Принцип работы стробоскопа: Как работает стробоскоп для установки зажигания

Содержание

Как работает стробоскоп для установки зажигания

Опытный автомобилист знает ценность правильной установки начального момента зажигания, а также исправной работы таких регуляторов опережения зажигания, как вакуумный и центробежный. Если установить момент зажигания неправильно (причем значительную роль может сыграть отклонение даже на 2-3°), это может стать поводом к повышенному расходу топлива, потере мощности и перегреву двигателя и даже сокращению его срока службы. Поэтому для каждого водителя является очень ценным умение осуществлять проверку и регулировку системы зажигания, хотя эти процессы и относятся к категории довольно сложных. Но если уж автовладелец решился на реализацию данных операций, то первым, чем он должен вооружиться, – это стробоскоп для установки зажигания, который призван упростить процесс обслуживания описываемой системы.

Содержание статьи

Как работает стробоскоп

Автомобильный стробоскоп – это тот простой и доступный прибор, который без труда можно приобрести в магазине и который значительно облегчает жизнь автовладельцу. Ведь при наличии этого механизма даже водитель-новичок сможет проверить и отрегулировать начальную установку момента зажигания не более чем за десять минут, а также проверить оба вида регуляторов (центробежный и вакуумный) на предмет каких-либо повреждений.

Принцип работы данного прибора заключается в стробоскопическом эффекте, суть которого можно пояснить примерно таким образом: если движущийся темноте объект осветить яркой и при этом короткой вспышкой, то он начнет визуально казаться застывшим именно в том положении, в котором вспышка его и застала. К примеру, если освещать вспышками вращающееся колесо с той частотой, которая равна частоте его вращения, то можно так же визуально остановить его. Это легко заметить благодаря положению какой-то метки.

Для того чтобы установить момент зажигания, следует запустить двигатель на холостые обороты, а тем временем при помощи стробоскопа осветить ранее упомянутые метки. Одна из них, которая имеет название «подвижная», располагается на коленчатом валу (альтернативный вариант – на шкиве привода генератора или на маховике), а другая заняла место на корпусе мотора. Вспышки происходят практически одновременно с тем моментом, когда в запальной свече одного из цилиндров происходит искрообразование. Чтобы это происходило, емкостный датчик описываемого устройства крепят к высоковольтному проводу запальной свечи.

В процессе вспышек должны быть видны обе метки. Причем тут действуют такие условия: если метки с точностью расположены друг против друга, то угол опережения зажигания будет оптимальным, а если же подвижная метка сместилась, то положение прерывателя-распределителя нужно откорректировать до совпадения меток.

Основной элемент стробоскопа – это импульсная стробоскопическая лампа безынерционного типа. В данном механизме вспышки осуществляются в тот момент, когда в свече первого цилиндра появляется искра. Как результат: установочные метки вместе с другими элементами двигателя, которые вращаются с коленчатым валом синхронно, в процессе освещения их ранее упомянутой лампой кажутся неподвижными. Данное позволяет осуществлять контролирование правильности установки начального момента зажигания.

Из всего вышесказанного возможным представляется характеристика работы стробоскопа таким образом (вместе с тем объяснится и его устройство): после того, как к аккумулятору подключить выводы, начнет работать преобразователь напряжения, который являет собой мультивибратор симметрического типа. Первоначальное напряжение подается с делителей на базе транзисторов, которые начинают открываться, причем какой-то из них обязательно делает это гораздо быстрее другого. Это становится причиной закрытия другого транзистора, что объясняется прикладыванием с обмоток запирающего напряжения к его базе. После этого транзисторы открываются друг за другом, что становится причиной подключения к АкБ то одной, то другой половины обмотки от трансформатора. В этот же момент в обмотках вторичного типа возникает напряжение, имеющее прямоугольную форму и частоту около 800 Гц, значение чего является пропорциональным количеству витков в обмотке.

В тот момент, когда происходит непосредственно искрообразование, в первом цилиндре импульс высоковольтного типа поступает на поджигающие электроды, расположенные на стробоскопической лампе, через конденсаторы и специальную вилку разрядника от гнезда распределителя. При всем этом энергия, которую накапливает конденсатор, трансформируется в световую энергию от вспышки лампы. После того, как происходит разряд конденсаторов, тухнет и лампа, но конденсаторы получают заряд благодаря резисторам до напряжения примерно в 450 В. Таким образом заканчивается подготовка к еще одной вспышке.

Резисторы также служат для того, чтобы предотвращать закорачивание обмоток в тот момент, когда лампа вспыхивает. А диод призван защищать транзистор преобразователя в случае подключения стробоскопа в неправильной полярности.

Разрядник, который включается свечей зажигания и распределителем, обеспечивает получение нужного напряжения высоковольтного импульса для того, чтобы было осуществлено поджигание лампы. При этом расстояние давление в камере сгорания, между электродами свечи и другие факторы не играют роли. Именно благодаря разряднику становится возможной бесперебойная работа стробоскопа даже при факте закороченных электродов в свече зажигания.

Как видим, принцип работы анализируемого механизма довольно сложен, но это не значит, что в нем невозможно разобраться. Поэтому так же важно понять, как выставить зажигание стробоскопом, и попробовать самостоятельно осуществить этот процесс.

Характеристики стробоскопа для установки зажигания

Стробоскоп имеет определенный набор характеристик, которые отличают его от остальных приборов, делая его таким уникальным и необходимым. Среди таких, к примеру, то, что источником питания для данного устройства могут быть как собственные элементы питания (мини-аккумуляторы или батарейки), так и бортовая сеть автомобиля. Отсюда следует вопрос, что же является лучшим способом – питание автономного типа или все-таки за счет его сети. Я скажу лишь то, что данное не является таким уж принципиальным, но при этом нужно указать то, что первый способ лишает необходимости проводов тянуться за прибором.

Еще одна отличительная характеристика стробоскопа заключается в том, что минимальная частота вспышек, которые он может выдавать, должна совпадать с частотой вращения коленчатого вала, который вращается на максимальном уровне. Наиболее часто можно встретить стробоскоп, имеющий частоту в 50 Гц.

Также стробоскоп, как правило, не может работать долго в режиме осуществления вспышек, что связано с уникальной конструкцией ламп. Чаще всего этот прибор способен на работу, которая длится не более чем десять минут. Данные показатели должны указываться в инструкции. Чтобы не допустить непредвиденных ситуаций, стробоскопу, а прежде всего его лампам, нужно давать отдыхать, продолжительность чего равна времени эксплуатации.

Самодельный стробоскоп

Прежде чем приступать к процессу создания самодельного стробоскопа, я рекомендую вспомнить о правилах техники безопасности. Это очень важно, так как все детали данного устройства находятся под напряжением сети.

Поэтому нельзя допускать того, чтобы какая-то деталь касалась стенок корпуса (в том случае, если он металлический), а провода импульсной лампы соединялись с рефлекторами. Также идеально было бы, если бы на переменный резистор была надета пластмассовая ручка. Что касается проводов для включения, то они обязательно должны иметь на концах вилку и находиться в хорошей изоляции.

Все детали будущего стробоскопа (естественно, помимо импульсивного трансформатора и лампы) нужно монтировать на плате, которая сделана из изоляционного материала. Их взаимное расположение не играет существенной роли, но обязательно условие заключается в том, чтобы монтаж был выполнен по принципиальной схеме. Импульсивную лампу вместе с трансформатором следует устанавливать внутри рефлектора, который можно использовать больших размеров.

Если отсутствует динистор, то его можно заменить стартером, который раньше служил для люминесцентной лампы. А если учесть то, что стартер способен срабатывать при более высоком уровне напряжение, чем динистор, то в устройство надо будет ввести еще один диод для того, чтобы получить выпрямитель с напряжением удвоенного типа. При этом энергия вспышки также возрастет. Также вместо динистора можно использовать тиратрон, имеющий холодный катод.

Всем автовладельцам, которые приняли твердое решение самостоятельно сделать стробоскоп, я рекомендую для начала сделать детальную схему, чтобы в процессе монтажа устройства руководствоваться ею и ни на что не отвлекаться. 

Познавайте свое авто, разбирайтесь в его устройстве, и тогда проблем в процессе его эксплуатации значительно поубавится.

Видео “Автомобильный стробоскоп своими руками”

На видео показано, как сделать самостоятельно и как пользоваться стробоскопом для автомобиля.

 

Автомобильный стробоскоп – как сделать своими руками

Автомобильный стробоскоп – это электронный светотехнический прибор, позволяющий по метке на валу двигателя и шкале на его корпусе визуально определить и отрегулировать угол опережения зажигания (УОЗ) в двигателях внутреннего сгорания автомобиля. Принцип работы стробоскопа основан на стробоскопическом эффекте (зрительной иллюзии) возникающем, когда частота вспышек стробоскопа совпадает или близка частоте вращения коленчатого вала двигателя автомобиля.

Момент зажигания горючей смеси в автомобильном двигателе внутреннего сгорания существенно влияет на максимальную мощность, КПД, температурный режим и ресурс двигателя. Поэтому крайне важно, чтобы воспламенение горючей смеси происходило в нужный момент времени. Обычно воспламеняют смесь за несколько градусов до прихода поршня в верхнюю мертвую точку, и этот угол называется Угол опережения зажигания.

При увеличении оборотов двигателя угол опережения зажигания должен увеличиваться по заданной кривой, поэтому он выставляется в режиме работы двигателя на холостом ходу и контролируется во всем диапазоне изменения его оборотов в минуту, вплоть до 5000. Для контроля и установки УЗО и служит Автомобильный стробоскоп.

Радиолюбителям разработано много схем автомобильных стробоскопов, начиная от самых простейших на неоновых лампочках, и заканчивая современными схемами, с использованием микроконтроллеров, полевых транзисторов и сверх ярких светодиодов.

Но такая комплектация дорогая, да и редко кто имеет программатор, чтобы программировать контроллеры. Более пятнадцати лет назад я собрал свой вариант схемы стробоскопа, который и представляю Вашему вниманию.

Электрическая схема стробоскопа

Отличительная особенность схемы представленного стробоскопа, это простейшая комплектация и возможность контроля угла опережения зажигания в автомобильном двигателе вплоть до 5000 оборотов в минуту.

Структурно схема состоит из нескольких функциональных узлов. Преобразователя напряжения, импульсной световой лампы, блока поджога и индуктивного датчика момента искрообразования.

Принцип работы

Преобразователь служит для преобразования напряжения аккумулятора 12 В в необходимое для питания импульсной световой лампы ИСШ-15 напряжение 300 В. Выполнен преобразователь на микросхеме TL494, транзисторах VT1,2 и трансформатора Т1. Блок поджога световой лампы состоит из повышающего трансформатора Т2, конденсатора С6 и тиристора VD8. Индуктивный датчик момента искрообразования состоит из катушки индуктивности L1 и транзистора VT3.

Благодаря применению в преобразователе ШИМ-контроллера TL494 (отечественный аналог 11114ЕУ4), схема преобразователя получилась простой и сохраняющая работоспособность при изменении питающего напряжения от 7 до 15 В. Микросхема TL494 применяется практически во всех компьютерных блоках питания, выходит из строя редко, поэтому ее можно для изготовления стробоскопа выпаять из не подлежащего ремонту блока.

С выводов микросхемы 9 и 10 выходят прямоугольные противофазные импульсы с частотой около 20 кГц, заданной номиналом конденсатора С1 и резистора R1, и через токоограничивающие резисторы R4,5 номиналом 1 кОм поступают на базы ключевых транзисторов VT1,2. С2,3 нужны для улучшения передних фронтов импульсов, VD1,2 защищают транзисторы от пробоя обратным напряжением. Если поставить полевые транзисторы, например IRFZ44N, то резисторы R4,5 и конденсаторы С2,3 нужно исключить, а емкость конденсатора С1 уменьшить до 1000 пф. Тогда частота работы преобразователя увеличится до 200 кГц, что позволит измерять угол опережения зажигания при оборотах двигателя до 10000 об/мин.

Открываясь по очереди, транзисторы обеспечивают протекание тока по первичным обмоткам трансформатора Т1, благодаря чему во вторичной обмотке возникает высокое напряжение, которое поступает на диодный мост и уже выпрямленное заряжает конденсатор С5 до величины 400 В. Это напряжение подводится к 5 выводу лампы EL1 и еще через токоограничивающий резистор R5 и первичную обмотку трансформатора Т2 заряжает конденсатор узла поджига С6.

Датчик момента искрообразования собран на катушке индуктивности L1, транзисторе VT3, и тиристоре VD8. Через кольцо трансформатора продевается высоковольтный провод, идущий к свече. В момент появления высокого напряжения, в катушке наводится ЭДС, которая через конденсатор С7 поступает на базу транзистора VT3. Транзистор закрывается и на управляющий электрод тиристора VD8 поступает через резистор R7 положительное напряжение. Тиристор открывается и конденсатор С6 через него разряжается. При этом ток разряда проходит через первичную обмотку трансформатора Т2. Во вторичной обмотке наводится высокое напряжение поджига лампы, которое подается на ее вывод 7. Конденсатор С5, подключенный к выводам лампы 1 и 5, полностью через нее разряжается. Величина емкости конденсатора определяет яркость вспышки.

Применяемый тиристор VD8 имеет максимально допустимое напряжение анод-катод 300 В. Установленный резистор R6 совместно с резистором R5 образуют делитель, исключающий подачу напряжения более 300 В. При использовании более высоковольтного тиристора резистор R6 нужно исключить.

Для защиты по питанию установлен предохранитель на 5А, а от неправильного подключения полярности диод VD9. VD11 индицирует о подключении стробоскопа к аккумулятору.

Конструкция и детали

Вся схема стробоскопа собрана в двух половинчатом пластмассовом корпусе размером 4,5×7,5×16 см. Для выхода света от импульсной лампы в торцевой стенке сделано круглое отверстие, в которое вставлена линза в оправке.

Это не обязательно, окошко можно закрыть для защиты от попадания внутрь стробоскопа грязи любым прозрачным материалом, например органическим стеклом. Лампа, для уменьшения световых потерь, на половину обвернута станиолевой фольгой.

Все детали стробоскопа, кроме лампы, собраны на печатной плате, представленной на фотографии.

Импульсный трансформатор Т1 имеет две обмотки. Первичная обмотка имеет отвод от середины. При намотке нужно отмерять необходимую длину провода диаметром 0,3-0,5 мм, сложить его вдвое и намотать 24 витка. Затем начало одной обмотки соединить с концом другой, это будет средняя точка. Вторичная обмотка мотается проводом диаметром 0,15-0,25 мм в количестве 638 витков. Для изготовления трансформатора ферритовый сердечник с катушкой можно использовать от понижающего трансформатора неподлежащего ремонту импульсного блока питания АТ или АТХ компьютера, предварительно удалив все обмотки.

Импульсный трансформатор поджига Т2 мотается на ферритовом кольце диаметром 15-20 мм проницаемостью от 1000 до 3000 НМ. Первичная обмотка мотается проводом 0,3 мм и имеет 4 витка. Вторичная обмотка мотается проводом диаметром 0,1 мм в шелковой изоляции и количеством витков 500. Большое количество витков вторичной обмотки взято не случайно, при больших оборотах двигателя конденсатор С6 не успевает полностью заряжаться и напряжение поджига уменьшается. Благодаря запасу обеспечивается достаточное напряжение для поджига. Перед намоткой ферритовое кольцо нужно обязательно покрыть изоляционной лентой для исключения повреждения изоляции провода. Перед покрытием изоляцией необходимо мелкой наждачной бумагой, сточить острые грани по окружностям кольца. После намотки, для исключения межвиткового пробоя изоляции при высокой влажности, обмотки трансформатора пропитаны воском.

Катушка индуктивного датчика намотана на ферритовом кольце диаметром 40 мм с проницаемостью от 1000 до 3000 НМ. На кольцо равномерно по всей окружности намотано 35 витков провода диаметром 0,8 мм. Сверху обмотка покрыта слоем изоляционной ленты.

Диаметр ферритового кольца выбран исходя и возможности продевания через катушку высоковольтного провода, идущего к автомобильной свече. Но практика применения стробоскопа показала, что он начинает устойчиво работать, если просто катушку приложить к высоковольтному проводу.

К аккумулятору стробоскоп подключается с помощью двух зажимов типа «крокодил». Для безошибочного подключения на крокодилах нанесена маркировка полярности.

Конденсаторы С5 и С6 типа К73-17. Импульсная лампа EL1 типа ИСШ-15, является маломощным строботроном, срок ее службы более 300 часов. Она специально разработана для стробоскопов.

В отличии от ИФК-120, лампа ИСШ-15 имеет больший ресурс и может работать на более высоких частотах. При отсутствии ИСШ-15, можно использовать ИФК-120.

Для удобства работы при установке угла опережения зажигания в автомобиле, в стробоскоп вмонтирован двух диапазонный аналоговый тахометр с растянутой шкалой.

Настройка стробоскопа

Если не допущены ошибки в печатной плате и исправны элементы схемы, то настраивать нечего не нужно. Стробоскоп сразу заработает. Для упрощения поиска возможных ошибок целесообразно плату собирать узлами с последующей их проверкой. Сначала запаивается микросхема TL494, ее обвязка С1, R1- R3, С4 и VD9. Подается напряжение и проверяется осциллографом наличие прямоугольных импульсов на выводах 9 и 10 микросхемы. Далее устанавливаются все детали, расположенные на схеме левее лампы, подается питание и замеряется напряжение на С5, которое должно быть 300-400 В. Дале запаиваются все остальные элементы. Подается питающее напряжение, при замыкании анода с катодом тиристора VD8 должна происходить вспышка лампы. Для проверки работы стробоскопа можно рядом с катушкой L1 пощелкать пьезоэлектрической зажигалкой. При каждом щелчке лампа стробоскопа должна вспыхивать.Если есть генератор, то вместо катушки нужно подключить его выход. Стробоскоп будет мигать с частотой генератора. 800 оборотов двигателя в минуту соответствует частоте генератора около 13 Гц.

Для перевода оборотов двигателя в частоту нужно число оборотов в минуту поделить на 60 (количество секунд в минуту), но гораздо удобнее воспользоваться табличными данными.

Как пользоваться стробоскопом

Для запуска стробоскопа в работу нужно при отключенном двигателе автомобиля продеть в кольцо индуктивного датчика стробоскопа снятый со свечи зажигания первого цилиндра высоковольтный провод и надеть его обратно на свечу. Подключить, соблюдая полярность, крокодилы к клеммам аккумулятора. Запустить двигатель автомобиля и включить стробоскоп выключателем. При этом должен засветиться светодиод VD11 и засверкать в такт искре лампа стробоскопа EL1.

Вспышки стробоскопа имеют высокую яркость, что позволяет видеть метку на маховике двигателя при установке угла опережения зажигания даже в солнечную погоду.

Ответы на вопросы посетителя сайта по настройке стробоскопа

Посетитель сайта Юрий, повторил схему стробоскопа и остался доволен его работой. От изготовления стробоскопа на базе сверхярких светодиодов его остановила цена светодиодов. При настройке стробоскопа у Юрия возник ряд вопросов, на которые я давал ответы в ходе переписки. Ответами на вопросы из переписки, с разрешения Юрия, с которыми могут столкнуться автолюбители, желающие повторить схему представленного стробоскопа, решил дополнить эту статью.

Вопрос Ответ
Можно ли заменить тиристор КУ103В тиристором ВТ169G? Да, можно заменить на ВТ169D или ВТ169G. Так как максимальное напряжение анод-катод у ВТ169 не менее 400 В, то резистор R6 можно не ставить, он установлен для защиты КУ103В.
При шунтировании анода и катода тиристора лампа вспыхивает, но при открытии-закрытии транзистора вручную лампа не реагирует. Тиристор или транзистор неправильно запаян или неисправен. Номиналы резисторов не соответствуют схеме.
Для выявления причины нужно отключить от управляющего электрода тиристора все элементы. В таком случае тиристор должен быть закрыт. Если к управляющему электроду присоединить через резистор по схеме R7 номиналом 27 кОм, то тиристор должен открываться. Если открывается, то виноват транзистор. Если тиристор не открывается, то можно уменьшить номинал резистора вплоть до 1 кОм, если открыть его, таким способом не удается, значит, тиристор неисправен.
Тиристор исправен, при прикосновении к управляющему электроду тиристора лампа вспыхивала однократно, получалось как сенсорное. Мне не понятно как закрывается тиристор, возможно, он запирается потенциалом управляющего электрода? Тиристор сам закрывается только тогда, когда напряжение анод-катод станет меньше определенного для каждого типа тиристора. Поэтому, когда конденсатор С6 разрядится, тиристор сам закроется. Резистор R8 выполняет функцию защиты транзистора от возможных высоковольтных импульсов и одновременно предотвращает случайное открытие тиристора от этих же импульсов.
На конденсаторе я добился напряжения 400 В при частоте генерации 200 кГц (поставил полевые транзисторы как указано в статье) но при емкости С5 - 1 мкФ яркость вспышки незначительна (лампа ИФК-120), при увеличении С5 до 10 мкФ стало слепить. Понимаю, что увеличение емкости приведет к неполному ее заряду на высоких оборотах, какую емкость поставить? По поводу высокого напряжения, его можно поднять хоть до киловольта, намотав больше витков вторичной обмотки, при этом яркость вспышки возрастет соответственно. Но величина напряжения не должна превышать допустимого для лампы. Поэтому лучше намотать больше витков, чем увеличивать емкость, а емкость уже подобрать исходя из максимальных оборотов, которые нужно контролировать.
По паспорту лампа ИФК-120 номинальное напряжение 300±20 В, т.е. не стоит увеличивать напряжение более имеющихся уже 400 В? Не стоит, так как повышенное напряжение может вызвать самопроизвольные вспышки лампы.
Из характеристик тиристора BT169G - отпирающее управляющее напряжение 0,5-0,8 В , т.е. когда транзистор VT3 открыт схема должна обеспечивать напряжение на его коллекторе относительно земли менее 0,5 В чтобы тиристор оставался закрытым? Да.
При закрытом транзисторе соответственно напряжение на его коллекторе и на управляющем электроде тиристора должно превысить 0,5 В, но не более 0,8 В дабы не спалить управляющий переход тиристора? Да, в цепи управляющего электрода тиристора стоит резистор R7, который ограничит величину тока, тем самым, исключая возможность увеличения напряжения более 0,8 В.
Играет ли роль какой стороной будет надеваться ферритовое кольцо на высоковольтный провод, или для этого и установлен в схеме VD10? Не играет, диод для этого и стоит.
Есть ли смысл заменить VT10 на полевой транзистор? В данном случае в этом нет необходимости, полевые транзисторы боятся статического электричества и без необходимости их лучше не применять.
Изменения, которые внес Юрий при повторении схемы стробоскопа. Лампу EL1 ИСШ-15 заменил на ИФК-120. Транзисторы VT1 и VT2 типа КТ817Б заменил полевыми IRFZ44N, VT3 типа КТ3102 на BC547. Тиристор КУ103В на ВТ169G. Резистор R8 c 820 Ом увеличил до 2 кОм, конденсатор С5 увеличил до 10 мкФ.

Отзыв Юрия о работе стробоскопа сделанного своими руками: «Работа стробоскопа проверена на автомобиле, работает отлично, яркость вспышки великолепная!!!»

Стробоскоп для дизельного двигателя

△

▽


Что такое автомобильные стробоскопы?

Стробоскоп (от греч. «strobos» - «кружение», «беспорядочное движение» «skopeo» - «смотрю») представляет собой прибор, позволяющий быстро воспроизводить повторяющиеся яркие световые импульсы.

Cтробоскоп – это прибор для наблюдения быстрых периодических движений, его действие основано на стробоскопическом эффекте. На нем же основана и работа автомобильных стробоскопов.  Автомобильный стробоскоп нельзя назвать световым оборудованием. Автомобильные стробоскопы бывают светодиодными, то есть работают на светодиодах. Такие устройства представляют собой сигнальные устройства. Мы же расскажем Вам об автомобильных стробоскопах для установки зажигания и выставления УОЗ (угла опережения зажигания).

 

Они облегчают и упрощают обслуживание системы зажигания в автомобиле, правильная установка которой так важна для любого обладателя авто. Установив момент зажигания неправильно, и сместив его всего на каких-то 2—3°, Вы приведете регуляторы в неисправность, а они в свою очередь станут причиной повышенного расхода топлива, перегрева двигателя потери мощности и могут даже сократить срок службы двигателя.

Автомобильный стробоскоп позволяет в течение 5-10 минут проверить исправность центробежного и вакуумного регуляторов опережения.

Стробоскоп – это прекрасная вещь для настройки и контроля угла опережения зажигания. Ведь любому автолюбителю известно, что момент зажигания должен быть настроен правильно и срабатывать в нужный момент. Благодаря действию автомобильного стробоскопа, Вы не только добьетесь максимальной мощности двигателя внутреннего сгорания и высокого КПД, но и продлите срок службы двигателя.

Если Вам не безразлично «здоровье» вашего автомобиля, советуем Вам зайти на сайт нашего интернет-магазина «НПП ОРИОН» и купить автомобильный стробоскоп отличного качества и по доступной цене. Мы ждем Вас!




Дополнительная информация

Цена стробоскопа для выставления УОЗ в Украине

Проблемы с повышенным потреблением бензина, преждевременный выход двигателя из строя, перегрев силового агрегата? Все эти неисправности могут возникать по одной причине – некорректно выставленном зажигании. Чтобы устранить ее, достаточно купить стробоскоп для установки зажигания и грамотно использовать приобретенный инструмент согласно инструкциям производителя.

Что такое автомобильный стробоскоп для выставления УОЗ?

Стробоскоп предназначен для осуществления мониторинга, проверки и контроля системы зажигания. С его помощью можно выполнять необходимые настройки, что точно выставить начальное зажигание, добиться слаженной работы центробежного, а также вакуумного регулятора опережения зажигания.

Принцип работы авто стробоскопа

Создавая прибор, производители ставят перед собой цель предоставить пользователям простой и точный инструмент, с помощью которого процесс обслуживания системы зажигания станет максимально упрощенным, быстрым и необременительным.

Устройство имеет принцип работы, основанный на законах физики. Суть стробоскопического эффекта, который использован в устройстве состоит в том, чтобы короткой и яркой вспышкой осветить движущийся в темноте объект. Он на некоторое время становится видимым в том положении, в котором его застала яркая вспышка.

Работает стробоскоп от аккумулятора машины, однако в продаже имеются портативные практичные модели, оснащенные собственными элементами питания. В первом случае прибор стоит недорого, однако несколько ограничивает водителя в действиях. При работе с оборудованием, имеющим встроенные элементы питания, мастеру не потребуется хлопотать с проводами – он отрегулирует зажигание быстро, просто и безопасно.

Характеристики авто стробоскопа для выставления УОЗ

Автомобильный стробоскоп для выставления УОЗ имеет следующие отличительные характеристики:

Доступность

Доступная цена стробоскопа для зажигания позволяет владельцам транспортных средств пополнить свой набор инструментов добротным приспособлением без необходимости выделения из бюджета солидных сумм.

Солидные технические возможности

Современные модели оснащаются мощным функционалом. Они генерируют плотный световой луч, отличная направленность которого позволяет детально рассмотреть метку. В числе других популярных функций присутствует возможность измерения угла опережения зажигания, определение количества оборотов силового агрегата, работа в режиме вольтметра для вычисления величины напряжения в электрических цепях машины.

Продуманная эргономика

При всей своей функциональности и полезности прибор имеет весьма скромные габариты и легкий вес. Он заключен в удобный эргономичный корпус, которые обуславливает простоту хранения и транспортировки оборудования.

Широкий спектр применения

Прибор используют частные мастера и профессиональные автослесари для проверки и ремонта систем зажигания различных типов транспортных средств.

Простота эксплуатации

Инструмент характеризуется простотой использования. Он имеет удобное и понятное управление, не требует тщательного ухода и обслуживания, демонстрирует высокий рабочий ресурс.

Учитывая все характеристики товара можно сделать вывод о наличии ряда уникальных преимуществ, свидетельствующих в пользу принятия решения о его покупке. Это:

Соответствие стандартам безопасности

Реализуемые на рынке товары для автолюбителей проходят обязательную сертификацию, соответствуют международным стандартам безопасности.

Долгий срок службы

За счет применения передовых технологий сборки, качественных материалов и проверенных деталей, производители достигают максимального качества стробоскопов. Они служат долго, проявляют стойкость к нагрузкам и механическим повреждениям.

Универсальность

Прибор подходит для регулировки зажигания на различных машинах, главное – правильно подобрать его конфигурацию.

Безопасность при использовании инструмента – это основной ориентир для пользователей. Поэтому при работе с системой зажигания важно иметь под рукой не только стробоскоп, а и средства индивидуальной защиты. Это специальные диэлектрические перчатки. Также рекомендуется снять с себя все металлические предметы – часы, кольца, браслеты, цепочки.

Как правильно регулировать зажигание с помощью стробоскопа

Стробоскоп для установки зажигания, купить в Украине не составит труда. Инструмент представлен в продаже множеством моделей, которые реализуются в различных стоимостных сегментах. Однако водителям предстоит узнать не только о том, сколько стоит стробоскоп для установки зажигания, а и получить информацию о специфике использования приобретенного инструмента на практике.

Перед первым включением и применением прибора стоит выделить время на изучение пользовательской инструкции. Она поставляется производителем в стандартной комплектации, и содержит множество актуальной информации для потребителя.

После знакомства со спецификой работы оборудования приступают к регулировке. Она осуществляется в несколько последовательных шагов:

Подготовительные мероприятия

«Железного коня» нужно выгнать из гаража и подобрать место для работы, в котором отсутствуют световые помехи. Лучше всего планировать обслуживание машины на вторую половину дня, когда солнечные блики не такие яркие.

Осмотр оборудования

Перед включением стробоскоп осматривают на предмет целостности. При обнаружении каких-либо повреждений на корпусе от дальнейших работ отказываются, ведь такие дефекты свидетельствуют о том, что мастер может получить травмы от контакта с высоковольтной неизолированной цепью. Если инструмент исправен, запланированное обслуживание машины продолжают.

Подключение прибора

Двигатель машины нужно заглушить, а затем, соблюдая полярность, подключить клеммы устройства к аккумулятору. На проводе, идущем со свечей от первого цилиндра, фиксируют сигнальный кабель, чтобы получить с устройством емкостную связь. Затем машину ставят на нейтральную скорость, переместив рычаг коробки передач в соответствующее положение.

Регулировка

Стробоскоп берут в руки и направляют луч на шкив коленвала. Осветив рисочку на двигателе и метку на корпусе, начинают медленно вращать корпус трамблера. Цель этого действия – достижение максимального совпадения отметок. Когда маркировка совпала, двигатель глушат, стробоскоп отключают от аккумулятора, а трамблер фиксируют специальным затяжным болтом.

Тестирование

Машину тестируют на предмет правильности установки зажигания. Авто эксплуатируют на средней скорости и следят за тем, чтобы при резком нажатии на акселератор продолжительность детонационных стуков была не более двух секунд. Если такой результат достигнут – ремонт считают успешным. Машину загоняют в гараж, складывают инструменты и аксессуары в коробки, чехлы, кейсы для дальнейшего хранения.

При выборе стробоскопа для установки зажигания цена не является основным критерием выбора. Покупателям важно оценить технические характеристики устройства, прежде чем принять окончательное решение и добавить рассматриваемый товар в корзину. Речь идет про такие детали:

  • диапазон УОЗ
  • показатели УЗСК
  • тахометр
  • вольтметр и пр.

Имеет значение репутация производителя товара, тип распространяемой гарантии, наличие дополнительных функций. В их числе может присутствовать ЖК дисплей для отображения полезной информации, ударопрочный корпус, эргономичная тактильная панель для выбора функций и пр.

Где купить автомобильный стробоскоп для регулировки зажигания в Украине?

При необходимости выгодно купить стробоскоп для регулировки зажигания стоит перейти в интернет-магазин и открыть вкладку с данной категорией товаров. Здесь собраны проверенные модели от лучших производителей. Продукция имеет официальную гарантию, характеризуется добротной сборкой, эргономичным дизайном, повышенной стойкостью к износу и готовностью к интенсивной эксплуатации.

Оценят покупатели и другие преимущества, которые им откроет шопинг в формате «онлайн». Это:

Большой выбор конфигураций

На сайте удастся заказать базовый бюджетный прибор с минимальным набором функций, а также заказать передовой стробоскоп для зажигания, цена которого соответствует дорогому диапазону.

Простота поиска

Используя интегрированную систему фильтров можно за несколько минут, проведенных на портале, подобрать оборудование для машины по заданным критериям поиска. Это может быть цена, производитель, перечень опций и пр. Водители освободят себя от необходимости проводить долгие часы в выставочных залах магазинов. Им также не придется тратить драгоценное личное время на подробное изучение всех товаров из каталога – система фильтров позволит сузить круг поиска и быстро осуществить заказ.

Комфортные условия сотрудничества

Каждую сделку продавец автомобильных запчастей старается окружить качественным клиентским сервисом. Покупателям предоставляют подробные компетентные консультации, позволяют выбрать удобную схему оплаты и доставки товаров.

Обновления

На сайте постоянно следят за актуальностью линейки продукции. Товары пополняются новинками, которые прошли тестирования и подтвердили свою функциональность, надежность и полезность.

Забота о правах потребителей

Магазин проявляет исключительную заботу о клиентах. Портал действует в соответствии с законами Украины, поэтому о его деятельности сложно отыскать в сети какие-либо негативные отзывы. Торговая площадка имеет много довольных клиентов, отличается прочной репутацией, которая нарабатывалась на протяжении всего срока существования сайта.

Указанная в прайс-листе каталога цена стробоскопа для зажигания полностью оправдывается функциональностью и долговечностью прибора. Его приобретение – отличная инвестиция в оснащение частного гаража, СТО, коммерческой мастерской по обслуживанию транспортных средств.

Заключение

Правильно выставленное зажигание – это залог экономного расхода топлива и безупречной работы силовых систем авто. Поэтому ответственные владельцы грузовых и легковых ТС, профессиональные сотрудники центров ремонта и диагностики в числе инструментов имеют стробоскопы для установки угла зажигания на светодиодах, а также другие модели оборудования данной категории. Оно отличается эффективностью, надежностью, простотой использования.

Часто задаваемые вопросы

➕ Как доставим по Украине?

Доставка осуществляется курьерской службой Новая Почта ✓на отделение или ✓домашний адрес ✓Сроки доставки по Украине 1-4 дней после отправки.

➕ Как оплатить

Оплатить можно ✓Liqpay ✓Приват24 ✓ПриватБанк ✓Монобанк ✓На расчетный счет (по безналу) ✓При получении (наложенный платеж). Подробнее про способы оплаты.

➕ Преимущества покупки на UA-Instrument

Наши главные преимущества ✓Низкие цены ✓Отправка на следующий день после заказа ✓Принимаем заказы круглосуточно ✓Оплата как вам угодно ✓Доставка Новой Почтой, Деливери, CAT ✓Продажа по безналу юр. лицам ✓Всегда на связи

➕ Скидка на первую покупку

✓С 1 марта по 31 мая 2020 года - уникальное предложение от UA-Instrument! ✓Скидка на первую покупку в магазине от 5%. Для применения скидки используйте купон google50 на странице корзины. Спешите! Количество скидочных купонов ограничено.

Стробоскоп для регулировки зажигания


Регулировка зажигания с помощью стробоскопа — DRIVE2

Первое и главное — для того, что бы грамотно разобраться с "зажиганием" необходим прибор, в народе называемый — "стробоскоп". Что он делает — освещает в импульсном режиме метку положения коленчатого вала в момент искрообразования… Сложно ? Давайте проще. Когда на работающем двигателе мы направляем луч этого прибора на метку, служащую для регулировки опережения зажигания, нам эта метка видна как неподвижная, хотя находится на вращающемся маховике или шкиве (зависит от модели автомобиля ). Получается так за счёт стробоскопического эффекта, отсюда и название — "стробоскоп".
"Стробоскопов" сейчас выпускается множество, главное отличие в осветителе, это или импульсная лампа или светодиод. Плюс светодиодного — компактность, легче добраться в глубины моторного отсека. Плюс "лампового" — яркость освещения, легче разглядеть заржавевшую, загрязнённую метку. Инструкции к приборам по подключению и куда на каких машинах "светить" вы изучите самостоятельно, поэтому останавливаться на этом не буду.

Итак, если главный инструмент для работы с зажиганием у нас имеется, приступим к проверке и регулировке.

Любой распределитель зажигания ( "трамблёр" ) имеет две системы коррекции — центробежный корректор и вакуумный. В процессе работы двигателя угол опережения зажигания постоянно изменяется в зависимости от количества оборотов и нагрузки, это нужно для оптимизации процесса сгорания топливной смеси, а оптимально, это значит экономично и мощно…

Проверить работоспособность систем коррекции нам и поможет наш "стробоскоп". Начнём…

1 — двигатель прогрет, "подсос" убран, холостые обороты отрегулированы по норме или чуть ниже, вакуумная трубка, идущая от карбюратора к "вакуумнику" трамблёра снята. На таком режиме проверяем и регулируем установку начального угла опережения зажигания. ( "классика" — от 2-х до 7-ми градусов, в зависимости от рабочего объёма двигателя; 08 — 010 — 1100см. — 6 град., 1300см. — 1 град., 1500см. — 4 град. Подробнее в описании автомобиля ).

2 — При увеличении оборотов двигателя, примерно до 2-х тыс., угол опережения должен увеличиваться на 5 — 7 град., если этого не происходит, значит центробежный регулятор у нас не работает. Основная причина — заклинивание центробежного механизма, чаще всего, из — за окисления. Ремонт — разборка, чистка, смазка. Помимо этого, частенько ломаются и пружины механизма.

3 — Проверка работы вакуумного регулятора опережения зажигания немного посложнее, т. к. его работа связана с работой карбюратора. Главное условие нормальной работы вакуумного корректора — при работе двигателя на холостых оборотах, разряжения в трубке, идущей от карбюратора к "вакуумнику", быть не должно. Разряжение должно появляться только при увеличении оборотов двигателя. Своевременность появления разряжения в трубке можно проверить приложив к ней кончик языка ( к тому концу трубки, который мы сняли в начале проведения процедуры с "вакуумника" трамблёра ). Если карбюратор не обеспечивает своевременного появления разряжения в трубке, то нормальная работа вакуумного корректора невозможна, даже при полностью исправном механизме трамблёра.

При наличии своевременного разряжения, т. е. при правильной работе карбюратора, приступаем к проверке работоспособности самого вакуумного регулятора. Подсоединяем вакуумную трубку обратно к трамблёру и снова "светим стробоскопом" на метку. При увеличении оборотов метка должна "уходить" ещё выше, раза в два, чем она "уходила" с отсоединённой трубкой. Суммарный угол опережения складывается из трёх величин — начальный угол опережения зажигания, плюс дополнительное опережение, создаваемое центробежным регулятором, плюс доп. опережение от "вакуумника". Суммарный угол может достигать 30 градусов, в зависимости от режима работы двигателя, его модели и характеристик трамблёра.

Распределители зажигания имеют определённые, заданные характеристики работы, точные их параметры и их соответствие стандарту можно определить только на специальных стендах. В нашем случае мы можем только определить работает та или иная система, вообще, или не работает. Опытный мастер, конечно, может и "на глаз" достаточно точно определить правильность характеристик работы трамблёра и откорректировать их, но для этого нужны долгие годы практической работы.

И последнее, если одна из систем коррекции опережения зажигания или обе не работают, то заметно теряется динамика разгона автомобиля, могут появиться "провалы", увеличивается расход бензина.

P.S. Вышеизложенное относится к "Жигулям" и др. отечественным автомобилям. В некоторых "иномарках" работа "вакуумника" может очень сильно отличаться от "Жигулёвского" принципа.

ГДЕ КУПИТЬ:

tachki.prom.ua/p3052456-stroboskop.html

avtoline.spravka.ua/products/126.html

kiev.all.biz/uk/strobosko…nyj-g1926386#.VDPoLmd_vfI

kiev.all.biz/uk/strobosko…nyj-g2657579#.VDPoLmd_vfI

www.drive2.ru

Сообщества › Сделай Сам › Блог › Стробоскоп для установки угла опережения зажигания своими руками.

Подробнее у меня в Бортжурнале

После очередной возни с машиной, сбился уоз. Пометку на распределителе, как всегда не сделал, — забыл. Выставленного на слух угла явно было много, была детонация. А уменьшая угол, былой тяговитости так и не добился. У знакомых стробоскопа не нашлось. Покупкой нового озадачился, но после похода по магазинам желание отпало, платить за "фонарик" 1000 деревянных! Совсем уже спекулянты оборзели!
После поиска вариантов выхода из данной ситуации, решил сделать его сам! Единственная беспроблемная схема с простотой монтажа и без различной настройки, был автомобильный стробоскоп из лазерной указки автора Н. ЗАЕЦ "Светодиодный автомобильный стробоскоп" ("Радио", 2000, № 9).

Так его в последнее время перерисовали для более удобного чтения.

Ища сведения о работоспособности данной схемы, наткнулся на блог EverGrand У него выложена "печатка" в SL6, для сведения и последующего травления на плате, с очень компактной компоновкой

СПАСИБО ЕМУ ОГРОМНОЕ! Очень приятный и отзывчивый парень! Довелось с ним пообщаться, по причине постоянной подачи напряжения на транзисторы (стробоскоп постоянно горел при подключении к аккумулятору).
Причина была не в схеме, а в нерабочих микросхемах К561ЛЕ5. Коих клепают "узкоглазые" без проверки! Заработала только третья! Купленная микросхема!

Что потребуется для сборки:
1. Микросхема — К561ЛЕ5 (я брал аналог HCF4001BE)Транзисторы:
2. КТ315А — 1 шт.
3. КТ815А — 1 шт.

Резисторы:
4. 15к — 1 шт.
5. 3к — 1 шт.
6. 100к — 1 шт.
7. 4,7к — 1 шт.
8. 430 Ом — 1 шт. (я поставил 100 Ом, так как с предыдущим светил тускло)
9. 1к — 1 шт.

Конденсаторы:
10. 68 pF — 1 шт.
11. 3300 pF — 1 шт.

12. Кабель антенный для телевизора.
13. Прищепка
14. Светодиоды в различном исполнении.

Переводил используя технологию "ЛУТ", после травил, сверлил, паял 🙂

При воспроизведении данного устройства, очень внимательно относитесь к микросхемам! Как показал опыт, их брак очень велик!

Получившееся изделие:

www. drive2.ru

БСЗ, стробоскоп и приспособление к нему. — Лада 2104, 1.5 л., 2005 года на DRIVE2

Не було у бабы хлопот, та купила порося!
Вот и я ездил без проблем с контактным, да вот захотелось улучшений. Поставил БСЗ производства Старый Оскол.

Полный размер

Распределитель зажигания БСЗ

Полный размер

Катушка

Полный размер

Коммутатор

После запуска был неприятно удивлён тем, что обороты холостого хода стали меньше. Приятель, который год назад поставил БСЗ сказал, что и у него было то же самое и это нормально. Ну, ладно, поверим.
Зажигание выставил "на выпуклый морской глаз", повертев бегунок туда-сюда и оставил в положении наивысших оборотов. Проехался, нормально, детонации при движении нет, появляется только если резко втопить педаль. Но это же не дело, нужно проверить прибором. Раньше выставлял по лампочке, а теперь пришлось раскошелиться на стробоскоп.
Ну, думаю, сейчас выставлю по науке!

Вот именно.

Во первых, в 1970 году инженеры ВАЗа не предполагали, что народ захочет выставлять по стробоскопу и метки просто не видно, даже с зеркалом. Раньше я совмещал метки на шкиве и картере наощупь ногтем, а теперь это не прокатит.
Пришлось сделать приспособу, которую закрепил на один из болтов.

Полный размер

Приспособление для стробоскопа

Полный размер

Приспособление на двигателе

На шкив наклеил типа стрелку (которую потом отвалилась когда задел её ключом при проворачивании коленвала). Потом понял, что лучше использовать белую краску.

Опять включаю прибор, опять индейская изба! Разобрался, что коленвал от вспышки (если верить стробоскопу) отстаёт градусов на 60!

Полный размер

Вверху истинное положение ВМТ, внизу положение срабатывания стробоскопа

Виноват, конечно, стробоскоп, иначе бы движок вовсе не работал. Поставил на этом месте метку краской и задумался.

Регулировать по прибору я ничего не могу, по-прежнему на слух.

Вопрос к знатокам, почему и что делать?

Может быть стробоскоп можно как-нибудь отстроить? Чтобы он показывал вспышку в ВМТ, а не с отличием на 60 градусов?

Продолжаю 11. 09. 2016
Проверил стробоскоп на машине приятеля. Ему год назад ставили БСЗ в сервисе и выставили зажигание. Такая же картина, но угол отставания чуть меньше, около 45 градусов. Пока выставил как у него. Думаю поставить обратно контактное, выставить по лампочке и точно засечь правильное положение метки. Боюсь только, что мне не захочется возвращать БСЗ и денежки мои будут потрачены зря!

www.drive2.ru

Toyota Corona МедвежZZелько › Бортжурнал › Проверка и регулировка угла опережения зажигания (УОЗ) с помощью стробоскопа

Привет привет привет!
Выдалась наконец минутка написать постик о регулировке УОЗ с помощью стробоскопа Орион СТ-02, про который в прошлом посте писал. Те кто знают как это делается могут не читать )), а тем кто ни разу не делал (как и я),
Собсно сам стробоскоп

Орион СТ-02


имеет 4 контакта:
Первый с датчиком мы цепляем на высоковольтный провод 1го цилиндра

Цоп


Черного и красного крокодила, соотв-но цепляем на + и — АКБ

Чирик


Четвертый крокодил с зелено-желтым проводом — техометр, он цепляется либо к катушке, либо к форсунке, либо просто на диагностическом разъеме в контакт IG- (как я и поступил)

Хрясь


Для регулировки УОЗ требуется прогреть двигун полностью. Пока грелся, пощелкал на стробоскопе кнопки, длительным нажатием на уголок дисплейчика вошел в режим выбора типа двигателя, выставил тип согласно инструкции, 4 цилиндра с распределителем, это значение 2v1o.
Пока двигатель грелся нажатием на дисплейчик проверил напряжение, кому не видно на фото, показывает 14,7В,

Вольтметр


жмем ещё раз, показывает обороты (на фото 860об/мин)

Тахометр


Когда двигатель прогрелся, глушим, согласно мануалу к машине, ставим перемычку E1-Te1 (режим самодиагностики).

Вот она перемычка, суровая…


Можно было бы начать приступать смотреть угол, но, метку на шкиве при заведенном двиге и простреливании стробоскопом не видно, её нужно чем то пометить!
Терь самое сложное — поймать эту сраную метку на шкиве, я раз 20 заводил и глушил двиг прежде чем её поймал, её очень плохо видно, можно было конечно попробовать прокрутить ключиком за шкив гены, но мне там мешал бочек омывайки.

Вот она засечка

.
Для того чтобы её хорошо было видно на темном шкиве я решил её отметить жидким корректором канцелярским :)), чтобы туда подлезть и не вымазаться я примотал колпачек к линейке )) уот так уот. ))

Сколково со своими изобретениями отдыхает ))

.
Мазанул, правда несколько жирновато, ну да и ладно ))

Согласно мануалу на авто, на двигателях 3/4s, с перемычкой E1-Te1 на ХХ, метка должна метаться между 8 и 12 градусами, без перемычки между 10 и 20!
Ставим на нейтралку (!), на всяк случай все лишние потребители отключаем.
Заводим, т.к. с перемычкой УОЗ не корректируется компутером, то обороты падают до в моем случае до 500 об/мин., при этом кажется что машина вот вот заглохнет.
Всё, идем стрелять "феном" на шкив ))

Стробоскопим

.
На фото ессессно не видно метки, и на видео тоже, но у меня она колебалась фактически в тех значениях что надо, буквально чуть чуть уходила в большую сторону, я открутил болт на трамблере и чуть чуть провернул его в сторону вращения бегунка (против часовой), стрельнул опять стробоскопом, всё, попал как надо, затянул болт.

Дальше чтобы "приучить" комп к новому углу желательно выдернуть предохранитель EFI, он находится в основном блоке с предохранителями и реле (большая коробка такая :)), вот он на схеме

Вот он

.
А вот он вживую, на 15А

Выдернули, покурили пару минут, воткнули

.
Дальше несколько раз завел авто, каждый разе переключая селектор в разные положения (может это и не требовалось, но где то читал что так надо).
Проверил УОЗ без перемычки, метка колебалась приблизительно в тех пределах что указаны по книжке 10-20.

Т.к. можно сказать что у меня с зажиганием всё было ОК, то разницы никакой фактически не заметил, но на душе стало теплее ))).

Как то так, надеюсь кому то будет полезен сие пост.
P.S.: Маленькое пояснение, чем меньше число угла, тем позднее зажигание! Соотв-но чем больше число, тем оно раньше!

www.drive2.ru

Стробоскоп для УОЗ. Часть 1. — Mazda 626, 1.8 л., 1994 года на DRIVE2

Я думаю что многие меняли сальники трамблера. Я тоже менял, но уже давно. При замене сальников я заметил что на трамблере одно отверстие крепления имеет овал, т.е трамблер можно поставить в разных положениях.

Регулировка трамблера на мазде до 97г.в.

В то время я поставил приблизительно так как он стоял. Так как я начинающий автолюбитель, я не придал этому значения, едет машина да и пускай едет. Пару месяцев назад я наткнулся на видео по регулировке угла опережения зажигания, и я понял что мне тоже надо отрегулировать, так как я снимал трамблер, а как я его поставил на место не известно. Начал я изучать эту тему на просторах интернета и понял что без стробоскопа не обойтись. Поспрашивал знакомых на СТО, но город у меня маленький, нигде короче его не было, все выставляют на слух. а ехать куда либо нету времени. Покупать стробоскоп на один раз дороговато. Решил сделать сам, нравится мне все делать самому. В интернете распространены несколько схем стробоскопа — на реле, на таймере NE555, и на К561ЛЕ5.


На реле я не стал делать, нигде не мог найти рэлюшки. На таймере спаял два стробоскопа, но настроить их мне так и не получилось, что я только не делал, даже BUZ11 заказал из Китая, но он ни в какую не хотел работать.

Не рабочий стробоскоп на таймере 555


Осталась схема на К561ЛЕ5. Она мне показалась самой простой, но не знаю почему я не начал с неё. Впрочем спаял я и её, но не стал сразу паять на плату, а то получится как со схемой на таймере, просто спаял все детали между собой.

И о чудо, стробоскоп начал работать с первого раза, не было даже намеков на его нестабильную работу. Осталось его только проверить и настроить.
Проверку стробоскопа решил проверить на шкиву гидроусилителя, так как на него удобнее светить и он находится в доступном месте. Взял корректор, и нарисовал тонкую полоску на шкиву. Но только один незначительный минус — разное число оборотов шкива коленвала и гидроусилителя, поэтому метка на гидроусилителе будет проявляться не всегда, но для проверки стробоскопа этого достаточно.
На видео можно увидеть работу стробоскопа, и как проявляется метка, переменным резистором регулируется яркость и длина вспышки, но на видео это сильно не заметно.


В следующей части расскажу подробнее о схеме и о сборке стробоскопа.

www.drive2.ru

Стробоскоп для УОЗ. Часть 2(изготовление) — Mazda 626, 1.8 л., 1994 года на DRIVE2

В предыдущей записи я описывал собранный стробоскоп для УОЗ. Но собирал просто спаянными проводами. После проверки стробоскопа, решил перенести все детали на плату. Все детали для стробоскопа заказывал на сайте radioshop.by — просто и удобно.

Далее немного перерисовал исходную схему, чтобы было понятно и для начинающих, таких как я. А для того чтобы легче было в изготовлении построил 3D модель.

Далее печатаем дорожки только на лазерном принтере, вырезаем нужный кусок платы.

Ложим распечатку на плату и утюжим в течении 2-5 мин, при этом плотно прижимая.

Потом на 15 мин ложим получившийся пирог в теплую воду, что бы бумага сильнее намокла и тонер остался на плате а не на бумаге. Бумагу стирал по понемножку пальцем под водой из грана.


В тех местах где плохо перепечатывалось, подправляем обычным лаком для ногтей.
Далее самое интересное — протравить плату. Я думаю что многие пользуются хлорным железом. Хлорного железа у меня не было и нигде не мог найти. Поэтому травил в растворе перекиси водорода. Перекись водорода свободно продается в аптеке. Для приготовления раствора нужно смешать.
— лимонная кислота
— обычная соль
— перекись водорода
Реакция идет моментально, у меня закончилась через 30мин.
Тонер стирал обычным духами, просверлил отверстия, и пропаял дорожки.
Припаиваем все детали на место. Корпусом для стробоскопа служит батарейный отсек для обычных батареек.
В роли светила выступает карманный фонарик, В качестве датчика использовал крокодильчик, впаиваем туда конденсатор и два резистора.
Собираем все воедино и пользуемся. Всем удачи в изготовлении.
В следующей записи распишу о правильности установки УОЗ.

www.drive2.ru

Как выставить зажигание с помощью стробоскопа в автомобиле

Одна из весьма актуальных для отечественных автомобилистов тем – как в автомобиле грамотно выставить зажигание, применяя стробоскоп. Согласитесь, что этой методикой в совершенстве владеют лишь немногие опытные водители и механики. Для тех же, кто знаком с ней лишь понаслышке, специалисты рекомендуют детально ознакомиться, как именно функционирует стробоскоп, какие у него ключевые характеристики, как самостоятельно изготовить прибор для такой установки и, наконец, какой практический алгоритм регулировки зажигания с помощью прибора. Это поможет им не допускать перерасхода топлива, необоснованного перегрева двигателя и прочих нежелательных явлений, негативно влияющих на работу машины и сокращающих срок её эксплуатации.

Как работает стробоскоп для зажигания

Элементарными навыками обращения со стробоскопом должен владеть каждый уважающий себя водитель, поскольку это устройство выступает его надёжным помощником и союзником в деле экономного использования машины. Тем более что ничего слишком сложного в этом нет: научиться работать со стробоскопом под силу любому, так как это несложный прибор, приобрести который можно практически чуть ли не в каждом специализированном автомагазине.

Работает он на основе известного со школьных уроков физики стробоскопического эффекта. Суть этого эффекта проста. Так, при освещении движущегося в темноте предмета с помощью короткой яркой вспышки этот объект покажется неподвижным, застывшим именно в таком ракурсе, в каком он находился в момент вспышки. Дальше в ход должны вступят две особенные метки, которым придется синхронно сработать с стробоскопом. Место расположения первой, так называмой «подвижной» – коленвал, в иных вариантах – шкив привода генератора, а также маховик, а второй – корпус двигателя.

Светодиодный стробоскоп для регулировки угла опережения зажигания

Мотор включают на холостой режим и с помощью стробоскопа высвечивают эти метки во время вспышки, происходящей одновременно с возникновением искры в свече какого-то цилиндра. При этом следует фиксировать, как метки расположены относительно друг друга. Если они размещены точь-в-точь одна против другой, то это означает оптимальность угла опережения зажигания, т. е. двигатель будет запускаться отлично. Когда же метка «подвижная» смещена, прерыватель-распределитель требует корректировки таким образом, чтобы метки точно противостояли друг другу.

Характеристики стробоскопа для установки зажигания

Как и любой важный автомобильный прибор, стробоскоп имеет систему определённых характеристик, позволяющих ему чётко выполнять его миссию. Некоторые из них присущи только ему. Скажем, питаться он может двумя равноценными способами: за счёт собственных элементов питания или же бортовой энергосистемы машины. При этом первый способ, по мнению многих экспертов, является более практичным, так как не требует подключения к прибору проводов.

Отличительным свойством стробоскопа считают и величину минимальной частоты его вспышек – ей следует быть равной частоте вращения коленвала с максимальными оборотами. Самым распространённым является прибор с частотой 50 Герц. Стоит отметить также, что такой прибор способен эффективно работать лишь незначительное время – примерно 10 минут, что связано со специфической конструкцией ламп, что подчёркивает прилагающаяся к нему инструкция.

Инструкция по изготовлению прибора для установки зажигания

Самый просто способ обзавестись стробоскопом и с его помощью нормально отрегулировать авто – приобрести такой прибор в автомагазине. Единственным «но» в данном решении может быть только немалая цена приборов, которая способна ощутимо сказаться на домашнем бюджете водителя. Поэтому многие рачительные автомобилисты выбирают второй, экономный вариант – мастерят стробоскоп для установки зажигания своими руками. Как показывает практика, такие самодельные устройства, как правило, ничем не уступают промышленным образцам, независимо от того, какой формат смастерен. Будь-то устройство с применением отечественного или зарубежного таймера, самодельный стробоскоп на надёжных светодиодах или иной вариант.

В любом случае самоделка из простых и дешёвых материалов обойдётся в несколько раз дешевле, чем покупка прибора. Схемы сборки таких устройств можно без проблем найти в интернете или у тех опытных водителей, которые уже смастерили такой прибор в корпусе от старого фотоаппарата или радиоприёмника самостоятельно и успешно используют его не только для установки зажигания, но и проверки свечей и других контрольных целей. Таких схем множество, и из них всегда можно выбрать для себя несколько самых простых, не требующих большого объёма работы.

Регулировка зажигания с помощью стробоскопа

Рабочий алгоритм того, как оптимально выставить зажигание купленным стробоскопом (или сделанным своими силами) прибором, несложен. Настроить зажигание можно следующим поэтапным путем:

  1. Включить мотор и дать ему некоторое время поработать в холостом режиме.
  2. Подключить имеющийся стробоскоп (промышленный или самодельный) к избранному источнику питания. Это может быть как автономный вариант, так и подключение к бортовой или иной энергосистеме.
  3. Подсоединение медного датчика к жиле первого из цилиндров: чаще всего, датчик просто наматывают на жилу.
  4. Источником света освещают ту метку, которая находится на корпусе.
  5. Одновременно визуально фиксируется, где на шкиве маховика находится неподвижная точка.
  6. Для нужного соединения двух найденных точек вращают корпус зажигания. Когда же требуемое положение найдено, его фиксируют.

Ознакомившись с советами экспертов, теперь вы сможете без труда разобраться с особенностями выставления зажигания с помощью стробоскопа.

drivertip.ru

Настройка зажигания по стробоскопу — Audi 80, 1.8 л., 1988 года на DRIVE2

В одном магазине давно приметил стробоскопчик по довольно привлекательной цене. Решил приобрести себе эту игрушку))) Стробоскоп понравился, сделан надёжно, без дополнительного питания от батареек. Сегодня же пошёл проверять насколько плох мой слух))
Порядок действий:
1. Заводим двигатель
2. Подсоединяем провода стробоскопа в соответствии с инструкцией, провод с канцелярской прищепкой на ВВ провод 1-го цилиндра как можно ближе к свече, остальные два: один к контакту катушки (правый по ходу движения), другой на массу кузова. На моём стробоскопе эти оставшиеся два провода можно подключать как угодно, полярность не важна.
3. Убедившись, что стробоскоп заработал, направляем его вспышку в окошко колокола КПП. На маховике должно быть 2 метки: "0" — ВМТ и чуть ниже её "---" (чёрточка) — метка угла опережения зажигания (в моём случае двигатель NE — 18 градусов до ВМТ)
4. Метка зажигания должна находится точно по нижнему краю окошка и под вспышками стробоскопа визуально казать неподвижной. Если это не так ослабляем болт крепления трамблёра, вращая его, поднимаем метку (трамблёр влево) или опускаем (трамблёр вправо).
5. Убедившись, что метка стоит по нижнему краю, затягиваем болт крепления трамблёра. Если метка слегка плавает — это означает, что втулки вашего трамблёра изношены и имеют люфт.
6. Также с помощью стробоскопа, можно проверить правильность меток ГРМ. Для этого делаем всё тоже самое, что описано выше, только вместо метки УОЗ, по краю окошка ставим метку ВМТ — "0". Затем направляем вспышку стробоскопа на шкив распредвала и смотрим совпадает ли метка шкива с меткой на кожухе (метка также должна казаться неподвижной). Если это не так, нужно переставить шкив на нужное количество зубьев ремня, в правую или левую сторону. Метку на коленвале проверять необязательно, если у вас правильно выставлена на маховике.

Сам стробоскоп

Наши метки.

О своих результатах)) Слух меня подвёл ровно на 18градусов)) Заведя двигатель и стрельнув в окно стробоскопом, увидел на эталонном крае метку "0", соответственно стояло слишком позднее зажигание. Дедовский метод установки зажигания на жигулях: разгон на 2-ой до 40 км/ч, следом втыкание 4-ой и газ в пол слышимость или не слышимость звона пальцев — на этой машине не работает)))

Цена вопроса: 450 ₽

www.drive2.ru

Лада 4x4 3D › Бортжурнал › Автомобильный стробоскоп на полевом транзисторе с изолированным затвором и индуцированным каналом.

Как обычно инструмент понадобился срочно, покупать в магазине дорого, а ждать из Китая долго. Решил делать сам, из того что есть под рукой.
Посмотрел схемы в интернете, вариант с лампой-вспышкой сразу отсеял — не охота заморачиваться, изучил варианты со светодиодами (мне коллега как раз подогнал светодиодную лампу на 12В/1,5Вт от какой-то подсветки с кухни), в общем три варианта:
— с биполярным транзистором, достоинство — прост, недостаток — вспышка получается очень короткая, по отзывам — метку не видно;
— с микросхемами формирующими вспышку заданной длительности, слишком много паять…;
— с реле, продолжительность вспышки определяется запаздыванием срабатывания реле, то же как то много паять, и реле так насиловать как то не хорошо…
В общем решил городить сам, в качестве ключевого элемента решил взять полевой транзистор (MOSFET) от мёртвой материнки, очень крутой ключ совершенно бесплатно :). Мне попался PJD09N03 который готов прокачать 50А, т. е. можно залепить светодиод любой доступной мощности.
И оказалось что обвески полевому транзистору надо не много, и продолжительность можно очень просто задать. Вот только параметры сигнала получаемые антенной от высоковольтного провода я не знаю и посчитать слишком сложно, поэтому некоторые вещи делал наугад.

Схема

Антенна — крокодил прицепленный на изоляцию высоковольтного провода, а можно просто намотать пару витков. Сигнал с этой антенны будет открывать полевой транзистор.
Время вспышки определяется ёмкостью затвора, сопротивлением R2 и напряжением на затворе, которое ограничивается стабилитроном VD1 (обычно напряжение на затворе не должно превышать 20В). Время вспышки можно посчитать — это разряд емкости затвора VT1 через сопротивление R2, от напряжения стабилизации VD1 до порогового напряжения VT1. В интернете есть онлайн калькуляторы этого процесса. Но проще просто посмотреть осциллографом и подобрать R2. R1 (его я взял наугад) ограничивает ток стабилитрона VD1. VD2 ограничивает напряжение на канале полевого транзистора, для транзисторов снятых с вычислительной техники это обычно 25-30В.

Полный размер

Длительность вспышки

На осциллограмме: синий — напряжение на антенне, 5В в клетке (щуп с делителем на 10), ступенька — падение до напряжения стабилизации VD1, потом разряд ёмкости затвора; жёлтый — напряжение на стоке.
В качестве светодиодной лампы можно поставить мощный светодиод, или сборку светодиодов, с честным драйвером или ограничительным резистором, и защитой от обратного напряжения. Если светодиодная лампа имеет в своём составе выпрямительный мост, то, если перепутать полярность подключения стробоскопа, она окажется подключенной через внутренний диод VT1 и будет сразу светится.
Провод питания до аккумулятора, там самое чистое напряжение, взял с запасом — 2м. Провода до антенны и массы по 1м. В качестве самой антенны выступает широкий крокодил, который обхватывает высоковольтный провод.

Полный размер

Крокодилы

Спаял навесным монтажом, по плану всё должно было спрятаться под термоусадку, но решил попробовать с другими светодиодами.

Полный размер

Монтаж

Полный размер

Те же яйца, только в профиль

www.drive2.ru

Стробоскоп для зажигания - как им пользоваться?

Автомобильные владельцы с солидным опытом знают ценность правильно выставленного начального момента зажигания и корректной работы вакуумного и центробежного регуляторов опережения зажигания. Если произвести неправильную установку момента зажигания (кстати значительная роль может быть сыграна даже минимальным, казалось бы, отклонением на 2-3 градуса), это может стать причиной повышенного расхода топлива, потери мощности и перегреву силового агрегата и даже сокращению его эксплуатационного срока. Поэтому умение осуществлять проверку и регулировать систему зажигания – это очень ценные навыки для водителей, хотя данные процессы вполне относятся к категории достаточно сложных.

Если автовладелец всё же решился реализовывать данную операцию, то первым инструментом, который ему пригодится, будет стробоскоп, для установки зажигания, призванный упрощать процесс обслуживания вышеуказанной системы.

Как работает стробоскоп для зажигания?

Стробоскоп зажигания – очень простой и доступный для приобретения прибор, который можно достать в любом специализированном магазине, к тому же он существенно облегчит Вам жизнь, как автовладельцу. Ведь имея в наличии такой прибор, даже начинающий водитель проверит и отрегулирует начальную установку момента зажигания за считанные минуты, а также проверит центробежный и вакуумный регуляторы на наличие каких-либо повреждений.

Данный прибор работает по принципу стробоскопического эффекта, суть которого поясняется примерно так: если объект, который движется в темноте, осветить кратковременной яркой вспышкой, то он покажется визуально застывшим в положении, в котором его и застала вспышка.

Принцип работы данного прибора заключается в стробоскопическом эффекте, суть которого можно пояснить примерно таким образом: если движущийся темноте объект осветить яркой и при этом короткой вспышкой, то он начнет визуально казаться застывшим именно в том положении, в котором вспышка его и застала. Например, если освещать вспышками колесо, которое вращается с частотой, равной его вращательной частоте, то можно визуально его запечатлеть. Это легко заметно благодаря положению определённой метки.

Для установки момента зажигания запустите двигатель на холостых оборотах, а с помощью стробоскопа осветите ранее обговоренные метки. Одна из них, именуемая подвижной расположена на коленвале, хотя может на шкиве привода генератора или на маховике, а другая на корпусе двигателя. Вспышки случаются одновременно с моментом искрообразования в запальной свече цилиндра.

Во время вспыхивания должно быть видно обе метки. Причём здесь действуют следующие условия: если метки располагаются точно друг напротив друга, тогда угол опережения зажигания будет наиболее оптимальным, а если произойдёт смещение подвижной метки, то положение прерывательно-распределительного механизма необходимо откорректировать пока не совпадут метки.

Основным элементом стробоскопа является импульсная стробоскопическая лампа безынерционного типа. Данный механизм построен таким образом, что вспышки происходят в момент появления искры в свече первого цилиндра. Результатом этого будет расположение установочных меток вместе с другими элементами мотора, вращающимися с синхронно с коленчатым валом, в результате освещения их стробоскопической лампой кажутся недвижимыми. Благодаря этому можно осуществлять контроль над правильной установкой изначального момента зажигания.

Из всего описанного и сказанного выше уже складывается представление о характеристике работы стробоскопа для зажигания. Заодно объясним и его устройство: после подключения выводов к аккумулятору, заработает преобразователь напряжения, являющий собой мультивибратор симметрического типа. Изначальное напряжение распределяется далее с делителей на транзисторной базе, которые начинают приоткрываться, но один из них всегда делает это гораздо быстрее другого.

А это влияет на поведение другого транзистора, который в результате этого закрывается, что объясняется прикладыванием запирающего напряжения с обмоток к его базе. Затем транзисторы начинают открываться друг за другом, а это становится причиной подключения к аккумуляторной батареи одной или другой трансформаторной обмотки поочерёдно. В данный момент во вторичных обмотках возникает напряжение с прямоугольной формой и частотой около 800 Герц. Его значение прямо пропорционально количеству витков, имещихся в обмотке.

В момент происхождения непосредственного искрообразования, высоковольтный импульс первого цилиндра поступает на электроды, которые расположены на лампе стробоскопа, путём конденсаторов и специальной вилки разрядника от распределительного гнезда. При всём этом, накопленная конденсатором энергия, преобразовывается в световую от вспышки лампы. После разряда конденсаторов затухает лампа, но они получают заряд от резисторов до напряжения около 450 Вольт. Таким путём закончена подготовка к очередной вспышке.

Резисторы служат ещё и для предотвращения закорачивания в обмотках в момент вспыхивания лампы. Призвание диода – защищать транзистор преобразователя, если стробоскоп подключен в неверной полярности. Благодаря разряднику обеспечивается получение необходимого напряжения высоковольтного импульса, во избежание осуществления возгорания лампы. При этом ни расстояние, ни давление в камере сгорания, ни свечи не играют никакой роли. Благодаря именно разряднику обеспечивается бесперебойная работа стробоскопа даже с закороченными электродами в свече зажигания.

Как видно, принцип работы, достаточно простого с виду механизма довольно сложен. Но это ни в коем случае не означает, что в нём нельзя разобраться. Также важно понять, как выставить зажигание при помощи стробоскопа и попробовать самолично осуществить данный процесс.

Характеристики стробоскопа для установки зажигания

Стробоскоп наделён определённым набором характеристик, который отличает его от других приборов, делая его поистине уникальным и необходимым. Среди уникальности, к примеру, можно назвать следующее: источником питания для стробоскопа могут быть собственные элементы питания и бортовая автомобильная сеть. Отсюда автоматически вытекает вопрос, какой же способ является лучшим – автономное питание или за счёт сети автомобиля.

Скажем лишь то, что эта данность абсолютно не принципиальная, но всё же первый способ ограничивает Вас от необходимости протягивания проводов за прибором. Ещё одной отличительной характеристикой стробоскопа является значение минимальной частоты вспышек, которые он выдаёт.

Она должна быть аналогичной с частотой вращения коленчатого вала, вращающегося на максимальных оборотах. Наиболее распространённые стробоскопы с частотой в 50Гц. Как правило, стробоскоп не может долго функционировать, осуществляя вспышки, а связано это с особенной конструкцией ламп. Зачастую, он способен корректно непрерывно работать не более десяти минут. Эти показатели указываются в инструкции к прибору. Во избежание непредвиденных ситуаций, стробоскопу и, в первую очередь, его лампам, необходимо давать отдых продолжительностью равной времени его работы за один сеанс.

Регулировка зажигания с помощью стробоскопа

Итак, если у Вас имеется сей уникальный инструмент, для выставления зажигания, тогда не стоит всё откладывать «в долгий ящик», а пора приступать к проверке и регулировке зажигания. У каждого трамблёра есть две системы корректировки – центробежный и вакуумный корректоры. Во время работы силового агрегата угол опережения зажигания не постоянен, на что влияет количество оборотов и нагрузка. Это необходимо для оптимального процесса сгорания топлива, а оптимально значит мощно и максимально экономично. Итак начинаем нашу проверку. Поехали.

1. Прогрейте двигатель и нормально отрегулируйте холостые обороты или чуть ниже. Снимите вакуумную трубку, которая идёт от вакуумника трамблёра к карбюратору. В таком режиме проверьте и отрегулируйте установку начального угла опережения зажигания. Подробные данные об этом Вы найдёте в мануале к Вашему транспортному средству.

2. Увеличив обороты двигателя до двух тысяч, Вы должны будете наблюдать и увеличение угла напряжения примерно на семь градусов, если этого не произошло, значит проблема с центробежным регулятором. Основной причиной, зачастую, может быть заклинивание центробежного механизма, что зачастую случается в следствии его окисления. Кроме этого часто происходит поломка пружин механизма.

3. Проверить работу вакуумного регулятора опережения зажигания будет посложнее из-за того, что его работа связана с работой карбюратора. Основным условием корректной работы вакуумного регулятора является отсутствие (на холостых оборотах) разряжения в трубке, пролегающей между вакуумником и карбюратором. Оно должно возникать только с повышением оборотов двигателя.

Своевременное появление разряжения в трубке проверяется кончиком языка к концу трубки, который соединяется с вакуумником трамблёра. Если карбюратор не в состоянии обеспечить своевременное появление разряда в трубке, то вакуумный корректор попросту не сможет нормально функционировать, даже если механизм трамблёра полностью исправен.

При правильной работе карбюратора и своевременном разряжении, соответственно, приступайте к проверке работоспособности самого вакуумника. Подсоедините вакуумную трубку снова к трамблёру и осветите метку стробоскопом. С увеличивающимися оборотами метка будет уходить выше в два раза, чем до этого с отсоединённой трубкой.

Суммарный угол опережения включает в себя три величины: начальный угол опережения зажигания, дополнительное опережение, которое создаётся центробежным регулятором, и дополнительное опережение от вакуумника. Он может достигать и 30 градусов. Всё зависит от режима работы силового агрегата, его модели и характеристик трамблёра.

У распределителей зажигания имеются свои определённые заданные характеристики функционирования. Определить их параметры точно и соответсвие их стандарту можно определить лишь на специальных стендах. В проделываемом Вами случае можно лишь определить работает или нет та либо иная схема. Конечно, опытный профессионал может и визуально определить насколько правильны характеристики работы трамблёра, а в случае чего и отрегулировать их, но это не так просто и для этого нужен определённый опыт, который нарабатывается долгими годами практики.

И последнее, что мы хотим сказать по данной теме. Если одна из систем коррекции опережения зажигания или обе не работают, то автомобиль заметно теряет в разгонной динамике, могут появиться "провалы" и увеличиться топливный расход.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

auto.today

Стробоскоп для УОЗ в корпусе фонарика. — DRIVE2

Добрый день всем.
Периодически возникает необходимость проверки и выставления УОЗ на трамблёрных авто. Вот покупать заводской желания не было, а в старом советском стробоскопе накрылась импульсная лампа ИФК-120 (( Найти в продаже лампу не удалось. Решено лепить стробоскоп на базе китайского светодиодного фонарика. Изучив в сети разные схемы, для производства стробоскопа решили использовать схему на базе микросхемы Л561ЛЕ5 и с питанием от бортовой сети автомобиля.


Схема которую я собирал — пардон за какчество

Фонарик имеет три светодиода

Компоновал это чудо в фонарик господин КАН. Получилось вот такое чудо


Заматываем изолентой во избежание кз.

Провода выводили через резиновую бывшую кнопку включения фонарика


Зажим на высоковольтный провод сделали с обычной прищепки и медной пластины.
Чтобы не оторвать пайку, просверлили отверстия и запустили в неё провод
На провода питания накинул крокодилы и девайс имеет законченный вид

В залежах была найден чехол от электробритвы Харьков. Теперь это чехол для стробоскопа)))

www.drive2.ru

СТРОБОСКОП – Введение в электронику

При разряде импульсная лампа стробоскопа практически мгновенно высвобождает значительное количество световой энергии. Это можно использовать для анимации вечеринки или витрины магазина, а также для сигнализации, например, в шумной обстановке.

Принцип действия

Устройство содержит несколько конденсаторов достаточно большой емкости, которые, периодически заряжаясь до высокого напряжения непосредственно от выпрямленного сетевого напряжения, накапливают энергию. В нужный момент времени, определяемый схемой таймера, производится разряд одного из конденсаторов через обмотку импульсного пускового трансформатора, повышающего напряжение до величины, необходимой для начальной ионизации импульсной лампы. Затем происходит разряд других конденсаторов через лампу, вызывающий интенсивную вспышку света, поскольку вся накопленная энергия освобождается за очень короткое время.

Работа схемы Питание схемы

Питание управляющего узла схемы (рис. 4.58) осуществляется непосредственно от сети 220 В через емкость С9. Во время положительных полупериодов напряжения ток течет через этот конденсатор, который, заряжаясь через R1 и VD2, заряжает и конденсатор С1. Потенциал на положительном выводе конденсатора С1 ограничивается значение 10 В благодаря стабилитрону VD7.

Во время отрицательных полупериодов напряжения через VD1 происходит разряд С9, за счет чего он подготавливается к передаче следующей положительной полуволны напряжения. В результате на выходе схемы .питания (конденсаторе С1) получаем сглаженное постоянное напряжение. Конденсаторы С1 и С2 осуществляют фильтрацию напряжения питания по низким и высоким частотам.

При отключении схемы резисто1>К2 разряжает С9, что позволяет избежать разряда при неосторожном обращении с устройством.

Цикл работы устройства задается несимметричным мультивибратором на вентилях И-НЕ D1A и DIB. Конденсаторы СЗ и С4 заряжаются и разряжаются через резистор R3 и регулируемый резистор R10. Диод VD2, шунтирущий резистор R10, ускоряет заряд конденсаторов СЗ и С4, когда выход вентиля DIB имеет низкий уровень. Таким образом, длительность состояния низкого уровня на выходе мультивибратора меньше длительности состояния высокого уровня и составляет приблизительно 1Ό мс, причем зависит, главным образом, от текущего значения сопротивления регулируемого резистора. Подробнее мы поговорим об этом в разделе, посвященном изготовлению стробоскопа.

Резистор R4 не влияет на период колебаний генератора. Он обеспечивает работу вентиля DIB в линейном режиме и, следовательно, мягкий режим запуска генератора. Вентили D1C и DID осуществляют двойную инверсию, выполняя роль буферных элементов.

Рис. 4.58. Принципиальная схема стробоскопа

Рис. 4.59. Временная диаграмма работы стробоскопа

Работа импульсной лампы стробоскопа

В момент низкого уровня на выходе вентиля DID транзистор VT1 открывается, и его коллекторный ток через цепочку R6 и VD5 поступает в управляющий электрод тиристора VS1 – он открывается.

На конденсаторе С5, предварительно заряженном через диод VD4 и R7 во время положительных полупериодов сетевого напряжения, имеем напряжение примерно 300 В. При включении тиристора конденсатор быстро разряжается через первичную обмотку импульсного  трансформатора. Вторичная обмотка трансформатора имеет значительно больше витков, чем первичная, поэтому на ней появляется напряжение в несколько тысяч вольт. Это высокое напряжение обеспечивает запуск импульсной лампы. Энергия, необходимая для световой вспышки, накапливается тремя конденсаторами С6, С7 и С8, которые разряжаются за очень короткий промежуток времени. Они предварительно заряжаются через резистор R9 и диод VD3 во время двух положительных полупериодов сетевого напряжения приблизительно до 30|) В.

Выполнение монтажа

Схема содержит большое количество компонентов, имеющих полярность (диоды,Электролитические конденсаторы, тиристор, интегральная схема), что требует особого внимания при установке. Блестящая (хромированная) сторона импульсной лампы соответствует «минусу». Чтобы не перепутать обмотки импульсного трансформатора, при помощи омметра необходимо измерить их сопротивление. Вторичная обмотка, формирующая высокое напряжение и соединяемая с пусковым электродом лампы, имеет значительно более высокое сопротивление.

Чертеж печатной платы устройства и монтажная схема представлены на рис. 4.60 и 4.61.

Рис. 4.60. Чертеж печатной платы стробоскопа

Рис. 4.61. Монтажная схема стробоскопа

При настройке устройства сначала вращением движка регулируемого резистора по часовой стрелке устанавливаем его в крайнее правое положение, соответствующее максимальному значению сопротивления. Частота вспышек будет очень редкой. Ее можно увеличить, вращая резистор против часовой стрелки. Имеется, однако, граница срыва. Она достигается, когда конденсаторы С6, С7, и С8 не имеют

Рис. 4.62. Общий вид собранного устройства достаточно времени для заряда между двумя последовательными вспышками.

Общий вид стробоскопа представлен на рис. 4.62, перечень элементов устройства дан в табл. 4.16

Таблица 4.16. Перечень элементов стробоскопа

Наименование

Обозначение

Номинал/тип

Примечание

R1

47 Ом

2,0 Вт

R2

1 МОм

±5%, 0,25 Вт

R3

10 кОм

±5%, 0,25 Вт

R4

1 МОм

±5%, 0,25 Вт

Резисторы

R5

4,7 кОм

±5%, 0,25 Вт

R6

220 Ом

±5%, 0,25 Вт

R7

33 кОм

±5%, 0,25 Вт

R8

2,2 МОм

±5%, 0,25 Вт

R9

3,3 кОм

±5%, 0,25 Вт

R10

1 МОм

Подстроенный

С1

2200 мкФ

10В

С2

0,1 мкФ

Пленочный

Конденсаторы

СЗ.С4

1 мкФ

Пленочный

С5

0,1 мкФ

Пленочный 400 В

С6-С9

1 мкФ

Пленочный 400 В

VD1, VD5

1N4004

Диоды

VD6

1 N4148

1 N914

VD7

10В

Стабилитрон 1,3 Вт

Транзисторы

VT1

2Ν2905

Тиристоры

VS1

ΤΥΝ1008

Микросхемы

D1

CD4011

Панелька для микросхемы на 14 выводов

Прочее

Лампа импульсная 30/40 Дж

Импульсный трансформатор (TS8)

Двуконтактный клеммник для установки на печатной плате

Источник: Фигьера Б., Кноэрр Р., Введение в электронику: Пер. с фр. М.: ДМК Пресс, 2001. – 208 с.: ил. (В помощь радиолюбителю).

Виды дискотечных стробоскопов, какой выбрать?

Стробоскоп – устройство, которое применяется практически в любом шоу, на дискотеке. Принцип работы стробоскопа заключается в создании яркой световой вспышки. Более мощный аналог это световой блиндер создающий эффект световой стены. Сегодня невозможно себе представить дискотеки или ночного клуба, в котором бы не был установлен стробоскоп.На рынке представлено множество разнообразных стробоскопов и для того чтобы правильно выбрать данный тип оборудования и будет посвящаться данная небольшая статья.

Стробоскопы, которые производятся производителями по источнику света можно условно разделить на две части:

По принципу управления стробоскопы делятся:

  • аналоговое управление;
  • управление по DMX протоколу;
  • звуковая активация;
  • автоматический режим.

Ламповые стробоскопы достаточно давно на рынке и успели завоевать много положительных отзывов. Они имеют широкий угол освещения и большую яркость. Также ламповые стробоскопы имеют управление, о котором уже упоминалось (управление в кожной модели может быть разное). К качественным и проверенных временем можно отнести такие стробоскопы таких брендов как HALO или Free Color, которые на протяжении многих лет работают безотказно. 

 

У всех ламповых стробоскопов есть один недостаток это быстрый выход из строя лампы и с этим ничего не поделаешь.

 

Светодиодные стробоскопы появились относительно недавно. В качестве излучателей используются сверхяркие светодиоды. Головной их плюс это намного меньше электропотребление и достаточно большое время службы светодиодов, по сравнению с лампами. Также отличие светодиодных стробоскопов от ламповых есть то, что светодиодный стробоскоп можно использовать в качестве прожектора белого цвета, а в ламповых, конечно же, такой возможности нет, а эта на первый взгляд как мелочь может очень помочь кому-то  в постановке, например какой-то сцены в театре. 

 

Из выше сказанного можно сделать такой вывод, что если вам необходим стробоскоп который будет потреблять меньше электроэнергии то это светодиодный стробоскоп, также, если у вас недостаток прожекторов (оборудования) белого цвета, а временами необходим яркий белый цвет  то в этом вам также прейдет на помощь светодиодный стробоскоп. Но если вам необходим настоящий яркий эффект стробоскопа, то тогда вам нужно брать только ламповый, потому что на данный момент ламповые стробоскопы остаются в лидерах.

 

Если у Вас возникли какие-то вопросы, или Вы не можете выбрать какой стробоскоп Вам необходим, то в этом случаи свяжитесь со специалистами нашей компании для консультации.

 

Особенности обслуживания стробоскопов

Стробоскоп, как и каждое электронное устройство нуждается в проведении периодического технического обслуживания (раз в год или полгода в зависимости от условий эксплуатации). В процессе проведения технического обслуживания, как правило, подразумевают замену лампы, полную чистку прибора. В процессе работы внутри прибора собирается значительное количество пыли, грязи которое мешает процессу охлаждению прибора. В мощных приборах стоят вентиляторы для лучшего охлаждения, а они имеют свой ресурс и достаточно часто выходят из строя. Если вовремя не заменить вентилятор - он выйдет из строя и в процессе работы произойдет перегрев, сломается еще и электронная часть прибора, а такой ремонт уже будет стоять намного дороже, чем просто провести профилактику и заменить элементы, которые уже в этом нуждаются. 

Хочется обратить Ваше внимание на то, что в данных приборах присутствует высокое напряжение, которое опасно для жизни человека, к примеру, у светодиодных стробоскопов это напряжение составляет порядка 220В, а в ламповых напряжение поджога лампы может доходить до 6000В. Для того чтобы избежать несчастных случаев мы рекомендуем по ремонту и техническому обслуживанию обращаться в специализированные сервисные центры как LuxSERVICE. Качественно проведенный ремонт будет залогом долговечной работы электронного устройства. 

Время остановки со светодиодным стробоскопом! : 11 шагов (с изображениями)

Если модификация готового светильника не соответствует вашим потребностям, вы можете создать собственную светодиодную матрицу, используя отдельные светодиоды.

Как подключить светодиоды в массив уже много раз рассказывалось на этом сайте и в других местах. Я собрал собственное краткое описание процесса проектирования светодиодной матрицы, который рассматривается в этом разделе.

Простая конструкция светодиодной матрицы :

Если вы хотите управлять цепочкой светодиодов заданным током (I_LED) от известного источника напряжения (Vs), можно использовать следующую процедуру, чтобы определить, сколько светодиодов может должны быть размещены последовательно и какое сопротивление последовательного резистора требуется для установки желаемого тока.

Основные этапы процесса проектирования заключаются в следующем. См. Принципиальную схему.

1) Разделите напряжение питания (Vs) на прямое напряжение (Vf) используемого светодиода.

Прямое напряжение - это падение напряжения на светодиоде при прямом смещении. График прямого тока по сравнению с прямым напряжением будет иметь очень крутой изгиб, так как для значительного изменения прямого напряжения требуется значительное изменение тока. Прямое напряжение зависит от температуры, и оно выше при более низких температурах (имеет отрицательный температурный коэффициент).

Напряжение источника питания должно быть не меньше прямого напряжения одиночного светодиода, чтобы светодиод вообще мог зажечь. Значит, результат этого расчета должен быть больше единицы, чтобы можно было зажечь даже один светодиод.

2) Округлите результат шага 1 ВНИЗ до ближайшего целого числа. Результат дает вам количество светодиодов, которые вы можете соединить последовательно для данного напряжения источника питания и прямого напряжения светодиода.

3) Умножьте результат шага 2 на прямое напряжение светодиода.Это дает сумму всех прямых падений напряжения светодиодов в последовательной цепочке.

4) Вычтите результат шага 3 из напряжения источника питания. Результат - величина напряжения, которое будет падать на токоограничивающем сопротивлении.

5) Разделите результаты шага 4 на ток, который вы хотите протекать в цепочке светодиодов. Результат - значение сопротивления последовательного резистора, ограничивающего ток. Выберите резистор подходящего размера, чтобы не повредить его из-за рассеивания мощности.2) * R_current_limit

Выберите резистор с номинальной мощностью больше, чем значение PWR_R_current_limit.

Это минимальная номинальная мощность, если массив работает со 100% -ным рабочим циклом. Если массив будет использоваться в приложении, где он будет пульсировать с довольно высокой частотой, а не работать постоянно, то номинальная мощность, определенная выше, может быть умножена на максимальный рабочий цикл, чтобы получить среднюю мощность. Приложение stobe имеет довольно низкий рабочий цикл, максимум около 3% для конструкции, представленной в этом руководстве.

Если вы поместите последовательно количество светодиодов, которое было определено на шаге 2, последовательно с сопротивлением, которое было определено на шаге 5, и примените Vs через цепочку, как показано на диаграмме, тогда светодиоды будут передавать желаемый ток (I_LED )

Когда эта цепочка приложена к напряжению источника питания, нужный ток будет течь через цепочку светодиодов. Каждый светодиод в цепочке будет пропускать одинаковый ток, поэтому каждый должен иметь сопоставимую яркость. Если требуется больший массив светодиодов, то несколько одинаковых цепочек, каждая со своим собственным токоограничивающим резистором, можно при необходимости подключить параллельно.Общий ток, который будет потребляться от источника питания, будет равен количеству струн, умноженному на ток в одной струне.

Если источник питания Vs напрямую подключен к батарее, то Vs, конечно, будет падать по мере разряда батарей. Ток светодиода будет уменьшен, как и яркость светодиодов. Если это недопустимо, тогда Vs должен быть регулируемым источником напряжения.

Стробоскоп - Videocide

Стробоскоп, также известный как стробоскоп, представляет собой инструмент, используемый для придания циклически движущегося объекта вид медленно движущегося или неподвижного.Он состоит либо из вращающегося диска с прорезями или отверстиями, либо из лампы, такой как импульсная лампа, которая производит короткие повторяющиеся вспышки света. Обычно скорость стробоскопа регулируется на разные частоты. Когда вращающийся или вибрирующий объект наблюдается с помощью стробоскопа на его частоте вибрации (или ее доле), он кажется неподвижным. Таким образом, стробоскопы также используются для измерения частоты.

Принцип используется для изучения вращающихся, совершающих возвратно-поступательное движение, колеблющихся или вибрирующих объектов.Части машин и вибрирующая струна являются типичными примерами. Стробоскоп, используемый для установки момента зажигания двигателей внутреннего сгорания, называется индикатором времени.

В своей простейшей механической форме стробоскоп может представлять собой вращающийся цилиндр (или чашу с приподнятым краем) с равномерно расположенными отверстиями или прорезями, расположенными на линии прямой видимости между наблюдателем и движущимся объектом. Наблюдатель одновременно смотрит через отверстия / щели на ближней и дальней стороне, при этом щели / отверстия движутся в противоположных направлениях.Когда отверстия / прорези выровнены на противоположных сторонах, объект становится видимым для наблюдателя.

В качестве альтернативы, одиночное подвижное отверстие или прорезь можно использовать с фиксированным / неподвижным отверстием или прорезью. Стационарное отверстие или прорезь ограничивает свет до единственного пути обзора и уменьшает блики от света, проходящего через другие части движущегося отверстия / прорези.

Просмотр через одну линию отверстий / щелей не работает, поскольку кажется, что отверстия / щели просто проходят по объекту без эффекта стробоскопа.

Скорость вращения регулируется так, чтобы она синхронизировалась с движением наблюдаемой системы, которая, кажется, замедляется и останавливается. Иллюзия вызвана временным наложением спектров, широко известным как стробоскопический эффект.

Электронный

В электронных версиях перфорированный диск заменен лампой, способной испускать короткие и быстрые вспышки света. Обычно используются газоразрядные или твердотельные лампы, поскольку они способны испускать свет почти мгновенно при подаче питания и так же быстро гаснуть при отключении питания.

Для сравнения, лампы накаливания имеют короткий прогрев при включении, за которым следует период охлаждения при отключении питания. Эти задержки приводят к смазыванию и размытию деталей объектов, частично освещенных во время периодов разогрева и охлаждения. Для большинства применений лампы накаливания слишком медленные для четких стробоскопических эффектов. Тем не менее, при работе от источника переменного тока они в основном достаточно быстрые, чтобы вызывать слышимый гул (с удвоенной частотой сети) при оптическом воспроизведении звука, например, при проецировании пленки.

Частота вспышки настраивается так, чтобы она была равна или составляла часть циклической скорости объекта, в этот момент объект виден либо неподвижным, либо медленно движущимся назад или вперед, в зависимости от частоты вспышки.

Неоновые лампы или светоизлучающие диоды обычно используются для стробоскопов низкой интенсивности. Неоновые лампы были более распространены до появления твердотельной электроники, но их заменяют светодиоды в большинстве стробоскопов низкой интенсивности.

Ксеноновые лампы-вспышки используются для стробоскопов средней и высокой интенсивности. Достаточно быстрое или яркое мигание может потребовать активного охлаждения, такого как принудительное воздушное или водяное охлаждение, чтобы предотвратить плавление ксеноновой лампы-вспышки.

Приложения

Стробоскопы играют важную роль в изучении нагрузок на машины в движении и во многих других формах исследований. Яркие стробоскопы способны подавлять окружающее освещение и создавать эффекты покадровой анимации без необходимости работы в темных условиях окружающей среды.

Они также используются как измерительные приборы для определения циклической скорости. В качестве индикатора времени они используются для установки угла опережения зажигания двигателей внутреннего сгорания.

В медицине стробоскопы используются для просмотра голосовых связок с целью диагностики состояний, вызвавших дисфонию (охриплость голоса). Пациент мычит или говорит в микрофон, который, в свою очередь, активирует стробоскоп на той же или немного другой частоте. Источник света и камера устанавливаются эндоскопически.

Еще одно применение стробоскопа можно увидеть на многих проигрывателях граммофонов. Край диска имеет отметки с определенными интервалами, так что при просмотре при флуоресцентном освещении с питанием от сети и при условии, что диск вращается с правильной скоростью, отметки кажутся неподвижными. Это не будет хорошо работать при освещении лампами накаливания, поскольку лампы накаливания не сильно мигают. По этой причине некоторые проигрыватели имеют неоновую лампочку или светодиод рядом с пластиной.Светодиод должен управляться однополупериодным выпрямителем от сетевого трансформатора или генератором.

Стробоскопы с мигающими лампами также адаптированы для использования в поп-музыке в качестве светового эффекта для дискотек и ночных клубов, где они создают впечатление танца в замедленной съемке. Частота стробирования этих устройств обычно не очень точная или очень высокая, потому что развлекательное приложение обычно не требует высокой производительности.

Прочие эффекты

Быстрое мигание может создать иллюзию того, что белый свет окрашен в цвет, известный как цвет Фехнера.В определенных пределах видимый цвет может контролироваться частотой вспышки, но это иллюзия, созданная в уме наблюдателя, а не реальный цвет. Вершина Benham демонстрирует эффект.

Стробоскоп: введение | IOPSpark

Прогрессивная волна

Свет, звук и волны

Стробоскоп: введение

Практическая деятельность для 14-16

Класс практический

Ручной стробоскоп - это простое устройство, которое можно использовать несколькими очень полезными способами.

Аппаратура и материалы

Техника безопасности и здоровья

Если в этом упражнении используется двигатель малой мощности (Fracmo), позаботьтесь о том, чтобы соединить обмотки возбуждения (статора) и обмотки якоря (ротора), прежде чем подключать их к источнику питания. Эти соединения не следует изменять во время работы двигателя.

Провода, используемые для подключения двигателя, должны быть оснащены 4-миллиметровыми вилками с подпружиненными кожухами (см. Прилагаемую к ним предупреждающую табличку).

Фотоиндуцированная эпилепсия

При любой работе с мигалками учителя должны помнить о каждом ученике, страдающем фото-индуцированной эпилепсией. Это состояние встречается очень редко. Тем не менее, деликатно расспросите любого известного эпилептика, чтобы узнать, был ли приступ когда-либо связан с миганием света. В этом случае студента можно пригласить покинуть лабораторию или прикрыть глаза, если это будет сочтено целесообразным. В этих экспериментах невозможно избежать опасного диапазона частот (от 7 до 15 Гц).

Учителя в обслуживаемых школах должны проверить, дало ли их местное управление образования конкретные указания по этому вопросу.

Прочтите наше стандартное руководство по охране труда

Вращающийся диск черный, окрашен белой стрелкой.

Компактный источник света имеет блок питания низкого напряжения на 8А.

Ретортная стойка и патрон необходимы как для лампы, так и для стробоскопа. Ксеноновый стробоскоп нужен для одного из экспериментов.

Процедура

Объяснить принцип измерения частоты стробоскопом
  1. Начните с медленного поворота руки по большому вертикальному кругу.
  2. Попросите учащихся закрыть глаза и ненадолго их открыть каждый раз, когда вы говорите «сейчас», один раз на каждый оборот. Студенты будут видеть вашу руку каждый раз в одном и том же положении.
  3. Затем говорите «сейчас» каждые два оборота, чтобы они видели то же самое, но реже.
  4. Наконец, говорите «сейчас» каждые пол-оборота, чтобы они увидели вашу руку в двух положениях.
  5. Вы можете найти частоту вращения из максимального числа оборотов стробоскопа в секунду, которые показывают вашу руку, застывшую только в одном положении; больше позиций, и стробоскоп вращается слишком быстро.
  6. Подведем итог: правильная скорость вращения - это максимальная скорость, при которой объект «останавливается». Тогда частота вращения - это количество оборотов стробоскопа в секунду, умноженное на количество щелей в стробоскопе. Если частота вспышек такова, что видны n неподвижных изображений, тогда измеряемая скорость вращения будет N = (скорость вспышек в минуту) / n. (Спасибо Маноджу Чукси, который предложил включить это предложение.)
Студенты измеряют частоту
  1. Используйте двигатель для привода черного диска, нарисованного белой стрелкой, со скоростью 25–30 оборотов в секунду.
  2. Учащиеся должны уметь вращать свои стробоскопы с правильной скоростью. Количество прорезей, проходящих через глаз в секунду (12 проблесков за один оборот, умноженное на среднее количество оборотов в секунду), равно количеству оборотов диска в секунду.
Другой метод - стробирование светом
  1. Затемните комнату и используйте лампу с очень яркой маленькой нитью, чтобы осветить приводной диск.
  2. Установите собирающую линзу, чтобы сформировать реальное изображение нити накала лампы на диске стробоскопа.
  3. Теперь поверните диск стробоскопа так, чтобы на вращающемся диске мигал свет с частотой, которая «останавливает» движение стрелки.
  4. Здесь показан альтернативный метод поворота стробоскопа перед глазом.
Студенты измеряют частоту сети с помощью ксенонового стробоскопа
  1. Установите большую неоновую лампу на сеть переменного тока. Проделайте этот эксперимент при дневном свете, чтобы лампа была видна даже тогда, когда неонового свечения нет.
  2. Постепенно увеличивайте частоту мигания ксенонового стробоскопа до тех пор, пока лампа не будет постоянно гореть.Это будет удвоенная частота сети, то есть 100 в секунду, поскольку лампа загорается при каждом импульсе напряжения.

Учебные заметки

  • Если ученик не видит остановившееся движение, вы можете помочь ему / ему, поработав стробоскопом, глядя через одну его сторону, в то время как он / она смотрит через другую.
  • Ручные стробоскопы трудно поворачивать на высоких и малых скоростях. Чтобы продемонстрировать эффект вращения стробоскопа на половинной скорости и в два и три раза превышающей правильную скорость, вам нужно будет запустить двигатель на разных скоростях.Кроме того, на низких скоростях белая стрелка становится очень размытой и нечеткой, особенно на краю диска, где она движется быстро.
  • При проведении измерений стробоскоп легко повернуть с неправильной скоростью:
    • Диск при 15 оборотах в секунду
  • Трудно повернуть 12-щелевой стробоскоп достаточно медленно, чтобы увидеть единственную неподвижную стрелку. Но если увеличить скорость стробоскопа до тех пор, пока он не станет в два раза быстрее, в три раза или даже в четыре раза быстрее, то будет видна стационарная картина.
    • Диск при 50 оборотах в секунду
  • Можно «остановить» движение стрелки, повернув стробоскоп с правильной скоростью, на половину этой скорости и на одной трети этой скорости. Однако невозможно проверить, является ли наивысшая из этих трех скоростей правильной - слишком сложно вращать стробоскоп достаточно быстро, чтобы получить картину «в два раза быстрее».
  • Некоторые примеры для обсуждения или исследования студентов:
    • Колеса телеги на экране кинотеатра.
    • Сам киноэкран через стробоскоп.
    • Флуоресцентное освещение или уличное освещение с помощью стробоскопа (для расчета его частоты потребуется ручной стробоскоп с 24 щелями).
    • Проигрыватели Hi-Fi (для старых виниловых записей) вращаются относительно медленно. Некоторые модели имеют большое количество радиальных белых полосок, отмеченных около окружности. При правильной скорости каждая полоса перемещается на одну позицию вперед при каждой вспышке основного освещения (100 вспышек в секунду).
    • Вентилятор с несколькими лопастями можно «останавливать» с различными скоростями стробоскопа.Однако, если на одной лопасти есть белый маркер, становится очевидным, что многие из этих скоростей не дают фактической скорости вентилятора.
    • Наблюдайте за задним колесом перевернутого велосипеда через стробоскоп. Кажется, что многие скорости стробоскопа останавливают колесо, если спицы выглядят одинаково.

Этот эксперимент был проверен на безопасность в августе 2006 г.

Стробоскоп

Стробоскоп также известен как стробоскоп.Стробоскоп - это испытательное оборудование, которое используется для того, чтобы циклически вращающийся объект казался медленно движущимся или неподвижным. Другими словами, мы можем сказать, что стробоскоп - это устройство для мониторинга и измерения, которое использует стробоскопические эффекты для наблюдения быстрых периодических движений.

Стробоскоп может использоваться в различных целях, например:
  • Используется для измерения частот колебаний механических и электронных систем
  • Используется для измерения резонансных частот
  • Применяется для изучения колебаний различных тел
  • Используется для визуального контроля быстро движущихся частей машин.

Принцип работы :

В стробоскопе используется лампа-вспышка, которая приводится в действие электронным генератором. В качестве импульсной лампы обычно используется ксеноновая лампа, хотя иногда также используются светодиоды. Генератор запускает лампу с постоянной частотой вспышки. Скорость вспышки может варьироваться от нескольких раз в секунду до тысяч раз в секунду. Лампа-вспышка также состоит из отражателя, который увеличивает ее яркость и делает вспышку более направленной.

Доступны два основных типа стробоскопов:

  • Стробоскоп общего назначения - используется для развлечений
  • Стробоскоп для научных исследований - используется в научных или экспериментальных целях.

Модели для развлечений / вечеринок ограничены по скорости и имеют невысокую стоимость. Частота вспышки для развлекательных стробоскопов обычно ограничена, поскольку было обнаружено, что вспышки с определенной частотой могут вызывать эпилептические припадки у некоторых людей.У них могут быть некоторые дополнительные функции, такие как многоцветные огни (которые мигают последовательно). У научных моделей нет таких ограничений скорости. Они должны уметь фиксировать высокоскоростные периодические движения.

Научные или профессиональные стробоскопы могут также иметь несколько входов для внешних триггеров. Внешний триггер отменяет внутренний генератор. С помощью этих внешних триггерных входов можно легко синхронизировать стробоскоп с движущимся оборудованием и замедлить его движение для экспериментов / исследований.

Сахил - специалист по морской электротехнике. Он также является аналитиком по надежности и специализируется на российских системах управления, системах управления механизмами и автоматизированном управлении мощностью. Имеет опыт работы 18 лет. Он является автором, редактором и партнером Electricalfundablog.

Как работает стробоскоп проигрывателя - Hudson Hi-Fi

Как работает стробоскоп поворотного стола?
Быстро мигает стробоскоп. Чаще всего 100 (версия 50 Гц) или 120 раз в секунду (версия 60 Гц).
Опорный диск или диск отмечен точками или линиями. Вспышка освещает каждую отдельную линию по мере ее прохождения. Когда скорость точна, движение меток «замораживается» стробоскопом. Небольшая неточность скорости проявляется в постепенном смещении маркировки.

Как рассчитывается количество баллов?
Большинство маркировок пластин и дисков изначально были предназначены для использования с сетевыми лампами переменного тока, поэтому они соответствуют указанным выше частотам. Причина удвоения заключается в том, что лампа сети «мигает» с удвоенной частотой сети (один раз за полупериод).Интересно, что новое поколение компактных люминесцентных ламп мигает с несвязанной частотой, поэтому они бесполезны для стробоскопического освещения.
Таким образом, количество меток соответствует следующему правилу:
Частота / об / мин * 60 (секунды в минуту) = количество меток
Таким образом, для 33 1/3 об / мин количество меток для 100 Гц и 120 Гц составляет:
100 / 33⅓ * 60 = 180
120 / 33⅓ * 60 = 216

Жизнь не так хороша при 45 об / мин:
100/45 * 60 = 133,33 (упс) - округление до 133 дает скорость 45.11 об / мин
120/45 * 60 = 160
Это показывает, что лучше использовать маркировку 120 Гц и свет «60 Гц», если для вас важно 45 об / мин.

Есть также стробоскопы с маркировкой 300 Гц. Они очень мелкие, и их нужно напечатать рядом с краем 12-дюймового диска, чтобы их можно было правильно рассмотреть.

Как определить метки строба:

Найдите маркировку 33⅓ об / мин: скорее всего это кольцо с наибольшим числом оборотов.
Подсчитайте число вокруг четверти круга.
Должно быть 45 отметок для «50 Гц», составляющих полный круг 180.
Должно быть 54 отметки для «60 Гц», составляющих полный круг 216.
Обычно это точки, линии или клинья.

Номенклатура:

Гц = Частота в циклах в секунду RPM = Число оборотов в минуту
/ = разделить * = умножить

Стробоскопы

Как работают стробоскопы

Большинство из нас знакомы со стробоскопами. Либо как обычное освещение для вечеринок, либо для точной регулировки скорости классического проигрывателя.Или мы вспоминаем якобы вращающиеся назад колеса при съемках чего-то вроде мотоциклов. Но как на самом деле работает это интересное явление?

Функция всех стробоскопов восходит к открытию англичанина Питера Марка Роже в 18 веке. Он наблюдал за колесами экипажа через частокол и был поражен сюрреалистическим изображением спиц. Вместо штакетника можно также использовать устройство, которое излучает вспышки света с очень регулярными интервалами, что означает, что в темноте движения выглядят прерывистыми, как серия неподвижных изображений.

Человеческий глаз приспосабливается к яркости, создаваемой этими вспышками света, и воспринимает только освещенные изображения. Если частота вспышек (= количество вспышек в минуту, сокращенно «FPM» / или как количество вспышек в секунду, тогда «FPS» или Гц) синхронизирована с частотой движения, мы видим неподвижное изображение. Если частота вспышек и частота движения немного отличаются друг от друга, движение можно значительно замедлить и полностью наблюдать.

Эти два варианта также представляют собой преобладающие профессиональные приложения:

1.Бесконтактное измерение скорости. Это стало возможным, если изменить описанное выше в обратном порядке: если движение, освещенное стробоскопическими вспышками, «заморожено», частота вспышек, отображаемая на стробоскопе, точно соответствует частоте движения.

2. Для отслеживания быстрых процессов они "прошиваются" с немного другой частотой. Теперь движение замедлено на глазах у зрителя.

Все стробоскопические приложения имеют одну общую черту: настоящий измерительный инструмент - это человеческий глаз.Стробоскопические вспышки «всего лишь» создают условия освещения, позволяющие человеческому глазу выполнять свою измерительную задачу. Этот факт также является важным преимуществом: ни одна автоматическая система контроля не адаптируется так быстро и без ошибок к изменяющимся условиям окружающей среды и / или задачам.

Определение стробоскопа | Базовая блок-схема стробоскопа

Стробоскоп Определение:

Определение стробоскопа - стробоскопический принцип основан на использовании света высокой интенсивности, который мигает с точными интервалами.Этот свет может быть направлен на вращающийся или вибрирующий объект. Стробоскопический эффект проявляется, когда скорость вращения или вибрации находится в надлежащем соотношении с частотой световых вспышек.

Большинство стробоскопов состоят из генератора, язычка и мигалки, как показано на рис. 10.3. Генератор подает триггерные импульсы на механизм мигания для управления частотой мигания. Генератор обычно представляет собой мультивибратор с внешним запуском. Вибрирующий язычок служит эталоном для точной калибровки стробоскопа.Трость приводится в действие от линий переменного тока и вибрирует со скоростью 7200 раз в минуту. Эта устойчивая скорость используется для стандартизации шкалы калибровки в узком диапазоне. Флешер дает подсветку для измерений.

Проблесковая лампа зажигается за счет разряда конденсатора, который, в свою очередь, управляется импульсами запуска от генератора. Трубка заполнена подходящим инертным газом, который излучает свет при ионизации. Срок службы трубки составляет от 200 до 1000 часов в зависимости от условий эксплуатации.

Когда частота движения точно соответствует частоте стробоскопа, движущийся объект четко виден только один раз за каждый оборот. Это приводит к тому, что движущийся объект выглядит как одно неподвижное изображение. Стационарное изображение также появляется, когда скорость вращения в точности кратна частоте стробоскопа. Наивысшим показанием шкалы, при котором получается одиночное неподвижное изображение, является основная частота.

Несколько неподвижных изображений появляются, когда частота стробоскопа кратна частоте вращения.В этом случае свет мигает более одного раза при каждом повороте объекта. (Радиальная линия на конце вала может выглядеть как несколько равноотстоящих линий. Если частота лампы в два раза превышает частоту вращения, создаются два изображения, разнесенные на 180 °. Если частота лампы в три раза превышает частоту вращения, появляются три изображения , каждый с шагом 120 °.)

Движущиеся изображения получаются, когда частота света и частота вращения не синхронизированы. Когда кажется, что изображение вращается в направлении, противоположном фактическому вращению, частота вращения меньше, чем частота мигания.Когда кажется, что он вращается в том же направлении, что и фактическое вращение, частота вращения выше, чем частота мигания.

Стробоскоп можно использовать для проверки скорости двигателя или генератора в диапазоне от 60 до 1 000 000 об / мин. Стробоскоп очень универсален, не потребляет питание от измеряемой цепи и при калибровке имеет точность, близкую к 0,1%. (Некоторые прицелы используют для калибровки линейную частоту. Узел лампы-вспышки и отражателя вращается на 360 ° для максимальной гибкости.Кейс можно установить на штатив. Частота вспышек составляет от 110 до 150 000 вспышек в минуту, что позволяет измерять скорость до 1 000 000 об / мин. Световой поток изменяется в зависимости от частоты вспышки от 3 мкм до 0,5 мкс.)

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *