом (NTC)
    • Термисторы с положительным температурным коэффициентом (PTC)
    • Отрицательно Термисторы с температурным коэффициентом (NTC)

    Сопротивление NTC (отрицательное Температурный коэффициент термисторов уменьшается с увеличением температура.Другими словами, электрический ток проходит через термисторы с отрицательным температурным коэффициентом (NTC) увеличивается с повышением температуры.

    Большинство термисторов NTC изготовлены из прессованный диск, стержень или литая микросхема из полупроводникового материала, такого как спеченные оксиды металлов.

    В термисторах NTC носители заряда генерируется допинг-процессом.Из-за этого процесса допинга генерируется большое количество носителей заряда.

    Если температура немного повышена, большое количество носителей заряда (бесплатно электронов) сталкивается с валентными электроны других атомов и дает им достаточно энергии. Валентные электроны, которые набирают достаточную энергию, разрушаются связь с родительским атомом и свободно перемещается с одного места в другое место.Электроны, которые свободно перемещаются из одного места в другое место называются свободными электронами. Эти электроны переносить электрический ток при перемещении с одного места на другое место. Валентный электрон, который становится свободным электрон снова столкнется с другими валентными электронами и делает их свободными.

    Так же небольшое повышение температуры производит миллионы свободных электронов.Больше свободных электронов или Носители заряда означают больше электрического тока. Таким образом, небольшой повышение температуры приведет к быстрому снижению сопротивления Термистор NTC и пропускает большое количество электрического тока.

    • Положительных Термисторы с температурным коэффициентом (PTC)

    Сопротивление положительной температуре Коэффициент термистора (PTC) увеличивается с увеличением температура.Наибольший положительный температурный коэффициент (PTC) термисторы изготовлены из легированной поликристаллической керамики. Термисторы с положительным температурным коэффициентом (PTC) также называемые позисторами.

    История термисторов

    Первый NTC (отрицательная температура Коэффициент полезного действия) термистор был открыт Майклом Фарадеем. в 1833 г.Майкл Фарадей заметил, что сопротивление серебра сульфид быстро уменьшается при повышении температуры.

    Преимущества и недостатки термисторов

    Преимущества термисторов

    • Сопротивление термисторов быстро меняется при малых изменение температуры.
    • Низкая стоимость
    • Малый размер
    • Термисторы легко переносить с места на место место.

    Недостатки термисторов

    • Термисторы не подходят для широкого рабочего диапазона
    • Зависимость сопротивления от температуры равна нелинейный.

    Приложения термисторов

    • Термисторы используются в медицинском оборудовании
    • Термисторы используются в хотэндах 3D-принтеров.
    • Термисторы используются в бытовой технике, например, в духовках, в прическах. сушилки, тостеры, холодильники и др.
    • Современные кофеварки используют термисторы для точного измерения и контролировать температуру воды.
    • Термисторы используются в компьютерах.
    • Термисторы используются в качестве датчиков температуры.
    • Термисторы используются в качестве ограничителя пускового тока.


    Параллельная структура позистор - термистор

    Контекст 1

    ... с другой стороны, уравнение (32) является аналитическим решением в замкнутой форме трансцендентного уравнения (20).В этом разделе, применяя теорию специальной трансфункции, мы использовали численный пример для параллельной структуры одного термистора и одного позистора (рисунок 5), в то время как вариация Ru была дана, а также другие, относящиеся к параметры схемы. С помощью программы MATHEMATICA на основе уравнения (33) с высокой точностью определили температуру окружающей среды, как и в предыдущем случае последовательных структур позисторов - терморезисторов. Полученные численные результаты приведены в таблице III.В следующей таблице (Таблица IV) представлены некоторые результаты дополнительного численного анализа. Эти результаты показывают, что в этом случае для относительно небольших относительных изменений температуры окружающей среды (выраженных в%) мы имеем относительно большие эквивалентные изменения сопротивления. Полученные результаты показывают возможность измерения температуры этой структурой с высокой точностью с учетом точности измерения сопротивлений в цепи или точности математических моделей термисторных и позисторных сопротивлений.Но более строгий анализ применимости этой конструкции для измерения температуры в реальных условиях является предметом дальнейших исследований. Некоторые графические представления для различных параметров β и различных интервалов Ru показаны на рисунках 6 и 7 ниже. В рамках обычного классического анализа температура окружающей среды из нелинейных функциональных уравнений (4) и (20) решается путем применения методов аппроксимации или различных итерационных процедур, доступных в обычных численных вычислениях.В данной статье термисторы - позисторы (линейные резисторы) последовательно и в параллельных комбинациях оцениваются аналитически, в замкнутой форме, с применением теории специальных транс-функций (С.М.Перович). Таким образом, температура может быть получена аналитически путем возникновения новой специальной функции транзистора trans T (CD) для комбинации последовательных резисторов, то есть путем создания новой специальной функции перехода tran PR (a, b) для параллельных сопротивлений. комбинация. Численные результаты, полученные с применением обеих специальных функций tran, имеют высокую точность.STFT - это последовательная теория, применимая к нелинейным функциональным уравнениям для анализа структур нелинейных резисторов в области температур окружающей среды. Другими словами, STFT - это новая и последовательная теория для оценки температуры окружающей среды для комбинаций нелинейно-последовательных и простых параллельных резисторов. Наконец, следует указать, что в статье предложенный STFT должен стать стандартным аналитическим методом для нелинейного функционального уравнения для оценки (вычисления) интервалов температуры окружающей среды для заданных интервалов эквивалентных сопротивлений в широком диапазоне температур.Также с практической точки зрения представленный метод можно рассматривать как математический инструмент для компенсации влияния температуры окружающей среды на сигналы в электрических ...

    Лот из 14 термисторов PTC (позисторов) для ЭЛТ-телевизора / монитора

    Изменить страну: -Выберите-AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijan RepublicBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBrazilBritish Virgin IslandsBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape Verde IslandsCayman IslandsCentral African RepublicChadChileChinaColombiaComorosCongo, Демократическая Республика theCongo, Республика theCook IslandsCosta RicaCôte-д'Ивуар (Берег Слоновой Кости) Хорватия, Республика ofCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland острова (Мальвинские) Фиджи Корея, SouthKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacauMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorwayOmanPakistanPalauPanamaPapua Нового GuineaParaguayPeruPhilippinesPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint HelenaSaint Киттс-NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSpainSri LankaSurinameSwazilandSwedenSwitzerlandTaiwanTajikistanTanzaniaThailandTogoTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос IslandsTuvaluUgandaUkraineUnited Арабского EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVatican Город StateVenezuelaVie tnam Виргинские острова (U.S.) Уоллис и Футуна Западная Сахара Западное Самоа Йемен Замбия Зимбабве

    Доступно 1 ед. Введите число, меньшее или равное 1.

    Выберите допустимую страну.

    Почтовый индекс:

    Пожалуйста, введите действительный почтовый индекс.

    Введите 6 цифр для почтового индекса.

    FUJITSU K9704265012 ПОЗИСТОР PTC ТЕРМИСТОР HVR2 ZPR0YCE400A300

    905 ВНЕШНИЙ БЛОК 18K БТЕ - Кассета с циркуляционным потоком

    НАРУЖНЫЙ БЛОК - 18000 БТЕ МИНИ-РАЗДЕЛЕНИЕ H / P

    HFI

    BTU MINI-SPLIT H / P

    Split A / C

    905 905 906

    905 Настенный, разделенный на 36000 БТЕ, кондиционер

    36000 BTU SPLIT H / P TRI-QUAD ZONE

    Эта деталь используется в следующих моделях:

    4 Внутренний воздушный блок

    Внутренний блок VRF - H / R - 72000 БТЕ - Блок наружного воздуха

    Внутренний блок VRF - H / R - 96000 БТЕ - Блок наружного воздуха

    Однозонный наружный блок 18000 БТЕ

    18000 БТЕУ Наружный блок

    ВНЕШНИЙ БЛОК 24 КБТЕ - Циркуляционный Кассета потока ar

    24000 БТЕ Наружный блок HFI

    24000 БТЕ HFI Наружный блок

    Одиночный XL

    24000 БТЕ Наружный блок Mix & Match HFI

    ВНЕШНИЙ БЛОК - 24000 БТЕ МИНИ-РАЗДЕЛЕНИЕ ВЕРХН. / П НИЗКОЕ ОКРУЖАЮЩЕЕ СРЕДСТВО

    НАРУЖНЫЙ БЛОК-30000 BTU SPLIT A / C

    Наружный блок - настенный 30,000

    ВНЕШНИЙ БЛОК 30 К БТЕ - Кассета циркуляционного потока

    НАРУЖНЫЙ БЛОК - 30000 BTU MINI-SPLIT H / P

    Внешний блок - настенный 30,000 BTU Split H / P

    ВНЕШНИЙ БЛОК - 30000 BTU HINI-4

    ВНЕШНИЙ БЛОК - 30000 БТЕ МИНИ-РАЗДЕЛЕНИЕ H / P НИЗКАЯ ОКРУЖАЮЩАЯ СРЕДА

    ВНЕШНИЙ БЛОК-36000 БТЕ РАЗДЕЛЕНИЕ КОНДИЦИОНЕРА

    НАРУЖНЫЙ БЛОК 36000 БТЕ - Кассета с циркуляционным потоком

    НАРУЖНЫЙ БЛОК-36000 БТЕ НАСОСНЫЙ РАЗДЕЛЕНИЕ 50/905

    ВНЕШНИЙ БЛОК - 36000 БТЕ, РАЗДЕЛЬНЫЙ В / П 'ПОТОЛОЧНЫЙ ПОДВЕСНОЙ / КАССЕТА'

    Внешний блок - настенный 36000 БТЕ Split H / P

    36000 BTU Наружный блок Mix & Match HFI

    36000 BTU Наружный блок HFI

    ВНЕШНИЙ БЛОК 42K BTU - Кассета с циркуляционным потоком

    ВНЕШНИЙ РАЗЪЁМ БЛОК ВНУТРЕННЯЯ КОЛПАЧКА BT

    ВНЕШНИЙ БЛОК 48 К БТЕ - Кассета с циркуляционным потоком / со средним статическим воздуховодом

    Внутренний блок VRF - В / П - 72000 БТЕ - Воздуховод с высоким статическим напряжением 914 7

    Внутренний блок VRF - H / R - 72000 БТЕ - Воздуховод с высоким статическим давлением

    Внутренний блок VRF - H / R 72000 БТЕ - Высокий уровень воздуховод высокого статического давления

    Внутренний блок VRF - H / R - 96000 БТЕ - Воздуховод с высоким статическим давлением

    Внутренний блок VRF - H / R 96000 БТЕ Канал с высоким статическим давлением

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *