Как работает мегаомметр. Как правильно измерять сопротивление изоляции. Какие меры безопасности нужно соблюдать при работе с мегаомметром. Какие существуют виды мегаомметров. Как выбрать подходящий мегаомметр для конкретных задач.
Принцип работы мегаомметра
Мегаомметр — это специализированный измерительный прибор, предназначенный для определения сопротивления изоляции электрических цепей и оборудования. Его работа основана на законе Ома и заключается в следующем:
- Прибор подает на тестируемый объект высокое постоянное напряжение (обычно от 100 В до 2500 В).
- Измеряется ток, протекающий через изоляцию под действием этого напряжения.
- На основе известного напряжения и измеренного тока вычисляется сопротивление изоляции по формуле: R = U / I.
Высокое напряжение необходимо для выявления даже незначительных дефектов изоляции, которые не обнаруживаются при обычном низковольтном тестировании.
Основные виды мегаомметров
Существует два основных типа мегаомметров:
1. Аналоговые (стрелочные) мегаомметры
Это классические приборы с механической стрелкой и шкалой. Их особенности:
- Источник высокого напряжения — встроенный ручной генератор (динамо-машина).
- Для измерения нужно вращать ручку генератора с определенной скоростью.
- Простая и надежная конструкция, не требуют батарей.
- Менее точны по сравнению с цифровыми моделями.
2. Цифровые (электронные) мегаомметры
Современные приборы с цифровым дисплеем. Их преимущества:
- Питание от аккумуляторов или сети.
- Высокая точность измерений.
- Автоматическое проведение теста нажатием кнопки.
- Расширенный функционал (память, интерфейсы и т.д.).
- Компактные размеры.
Методика измерения сопротивления изоляции
Правильное проведение измерений мегаомметром включает следующие этапы:
- Полное обесточивание тестируемого объекта.
- Отключение всех потребителей от проверяемой цепи.
- Установка переносного заземления для снятия остаточных зарядов.
- Выбор необходимого измерительного напряжения.
- Подключение измерительных проводов мегаомметра.
- Снятие переносного заземления.
- Проведение измерения (вращение ручки или нажатие кнопки).
- Считывание и запись результатов.
- Снятие остаточного заряда переносным заземлением.
- Отключение измерительных проводов.
Выбор измерительного напряжения
Выбор правильного тестового напряжения критически важен. Оно зависит от номинального напряжения проверяемого оборудования:
- Для цепей до 100 В — напряжение мегаомметра 100-250 В
- Для цепей 100-380 В — напряжение 500-1000 В
- Для цепей 380-1000 В — напряжение 1000-2500 В
Использование слишком низкого напряжения не позволит выявить все дефекты. Слишком высокое может повредить изоляцию.
Правила техники безопасности при работе с мегаомметром
Работа с мегаомметром требует строгого соблюдения правил безопасности из-за высокого напряжения:
- Измерения должен проводить квалифицированный персонал (группа электробезопасности не ниже III).
- Обязательно использование диэлектрических перчаток.
- Запрещено касаться токоведущих частей во время измерений.
- Необходимо ограждение рабочей зоны и вывешивание предупреждающих плакатов.
- После каждого измерения нужно снимать остаточный заряд.
- Запрещено проводить измерения во влажной среде.
Какие параметры изоляции проверяют мегаомметром?
С помощью мегаомметра можно оценить следующие характеристики изоляции:
- Сопротивление изоляции — основной параметр, измеряемый в мегаомах (МОм).
- Коэффициент абсорбции — отношение сопротивлений, измеренных через 60 и 15 секунд.
- Индекс поляризации — отношение сопротивлений через 10 и 1 минуту.
- Ток утечки — величина тока, протекающего через изоляцию.
Эти параметры позволяют оценить общее состояние изоляции и выявить скрытые дефекты.
Как выбрать мегаомметр?
При выборе мегаомметра следует учитывать следующие факторы:
- Диапазон измерительных напряжений (100 В — 2500 В)
- Диапазон измеряемых сопротивлений (до 100 000 МОм и выше)
- Точность измерений
- Наличие дополнительных функций (память, интерфейсы)
- Автономность работы
- Защита от перенапряжений
- Соответствие требуемым стандартам
Для бытового применения достаточно простой модели с одним измерительным напряжением. Для профессионального использования лучше выбрать многофункциональный цифровой прибор.
Периодичность проверки изоляции мегаомметром
Регулярные проверки состояния изоляции необходимы для обеспечения безопасности и надежности электрооборудования. Рекомендуемая периодичность измерений:
- Для бытовых электроустановок — не реже 1 раза в 3 года
- Для производственных объектов — от 1 раза в год до 1 раза в месяц
- Для ответственного оборудования — перед каждым включением
Точные сроки устанавливаются нормативными документами или внутренними регламентами предприятий.
Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения
Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.
Устройство и принцип работы мегаомметра
Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.
В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).
Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.
Конструктивно модели мегаомметров принято разделять на два вида:
- Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
- Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр
Рассмотрим их особенности.
Электромеханический мегаомметр
Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы
Упрощенная схема электромеханического мегаомметраОбозначения:
- Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
- Аналоговый амперметр.
- Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
- Сопротивления.
- Переключатель измерений кОм/Мом.
- Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.
Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:
- Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
- На отображаемые данные влияет равномерность вращения динамо-машины.
- Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
- Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.
Современная аналоговая модель мегаомметра Ф4102Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.
Электронный мегаомметр
Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.
Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.
Как правильно пользоваться мегаомметром?
Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.
Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.
Испытуемый объект | Уровень напряжения (В) | Минимальное сопротивление изоляции (МОм) |
Проверка электропроводки | 1000,0 | 0,5> |
Бытовая электроплита | 1000,0 | 1,0> |
РУ, Электрические щиты, линии электропередач | 1000,0-2500,0 | 1,0> |
Электрооборудование с питанием до 50,0 вольт | 100,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с номинальным напряжением до 100,0 вольт | 250,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с питанием до 380,0 вольт | 500,0-1000,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Оборудование до 1000,0 В | 2500,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Перейдем к методике измерений.
Пошаговая инструкция измерения сопротивления изоляции мегаомметром
Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.
Подготовка к испытаниям
Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).
Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.
Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.
Подключение прибора к испытуемой линии
Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.
Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:
- Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра
Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.
- Каждый из проводов проверяется относительно земли.
- Осуществляется проверка каждого провода относительно других жил.
Алгоритм испытаний
Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:
- Подготовительный этап (полностью описан выше).
- Установка переносного заземления для снятия электрического заряда.
- На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
- В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
- Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
- Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
- Отключение переносного заземления с тестируемого объекта.
- Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
- Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
- Снимаем остаточное напряжение при помощи переносного заземления.
- Производим отключение измерительных щупов.
Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.
По итогам испытаний принимается решение о возможности эксплуатации электроустановки.
Правила безопасности при работе с мегаомметром
При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:
- При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
- Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
- При подключении щупов необходимо касаться их изолированных участков (рукоятей).
- После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
- Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.
Подборка видео по теме
Как пользоваться мегаомметром, измерение изоляции
Электрические сети характеризуются различными параметрами. Одним из важнейших параметров сетей является электрическая изоляция. Изоляция представляет собой какой-либо материал, препятствующий электрическому току протекать в ненужном направлении. Изоляцией может быть защитная оболочка проводов и кабелей. Такие приспособления, как изоляторы, не позволяют контактировать токопроводящим линиям с землёй. Все эти меры по изоляции токопроводящих частей направлены на то, чтобы не допустить короткого замыкания, возгорания или поражения человека электрическим током.
Мегаомметр
Изоляция, как и всякий другой материал, подвержена влиянию различных внешних факторов: погода, механический износ и другие. Для своевременного обнаружения дефекта изоляции существует прибор, так называемый мегаомметр. Он производить измерение сопротивления изоляции.
Принцип работы прибора
Для чего предназначен прибор, можно понять из его названия, которое образовано из трёх слов: «мега»— размерность числа 106 «ом» — единица сопротивления и «метр» — измерять. Для измерения электрического сопротивления в диапазоне мегаомов используется прибор мегаомметр. Принцип работы прибора основан на применении закона Ома, из которого следует, что сопротивление (R) равно напряжению (U), делённому на ток (I), протекающий через это сопротивление. Следовательно, для того чтобы реализовать этот закон в приборе, нужны:
- генератор постоянного тока;
- измерительная головка:
- клеммы для подключения измеряемого сопротивления;
- набор резисторов для работы измерительной головки в пределах рабочей области;
- переключатель, коммутирующий эти резисторы;
Реализация мегаомметра по такой схеме требует минимум элементов. Она проста и надёжна. Такие приборы исправно работают уже полвека. Напряжение в таких аппаратах выдаёт генератор постоянного тока, величина которого различна в разных моделях. Обычно оно равно 100, 250, 500, 700, 1000, 2500 вольт. В различных моделях приборов может применяться одно или несколько напряжений из этого ряда. Генераторы отличаются по мощности и соответственно по габаритам. В действие такие генераторы приводятся ручным способом. Для работы нужно покрутить ручку динамо-машины, которая вырабатывает постоянный ток.
В настоящее время на смену электромеханическим приборам приходят цифровые. В таких приборах в качестве источников постоянного тока используются либо гальванические элементы, либо аккумуляторы. А также есть новые модели со встроенным сетевым блоком питания.
Работа с мегаомметром
Работы на каком-либо оборудовании с этим прибором относятся к работам с повышенной опасностью вследствие того, что прибор вырабатывает высокое напряжение и есть вероятность получения электротравмы. Работы с этим прибором разрешается производить персоналу, изучившему инструкцию по работе с прибором, по правилам охраны труда и техники безопасности при работе в электроустановках. Работник должен иметь соответствующую группу допуска и периодически проходить проверки на знание правил работ в электроустановках, знать инструкции по охране труда, в том числе с использование мегаомметра.
Обычно этим прибором проводится измерение сопротивления изоляции кабельных линий, электропроводки и электродвигателей. Приборы должны проходить периодическую проверку в метрологической службе и иметь соответствующие документы. Запрещается проводить измерения не проверенным прибором, он должен быть изъят из эксплуатации и отправлен на проверку.
Перед началом работ с использование мегаомметра нужно убедиться в целостности прибора визуальным осмотром. На нём должен быть штамп поверки, не должно быть сколов на корпусе прибора, стекло индикатора должно быть целым. Проверяются измерительные щупы на предмет повреждения изоляции. Нужно провести тестирование прибора. Для этого необходимо, если используется стрелочный прибор, установить его на горизонтальную поверхность, чтобы избежать погрешности в измерениях и провести измерения с разведёнными и замкнутыми щупами.
На старых моделях мегаомметров измерения проводят посредством вращения рукоятки генератора с постоянной частотой 120–140 оборотов в минуту. На других моделях измерения производят нажатием соответствующей кнопки на приборе. Мегаомметр должен показывать бесконечность и ноль мегаом соответственно. После этого можно приступать к работам по измерению сопротивления изоляции.
Измерения прибором
Оформление этого вида работ на разных предприятиях отличается. В каких-то организациях эти работы выполняются по наряду-допуску, в каких-то по распоряжению или в порядке текущей эксплуатации. Важно, что общие правила выполнения одинаковы. Возьмём для примера технологию измерения сопротивления изоляции кабелей связи на железнодорожном транспорте. Выполнив все необходимые организационно-технические мероприятия (оформление работы, вывешивание плакатов и так далее), приступаем непосредственно к измерениям.
Выбрав пару, на которой нужно произвести измерения, первоначально нужно проверить на ней отсутствие напряжения. С помощью приготовленных ранее заземлителей снимаем заряд с измеряемых жил кабеля и заземляем их. Установив измерительные щупы и сняв заземлители, проводим измерение сопротивления изоляции мегаомметром. Зафиксировав полученные результаты, переключаем измерительный щуп на другую жилу и повторяем процедуру измерения.
Нужно помнить, что после проведения измерений в кабеле остаётся электрический заряд. После окончания измерений с помощью заземлителя необходимо снять электрический заряд. Нужно разрядить и сам мегаомметр. Это делается кратковременным замыканием измерительных шнуров между собой. Работы по установке измерительных щупов и заземлителей проводятся в диэлектрических перчатках.
Измеренная величина сопротивления изоляции заносится в протокол. В протоколе обычно указывается, каким прибором проводилось измерение, величина подаваемого напряжения и измеренное сопротивление изоляции. Величина сопротивления различна для разных видов испытаний. Она сравнивается с допустимой величиной и делается вывод о состоянии изоляции электроустановки.
Для производства работ по измерению сопротивления изоляции нужно руководствоваться следующими данными:
- электроприборы и аппараты напряжением до 50 вольт испытываются напряжением мегаомметра 100 вольт, величина измеренного сопротивления должна быть не менее 0,5 МОм. При проведении измерений полупроводниковые приборы, находящиеся в составе аппарата, должны быть зашунтированы для предотвращения выхода их из строя;
- электроприборы и аппараты напряжением от 50 до 100 вольт испытываются напряжением мегаомметра 250 вольт. Результаты аналогичны п.1;
- электроприборы и аппараты напряжением от 100 до 380 вольт испытываются напряжением мегаомметра 500–1000 вольт. Результаты аналогичны п.1;
- электроприборы и аппараты напряжением от 380 до 1000 вольт испытываются напряжением мегаомметра 1000–2500 вольт. Результаты аналогичны п.1;
- щиты распределительные, распределительные устройства (РУ), токопроводы испытываются напряжением мегаомметра 1000–2500 вольт, величина измеренного сопротивления должна быть не менее 1 МОм, при этом измерять нужно каждую секцию РУ;
- осветительная электропроводка испытывается напряжением мегаомметра 1000 вольт, величина измеренного сопротивления должна быть не менее 0,5 МОм.
Периодичность проведения измерений устанавливается на предприятиях. Владельцы электроустановок принимают решения о дальнейших действиях на электроустановке в зависимости от результатов измерений.
Работа по измерению сопротивления изоляции — одна из важнейших работ в электроустановках, которая помогает следить за состоянием электрооборудования и кабельного хозяйства и вовремя принимать меры для безаварийной эксплуатации электрохозяйства.
Как пользоваться мегаомметром: измерение, подключение, видео
Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье.
Устройство и принцип действия
Содержание статьи
Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:
- Источника постоянного напряжения.
- Измерителя тока.
- Цифрового экрана или шкалы измерения.
- Щупов, посредством которых напряжение от прибора передается на измеряемый объект.
Так выглядит стрелочный мегаомметр (слева) и электронный (справа)
В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.
Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.
Примерная схема магаомметра
Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.
Работа с мегаомметром
При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.
Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.
Один из вариантов современных мегаомметров
Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.
Требования по обеспечению безопасных условий работы
Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:
- Держать щупы только за изолированную и ограниченную упорами часть.
- Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).
Как пользоваться мегаомметром: правила электробезопасности
- Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
- После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
- После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
- Работать в перчатках.
Правила не очень сложные, но от их выполнения зависит ваша безопасность.
Как подключать щупы
На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:
- Э — экран;
- Л- линия;
- З — земля;
Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.
Щупы для мегаомметра
На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).
Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:
- К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
- К жиле и «земле», если проверяем «пробой на землю».
Есть буква «Э» — этот конец вставляется в гнездо с такой же буквой
Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.
Процесс измерения
Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей. Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.
Наименование элемента | Напряжение мегаомметра | Минимально допустимое сопротивление изоляции | Примечания |
---|---|---|---|
Электроизделия и аппараты с напряжением до 50 В | 100 В | Должно соответствовать паспортным, но не менее 0,5 МОм | Во время измерений полупроводниковые приборы должны быть зашунтированы |
тоже, но напряжением от 50 В до 100 В | 250 В | ||
тоже, но напряжением от 100 В до 380 В | 500-1000 В | ||
свыше 380 В, но не больше 1000 В | 1000-2500 В | ||
Распределительные устройства, щиты, токопроводы | 1000-2500 В | Не менее 1 МОм | Измерять каждую секцию распределительного устройства |
Электропроводка, в том числе осветительная сеть | 1000 В | Не менее 0,5 МОм | В опасных помещениях измерения проводятся раз в год, в друих — раз в 3 года |
Стационарные электроплиты | 1000 В | Не менее 1 МОм | Измерение проводят на нагретой отключенной плите не реже 1 раза в год |
Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).
Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.
Как проводить измерения мегаомметром
После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.
Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.
Измерение сопротивления изоляции кабеля
Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.
Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).
Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары
Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.
Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.
Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.
Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.
Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.
Проверить сопротивление изоляции электродвигателя
Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.
Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.
Мегаомметр назначение принцип действия. Мегаомметр, что это такое и как им пользоваться
Мегаомметр – прибор для измерения больших сопротивлений, а точнее для измерения сопротивления изоляции. Мегаомметр состоит из генератора напряжения, измерителя электрической величины, специальных выходных клемм. В комплект прибора входят соединительные провода со щупами. Иногда для удобства измерений на щупы надеваются зажимы типа «крокодил».
Генератор напряжения мегаомметра приводится в действие либо специальной вращающейся рукояткой, либо работает от внешнего или внутреннего источника питания и генерирует напряжение при нажатии специальной кнопки. Всё зависит от вида мегаомметра.
Напряжение, которое способен генерировать мегаомметр, имеет стандартную величину. Обычно это 500В, 1000В, 2500В. Также есть мегаомметры с испытательным напряжением 100В и 250В.
Суть работы мегаомметра заключается в следующем. При вращении рукоятки обычного мегаомметра или при включении кнопки электронного мегаомметра на выходные клеммы прибора подаётся высокое напряжение, которое через соединительные провода прикладывается к измеряемой цепи или к электрооборудованию. В процессе замера на приборе можно наблюдать значение измеряемого сопротивления. При измерении значение сопротивления может достигать нескольких килоОм, мегаОм или равняться нулю.
Техника безопасности при работе с мегаомметром
Т.к. мегаомметры способны генерировать напряжение до 2500В, то к работе с ними допускаются только подготовленные и хорошо обученные правилам техники безопасности работники.
- Допускается пользоваться только исправными и поверенными приборами. Во время измерения сопротивления изоляции запрещается прикасаться к выходным клеммам мегаомметра, к оголённой части соединительных проводов (концы щупов) и к неизолированным металлическим частям измеряемой цепи (оборудования) т.к. эти узлы во время измерения находятся под высоким напряжением.
- Измерение сопротивления изоляции запрещается производить, если не проверено отсутствие напряжения, к примеру, на жилах электрического кабеля или на токоведущих частях электроустановки. Проверку наличия или отсутствия напряжения выполняют индикатором, тестером или указателем напряжения.
- Также не разрешается производить измерения, если не снят остаточный заряд с электрооборудования . Остаточный заряд можно снимать при помощи изолирующей штанги и специального переносного заземления путём кратковременного его присоединения к токоведущим частям. В процессе измерений необходимо снимать остаточный заряд после каждого замера.
Проверка работоспособности мегаомметра
Даже если используемый мегаомметр прошёл испытания и поверку, необходимо произвести проверку его работоспособности непосредственно перед работами по замеру сопротивления изоляции. Для этого сначала подключаются соединительные провода к выходным клеммам. Затем эти провода закорачивают и проводят измерение.
При закороченных проводах значение сопротивления должно равняться нулю. Это будет видно на шкале или на дисплее, в зависимости от вида прибора. При закороченных соединительных проводах также проверяется целостность этих проводов.
Далее производится замер при раскороченных проводах. Если прибор исправен, то величина сопротивления изоляции в этом случае будет равняться «бесконечности» (если мегаомметр старого образца), или будет принимать пусть и большое, но фиксированное значение (если прибор электронный с цифровым дисплеем).
Изучение проверяемой схемы измерения
Перед тем, как выполнять измерение мегаомметром, необходимо изучить электрическую цепь, в которой будут производиться замеры. В электрической цепи могут присутствовать электрические приборы, электрические аппараты и другое электрическое и электронное оборудование, которое не рассчитано на выходное напряжение, которое генерирует мегаомметр. По этой причине необходимо данное оборудование защитить от воздействия напряжения мегаомметра. Для этого нужно выполнить действия по заземлению, отключению или извлечению оборудования из схемы измеряемой цепи.
Измерение мегаомметром
В настоящее время наряду с современными цифровыми мегаомметрами часто ис
устройство прибора, описание принципа действия электронного агрегата megger
Мегаомметр является прибором для замеров электрического сопротивления. Единицей изменения выступают мегаомы. Приспособление используется при работе с электрическими цепями, отсоединенными от питания, диэлектрической изоляцией, которая часто встречается в электродвигателях, проводах, кабелях, трансформаторах.
Прибор в применении
В основу принципа работы мегаомметра положен закон Ома для отдельного участка цепи. Измерение осуществляется за счет элементов, помещенных в единый корпус. Основа — источник напряжения, имеющий откалиброванную постоянную величину. Дополнением выступают выходные клеммы, непосредственно определитель тока.
Модели от разных производителей кардинально отличаются по конструкции источника, но имеют одно назначение. В бюджетных вариантах и выпущенных в годы СССР агрегатах присутствуют обыкновенные динамомашины ручного типа. Усовершенствованные аналоги оснащены встроенными или внешними источниками. Выходная мощность генератора и его напряжение изменяется в широких диапазонах или же остается в неизменном фиксированном состоянии. К клеммам описываемого устройства подводятся провода, встроенные в измеряемую цепь. Для обеспечения более надежного контакта задействуются зажимы, называемые «крокодилами».
В электрической обозначенной схеме обязательно присутствует амперметр, который определяет величину тока по цепи. Напряжение отображается в точном значении, соответственно, и шкала на измерительном приборе размечается в необходимых единицах сопротивления — килоомах или мегаомах. Существуют мегаомметры с табло, на котором одновременно отображаются оба значения, выводимых на удобный дисплей.
Особенности устройства
Устройство мегаомметра стандартного типа представлено генератором, переключателем, выставляемым на необходимые пределы измерения, измерительной головкой, токоограничивающими резисторами.
Перечисленные детали правильно удерживаются в прочном диэлектрическом корпусе, оснащенном ручкой для удобства перемещения, генераторной рукояткой складывающегося типа. Для начала выработки напряжения она изначально раскладывается и раскручивается. Корпус оснащен тумблером с клеммами выходного типа, к ним и подводятся соединительные провода. Выделяется три выхода со значением на экран (Э), линию (Л), землю (З):
- Что касается клемм на электронном мегаомметре с обозначением «Л «и «З», они задействуются в ходе работы всегда при необходимости замера изоляционного сопротивления относительно контура земли.
- Вывод «Э» предназначается для нейтрализации действия токов утечки во время проведения измерения между параллельными жилами, аналогичными им токоведущими частями. Данная клемма функционирует в паре с измерительным устройством с экранированными концами, соединяется с экраном или кожухом. Она помогает выполнить самые точные замеры.
Если рассматривать специфику работы изделий с внешними и внутренними источниками, они практически ничем не отличаются от конструкций, оснащенных ручкой. Выдача напряжения на схему запускается нажатием соответствующей кнопки с последующим ее удерживанием. Некоторые модели устройств способны одновременно подавать различные комбинации напряжения, для чего нужно одновременно работать с несколькими пусками.
Модернизированные модели мегера представлены многоступенчатым внутренним наполнением. Если рассматривать напряжение, которое исходит от генераторов нескольких конструкций, оно представлено примерно таким рядом величин: 100, 250, 500, 700, 1000, а также 2500 вольт. Одни модели устройств функционируют в пределах только обозначенного диапазона, другие — одновременно в нескольких.
Мегаомметры различны по описанию, выходной мощности. С помощью одних устройств диагностируется изоляция на высоковольтном оборудовании. Другие приборы уместны для работы (проверить изоляцию) только с бытовой проводкой. Соответственно, такие изделия отличаются по размерам, общим масштабам.
Повышенное напряжение на агрегате
Работа с помощью мегаомметра определяется особенностями, которые должны учитываться. Первое, на что нужно обратить внимание, это напряжение устройства. Дело в том, что генератор встроенного типа выдает выходную мощность, которой хватает не только для качественной проверки изоляции, но и для серьезного травматизма. Следовательно, использовать измерительные агрегаты должны специально обученные специалисты.
При эксплуатации завышенное напряжение распространяется на обрабатываемый участок вместе с соединительными проводами и клеммами. Надлежащую защиту создадут щупы с усиленным изолированным покрытием. Что касается краев таких приспособлений, они ограничиваются запретной зоной через предохранительные кольца. Это необходимо для предотвращения контакта с ними открытых частей тела.
Щупы имеют рабочую зону, которая задействуется при выполнении измерения. Вот за обозначенный участок человек смело может браться руками. Что касается подключения в общую схему, оно производится посредством специальных зажимов «крокодилов» с достаточной изоляцией. Недопустимо применение другого вида щупов, проводов.
Когда проводятся мероприятия с помощью мегаомметра, в пределах обследуемой зоны не должны присутствовать люди. Особенно актуален этот вопрос при работе на длинномерных кабелях.
Наведенный ток
Электроэнергия, присутствующая в проводах ЛЭП, характеризуется существенным магнитным полем, которое изменяется согласно синусоидальному закону. В результате металлические проводники приобретают ток I2 и вторичную электродвижущую силу. Если рассматривать ощутимую протяженность кабеля, вырастает и величина наведенного напряжения.
Этот фактор следует учитывать, т. к. он сказывается на точности проводимых замеров. Сложность заключается в том, что величина и направление электротока, протекающего через используемый прибор, остаются неизвестными. Подобный ток образует наведенное напряжение, а его показатели накладываются на значения мегаомметра. В результате получается сумма из токовых величин неизвестного диапазона, поэтому метрологическую задачу будет сложно разрешить. Специалисты указывают на тот факт, что измерительные мероприятия на изоляции бессмысленно проводить в случае присутствия малейшего напряжения в сети.
Остаточное явление в действии
Когда генератор описываемого устройства вырабатывает напряжение, поступающее впоследствии в измеряемую сеть, образуется разность потенциалов между контуром заземления и проводом. Впоследствии создается емкость, в которой присутствует определенный заряд.
При отключении измеряющего провода имеющаяся в мегаомметре цепь разрывается. Но частичному сохранению подлежит потенциал из-за появления емкостного заряда в шине, проводе. Контакт человека с подобным участком приведет к электротравме токовым зарядом, который пройдет через тело. Избежать такой опасности поможет переносное заземление с обязательной изоляцией его рукоятки для безопасного устранения емкостного напряжения.
Прежде чем включать мегаомметр для работы, следует убедиться в отсутствии в проверяемой схеме напряжения остаточного заряда. В этом случае рекомендуется воспользоваться вольтметром, специальными индикаторами, подающими необходимый сигнал. Описываемый прибор дает возможность выполнять ряд процедур, в частности это:
- проверка изоляции десятижильного кабеля по отношению к земле;
- проведение необходимых замеров в каждой жиле относительно друг друга;
- определение качества изоляции между жильными проходами.
В любом случае обязательно должно использоваться переносное заземление. Для обеспечения правильной и безопасной работы предварительно заземляющий проводник замыкается с контуром на грунте. В таком состоянии он находится до завершения всех мероприятий. Другим концом проводник соединяется с изоляционной штангой, с помощью которой и обеспечивается заземление для последующего устранения остаточного заряда.
Безопасное использование
Приступая к выполнению измерения, нужно убедиться в полной исправности устройства. Более того, оно должно проверяться перед эксплуатацией в лабораторных условиях на предмет исправности комплектующих деталей, собственной изоляции. В ходе проводимых испытаний обычно задействуется высокое напряжение, а по окончании проверки мегаомметр получает разрешение на работу. Определяется класс точности агрегата, а после контрольных замеров на корпус наносится клеймо, подлежащее сохранности на протяжении всего времени применения прибора.
Безопасность при использовании мегаомметра определяется и правильной областью его использования. Каждому замеру предшествует определение величины выходного напряжения. Перед испытанием изоляции в проверяемой зоне специально задаются экстремальные условия, т. е. подается не номинальное, а завышенное напряжение. Так выявляются дефекты, предотвращается их недопущение в будущем.
В каждой схеме, проходящей проверку, имеются особенности, угрожающие безопасной работе измерительного агрегата. Важно перед работой устранить все неисправности, поломки в цепи. В современной технике присутствует множество:
- конденсаторов;
- полупроводников;
- микропроцессоров и пр.
Такие детали не рассчитаны на экстремальное напряжение, выдаваемое генератором в мегаомметре. Их рекомендуется перед проверкой изоляции шунтировать, полностью извлекать из общей схемы.
Измерение сопротивления в изоляции
Поняв, как работать мегаомметром, перед его использованием стоит ознакомиться со схематическими особенностями, убедиться в исправности и надлежащем обеспечении защиты. Обрабатываемая зона выводится из эксплуатации. Прибор на предмет исправности проверяется следующим образом:
- края измерительного провода между собой закорачиваются;
- далее генератором на них подается напряжение;
- если устройство полностью исправно, в закороченной цепи показатели измерения равняются нулю;
- следующий шаг — разъединение проводов, отведение их в стороны с проведение повторного замера;
- в норме на стрелочной шкале megger высвечивается сигнал безопасности.
Процедура проверки изоляции осуществляется в строго обозначенной последовательности. Заземление переносного типа подводится к контуру, на участке полностью исключается наличие напряжения. После этого создается измерительная схема. В нее подается напряжение калиброванного типа до момента выравнивания емкостного заряда. Следующим этапом фиксируется отсчет и вырабатываемая генератором энергия выравнивается. Остаточный заряд нейтрализуется переносным заземлением.
Сопротивление изоляции проверяется мегаомметром при самом высоком пределе МΩ. Принцип действия некоторых моделей основан на прерывистом режиме. Следовательно, в течение 1 минуты подается напряжение, создается пауза в 2−3 минуты.
Узнав, для чего нужен мегаомметр и как он работает, следует разобраться в простых нюансах. Модели со стрелочным корпусом должны ориентироваться на горизонтальное размещение во время работы. В противном случае дополнительных погрешностей не избежать. Что касается усовершенствованных установок, они работают в любом положении с максимальной точностью.
принцип работы и устройство, как пользоваться прибором, описание и назначение
Собираясь ввести кабель в эксплуатацию при выполнении ремонта или устранении неполадок с проводкой — в каждом из этих случаев важно осуществить проверку изоляции.
Базовые мультиметры способны определить лишь наличие проблемы, а ее масштабы, причины появления и оптимальные методы решения выясняются только специальным прибором, который носит название мегаомметр.
Принцип работы
Мегаомметр представляет собой полезное изобретение, с помощью которого можно проверить показатели изоляционного слоя в проводке. Прибор относят к классу профессиональных, но большинство современных моделей поддерживает сразу несколько функций, например, анализ состояния электросети, проверка точного напряжения и так далее. В связи с этим, многие люди желают приобрести собственный мегаомметр, чтобы использовать его для бытовых задач.
С помощью специальных щупов устройство присоединяется к измеряемой линии, а затем запускается. В каждом приборе установлен источник постоянного напряжения, осуществляющий генерацию высокого напряжения для проверки изоляции. Что касается базовых функций и набора калибровочных напряжений, то они отличаются в зависимости от конкретной модели. Если у дешевых вариантов присутствует только один режим работы, то более дорогие характеризуются высокой производительностью и комбинированными возможностями.
В настоящее время на рынке доступны следующие разновидности приборов:
- Старые модели, оснащенные встроенной динамомашиной. Для запуска устройства необходимо повернуть специальную ручку.
- Новые приборы с электронной схемой работы. Они подключаются к бытовой электросети или внутренним аккумуляторам, используя их в качестве источника напряжения. Среди поддерживаемых режимов и функций присутствует не только контроль изоляции проводки, но и оценка текущего напряжения, низкоомного сопротивления и других параметров. По сути, многие модели могут заменить мультиметр, так как спектр калибровочных напряжений бывает достаточно обширным.
Калиброванное напряжение и его величина выставляется с помощью специального переключателя. Для точной настройки необходимо учитывать разновидность системы, которая поддается анализу. Полученные измерения будут продемонстрированы на экране или соответствующей шкале. Чтобы упростить процесс изучения результатов, в моделях стрелочного типа шкала откалибрована в КОм или МОм.
Принцип действия изобретения базируется на простом физическом законе Ома: I = U / R .
Устройство и конструкция
Большинство моделей таких измерительных приборов включают в себя генератор постоянного тока, измерительную головку, переключатель, а также резисторы, ограничивающие подачу тока. С помощью этого узла обеспечивается коммутация любых цепей резистора, влияющих на показатели выходного напряжения и режим работы.
Все составляющие мегаомметра совмещены в одном корпусе с прочным диэлектрическим покрытием. Для удобного транспортирования прибор оснащен комфортабельной ручкой, на которой размещена портативная генераторная рукоять. Для запуска устройства достаточно разложить ручку и запустить вращение.
Принцип действия устройств с внутренним или внешним питанием не отличается от механических моделей с ручкой. Чтобы выдать требуемое напряжение, достаточно нажать на соответствующую кнопку и держать ее до тех пор, пока не будут достигнуты нужные показатели. Некоторые устройства могут выдавать разные комбинации напряжения с помощью нескольких простых кнопок.
В моделях современного уровня присутствует более сложное внутреннее устройство. В связи с этим, они могут выдавать разное напряжение, от 100 до 2500 В. К тому же, отдельные приборы способны работать сразу с несколькими диапазонами, что делает их высокоэффективными.
Модели, которые могут определять изоляцию высоковольтного промышленного оборудования, более производительны, чем те приборы, которые работают только с бытовой проводкой. Естественно, их размеры сильно отличаются.
Опасность повышенных напряжений
Встроенный генератор характеризуется такими показателями выходной мощности, которых хватает не только для оценки состояния изоляции, но и для получения серьезного ожога. Из-за этой особенности к использованию прибора допускаются только обученные электротехники, имеющие как минимум 3 группу допуска к таким приборам.
При выполнении замеров с помощью повышенного напряжения нужно охватить проверяемый участок, клеммы и провода. Для обеспечения защиты задействуются щупы с характерной изоляцией. Одной стороной они фиксируются к проводам, а другая часть оснащена предохранительными кольцами. В результате, это препятствует касанию к открытым участкам и предотвращает возможный удар током.
Чтобы провести измерение, на таких устройствах предусматривается специальная рабочая зона, которая не проводит ток и является безопасным местом для удерживания в руках. Для подключения к схеме используется зажим типа «крокодил» с хорошей изоляцией. Любые другие провода или самостоятельные щупы не допускаются. К тому же, для повышения безопасности процедуры проверяемый участок нужно изолировать от посторонних людей. Это по-особому важно при проверке сопротивления в длинномерных кабелях, имеющих протяженность до нескольких км.
Что касается наведенного напряжения, то оно играет весомую роль в точности проводимых измерений. Электроэнергия, которая проходит по проводам ЛЭП, способна создавать определенное магнитное поле, измеряющееся с учетом синусоидального закона. Если кабель обладает внушительной протяженностью, показатели этого напряжения становятся очень большими.
В зависимости от этого фактора точность измерения существенно меняется. Объясняется это тем фактом, что величина и направление тока, проходящего по прибору, остаются неизвестными. Он возникает под воздействием наведенного напряжения, а его показатели появляются возле собственных показаний устройства. В результате на цифровом экране отображается сумма двух токовых величин, а поставленная задача остается нерешенной. Поэтому измерять сопротивления изоляции при наличии любых типов напряжения — бесполезная трата времени и сил.
Проведение измерений
Выполнить какое-нибудь измерение или разобраться, как работать мегаомметром, совсем несложно. Но при таком занятии важно соблюдать определенную последовательность действий и правильно переходить от одного этапа к следующему. Перед тем как начать работу, следует прочитать инструкцию и выполнить подготовительные действия.
В первую очередь потребуется отключить тестируемую цепь от заданной нагрузки. Если речь идет об изоляционном слое в домашней проводке, достаточно отсоединить питание с помощью рубильника или выкручиваемой пробки. Измеряя кабеля розеточной группы, из всех розеток нужно изъять вилки. При проведении работ с проводкой для осветительных приборов из всех люстр, точечных светильников и другого оборудования нужно выкрутить лампочки. Только после этого можно начинать проверку.
Следующий этап подготовки — присоединение автономного заземления. Оно понадобится для того, чтобы снять остаточное напряжение в цепи. Для этого к основной шине в щитке фиксируется провод из меди с сечением 1,5 квадрата. Противоположный конец должен быть зачищен от изоляции, поэтому его прикрепляют к сухой палке.
Провод фиксируется таким образом, чтобы медь удобно прикасалась к проводникам.
Требования по безопасности
Если речь идет о выполнении измерений с помощью мегаомметра на каком-либо предприятии, то его должен проводить обученный специалист с группой электробезопасности от 3 и выше. Даже при домашнем обследовании важно придерживаться основных правил и соблюдать требования по безопасности. Итак, согласно установленной инструкции, каждая работа с мегаомметром должна осуществляться с учетом следующих правил:
- Работу нужно выполнять только в диэлектрических перчатках (к сожалению, большинство людей часто упускают это правило, но это ошибка).
- Перед тем как начать работу, нужно подготовить линию и убедиться, что возле нее отсутствуют люди. На заводах и фабриках следует вывесить плакаты с предупреждением «не запускать», «осторожно, высокое напряжение» и так далее. При измерении длинной линии в домашних условиях можно придерживаться аналогичного принципа — желательно разместить на щитке вывеску об опасности. Также нужно ознакомиться с первыми действиями при получении удара электрическим током.
- При работе щупы нужно держать в месте изоляции. Зачастую на рукоятке расположены упоры под пальцы, которые защищены от высоких напряжений.
- После завершения расчетов нужно соединить щупы, перекрещивая их неизолированные участки. Таким образом можно снять остаточное напряжение. Отдельные электронные приборы поддерживают функцию автоматического разряда, когда остаточное напряжение осуществляется после каждого измерения. При отсутствии такой функции придется выполнить процедуру самостоятельно.
При выполнении расчетов особое внимание нужно уделять остаточному напряжению. Если тестируемая линия слишком длинная, заряд станет внушительным и сможет нанести серьезный урон человеку.
Подключение к линии
В стандартной комплектации присутствует три щупа с разными характеристиками и структурой. Один из них обладает двумя наконечниками и предназначается для борьбы с токами утечки. В верхней стороне прибора расположено три гнезда для присоединения щуп. Каждый из них характеризуется соответствующей буквенной маркировкой:
- З — для присоединения заземления защиты.
- Л — линия, которую измеряют.
- Э — экран (предназначается для исключения токов утечки).
Еще какие-либо варианты отсутствуют, за исключением случаев с экранированной проводкой. Однако в частных постройках такие способы не используются, так как монтаж кабелей с экраном здесь практически бесполезный. Тем не менее, при наличии такого типа кабеля нужно минимизировать риск появления токов утечки, применив щуп с раздвоенным концом. Провода экранирующей оплетки нужно скрутить в жгут, добавив в общий пучок проводов.
Проведение измерений
После успешного решения всех задач можно пытаться измерять проводку мегаметром. После успешной установки щупов следует определиться с тестовым напряжением. Проверяя сопротивление изоляции, нужно подать напряжение в 500−1000 В, следуя такой инструкции:
- В первую очередь необходимо подготовить объект к измерениям.
- Затем нужно установить переносное заземление и перевести переключатель в нужное положение. Также следует выбрать шкалу измерений, учитывая величину сопротивления.
- На линии нужно проверить отсутствие напряжения, используя индикаторную отвертку или мультимер, а затем выполнить подключение щупов к объектам измерения.
- Дальше остается снять переносное заземление и приступить к выполнению измерений. Если работа осуществляется с помощью электронного прибора, то на нем нужно нажать кнопку «тест». В ручных моделях придется покрутить ручку динамомашины до момента, пока не произойдет загорание сигнальной лампы (это подтвердит факт создания тестового напряжения).
- Записав полученные результаты, остается отключить щупы и снять показатели остаточного напряжения на мегаомметре и линии.
При опускании показателей ниже заданного уровня придется действовать двумя путями: либо найти причину поломки и устранить ее, либо заменить.
Сопротивление изоляции
Разбираясь, для чего нужен мегаомметр и как с ним работать, важно знать, как осуществлять измерение сопротивления изоляции, так как такая задача возникает чаще всего. При обработке кабеля, который уже задействован, его нужно отсоединить от линии и снять нагрузку. В большинстве случаев в электрике применяются трехжильные провода, и только при необходимости подвести трехфазную сеть их бывает больше.
Выполняя измерения, нужно перевести все автоматические переключатели на щитке в положение «выключено», снизить нагрузку и приступить к работе. При наличии экрана на кабеле (он представляет собой оплетку из стальной проволоки или алюминиевой ленты) нужно задействовать щуп с раздвоенным наконечником, а экран добавить в жгут к остальной проводке и «земле».
прибор для измерения сопротивления изоляции
краткое содержание статьи:
Мегаомметр – это прибор для измерения сопротивления изоляции, который подает постоянное напряжение величиной 100, 250, 500, 1000, 2500, 5000В. Это универсальный переносной прибор, предназначенный также для испытаний повышенным напряжением. Мегаомметром испытывают обмотки электродвигателей, силовые кабельные линии, обмотки турбогенераторов и прочее электрооборудование. В общем, везде где есть изоляция, применяют мегаомметр. Данные приборы бывают ручные, цифровые, аналоговые, электронные, механические, высоковольтные.
Наиболее часто встречающимся видом измерения в моей практике является измерение сопротивление изоляции. Данный вид измерения можно производить на кабеле (до и после высоковольтных испытаний), обмотке статора турбогенератора, электродвигателе, трансформаторе, даже в релейной защите мегерить цепи приходится постоянно. В общем, на любом электрооборудовании, которое имеет изоляцию, необходимо следить за её величиной и выявлять возможные несоответствия для предотвращения возможных неблагоприятных для оборудования последствий.
Поговорим о физической модели сопротивления изоляции. Более подробно о классах и видах изоляции будет написано в отдельной статье. Уточним же, что факторами, портящими изоляцию являются токи, протекающие в оборудовании и сверхтоки (пусковые, токи кз). В этом материале я остановлюсь на схеме замещения изоляции. Это будет схема, состоящая из двух активных сопротивлений и двух емкостей. Значит, что мы имеем:
- С1 — геометрическая емкость
- С2- абсорбционная емкость
- R1 – сопротивление изоляции
- R2 – сопротивление, потери в котором вызываются абсорбционными токами
Зачем Вам это знать? Ну, я не знаю, возможно, покрасоваться перед не знающими эти основы людьми. Или же, чтобы понять характер прохождения постоянного тока через изоляцию.
Первая цепь состоит из емкости С1. Эта емкость называется геометрической, она характеризуется геометрическими характеристиками изоляции, её расположения относительно земли. Эта емкость разряжается мгновенно, при заземлении изоляции после испытания. Та самая бдыщ, искра при поднесении заземления к испытуемой фазе после опыта.
Вторая цепь имеет в своем составе два элемента – емкость С2 и активное сопротивление R2. Эта цепь имитирует потери при подаче на изоляцию переменного напряжения. R2 характеризует строение и качество изоляции. Чем более изоляция потрепана, тем меньшая величина R2. Емкость С2 называется абсорбционной емкостью. Эта емкость заряжается, при подаче постоянного напряжения, не мгновенно, а за время пропорциональное произведению R2 на С2. Чем лучше диэлектрические свойства изоляции, тем дольше будет заряжаться емкость С2, потому что величина R2 будет больше у здоровой изоляции. В общем, эта емкость отвечает на вопрос, почему после искры надо держать заземление еще пару минут на испытуемой жиле. Она разряжается медленно и заряжается не мгновенно.
Третья ветка состоит из активного сопротивления R3, которое характеризует ток утечки изоляции и потери. Ток возрастает при увлажнении изоляции, пропорционален площади изоляции и обратно пропорционален толщине изоляции. Вот такая электрическая модель изоляции.
Поговорим про историю развития мегаомметров. Откуда взялось такое название? Вероятно из-за названия измеряемой величины. Кстати, также мегаомметр называют мегер, или говорят промегерить цепь. Знакомо? Оказывается, и возможно, вы это знали, это название происходит от названия древнейшей фирмы по производству измерительного оборудования под названием «Megger». Эта компания появилась еще в 19 веке, а первые тестеры выпускали еще в 1951 году.
Первые мегаомметры, тогда еще мегомметры, были с ручками. Ты крутишь ручку, вырабатывается постоянное напряжение, и ты производишь испытания. Крутить надо было с частотой 120 об/мин. Однако, долго крутить могли не все. Ведь измерения необходимо производить одну минуту, для определения коэффициента абсорбции. Поэтому наука шагнула вперед, и появились аналогичные мегаомметры, но с питанием от сети и кнопкой подачи напряжения. Держать кнопку куда удобнее, чем крутить ручку. Однако тут встает неудобство в том плане, что необходимо найти розетку.
Однако и на этом прогресс не остановился, и появились электронные мегаомметры. Они уже с подсветкой, не обязательно держать кнопку подачи напряжения на протяжении всего испытания, однако, при испытании кабеля, остаточная емкость может спалить прибор (ну я не проверял, но так говорят некоторые инженера).
Внимание, говорю правду. Подробнее об этом писал вот тут, но повторюсь еще раз. Правильно прибор для измерения мегаОмов называется мегаомметр. Ранее он назывался мегомметр (например, в книге 1966 года он так и именуется). Новые времена, новые правила. Правильно называть его мегаомметр, так давайте же и будем использовать это название в своей электротехнической жизни. И если мегомметр — это название устаревшее, то прочие интерпретации являются просто неправильными и неграмотными. Хотя можно, например, старые приборы с ручкой, выпущенные в советском союзе называть мегомметры, а новые цифровые, например электронные типа Sonel именовать мегаомметрами. Но это моё личное мнение, скорее даже шутка, чем мнение.
Мегаомметр ЭСО-210
Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой — трансформатор, преобразующий переменное напряжение в постоянное.
Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».
Шкала «I» — нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.
Шкала «II» — верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.
Шкала «IIx10» — аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.
В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.
При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.
Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.
Мегаомметр sonel mic-2510
Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом «энтер» и всё – следи за показаниями и не подпускай никого под напряжение.
Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.
Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.
Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм — впечатляющая величина.
Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.
Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.
В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.
Как же производятся измерения сопротивления изоляции (самое популярное измерение, которое выполняют мегаомметром) у различного электрооборудования. Рассмотрим, как испытывать, на примере энергосистемы РБ. Хотя, нормы в принципе одни и те же, за минимальными различиями.
Замер сопротивления изоляции мегаомметром, прозвонка с помощью мегаомметра
Перед началом измерения необходимо проверить, что прибор рабочий, для этого необходимо произвести подачу напряжения при закороченных концах и замкнутых. При замкнутых мы должны получить «0», а в разомкнутом состоянии должны иметь бесконечность (так как мы меряем сопротивление изоляции воздуха). Далее сажаем один конец на землю (заземляющий болт, шина, заземленный корпус оборудования), а второй на испытываемую фазу, обмотку. Два человека производят испытания, один держит концы, а второй подает напряжение. Записывается показание через 15 секунд и через 60. По окончании заземляется жила, на которую подавалось напряжение и через минуту-другую (в зависимости от величины и времени подачи напряжения) снимаются концы и измерения производятся на другой жиле по аналогичной схеме.
Как же прозвонить что угодно с помощью мегаомметра, прозвонка это проверка на целостность цепи. Прозвонка – это первый прибор электрика, который он должен собрать сам из лампочки, батарейки и проводков. Как же прозвонить с помощью мегаомметра? Мегаомметр не совсем прозванивает, он показывает, что отсутствует связь между фазой и землей, то есть отсутствие замыкания обмотки на землю. Однако если подать большое напряжение, то вполне можно спалить обмотку реле или двигателя.
Замер сопротивления изоляции электродвигателей мегаомметром
Значит, подходим мы к электродвигателю, например это 380-вольтовый мотор какого-нибудь насоса. Снимаем крышку, отсоединяем питающий кабель. Далее подаем 500В и смотрим. Если в конце минуты сопротивление меньше 1МОм, значит, не соответствует нормам. Коэффициент абсорбции не нормируется для маленьких электродвигателей. Напряжение подается между одной фазой и землей. Две другие фазы соединяются с корпусом. По окончании испытания производится заземление испытанной жилы.
Замер сопротивления изоляции кабелей мегаомметром
Значит, имеем кабель. С одной стороны он, например, подключен к пускателю, а с другой стороны к электродвигателю или приводу, который пускает электродвигатель. Нам необходимо промегерить этот кабель. Мы отключаем его от пускателя и от электродвигателя. Ставим человека у электродвигателя, если он в другом помещении, чтобы не подпускал никого к открытым жилам, которые мы будем испытывать. Далее подаем напряжение между жилой и землей 2500 В в течение минуты. Величина сопротивления изоляции для кабелей напряжением до 1000В должна составлять не ниже 0,5 МОм. Для кабелей напряжением выше 1кВ величина сопротивления изоляции не нормируется. Если мегаомметр показывает ноль, значит, жила пробита и надо искать место повреждения и расстояние до дефекта. Также измеряется сопротивление изоляции между жилами. Или объединяют три жилы и на землю и если величина неадекватная, то необходимо уже измерять каждую жилу на землю по отдельности.
Также в конце испытаний необходимо до снятия провода, по которому подавалось напряжение, повесить заземляющий провод на него. Чем больше напряжение подавалось, тем дольше необходимо ждать. Для высоковольтных кабелей это время достигает нескольких минут.
Так как мегаомметр подает высокое напряжение, то он является потенциальным источником опасности как для тех, кто это напряжение подает, так и для тех, кто находится рядом с оборудованием, кабелем, на который это напряжение подается.
О чем же необходимо помнить, при работе с мегаомметром? Во-первых, необходимо правильно подсоединять концы к прибору, во-вторых надо надежно закреплять концы, по которым подается напряжение к электрооборудованию. Также не стоит забывать про заземление испытываемого оборудования, как до измерения, так и по окончании для снятия остаточного заряда.
Про фокусы с мегаомметром могу только отметить, что есть у нас один работник, которого мы мегерили на 500 вольт, тут, как он говорит главное держать концы плотно и не отпускать. Внимание!!! Не советую вам это повторять !!!. Зрелище было стремное конечно. А теоретически ток небольшой и термическое воздействие не напрягает.
В общем, желаю вам удачи в вашей работе с мегаомметром, и будьте внимательны, ведь наша профессия не только очень интересная, но и достаточно опасная. ТБ превыше всего!!!
Сохраните в закладки или поделитесь с друзьями
Последние статьи
Самое популярное
Принцип работы мегомметра| Принцип работы мегомметра
Мегомметр
Мегомметр (или мегомметр) — это прибор для измерения очень высоких сопротивлений, таких как сопротивление изоляции электрических кабелей.
Для пропускания измеряемого тока через такие сопротивления требуется источник высокого напряжения. Таким образом, мегомметр по сути представляет собой омметр с чувствительным прибором отклонения и источником высокого напряжения. Как показано на рисунке (1), напряжение обычно создается генератором с ручным заводом.Генерируемое напряжение может составлять от 100 В до 2,5 кВ.
Рис.1: Мегомметр с ручным управлением
Как и в случае омметра с низким сопротивлением, шкала мегомметра показывает бесконечность (∞) при измерении разомкнутой цепи, ноль при коротком замыкании и половина шкалы, когда неизвестное сопротивление равно стандартному резистору внутри мегомметра. В других точках шкалы отклонение пропорционально отношению неизвестного и стандартного резисторов. Диапазон прибора может быть изменен путем включения различных номиналов стандартного резистора в схему.
Также доступны мегаомметры с батарейным питанием, и по сути, это омметры с очень высоким сопротивлением. Напряжение аккумуляторной батареи обычно увеличивается (с помощью электронных схем) до уровня 1000 В, чтобы получить измеримый ток через неизвестное сопротивление. Измерение производится при кратковременном нажатии и удерживании кнопки питания. Это действие минимизирует ток утечки на батарее.
Приложения Megger | Применение мегомметра
Мегаомметр также используется для обнаружения нарушения изоляции двигателей и трансформаторов.Это достигается за счет наведения высокого напряжения на обмотки этих электрических компонентов. Подача большого напряжения приведет к обнаружению ослабленной изоляции; скорее всего приведет к отказу двигателя или короткому замыканию трансформатора. Напряжение, используемое при испытании изоляции Megger, может находиться в диапазоне от 50 В до 5000 В. Подав высокое напряжение на обмотки двигателя или трансформатора, вы сможете определить, есть ли ухудшение изоляции. В таком случае ток будет вытекать из обмоток.Уходящий ток может привести к замыканию на землю или короткому замыканию обмоток двигателя или трансформатора.
Принципиальная схема мегомметра
На рисунке 3 показана подробная принципиальная схема мегомметра.
Рис.3: Принципиальная схема мегомметра
1 и 2: Управляющая и отклоняющая катушки
Обычно они устанавливаются друг к другу под углом 90 градусов и соединяются с генератором параллельно.Полярность такова, что крутящий момент, развиваемый этими катушками, находится в противоположном направлении.
3 и 4: шкала и указатель
Указатель привязан к катушкам, и конец указателя перемещается по шкале счетчика, имеющей диапазон от «нуля» до «бесконечности». Шкала откалибрована в «омах».
5 и 6: Сопротивления катушки давления и катушки тока
Они обеспечивают защиту от любых повреждений в случае низкого внешнего сопротивления при испытании.
7: Подключение генератора постоянного тока или аккумулятора
В мегомметре с ручным управлением генератор постоянного тока обеспечивает испытательное напряжение, в то время как в мегомметре цифрового типа это осуществляется с помощью аккумулятора или зарядного устройства.
8: Постоянные магниты
Постоянные магниты создают эффект намагничивания, чтобы отклонить указатель.
Как использовать мегомметр
- Изолируйте тестируемое оборудование от всех силовых цепей
- Подключите провода к соответствующим клеммам для проверки изоляции
- Установите переключатель функций на желаемое напряжение, которое измеритель будет вводить в электрическую компонент
Примечание: Перед тем, как продолжить, важно проконсультироваться с производителем относительно проведения испытаний изоляции и номинальных характеристик электрического компонента.Слишком высокое напряжение может привести к аннулированию гарантии, сокращению срока службы или повреждению проверяемого двигателя или трансформатора.
- Подключите наконечники щупов к тестируемому оборудованию. Если есть напряжение, большинство измерителей выдаст предупреждение.
- Следуйте инструкциям по эксплуатации оборудования и начните проверку.
При тестировании между обмоткой и землей результатом должно быть нулевое сопротивление. Если между обмотками и землей есть какое-либо сопротивление, результатом будет замыкание на землю в этой точке, и важно заменить блок.
При тестировании между двумя отдельными обмотками результат должен быть близок к нулю. Если между двумя отдельными обмотками имеется какое-либо сопротивление, это указывает на то, что в этот момент происходит разрыв изоляции, и важно спланировать замену оборудования.
написано Ahmed Faizan, M.Sc. (США)
.Что такое мегомметр?
Мегаомметр, или мегомметр, как его более широко называют, представляет собой электрический испытательный прибор, предназначенный для проверки чрезвычайно высоких сопротивлений путем создания постоянного напряжения (постоянного тока) от 300 до 15000 вольт. Мегомметр вырабатывает высоковольтный слаботочный заряд постоянного тока, который позволяет измерять сопротивления, которые обычно встречаются при испытаниях обмоток электродвигателей или изоляции кабелей. Мегомметры вырабатывают это высокое напряжение с помощью внутренней схемы с батарейным питанием или генератора с ручным управлением.
Человек с дрельюПроверка электрического оборудования, механизмов или установок на сопротивление обмотки, заземления или изоляции с помощью обычного омметра может быть неточно достигнута из-за чрезвычайно высоких сопротивлений, характерных для этих приложений.Сопротивления в этих случаях могут варьироваться от нескольких МОм до нескольких миллионов МОм и требуют испытательного напряжения, намного превышающего то, которое используется в меньших омметрах. Мегомметр использует постоянное напряжение в диапазоне от 300 до 15 000 вольт для точного измерения этих очень высоких значений сопротивления. Эти напряжения поставляются с очень низким номинальным током и обычно не опасны для пользователя мегомметра.
Существует два основных типа мегомметров: с батарейным питанием и с ручным кривошипом или моторным генератором.Оба варианта мегомметра способны проводить точные испытания сопротивления изоляции на установках и оборудовании с сопротивлением в несколько тераом (1000000 мегом). В мегомметрах с батарейным питанием используются специальные внутренние схемы для преобразования низкого напряжения батареи в более высокое испытательное напряжение. Эти инструменты, как правило, меньше и легче, чем версии с генераторами, и предлагают преимущества одной кнопки, управления одной рукой и выбора нескольких рабочих напряжений.Обратной стороной мегомметров с батарейным питанием является короткое время автономной работы и то, что они, как правило, выдают максимум 5000 вольт.
Генераторные мегаомметрыиспользуют небольшой внутренний генератор для создания требуемых высоких испытательных напряжений.Эти генераторы обычно управляются вручную с помощью внешней кривошипной рукоятки, но могут быть оснащены внутренним моторным приводом. Эти инструменты могут создавать напряжения от 300 до 15 000 вольт и не требуют замены батареи. Одним из недостатков использования этого типа инструмента является то, что операция требует использования двух рук, что требует использования прикрепляемых проводов или помощи второго человека. Кроме того, они обычно более громоздкие и обеспечивают одно испытательное напряжение.
При проверке электрического оборудования следует всегда помнить о высоком напряжении, создаваемом этими приборами.Испытательные напряжения мегомметра не должны превышать рабочее напряжение испытываемого оборудования со слишком большим запасом, поскольку это может вызвать необратимые повреждения. Несмотря на то, что испытательное напряжение подается при очень низком токе, всегда следует проявлять осторожность, чтобы предотвратить поражение электрическим током при работе с мегомметром.
.Как работают омметры? (с рисунками)
Омметры — это электрические устройства, используемые для измерения сопротивления данного проводника. Этот измерительный прибор работает на основе закона Ома, который применяется к электрическим цепям. Согласно этому закону, ток (I), который течет между двумя точками в проводнике, прямо пропорционален напряжению (V) или разности потенциалов между двумя точками. Оно также обратно пропорционально сопротивлению (R) между ними. Следовательно, математически V = IR.
Омметр можно использовать для проверки целостности электрического соединения.Для измерения сопротивления данного проводника красный и черный выводы омметра подключаются к положительной и отрицательной клеммам проводника соответственно.Сопротивление провода или цепи отображается стрелкой, скользящей по шкале устройства. Эти измерители измеряют сопротивление в Ом, которое обозначается греческой заглавной буквой омега или Ом.
Переменные резисторы присоединены к батарее и движущемуся измерителю в омметре.Омметр никогда не следует подключать к источнику напряжения, так как это может повредить оборудование. Это связано с тем, что в устройстве уже есть источник напряжения для измерения сопротивления данного проводника. Сопротивление измеряется по падению напряжения на выводах проводника. В аналоговом измерителе крайняя левая часть шкалы указывает на бесконечное сопротивление, а крайняя правая часть обозначает нулевое сопротивление.
Цифровой мультиметр — это инструмент, который можно использовать как омметр.Простое аналоговое устройство состоит из батареи, которая является источником напряжения, подключенной к движущемуся счетчику.Переменный резистор также подключен последовательно к этой комбинации, чтобы стрелка точно показывала отклонение на полную шкалу и не выходила за отметку нулевого сопротивления. Этот резистор также ограничивает ток и корректирует снижение напряжения, вызванное старением батареи. Аналоговые омметры должны быть откалиброваны перед использованием, тогда как цифровые омметры обычно могут калибровать самостоятельно.
Для калибровки аналогового измерителя оба провода должны быть вместе.Ручка регулировки помогает настроить переменный резистор. Его нужно повернуть вручную, чтобы стрелка показывала нулевое сопротивление; другими словами, теперь игла находится в крайней правой части. Этот шаг известен как «обнуление» измерителя, и его следует повторять каждый раз перед измерением сопротивления любого провода или цепи. В случае цифрового устройства, если удерживать вместе выводы, будет показано 0 Ом, чего достаточно для его калибровки.
Помимо измерения сопротивления, омметры можно использовать для проверки целостности электрического соединения.Например, если стрелка упирается в бесконечное сопротивление в крайнем левом углу шкалы, это указывает на отсутствие непрерывности в цепи. Это означает, что в цепи есть обрыв. С другой стороны, если измеренное значение сопротивления равно нулю или намного меньше ожидаемого значения, это означает короткое замыкание в цепи.
Резисторы — это электрические устройства, управляющие протеканием тока через цепь..Мегаомметров | Тестеры изоляции | Инструменты AEMC
Почему выбирают мегомметры AEMC?
Полная линейка мегомметров
Мы знаем, что для вас очень важно иметь возможность правильно определять состояние изоляции проводов и обмоток двигателя, чтобы предотвратить повреждение дорогостоящего оборудования и незапланированные отключения, а также обеспечить личную безопасность. Вот почему мы предлагаем полную линейку мегомметров с испытательным напряжением от 10 В до 15 кВ (в зависимости от модели), способных измерять сопротивление изоляции от 1000 до 30 ТОм.Эти прочные, погодоустойчивые измерители точны, надежны и созданы для работы. Доступны модели с аккумулятором, питанием от переменного тока и с ручным приводом.
Широкий спектр испытаний сопротивления изоляции
Регулярное использование мегомметра для проверки как новых установок, так и в качестве программы технического обслуживания помогает обеспечить безопасность ваших цепей. Наши приборы предлагают испытания с высоким сопротивлением до 30 ТОм. Мегомметры AEMC выполняют точечные, синхронизированные, ступенчатые и линейные испытания напряжения для измерения сопротивления, коэффициента диэлектрической абсорбции (DAR), индекса поляризации (PI) и диэлектрического разряда (DD).
Основные характеристики
- Более 110 лет опыта в разработке и производстве мегомметров — гарантия того, что у вас будет профессиональный надежный прибор.
- Разработано в соответствии с последними стандартами безопасности — ваша защита превыше всего
- Автоматизированные функции испытаний и расчетов — исключают ошибки, экономят время и деньги
- Предлагает широчайший выбор приборов для проверки изоляции — позволяет выбрать подходящий прибор для вашего применения.
- Простая и легкая в использовании настройка -m сделай все правильно с первого раза
Мощное и гибкое программное обеспечение для анализа данных
В комплект поставки входит наше мощное программное обеспечение DataView, которое дает ценную информацию о состоянии изоляции проводов, кабелей и обмоток двигателя.
Сравнение мегомметров
Мы создали следующие универсальные одностраничные сравнительные документы, чтобы помочь вам выбрать лучший мегомметр для ваших конкретных нужд.
СРАВНИТЕЛЬНАЯ ТАБЛИЦА мегомметров — (жесткий футляр)
СРАВНИТЕЛЬНАЯ ТАБЛИЦА мегомметров — (портативные)
Эксперт техподдержки
AEMC ® обеспечивает полную техническую поддержку по нашей горячей линии 800-945-2362 (доб. 351), поговорите напрямую с одним из членов нашей группы технической поддержки.Или отправьте свои вопросы нашей технической команде по электронной почте. [email protected]
Отличное обслуживание клиентов
Наша компетентная и дружелюбная сервисная команда обеспечивает лучшую поддержку в отрасли. Мы стараемся понять ваш запрос или обратную связь уважительно и ответственно. Наша цель в AEMC ® — превзойти ваши ожидания.
Запросить демонстрацию
Есть вопросы по использованию мегомметров AEMC ® ? Мы рады провести демонстрацию с нашими техническими экспертами.Свяжитесь с нами по телефону (800) 343-1391 или напишите нам по адресу [email protected]
.