Принцип действия светодиодных ламп: Устройство светодиодной лампы: принцип действия, конструкционные особенности

Содержание

Устройство светодиодной лампы: принцип действия, конструкционные особенности

Содержание статьи:

Освещение играет важную роль в жизни человека. Оно бывает основным, акцентным, декоративным. Для создания подсветки используются различные источники света. Самыми современными, надежными и качественными приборами являются светодиодные лампы. Они имеют множество преимуществ перед классическими источниками света. Однако устройство светодиодной лампочки сложнее.

Принцип работы

Основа светодиода – полупроводниковый кристалл, состоящий из двух материалов разной проводимости.

Светодиодные лампы

Принцип работы светодиодной лампы заключается в следующем: при подаче электрического тока происходит переход частиц из одного полупроводника в другой, сопровождающийся созданием частицы света – фотона. Оба полупроводника способы пропускать ток только в одном направлении, поэтому при подключении важно соблюдать полярность. Во время подачи тока протекают и другие процессы. Часть энергии тратится на выделение тепла.


Светодиоды изготавливаются из разных материалов, поэтому их спектр, интенсивность потока, яркость также отличаются. В настоящее время светоизлучающие диоды охватывают практически весь диапазон излучения.

Принцип работы Led лампы

Светодиоды применяются в самых разных сферах: для создания освещения в доме, на производстве, в административных помещениях. С их помощью делается рекламная, художественная и архитектурная подсветка. Светодиоды можно встретить в фонарях для уличного освещения.

Преимущества светодиодных ламп

Современные источники света должны быть экономичными, эффективными и безопасными. Светодиоды п

Принцип работы светодиодной лампы

Как устроена светодиодная лампа и принцип ее работы

По сравнению с обычными лампами накаливания устройство светодиодной лампы с технической точки зрения сложнее.

Принцип действия светодиодных ламп

Принцип работы этих приборов построен на сложных физических процессах. При подаче электрического тока происходит соприкосновение двух веществ, изготовленных из разносортных материалов. Это приводит к образованию светового потока.

Парадоксальность системы связана с тем, что ни один из материалов, используемых для изготовления двух веществ, не относится к проводникам электрического тока. Это полупроводники, способные пропускать ток только в одном направлении. Поэтому при подключении светодиодов важно соблюдать полярность. Один материал наделен отрицательными электронами, а другой — положительными ионами.

Все приборы, которые пропускают ток в одном направлении, называются диодами. Светодиоды — диоды, способные выделять световой поток.

Первые LED-диоды излучали свет в узком спектре — красном, желтом или зеленом.

При этом сила свечения была минимальной. В течение продолжительного отрезка времени светодиоды использовались исключительно как индикаторы.

Сегодня диапазон излучения значительно расширен и охватывает едва ли не весь спектр.

С другой стороны, определенные волны всегда длиннее, поэтому данные устройства делятся на источники холодного и теплого света (в зависимости от тепловой температуры).

Способы сборки

DIP

DIP расшифровывается как Dual In-line Package. Конструкция приборов интересна, но существенно устарела.

Выделяют следующие размеры светодиодов:

Также полупроводниковые изделия различаются цветом, материалом изготовления, формой чипа. Из преимуществ DIP-сборки выделим малый нагрев и высокую яркость. Бывают одноцветные и многоцветные (RGB-технология). Можно распознать по характерной цилиндрической форме и встроенной линзе выпуклого типа.

«Пиранья»

Данная группа осветительных устройств характеризуется высоким световым потоком.

Как устроена светодиодная лампа и принцип ее работы

Задача снижения количества потребляемой энергии перестала быть только технической проблемой и перешла в область стратегического направления политики государств. Для рядового потребителя эта титаническая борьба выливается в то, что его просто насильно заставляют переходить от привычной и простой как яйцо лампы накаливания к другим источникам света. Например, к светодиодным лампам. Для большинства людей вопрос о том, как устроена светодиодная лампа сводится только к возможности ее практического применения – можно ли ее вкрутить в стандартный патрон и подключить к бытовой сети 220 вольт. Небольшой экскурс по принципам ее действия и устройству поможет сделать вам осознанный выбор.

Почему она светит?

Принцип работы светодиодной лампы основан на гораздо более сложных физических процессах, чем той, которая испускает свет посредством раскаленной металлической нити. Он настолько интересен, что есть смысл познакомиться с ним поближе. В его основе феномен испускания света, возникающем в точке соприкосновения двух разнородных веществ при прохождении через них электрического тока.

Самое парадоксальное в этом то, что материалы, используемые для провокации эффекта излучения света, вообще не проводят электрического тока. Один из них, например, кремний – вещество вездесущее и перманентно попираемое нашими ногами. Эти материалы пропустят ток, да и то в одну сторону (потому они и названы полупроводниками), только если их соединить вместе. Для этого в одном из них должны преобладать положительно заряженные ионы (дырки), а в другом – отрицательные (электроны). Их наличие или отсутствие зависит от внутренней (атомной) структуры вещества и неспециалисту не стоит заморачиваться вопросом разгадывания их природы.
Возникновение электрического тока в соединении веществ с преобладанием дырок или электронов – только половина дела. Процесс перехода одного в другое сопровождается выделением энергии в виде тепла. Но в середине прошлого века были найдены такие механические соединения веществ, у которых выделение энергии сопровождалось еще и свечением. В электронике устройство, которое пропускает ток в одном направлении, принято называть диодом. Полупроводниковые приборы, созданные на основе материалов, которые умеют испускать свет, названы светодиодами.

Первоначально эффект испускания фотонов из соединения полупроводников был возможен лишь в узкой части спектра. Они светились красным, зеленым или желтым. Сила этого свечения была чрезвычайно мала. Светодиод использовался лишь как индикаторная лампа очень долго. Но сейчас найдены материалы, соединение которых излучает свет гораздо большей силы и в широком диапазоне, почти полном видимом спектре. Почти, потому что какая-то длина волны в их свечении преобладает. Поэтому есть лампы с преобладанием синего (холодного) и желтого или красного (теплого) свечения.

Теперь, когда вам в общих чертах понятен принцип работы светодиодной лампы, можно перейти к ответу на вопрос про устройство светодиодных ламп на 220 В.

Конструкция ламп на светодиодах

Внешне источники света, использующие эффект испускания фотонов при прохождении электрического тока через полупроводник, почти не отличаются от ламп накаливания. Главное то, что у них есть привычный металлический цоколь с резьбой, который в точности повторяет все типоразмеры ламп накаливания. Это позволяет ничего не менять в электрооборудовании помещения для их подключения.

Однако внутреннее устройство светодиодной лампы 220 вольт очень сложное. Она состоит из следующих элементов:

1) контактного цоколя;

2) корпуса, одновременно играющего роль радиатора;

3) платы питания и управления;

4) платы со светодиодами;

5) прозрачного колпака.

Плата питания и управления

Разбираясь как устроены светодиодные лампы 220 вольт, в первую очередь стоит понять, что полупроводниковые элементы не могут быть запитаны от переменного тока и напряжения такой величины. Иначе они попросту сгорят. Поэтому в корпусе этого источника света обязательно находится плата, которая снижает напряжение и выпрямляет ток.

От устройства этой платы во многом зависит долговечность лампы. Точнее, какие элементы стоят на ее входе. В дешевых, кроме резистора перед выпрямляющим диодным мостом, ничего нет. Нередко случаются чудеса (обычно в лампах из Поднебесной), когда нет даже этого резистора и диодный мост напрямую подключен к цоколю. Такие лампы светят очень ярко, но срок их службы чрезвычайно низок, если они не подключены через стабилизирующие устройства. Для этого можно использовать, например, балластные трансформаторы.

Наиболее распространены схемы, в которых в цепи питания управляющей схемы лампы создан сглаживающий фильтр из резистора и конденсатора. В самых дорогих светодиодных лампах блок питания и управления построен на микросхемах. Они хорошо сглаживают броски напряжений, но их рабочий ресурс не слишком высок. В основном, из-за невозможности наладить эффективное охлаждение.

Плата светодиодов

Как бы ученые ни старались, изобретая все новые вещества с высокой эффективностью излучения в видимой части спектра, принцип работы светодиодной лампы остается прежним, и каждый её отдельный светящийся элемент очень слаб. Чтобы достичь требуемого эффекта, их группируют по несколько десятков, а иногда и сотен штук. Для этого используется плата из диэлектрика, на которую нанесены металлические токопроводящие дорожки. Она очень похожа на те, что используются в телевизорах, материнских платах компьютеров и других радиотехнических устройствах.

Плата светодиодов выполняет еще одну важную функцию. Как вы уже заметили, в блоке управления нет понижающего трансформатора. Поставить его, конечно, можно, но это приведет к увеличению габаритов лампы и ее стоимости. Проблема понижения питающего напряжения до номинала, являющегося безопасным для светодиода, решается просто, но экстенсивно. Все светящиеся элементы включены последовательно, как в елочной гирлянде. Например, если в цепь 220 вольт включить последовательно 10 светодиодов, то каждому достанется 22 V (правда, величина тока при этом останется прежней).
Недостатком этой схемы является то, что перегоревший элемент обрывает всю цепь и лампа перестает светить. У нерабочей лампы из десятка светодиодов могут быть неисправными лишь один или два. Есть умельцы, которые перепаивают их и живут спокойно дальше, но большинство неискушенных пользователей выбрасывают всё устройство на помойку.

Кстати, утилизация светодиодных лам

Светодиодные лампы — плюсы и минусы

Категория: Источники освещения

В последнее время все большую популярность набирают светодиодные лампы освещения. Это стало следствием усовершенствования процесса изготовления полупроводниковой продукции, в результате чего, LED-лампы стали более доступными для рядовых потребителей.

Основные достоинства светодиодных ламп – это энергоэффективность и огромный срок службы. Источники света на основе полупроводниковой технологии работают до 20 раз дольше, чем любые другие аналоги.

Хотя, светодиоды уже давно являются важным элементом, используемым в электронике (индикаторы в бытовых приборах и тд), но только недавно они завоевали популярность в сфере освещения, благодаря появлению мощных и эффективных LED-ламп, генерирующих свет достаточно сильный, чтобы использовать их как равноценные заменители ртутным люминесцентным, энергосберегающим флуоресцентным и даже лампам накаливания.

В настоящий момент на рынке представлены светодиодные лампы достаточно мощные для использования их в качестве основных источников освещения в квартирах и частных домовладениях, офисах и промышленных объектах, уличном или парковом освещении, и даже архитектурной подсветки офисных зданий, стадионов и других объектов инфраструктуры.

Светодиодные лампы

Принцип работы светодиодов

Видимый свет определяется, как волны, движущиеся с постоянной скоростью (в вакууме). Точнее говоря, свет состоит из частиц с нулевой массой и представляет собой энергию, высвобождаемую электронами, движущимся внутри орбит атома. Столетие назад это свойство атомов было обнаружено сэром Исааком Ньютоном, он назвал эти легкие частицы фотонами – фундаментальными единицами света.

Материалом, используемым в светодиодах, в основном, является сплав алюминий-галлий-арсенид (AlGaAs). В исходном состоянии атомы этого материала сильно связаны. Без свободных электронов прохождение электричества здесь становится невозможным. Проблема решается добавлением полупроводниковой примеси – процесс, известный как легирование. Вводятся лишние атомы, эффективно нарушающие баланс материала и позволяя свободным электронам перемещаться по различным атомным орбитам. Побочный эффект этого – выделение света (люминисценция).

Различные длины испускаемых волн и определяют возможность получения широкой цветовой гаммы испускаемого света, что только дополняет все преимущества светодиодных ламп.

Стоит отметить, что ширина цветового диапазона у светодиодных ламп огромна – от 2500 К до 10000 К по шкале цветовых температур. Этим объясняется возможность применения таких ламп в помещениях различного назначения – от офисов, больниц и промышленных объектов до квартир и подсветки растений.

Цветовой диапазон светодиодных ламп

Преимущества и недостатки LED-ламп

Основные плюсы светодиодных ламп:

  • длительный срок службы. Это основное преимущество светодиодных ламп. Ресурс светодиодов – от 50000 до 100000 часов службы, что эквивалентно 10-11 годам беспрерывной работы. Это впечатляющие цифры, особенно, в сравнении с классической лампой накаливания, имеющей ресурс в 300-1000 часов. Столь продолжительный срок службы, компенсирует и оправдывает относительно высокую стоимость светодиодных ламп;
  • энергоэффективность. Светодиоды – наиболее энергосберегающий источник освещения. Уровень их энергопотребления весьма низок не только в сравнении с лампами накаливания. Энергосберегающие люминесцентные или ртутные также не могут конкурировать со световой эффективностью светодиодов, в которых 80% электроэнергии преобразуется в свет и толь

Виды, принцип работы и устройство светодиодных светильников

      Рубрики

    • Автомобили
    • Бизнес
    • Дом и семья
    • Домашний уют
    • Духовное развитие
    • Еда и напитки
    • Закон
    • Здоровье
    • Интернет
    • Искусство и развлечения
    • Карьера
    • Компьютеры
    • Красота
    • Маркетинг
    • Мода
    • Новости и общество
    • Образование
    • Отношения
    • Публикации и написание статей
    • Путешествия
    • Реклама
    • Самосовершенствование
    • Спорт и Фитнес
    • Технологии
    • Финансы
    • Хобби
    • О проекте
    • Реклама на сайте
    • Условия
    • Конфиденциальность
    • Вопросы и ответы

    FB

    Войти Франция: виноделы более года выдерживали более 600 бутылок напитка

    Светодиод. Устройство, строение и принцип работы. Светодиодные лампы

    Светодиод (также используется сокращение СИД — светоизлучающий диод; латинский эквивалент – LED: light-emitting diode) — это полупроводниковый прибор с электронно-дырочным р-n переходом, который продуцирует оптическое излучение, когда через него проходит электрический ток.

    Принцип работы светодиода.

    В основе работы Led светодиода лежит p-n-переход, так называемый электронно-дырочный переход. Работа светодиода построена на взаимодействии двух полупроводников p-типа и n-типа. P – positive, то есть положительный тип, или дырочный. N – negative, то есть отрицательный тип, или электронный. В результате пропускания электрического тока в месте соприкосновения двух полупроводников происходит переход от одного типа проводимости к другому.

    Когда через полупроводники проходит электрический ток, отрицательный заряд электронов соединяются с ионами положительно заряженных дырок. В этот момент выделяется энергия, и мы видим излучение света.

    Устройство светодиода.

    Светодиоды имеют самые разные формы. Но самая распространенная конструкция светодиода — традиционный 5-миллиметровый корпус. У такого корпуса сверху расположена линза, а внизу рефлектор. Внутри корпуса располагается кристалл, который излучает свет при прохождении электрического тока.

    Схема светодиода незамысловата: он имеет два вывода — анод и катод. На катоде как раз и расположен алюминиевый параболический рефлектор (отражатель). Он внешне выглядит, как чашеобразное углубление, на дно которого помещен кристалл. Полупроводниковый монокристалл – это основной элемент лед светодиода, в котором и происходит p-n-переход. Как правило, монокристалл имеет форму кубика размером 0,3×0,3×0,25 мм.

    Кристалл соединен с анодом при помощи перемычки из золотой проволоки. Оптически прозрачный полимерный корпус являющийся одновременно фокусирующей линзой вместе с рефлектором определяют угол излучения светодиода и направленность пучка света.

    Виды светодиодов, спектр и цвета.

    Современные светодиоды бывают всех цветов радуги: красные, оранжевые, желтые, зеленые, синие, белые.

    Свечение, которое излучает светодиод при подключении его к электрическому току, зависит не от цветовой окраски корпуса. Он зависит от материала, который используется при производстве полупроводника. Так, например, примеси алюминия, индия, гелия, фосфора вызывают свечение от красного до желтого цвета. Азот, галлий, индий придают излучаемому свету цвета от зеленого до голубого. Чтобы добиться белого свечения в кристалл добавляют люминофор, используемый для производства люминесцентных ламп.

    Яркость и мощность светодиода.

    Обычно светодиоды рассчитаны на силу тока в 20 мА. Производятся также, например, четырехъкристальные диоды, которые рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА.

    Логично предположить, что яркость светодиода зависит от его мощности. Чем больше мощность, тем больше яркость. Но есть ограничения для силы тока, определенные сопротивлением полупроводникового материала. Иначе может произойти электрический пробой, и лед диод может сгореть.

    Светодиодные светильники нельзя подключать в электрическую сеть напрямую. Например, для подключения светодиодной ленты используются специальные устройства-трансформаторы. Правильно подобрать трансформатор вам поможет наш электрик в Королеве или наш мастер электрик в Юбилейном. Если вы живете в других городах Подмосковья, то для подключения светодиодной ленты вы можете, например, вызвать электрика в Мытищи или заказать услуги электрика в Щелково.

    Основные характеристики светодиодов.

    • Продолжительный ресурс работы: в зависимости от производителя и параметров от 30 000 до 100 000 часов. Для сравнения, срок службы электрических ламп накаливания составляет 1000 часов.
    • Энергосберегающие технологии – для работы диода необходимо около 10% энергии, требуемой для обычной лампочки накаливания.
    • Надежность и механическая прочность. Если изучить, почему перегорают электрические лампы накаливания, то можно увидеть, что одной из причин является простая вибрация. Для диода вибрация не страшна.
    • Разнообразная цветовая гамма, а также выбор направления светового излучения.
    • Лед светодиоды производятся из экологически чистых материалов, не содержат ртуть.

    К сожалению, сегодня полки магазинов зачастую наводнены низкокачественными китайскими светодиодными лампами. И потому не всегда они являются настолько долговечными и надежными, как это заявлено производителями и номинальной технологией. Поэтому при покупке светодиодных ламп следует внимательно изучить их характеристики и отзывы. Выбирайте только качественные светодиодные светильники, и тогда они будут вас радовать долгие годы.

    Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, электрик Королёв.

    3. Как работают люминесцентные лампы?

    3.4. Физические характеристики ламп

    Принципы работы

    Люминесцентная лампа генерирует свет от столкновений с горячим газ («плазма») свободного ускоренного электроны с атомами– обычно ртуть — в какие электроны поднимаются на более высокие уровни энергии, а затем отступать при излучении на двух линиях УФ-излучения (254 нм и 185 нм).Таким образом созданное УФ-излучение затем преобразуется в видимый свет УФ возбуждение флуоресцентного покрытия на стеклянной оболочке лампа. Химический состав этого покрытия подобран так, чтобы излучать в желаемом спектре.

    Строительство

    Трубка люминесцентной лампы заполнена газом с низким содержанием пар ртути под давлением и благородные газы в целом давление около 0.3% от атмосферное давление. В самая обычная конструкция, пара эмиттеров накала, один на каждом конце трубки, нагревается током и используется для испускать электроны, которые возбуждают благородные газы и газообразную ртуть путем ударной ионизации. Эта ионизация может происходить только в исправных лампочках.Следовательно, вредные последствия для здоровья от этого процесса ионизации невозможно. Кроме того, лампы часто оснащаются двумя конверты, что значительно снижает количество УФ-излучения испускается.

    Электрические аспекты эксплуатации

    Для запуска лампы и поддерживать ток на достаточном уровне для постоянного света эмиссия.В частности, схема подает высокое напряжение на запускают лампу и регулируют ток через трубку. Возможны разные конструкции. в в простейшем случае используется только резистор, что относительно энергоэффективность. Для работы от переменный ток (AC) напряжения сети, использование индуктивного балласта является обычным явлением и было известен отказ до конца срока службы лампы, вызывающий мерцание лампы.Различные схемы, разработанные для начать и запустить люминесцентные лампы выставляют различные свойства, то есть излучение акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схемотехника используется, особенно с компактными люминесцентными лампами, где электрическую схему нельзя заменить перед люминесцентными лампами.Это снизило количество технических сбоев, вызывающих эффекты, как указано выше.

    ЭМП

    Часть электромагнитный спектр который включает статические поля, а поля до 300 ГГц — вот что здесь упоминается как электромагнитные поля (ЭДС).Литература о том, какие виды и сильные стороны ЭМП. которые излучаются из КЛЛ редко. Однако есть несколько видов ЭДС, обнаруженных в близость этих ламп. Как и другие устройства, которые зависят на электричество для выполнения своих функций они излучают электрические и магнитные поля в низкочастотный диапазон ( частота распространения 50 Гц и, возможно, также гармоники из них, e.грамм. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭДС (30-60 кГц). Эти частоты различаются между разными типами ламп.

    Мерцание

    Все лампы будут различать силу света при удвоении мощности от сети. (линейная) частота, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц.Для лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивности достаточно для восприятия человеческим глазом, тогда это определяется как мерцание. Модуляции на 120 Гц не видно, в большинстве случаев даже не на частоте 50 Гц (Seitz et al.2006). Флюоресцентные лампы включая КЛЛ, которые используют поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».

    Однако как лампы накаливания (Chau-Shing and Devaney, 2004), так и «немерцающие» люминесцентные источники света (Хазова и О’Хаган 2008) производят еле заметное остаточное мерцание.Дефектный лампы или схемы могут в некоторых случаях приводить к мерцанию частот, либо только в часть лампы или во время цикла запуска в несколько минут.

    Световое излучение, УФ-излучение и синий свет

    Имеются характерные различия между излучаемыми спектрами. люминесцентными лампами и лампы накаливания, потому что различных принципов работы.Лампы накаливания настраиваются по своей цветовой температуре за счет специального покрытия стекло и часто продаются с атрибутом «теплый» или «Холодные» или, точнее, их цветовая температура для профессиональные световые приложения (фотостудии, магазины одежды и т. д.). В случае люминесцентных ламп спектральное излучение зависит от покрытия люминофора. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длины волн 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, КЛЛ излучают больше синего цвета. свет, чем лампы накаливания.На международном уровне признанные пределы воздействия излучения (200-3000 нм) испускается лампами и осветительными приборами, защищенными от фотобиологические опасности (Международная электротехническая Комиссия 2006 г.). Эти ограничения также включают излучение от КЛЛ.

    УФ-содержание излучаемого спектра зависит как от люминофор и стеклянная колба люминесцентной лампы.УФ выброс лампы накаливания есть ограничивается температурой нити и поглощение стекла. Некоторые КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный данные показывают, что КЛЛ производят больше УФ-излучение, чем вольфрамовая лампа. Кроме того, количество УФ-В излучение производится из КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно в десять раз выше, чем облучается вольфрамовой лампой (Мозли и Фергюсон, 2008 г.).

    .

    Что такое светоизлучающий диод (LED)? — Определение, работа, конструкция и преимущества

    Определение: Светодиод представляет собой диод с PN-переходом, который излучает свет, когда через него проходит электрический ток в прямом направлении. В светодиодах происходит рекомбинация носителей заряда. Электрон с N-стороны и дырка со стороны P объединяются и дают энергию в виде тепла и света. Светодиод изготовлен из бесцветного полупроводникового материала, и свет излучается через переход диода.

    Светодиоды широко используются в сегментных и точечно-матричных дисплеях с числовыми и буквенно-цифровыми символами. Несколько светодиодов используются для создания одного линейного сегмента, в то время как для создания десятичной точки используется одиночный светодиод.

    Конструкция светодиода

    Рекомбинация носителей заряда происходит в материале P-типа, и, следовательно, P-материал представляет собой поверхность светодиода. Для максимального излучения света анод осаждается на краю материала P-типа. Катод изготовлен из золотой пленки и обычно размещается внизу N-области.Этот золотой слой катода помогает отражать свет на поверхность.

    cross-section-LED

    Фосфид арсенида галлия используется для производства светодиодов, которые излучают красный или желтый свет. Светодиоды также доступны в зеленом, желто-янтарном и красном цветах.

    what-is-led-diode

    Простой транзистор можно использовать для включения / выключения светодиода, как показано на рисунке выше. Базовый ток I B проводит транзистор, а транзистор — сильно.Сопротивление R C ограничивает ток светодиода.

    Работа светодиода

    Работа светодиода зависит от квантовой теории. Квантовая теория утверждает, что когда энергия электронов уменьшается с более высокого уровня на более низкий уровень, он излучает энергию в виде фотонов. Энергия фотонов равна промежутку между верхним и нижним уровнями.

    working-of-led

    Светодиод подключен в прямом смещении, что позволяет току течь в прямом направлении.Течение тока происходит из-за движения электронов в противоположном направлении. Рекомбинация показывает, что электроны перемещаются из зоны проводимости в валентную зону и излучают электромагнитную энергию в виде фотонов. Энергия фотонов равна щели между валентной зоной и зоной проводимости.

    Преимущества светодиодов в электронных дисплеях

    Ниже приведены основные преимущества светодиодов в электронных дисплеях.

    1. Светодиоды меньше по размеру, и их можно сложить вместе, чтобы сформировать числовой и буквенно-цифровой дисплей в матрице высокой плотности.
    2. Интенсивность светового потока светодиода зависит от протекающего через него тока. Интенсивность их света можно плавно регулировать.
    3. Доступны светодиоды, которые излучают свет разных цветов, таких как красный, желтый, зеленый и желтый.
    4. Время включения и выключения или время переключения светодиода составляет менее 1 наносекунды.Из-за этого светодиоды используются для динамической работы.
    5. Светодиоды очень экономичны и обладают высокой степенью надежности, поскольку производятся по той же технологии, что и транзисторы.
    6. Светодиоды работают в широком диапазоне температур, например, от 0 ° до 70 °. Кроме того, он очень прочный и выдерживает удары и колебания.
    7. Светодиоды имеют высокий КПД, но для работы им требуется умеренная мощность. Обычно для полной яркости требуется напряжение 1,2 В и ток 20 мА.Поэтому он используется в местах с меньшей доступной мощностью.

    Недостатки LED

    Светодиоды потребляют больше энергии по сравнению с ЖК-дисплеями, и их стоимость высока. Кроме того, он не используется для создания большого дисплея.

    .Основы светодиодного драйвера

    и его схемотехника

    Теплые советы: слово в этой статье составляет около 3800 слов, а время чтения составляет около 23 минут.

    Введение

    Светодиод признан источником зеленого света четвертого поколения. Это твердый источник холодного света. Он имеет множество преимуществ, таких как высокая эффективность, длительный срок службы, безопасность и защита окружающей среды, небольшой размер, высокая надежность, быстрая скорость отклика и так далее.В настоящее время достигается такой же световой эффект. Потребляемая мощность светодиода составляет около 1/10 лампы накаливания и 1/2 люминесцентной лампы. Многие страны и регионы ввели различные политики для поддержки развития светодиодной индустрии, чтобы эта отрасль могла стать важной частью важных отраслей страны, открывая огромные возможности для бизнеса. Схема драйвера светодиода очень важна для светодиодов, а управление затемнением светодиода может сэкономить энергию. В последние годы горячими темами стали управление и затемнение белых светодиодов высокой яркости.

    LED driver

    Каталог


    I Основные сведения о драйвере светодиода

    1. 1 Что такое драйвер светодиода

    Драйвер светодиода изменяет источник питания на определенный ток напряжения для управления преобразователем напряжения светодиода. В общем, вход драйвера светодиода включает в себя переменный ток высокой частоты сети (например, городское электричество), постоянный ток низкого напряжения, постоянный ток высокого напряжения, низкий и высокочастотный переменный ток (например, выход электронного трансформатора). ).Выходная мощность драйвера светодиода в основном представляет собой источник постоянного тока, который может изменять напряжение с изменением прямого падения напряжения светодиода. Основные компоненты источника питания светодиодов включают контроллер переключателя, катушку индуктивности, компонент переключателя (MOSFET), резистор обратной связи, устройство входного фильтра, выходной фильтр и т. Д. В соответствии с требованиями в разных случаях должна быть схема защиты от перенапряжения на входе, схема защиты от пониженного напряжения на входе, защита от разомкнутой цепи светодиода, схема защиты от перегрузки по току и так далее.

    1.2 Характеристики источника питания светодиодного драйвера

    В частности, мощность привода светодиодных уличных фонарей установлена ​​на большой высоте, поэтому обслуживание неудобно, а стоимость обслуживания также велика.

    LED является энергосберегающим продуктом, а эффективность привода высока. Очень важно, чтобы в светильник была установлена ​​мощность. Эффективность источника питания высока, потребление энергии невелико, тепло в светильнике невелико, а также снижается превышение температуры лампы.Благоприятно для задержки затухания светодиода.

    Коэффициент мощности — это потребность энергосистемы в нагрузке. Как правило, для электроприборов мощностью ниже 70 Вт обязательных показателей нет. Хотя коэффициент мощности одного электроприбора низкий, он мало влияет на электросеть, но вечером мощность электросети будет серьезно загрязнена большим количеством освещения и концентрацией нагрузки того же типа. . Говорят, что для драйвера светодиода мощностью 30 ~ 40 Вт в ближайшем будущем могут появиться определенные требования к коэффициенту мощности.

    Теперь существует два вида трафика: один — это источник постоянного напряжения для нескольких источников постоянного тока, и каждый источник постоянного тока подается на каждый светодиод отдельно. Таким образом, комбинация является гибкой, и все сбои светодиодов не влияют на работу других светодиодов, но стоимость будет немного выше. Другой — источник постоянного постоянного тока, то есть режим привода «Кеке Хуэй Бао», который управляется светодиодами в последовательной или параллельной работе. Он имеет преимущество низкой стоимости, но плохой гибкости, но также для устранения неисправности светодиода, не влияет на другие проблемы работы светодиода.Две формы сосуществуют в определенный период времени. Способ многонаправленной выходной мощности постоянного тока будет лучше с точки зрения стоимости и производительности. Может быть, это главное направление в будущем.

    Способность светодиодов противостоять скачкам напряжения относительно невысока, особенно способность противостоять обратному напряжению. Также важно усилить защиту в этой области. Некоторые светодиодные фонари устанавливаются на открытом воздухе, например, светодиодные уличные фонари. Из-за сброса нагрузки и индукции молнии в электросети будут происходить все виды перенапряжения, а некоторые выбросы вызовут повреждение светодиода.Таким образом, анализ приводной мощности «Чжункэ Хуэй Бао» должен быть недостаточным для защиты от перенапряжения. Что касается частой замены источника питания и ламп, драйвер светодиода должен иметь возможность подавлять скачки напряжения и защищать светодиод от повреждения.

    В дополнение к обычной защите, лучше всего увеличить отрицательную обратную связь по температуре светодиода на выходе постоянного тока, чтобы предотвратить высокую температуру светодиода; соответствовать требованиям безопасности и электромагнитной совместимости.

    15w LED driver

    II Типы драйверов светодиодов

    2.1 Постоянный ток драйвера светодиодов

    Обычные драйверы светодиодных ламп делятся на два типа в зависимости от режима управления. Один из них — это привод постоянного тока. Характеристика привода постоянного тока — постоянный выходной ток. Выходное напряжение изменяется в одном диапазоне. Поэтому мы часто видим, что приводная оболочка выделена (выход: DC ** V — ** V * * * mA + -5%) на рынке. Это означает, что выходное напряжение находится в одном из выходных напряжений.Сколько мА диапазон, ток.

    • A. Выходной ток схемы управления постоянным током постоянен, но выходное постоянное напряжение изменяется в определенном диапазоне в зависимости от размера нагрузки. Сопротивление нагрузки небольшое, выходное напряжение низкое, чем больше сопротивление нагрузки, тем выше выходное напряжение.

    • Б. Цепь постоянного тока не боится короткого замыкания нагрузки, но категорически запрещается полностью разомкнуть нагрузку.

    • C. Схема привода постоянного тока идеальна для управления светодиодами, но, условно говоря, цена выше.

    • D. Следует обратить внимание на максимальный выдерживаемый ток и напряжение, которые ограничивают количество используемых светодиодов.

    2.2 Драйвер светодиода с постоянным напряжением

    Другой — это привод постоянного напряжения. Особенностью управления с постоянным напряжением является то, что выходное напряжение фиксировано, ток находится в пределах максимального значения при смене ламп и фонарей.В этом случае оболочка обычно указывает (выход: DC ** V ** A) — это напряжение на выходе, фиксированное вольт, максимальный выходной ток — это сколько. Обычный светодиодный рынок — это выход 5 В, 12 В, 24 В и т. Д. .

    • А. При определении параметров в цепи стабилизации напряжения выходное напряжение фиксируется, а выходной ток изменяется с увеличением или уменьшением нагрузки.

    • Б. Схема стабилизации напряжения не боится размыкания нагрузки, но категорически запрещается полное замыкание нагрузки.

    • C. Светодиод управляется регулируемой схемой возбуждения. Каждой струне нужен соответствующий резистор, чтобы средняя яркость светодиода каждой струны была средней.

    • D. На яркость будут влиять выпрямляемые изменения напряжения.

    III Применение драйвера светодиода

    Применение драйвера светодиода зависит от параметров светодиода, которыми мы хотим управлять. Два наиболее важных параметра — это входное напряжение и входной ток.Как рассчитать входное напряжение и ток светодиодной лампы, лампа распространения снабжена отдельным пояснением. Вот только описание входа светодиодной лампы. Люди увидят исходные параметры движения (обязательно определите несколько ложных целей !!!!

    Зная входное напряжение и входной ток платы лампы, мы выбираем соответствующий драйвер светодиода для использования. Например, известно, что входное напряжение платы лампы составляет 37-40 В, входной ток составляет 300 мА, затем можно выбрать выходное напряжение драйвера светодиода, чтобы включить его, ток примерно такой же.Формула поверхности, напряжение выше или ниже всех, должна быть включена. В противном случае будет мерцание. Низкий ток — это нормально.

    LED Driver

    Наконец, нам нужно только нажать на положительный и отрицательный полюсы, отмеченные пластиной лампы, чтобы сварить привод или соединительную линию. Необходимо отметить, что у обычной выходной линии, управляемой светодиодами, красный — положительный полюс. Черный — отрицательный полюс … Если это серая линия, то серый — положительный полюс, белый — отрицательный… Сине-коричневая линия, синяя линия — отрицательный полюс, синяя линия — отрицательный полюс и т.д.

    Рисунок 1. Пример продукта общего использования светодиодного драйвера Схема

    Давайте посмотрим видео о том, как сделать светодиодный драйвер:

    Как сделать драйвер светодиода


    Основы схемы драйвера светодиода В

    5.1 Что такое схема драйвера светодиода

    Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки (или цепочек) светодиодов. Драйвер светодиода реагирует на изменяющиеся потребности светодиода или схемы светодиода, обеспечивая постоянное количество энергии для светодиода, поскольку его электрические свойства изменяются с температурой.

    5.2 Типы схем управления светодиодами и их классификация

    Схема накачки заряда также является схемой преобразователя постоянного тока в постоянный. Схема накачки заряда использует емкость для хранения энергии эффекта накопления заряда и элемент связи емкостной энергии, управляя силовым электронным устройством для переключения высокочастотного переключателя, в течение определенного периода времени конденсатор может храниться и энергия высвобождается в оставшееся время.Эта схема получает разные выходные напряжения через разные соединения между зарядкой и разрядкой конденсаторов, и вся схема не требует никаких индукторов.

    Схема подкачки заряда относительно мала, с меньшим количеством компонентов и более низкой стоимостью, но переключающий элемент относительно велик, а диапазон выходного напряжения относительно мал, когда входное напряжение определено, выходное напряжение в основном составляет 1/3 ~ 3 раза. входного напряжения, а мощность схемы мала, а эффективность будет соответствовать выходному напряжению и входу.Соотношение между напряжениями меняется. Несколько светодиодов должны работать параллельно. Чтобы предотвратить неравномерное распределение тока, необходимо использовать балластные резисторы, которые значительно снизят эффективность системы. Следовательно, схема управления зарядовым насосом ограничена в применении драйвера светодиодного освещения высокой мощности и в основном используется в случае малой мощности.

    Схема импульсного источника питания представляет собой схему преобразования постоянного / постоянного тока, которая изменяет выходное напряжение, изменяя соотношение времени между переключением и выключением.С точки зрения схемы, по сравнению со схемой накачки заряда, она содержит магнитные компоненты, то есть индуктор или высокочастотный трансформатор. Импульсный источник питания подразделяется на два типа преобразователей постоянного тока в постоянный, а именно, входной и выходной без изоляции, а именно «прямое соединение» и «вход и выход».

    Типичные схемы «прямого» преобразователя постоянного тока в постоянный включают понижающий, повышающий, понижающий-повышающий и Cuk.

    Типичные схемы изолированных преобразователей постоянного тока в постоянный с входом и выходом: несимметричный прямой, обратный несимметричный, двухтактный, полумостовой и полный мост.Схема импульсного источника питания может обеспечивать широкий диапазон выходного напряжения, а выходное напряжение регулируется непрерывно, выходная мощность большая, поэтому диапазон применения шире, особенно в ситуациях средней и большой мощности.

    Линейная схема управления рассматривает полупроводниковое силовое устройство, работающее в линейной области, как динамический резистор и реализует управление постоянным током посредством управления уровнем управления. Недостатком линейной схемы управления является невысокий КПД, но она быстро реагирует на изменение входного напряжения и нагрузки.Схема относительно проста. Легко контролировать ток светодиода напрямую, и легко контролировать высокую точность тока.

    VI Новая конструкция схемы драйвера

    Фактическое управление обратной связью импульсного источника питания — это выходное напряжение, а управление выходным током непросто быть точным, а светодиодная лампа легко повреждается при управлении мощностью переключения предложение смещено; КПД линейной схемы невысокий.

    На основании вышеуказанных причин разработана новая схема управления светодиодами.В схеме используется односторонний импульсный импульсный источник питания с обратным ходом в качестве регулятора передней ступени, а источник постоянного тока с линейным регулированием давления используется в качестве пост-регулятора. После преобразования однонаправленного обратноходового источника питания можно получить выходное напряжение постоянного тока, которое используется в качестве входа посткаскадного источника постоянного тока, управляемого напряжением. Поскольку входное напряжение источника постоянного тока управляется высокоэффективным импульсным источником постоянного тока с одним обратным ходом, источник постоянного тока с контролем давления может точно управлять светодиодом и изменять входное напряжение источника постоянного тока в большом диапазоне, поэтому эффективность и точность гарантированы, а электроснабжение может быть поставлено по городу.В то же время двухуровневый контроль непросто повредить светодиодную лампу.

    Novel High Power LED Lamp Driving Circuit

    Рис. 2. Новая конструкция схемы драйвера

    Схема системы показана на рисунке 2. Трансформатор T1, переключающая трубка Q1, диод D1 и конденсатор C1 составляют односторонний импульсный импульсный источник питания с обратным ходом, а операционные усилители U1, U2 и силовой транзистор Q2 образуют регулируемый по давлению источник постоянного тока, а MCU STC89C51 является основным устройством управления.Когда значение серого изменяется, микроконтроллер генерирует соответствующее напряжение управления яркостью на основе полученного значения серого. Напряжение регулировки яркости добавляется к тому же фазному входу U1. Обратная входная клемма U1 — это сигнал тока светодиода, полученный U2, а R12 — резистор обнаружения тока. Выходное напряжение U1 является управляющим напряжением МОП-лампы Q2, что известно из концепции недостатка операционного усилителя. Обратное входное напряжение U1 равно напряжению на его прямом входе, то есть ток на R12 контролируется напряжением управления яркостью и не изменяется при изменении нагрузки.

    Singlechip выдает соответствующее напряжение управления яркостью в соответствии со значением серого, которое он получает, а также выдает сигнал PWM. Сигнал ШИМ соответствует сигналу TL431 для управления переключателем Q1. Затем MCU изменяет коэффициент заполнения сигнала PWM в соответствии с полученным сигналом тока светодиода и изменяет выходное напряжение импульсного источника питания, то есть изменяет постоянную. Входное напряжение источника потока снижает напряжение на силовой трубке Q2, так что она работает в зоне регулируемого сопротивления или рядом с зоной регулируемого сопротивления в случае постоянного выходного тока, чтобы повысить эффективность.TL431 это три терминала регулируемый опорный шунт, где существование TL431 и его соответствующей электрической фазы, чтобы ограничить максимальное выходное напряжение переключения источника питания и дополнительно повысить безопасность системы.

    Когда освещение относительно хорошее, MCU управляет выходным сигналом напряжения управления яркостью в соответствии с полученным значением серого, так что выходной ток источника постоянного тока относительно невелик, и может быть достигнут эффект экономии энергии.На рисунке 2 выходное напряжение микроконтроллера контролируется цифроаналоговым преобразователем для питания источника постоянного тока. На рис. 2 цифро-аналоговая часть не показана.

    VII Базовое предложение по разработке драйвера светодиода

    Конструкция драйвера светодиода несложна, но у нас должна быть хорошая идея. Поскольку мы делаем отладку перед расчетом, отладку и старение после отладки, мы считаем, что любой может преуспеть в светодиодах.

    7.1 Размер тока светодиода

    Как мы все знаем, если LEDripple слишком велик, это повлияет на срок службы светодиода и на то, насколько велико будет влияние, но в настоящее время нет конкретных индикаторов.

    7.2 Chip Fever

    Это в основном предназначено для микросхемы привода высокого напряжения встроенного модулятора мощности, которая снижает энергопотребление микросхемы и не требует дополнительного энергопотребления для отвода тепла.

    7.3 Power Tube Fever

    Энергопотребление силовой трубки делится на две части: потери переключения и потери проводимости. Светодиод — это приложение для электропривода, и повреждение переключателя намного больше, чем потеря проводимости.Потери при переключении связаны с CGD и CGS силовой трубы, а также с приводной способностью и рабочей частотой микросхемы, поэтому решение проблемы перегрева силовой трубы можно решить из следующих аспектов:

    A. Силовая трубка MOS не может быть выбрана в зависимости от величины сопротивления проводимости. Чем меньше внутреннее сопротивление, тем больше емкость CGS и CGD.

    B. Остальное — это частота и возможности привода микросхемы. Здесь мы говорим только о влиянии частоты.Частота прямо пропорциональна потерям проводимости. Поэтому, когда силовая трубка нагревается, мы должны сначала подумать, не слишком ли высока частота выбора. Когда частота снижается, чтобы получить такую ​​же нагрузочную способность, пиковый ток должен быть больше или индуктивность становится больше, что может привести к тому, что катушка индуктивности попадет в область насыщения. Если ток насыщения индуктивности достаточно велик, CCM (режим непрерывного тока) может быть изменен на DCM (режим прерывистого тока), что требует увеличения емкости нагрузки.

    7.4 Снижение рабочей частоты

    Снижение частоты в основном вызвано двумя причинами. Отношение входного напряжения к напряжению нагрузки невелико, а системные помехи велики. В первом случае будьте осторожны, чтобы не установить слишком высокое напряжение нагрузки, хотя напряжение нагрузки высокое, эффективность будет высокой.

    Для последнего мы можем попробовать следующие аспекты: A, наименьший ток устанавливает наименьшую точку; B, чистая точка проводки, особенно ключевой путь смысла; C — выбор индуктора или индуктивности замкнутой магнитной цепи; D, RC фильтр нижних частот, этот эффект немного плох, C — плохая согласованность, отклонение немного велико, но этого должно быть достаточно для освещения.

    7.5 Выбор индукторов или трансформаторов

    Поскольку рабочее напряжение мощного светодиода составляет всего 3 В, полный мостовой выпрямитель преобразует 220 В переменного тока в постоянный, падение напряжения на полном мосту составляет около 1,8 В и КПД использования мощности только одного светодиода составляет всего 60%. Мы должны соединить вместе более 3-х светодиодов, чтобы общий КПД электроэнергии был более 80%.

    В соответствии с принципом трехцветного синтеза белого света, 3 мощных светодиода мощностью 1 Вт с красным, зеленым и синим соединены последовательно, и яркость светодиода эквивалентна белому свету 3 Вт.В то же время можно комбинировать 6 видов цветного света, чтобы удовлетворить предпочтения людей в преобразовании цвета.

    AC LED Driver

    VIII Заключение

    Схема драйвера светодиода использует импульсный источник питания в качестве первого уровня управления, источник постоянного тока управления давлением в качестве второго уровня управления, в сочетании с преимуществами обоих, эффективностью и Точность управления гарантирована и может напрямую питаться от городского электричества, двухуровневого привода, высокой безопасности и не может легко повредить высокую светодиодную лампу.Эксперименты показывают, что эффективность системы может достигать более 83%, а мощность такая же, как у несимметричного импульсного источника питания с обратным ходом, поэтому его стоит продвигать.


    Рекомендация книги

    — Ассоциация производителей электрического оборудования и медицинских изображений (Автор)

    — ЧЖОУ ЧЖИ МИН ДЭНГ (Автор)

    Совершенно очевидно, что экономический рост тесно связан с доступностью энергии. К доступности энергии можно подойти двумя способами; Первый способ — построить больше электростанций, чтобы удовлетворить возросший спрос.Второй способ — снизить энергопотребление. Светодиодное освещение имеет множество преимуществ, таких как высокая надежность, низкие затраты на обслуживание, регулировка яркости, помимо основного преимущества энергосбережения и значительного ожидаемого повышения производительности. С другой стороны, недостатки в основном связаны с начальными затратами на замену систем освещения, а также с необходимостью специальной схемы силовой электроники для управления ими для регулируемой интенсивности и яркости. Цель проекта — заменить галогенные лампы (50 Вт) на встроенные светодиодные (10 Вт).Светодиоды имеют много преимуществ по сравнению с другими источниками света, такими как лампы накаливания или люминесцентные лампы. Наиболее важные преимущества — быстрое включение, меньшее тепловыделение, меньшее энергопотребление и более длительный срок службы. Светодиоды необходимо правильно управлять, чтобы обеспечить оптимальную производительность и долгий срок службы. Драйвер должен быть экономичным, что обычно не достигается с помощью отдельных компонентов, но может быть реализовано с помощью интегрированных решений.

    — Айя Гебриль Ахмед (автор), Махмуд Нассари Абд аль-Фаттах (автор), Айя Бакр Абд аль-Вахаб (автор)


    Соответствующая информация о «Основах светодиодного драйвера и его схемотехнике»

    О статье «Основы светодиодного драйвера и его схемотехника». Если у вас есть лучшие идеи, не стесняйтесь писать свои мысли в следующей области комментариев.Вы также можете найти больше статей об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.

    .

    % PDF-1.5 % 1 0 obj > endobj 2 0 obj > поток 2012-09-27T10: 55: 27 + 02: 002012-09-27T10: 55: 27 + 02: 002012-09-27T10: 55: 27 + 02: 00Приложение Adobe InDesign CS5 (7.0.3) / pdfuuid: 820d4ae0- Библиотека Adobe PDF 9.9 ad95-614e-9a38-b5608f6afdc3uuid: 8d835749-1037-694f-9b48-1cef67874344 конечный поток endobj 3 0 obj > endobj 5 0 obj > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Rotate 0 / TrimBox [0.qew7? mmMTʦ ~ aV] ݚ 1 kLK0 ~ X˯ϏXef7V, ‚[> ގ OJo * 7 ڴ a (hm6 ފ; — {̓ CU5g W !! j! kc \ SyM: ~ gvg sρ_5 г } p ߿ Ͽ> GTg ݍ = 0} \ C ~ oWGz * w “` Ɇ3E4EL

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *