Проекты arduino. Arduino проекты: от простых до сложных идей для творчества

Какие интересные проекты можно сделать на Arduino для начинающих и продвинутых. Как выбрать Arduino-проект по сложности и тематике. Где найти схемы и коды для Arduino-самоделок.

Содержание

Популярные Arduino-проекты для начинающих

Для тех, кто только начинает осваивать Arduino, лучше всего подойдут простые проекты, не требующие сложных схем и программирования. Вот несколько идей:

  • Мигающий светодиод — классический первый проект для знакомства с платформой
  • Светофор из нескольких светодиодов разного цвета
  • Управление сервоприводом с помощью потенциометра
  • Измерение температуры и влажности с помощью датчика DHT11/22
  • Вывод информации на LCD-дисплей
  • Управление RGB-светодиодом
  • Электронный игральный кубик

Эти проекты помогут освоить основы работы с Arduino — подключение компонентов, написание простых скетчей, использование базовых датчиков и исполнительных устройств.

Arduino-проекты средней сложности

Когда базовые навыки уже освоены, можно переходить к более интересным проектам:


  • Метеостанция с выводом данных на дисплей и отправкой в интернет
  • Система автоматического полива растений
  • Парктроник для автомобиля
  • Домашняя охранная система с датчиками движения и сиреной
  • Управление освещением по датчику освещенности и расписанию
  • Цифровые часы на матричных индикаторах
  • Терморегулятор для инкубатора или террариума

Такие проекты уже требуют более сложных схем и программирования, но при этом остаются вполне доступными для самостоятельной реализации.

Сложные Arduino-проекты для продвинутых

Опытные Arduino-разработчики могут замахнуться на по-настоящему серьезные проекты:

  • Квадрокоптер с системой стабилизации и автопилотом
  • 3D-принтер на Arduino Mega
  • Робот-манипулятор с несколькими степенями свободы
  • Система «умный дом» с веб-интерфейсом
  • Метеозонд для запуска в стратосферу
  • CNC-станок для фрезеровки печатных плат
  • Самобалансирующийся робот на двух колесах

Подобные проекты потребуют серьезных навыков в электронике, программировании и конструировании. Но результат будет впечатляющим!


Как выбрать Arduino-проект для себя?

При выборе проекта стоит учитывать несколько факторов:

  1. Уровень сложности — он должен соответствовать вашим навыкам
  2. Наличие необходимых компонентов и инструментов
  3. Время на реализацию — оцените, сколько вы готовы потратить
  4. Интерес — проект должен вас по-настоящему увлекать
  5. Практическая польза — подумайте, как вы будете использовать результат

Начинать лучше с простых проектов, постепенно усложняя их и добавляя новые элементы. Так вы сможете планомерно наращивать свои навыки.

Где найти идеи и инструкции для Arduino-проектов?

Отличные источники вдохновения и полезной информации:

  • Сайт Arduino.cc с официальными учебниками
  • Форумы по Arduino и электронике
  • YouTube-каналы по электронике и DIY
  • Книги по Arduino-проектам
  • Блоги опытных Arduino-энтузиастов
  • Тематические группы в социальных сетях
  • Хакспейсы и мейкерспейсы в вашем городе

Не стесняйтесь обращаться за советом к более опытным разработчикам — сообщество Arduino очень дружелюбное и всегда готово помочь новичкам.


Советы по реализации Arduino-проектов

Несколько рекомендаций, которые помогут вам в работе над проектами:

  1. Тщательно планируйте проект перед началом работы
  2. Разбивайте сложные задачи на простые подзадачи
  3. Начинайте с простой рабочей версии, потом дорабатывайте
  4. Используйте готовые библиотеки, чтобы не изобретать велосипед
  5. Комментируйте свой код для лучшего понимания
  6. Регулярно делайте резервные копии проекта
  7. Не бойтесь экспериментировать и пробовать новое

И помните — главное в Arduino-проектах это не только результат, но и сам процесс творчества и познания нового!

Перспективные направления для Arduino-проектов

Arduino находит применение во многих современных технологических трендах. Вот несколько перспективных направлений для проектов:

  • Интернет вещей (IoT) — подключение устройств к сети
  • Умный дом — автоматизация бытовых процессов
  • Носимая электроника — различные гаджеты
  • Робототехника — от простых манипуляторов до сложных андроидов
  • Дроны и квадрокоптеры — системы управления и телеметрии
  • Альтернативная энергетика — контроллеры солнечных панелей и ветрогенераторов
  • Экологический мониторинг — системы контроля окружающей среды

Развитие в этих направлениях может открыть интересные перспективы не только для хобби, но и для будущей карьеры.


Заключение

Arduino открывает огромные возможности для творчества и воплощения самых смелых идей. Главное — не бояться пробовать и учиться на своих ошибках. Начните с простых проектов, постепенно усложняйте их, и вскоре вы сможете создавать действительно впечатляющие устройства. Удачи в ваших Arduino-экспериментах!


Простые проекты на Arduino Uno [Амперка / Вики]

Что это

Этот раздел wiki — сборник простых проектов. Если у вас без дела пылится Arduino Uno, по нашим рецептам вы за несколько минут соберёте законченное устройство. Для сборки проектов не понадобятся инструменты, кучи компонентов и даже рабочий стол — мы обойдёмся без пайки и проводов.

Все скетчи к проектам подробно прокомментированы. Вы можете просто скопировать код и получить готовое устройство. А можете проанализировать программы — в таком случае наверняка найдёте полезные трюки и лайфхаки.

Какие железки используем

Все представленные устройства собираются на базе контроллера Arduino Uno и платы Slot Shield. В зависимости от проекта к ним добавятся от одного до шести Тройка-модулей — сенсоров и индикаторов.

Arduino Uno

Железки и скетчи протестированы на оригинальной итальянской Arduino Uno третьей ревизии. Если у вас не оригинальная плата, вероятней всего проекты будут работать и на них, но гарантировать это нельзя.

Troyka-модули

Мы используем готовые элементы в формате Тройка-модулей. У них на борту все необходимые для работы элементы и обвязка для быстрого подключения к управляющей плате. У нас на выбор более сотни модулей — от простейших светодиодов, до систем спутниковой навигации. Единый формат модулей избавит от проблем с совместимостью. Ко всем модулям написаны библиотеки, которые упростят процесс программирования и сделают код простым и прозрачным.

Slot Shield

Проекты собираются на Slot Shield. Эта плата расширения крепится поверх Ардуино и выводит гребёнки пинов на удобные разъёмы. На Slot Shield можно установить от одного до шести модулей в разных комбинациях. Новая комбинация — новое устройство.

Разумеется, вы можете повторить проекты и на обычной макетке или Troyka Shield — соедините указанные в схеме пины обычными проводами и всё заработает.

…простые часы

Настольные часы, которые состоят всего из одного модуля — четырёхразрядного индикатора. Текущее время синхронизируется с часами компьютера при перепрошивке устройства.


…часы c подстройкой времени

Простые часы, с четырёхкнопочной клавиатурой. Кнопками можно изменить текущее время — отдельно часы и минуты.


…автономные часы

Электронный гаджет с модулем часов реального времени. На модуле предусмотрена батарейка, часы не собьются даже при отключении питания. Время настраивается с помощью четырёхкнопочной клавиатуры.


…электронный будильник

Часы с громкой пьезопищалкой. Текущее время и время срабатывания сигнала задаются с помощью четырёхкнопочной клавиатуры. За точность хода отвечает модуль часов реального времени.


…световой будильник

Электронный будильник с функцией имитации рассвета. За пять минут до установленного времени будильник деликатно увеличивает уровень освещённости в комнате. Сначала будит спокойным зелёным цветом, затем добавляет жёлтый, после — начинает светиться красным.


…простую станцию для компьютера

Подключим цифровой метеодатчик и выведем результаты на компьютер.


…метеостанцию с дисплеем

Метеостанция, которая выводит температуру и влажность на компактный четырёхразрядный экран.


…автономную метеостанцию с барометром

Станция для метеозаисимых людей. Гаджет выводит на экран температуру, влажность и атмосферное давление.


…метеостанцию с внешним датчиком температуры

Метеостанция, которая покажет не только температуру, влажность и атмосферное давление в помещении, но и сообщит о погоде за окном.


…метеостанцию для записи температуры, атмосферного давления и влажности

Эта станция не только измерит температуру дома и за окном, зафиксирует давление и относительную влажность, но и запишет результаты измерений в лог-файл.


…«Саймон говорит»

Простая электронная игра, направленная на развитие и тренировку памяти. Повторяйте последовательность загорающихся светодиодов на клавиатуре компьютера.


…«Кнопочные ковбои»

Отстреливайте появляющихся на экране врагов с помощью 3D-джойстика.


…«Flappy Bird»

Управляйте полётом гордой жёлтой птички с помощью джойстика. Нажмёте вверх, она взмахнёт крыльями и взлетит. Оставите в покое — она начнёт снижаться. Главное, не врезайтесь в зелёные трубы.


…«Змейка»

Собраем классическую игру на Arduino Uno.


Ардуино проекты: популярные, необычные, простые

Arduino – это популярная платформа разработки для электронщиков и их проектов электроники простым способом. Он состоит как из физической программируемой платы разработки (на базе микроконтроллеров AVR), так и из части программного обеспечения или IDE, которая работает на вашем компьютере и используется для записи и загрузки кода на плату микроконтроллера. В этой статье рассмотрены популярные, необычные и простые Ардуино проекты.

Итог реализации проекта Arduino Ambilight Итог реализации проекта Arduino Ambilight

Самые популярные Ардуино-проекты

Для начала рассмотрим самые популярные Аrduino-projects:

  1. MIDI-контроллер – самый простой из популярных проектов Ардуино. MIDI-контроллеры – отличный способ управлять различными звуками на вашем компьютере с использованием физического оборудования. Это довольно старая технология, и вы можете купить всевозможные охлаждающие MIDI-контроллеры практически в любом музыкальном магазине. Но если вы не хотите покупать MIDI-контроллер, вы можете сделать свой собственный с Arduino. Как только вы его создадите, вы сможете контролировать все свои удары, звуковые сигналы и переходы через USB.
  2. Датчик Ambilight на ЖК-дисплей (см. фото выше). Добавление небольшого количества подсветки на ваш ЖК-дисплей – отличный способ сделать просмотр фильмов немного более захватывающим. Конечный результат – это система просмотра фильмов с завораживающими эффектами.
  3. Управление устройствами высокого напряжения с использованием Arduino. В конце проекта вы сможете управлять своими бытовыми приборами, такими как светодиод, вентилятор, лампочка и так далее. Вы можете отрегулировать время включения и выключения этих приборов. В этом проекте используется один из самых популярных модулей, то есть 2-канальный релейный модуль, который широко используется для управления высоковольтными устройствами с задействованием сигналов низкого напряжения. Итак, в этом проекте вы узнаете, как использовать 2-канальный релейный модуль с Arduino и его схемой.
  4. Датчик температуры Ардуино. Схема проекта довольно проста. Основная цель оборудования – измерить значение температуры окружающего пространства, а затем распечатать его на ЖК-дисплее, используя Arduino и термистор. Термистор – это тип переменного резистора, который изменяет его сопротивление в соответствии с температурой окружающей среды. Так что да, вы можете сделать это, как работы LDR (Light Dependent Resistor) с одной разницей. В то время, как LDR меняет свое сопротивление в соответствии с интенсивностью света, сопротивление термистора зависит от температуры окружающей среды.

Самые необычные проекты

Теперь перейдем к необычным проектам с использованием Аrduino микропроцессора:

  1. Игрушка Easy Robot Toy PipeBot. Если вы ищете более простой проект, возможно, тот, с которым вы можете работать со своими детьми, тогда рассмотрите вариант создания игрушки PipeBot. Потребуются лишь материалы, которые всегда находятся под рукой. Когда вы построите, вы получите рулонную политрубку, которой вы можете управлять с помощью вашего смартфона.
  2. 3D-сканер. Разработчик-любитель Ричард создал этот проект для сканирования 3D-моделей своих детей. Это на самом деле довольно революционный дизайн, поскольку он не заставляет людей стоять на месте в течение длительного времени во время сканирования. Вместо этого этот 3D-сканер мгновенно снимает несколько фотографий с разных ракурсов и собирает изображения в виде 3D-сканирования. Ричардский сканер построен с 40 контактами Pis, 40 поддерживающими контакты Pi камерами и 40 8GB SD-картами. Итак, как вы можете себе представить, этот проект мгновенно окупится.
  3. Приспособление для людей с ограниченными возможностями. С помощью ардуиноподобного устройства, называемого Tongueduino, которое разработано исследователем MIT Гершоном Дублоном, отправляется информация на площадку с электродами, расположенными по сетке. Этот пэд помещается в рот пользователя. При подключении к электронному датчику пэд преобразует сигналы от датчика в небольшие импульсы электрического тока через сетку, которые язык читает, как образец человеческого языка. Известно, что язык имеет чрезвычайно плотное сенсорное разрешение, а также высокую степень нейропластичности, способность адаптироваться к каждому человеку. Исследования показали, что электротактильные языковые дисплеи могут использоваться в качестве протезов зрения для слепых. Пользователи быстро учатся читать и перемещаться по естественным средам. С помощью Tongueduino сигналы сопоставляют пространственные и интенсивные карты с количеством импульсов внутри кадра. Пользователь Tongueduino может идентифицировать пиксели и линии, нарисованные на сетке 3×3, коллегой на компьютере. Конечная цель состоит в том, чтобы выйти за рамки простой замены зрения в сторону большего сенсорного увеличения. Соединение с магнитометром может предоставить пользователю внутреннее чувство направления.

Самые простые проекты для начинающих

Приведем примеры нескольких простых самоделок на Ардуино, которые может сделать даже неопытный в конструировании электронных приборов человек:

  1. Arduino RFID дверной замок. RFID обозначает радиочастотную идентификацию. Каждая RFID-карта имеет уникальный идентификатор, встроенный в нее, и считыватель RFID используется для считывания RFID-карты no. EM-18 RFID-считыватель работает на частоте 125 кГц, поставляется со встроенной антенной и может питаться от источника питания 5 В. Он обеспечивает последовательный выход вместе с выходом Weigand. Диапазон составляет около 8-12 см. Параметры последовательной связи – 9600 бит/с, 8 бит данных, 1 стоповый бит. Эта беспроводная RF-идентификация используется во многих системах.
  2. Знаменитый Аrduino проект – взаимодействующий датчик наклона с микроконтроллером. Переключатель датчика наклона представляет собой электронное устройство, которое определяет ориентацию объекта и дает свой выход, высокий или низкий, соответственно. В нем есть ртутный шар, который перемещается. Таким образом, датчик наклона может включать или выключать схему, в зависимости от ориентации. В этом проекте мы взаимодействуем с датчиком Mercury/Tilt с Arduino UNO. Мы контролируем светодиод и зуммер в соответствии с выходом датчика наклона. Всякий раз, когда мы наклоняем датчик, будильник включается.
  3. На Ардуино делается элементарный проект – цифровой вольтметр. С простым знанием цепи Arduino и Voltage Divider Circuit мы можем превратить Arduino в цифровой вольтметр и измерить входное напряжение с помощью Arduino и ЖК-дисплея 16×2. Arduino имеет несколько аналоговых входных контактов, которые соединяются с аналого-цифровым преобразователем (АЦП) внутри Arduino. Arduino ADC – это десятибитовый преобразователь. Это означает, что выходное значение будет находиться в диапазоне от 0 до 1023. Мы получим это значение, используя функцию analogRead. Если вы знаете опорное напряжение, вы можете легко рассчитать текущее напряжение на аналоговом входе. Мы можем использовать схему делителя напряжения для расчета входного напряжения.

Наверх ↑

● Уроки и проекты Arduino

Что такое Arduino?

Платформа Ардуино пользуется огромной популярностью во всем мире благодаря удобству и простоте языка программирования, а также открытой архитектуре и программному коду. Плата Arduino состоит из микроконтроллера Atmel AVR и элементов обвязки для программирования и интеграции с другими схемами.  Подробнее …

Установка Arduino IDE

Первое включение. Установка Arduino IDE

Разработка собственных приложений на базе плат, совместимых с архитектурой Arduino, осуществляется в официальной бесплатной среде программирования Arduino IDE. Среда предназначена для написания, компиляции и загрузки собственных программ в память микроконтроллера.  Подробнее …

Установка Arduino IDE Умный дом и интернет вещей. Элементы, решения, системы управления, проекты

Самый главный компонент любой «умной» системы – его контроллер. Контроллер предназначен для получения информации и управления «умным» домом. В нашем наборе два контроллера! Это плата Arduino MEGA и модуль NodeMCU v3 Lua WI-FI ESP8266 Ch440. Вы можете выбрать любой из них. Подробнее …
 

Установка Arduino IDE Arduino проект 34: Организация подключения к сети Интернет с помощью модуля Ai-Thinker A6

В предыдущих главе мы рассмотрели мы сделали большие шаги построения «умного дома» –  оснастили его датчиками и исполнительными устройствами и создали и обеспечили определенную степень автоматизации для создания комфорта и безопасности. Теперь пришло время сделать наш «умный дом» устройством IoT (Интернета вещей), чтобы получить доступ к нему для мониторинга и управления из любой точки мира по сети интернет. Организуем доступ контроллеров нашего дома к сети интернет. Подробнее …
 

Arduino Проект 33:  Модуль GPS. Принцип работы, подключение, примеры

Arduino проект 33:  Модуль GPS. Принцип работы, подключение, примеры

В этом эксперименте рассмотрим работу модуля GPS-приемника, позволяющего определять наше местоположение с помощью глобальной системы GPS, и подключение данного приемника к плате Arduino. GPS (Global Positioning System) – это система, позволяющая с точностью не хуже 100 м определить местоположение объекта.  Подробнее …

Arduino проект 32: Беспроводная связь. Модуль GSM/GPRS SIM900

Arduino проект 32: Беспроводная связь. Модуль GSM/GPRS SIM900

В этом эксперименте рассмотрим работу модуля GSM/GPRS Shield – платы расширения, позволяющей Arduino работать в сетях сотовой связи по технологиям GSM/GPRS для приёма и передачи данных, SMS и голосовой связи. GSM/GPRS Shield на базе модуля SIMCom SIM900 выпускают несколько производителей, и платы имеют незначительные отличия. Также на некоторых платах расположены: слот для SIM-карты, стандартные 3,5 мм джек для аудиовхода и выхода и разъём для внешней антенны. На плате GSM/GPRS shild имеется несколько перемычек, позволяющих выбрать тип serial-соединения.  Подробнее …

Arduino Проект 31: Беспроводная связь. Модуль Bluetooth HC-05 Arduino проект 31: Беспроводная связь. Модуль Bluetooth HC-05

В этом эксперименте рассмотрим работу модуля Bluetooth HC-05, позволяющего плате Arduino установить беспроводную связь и обмениваться данными с другими устройствами по протоколу Bluetooth. Bluetooth позволяет объединять в локальные сети любую технику: от мобильного телефона и компьютера до холодильника. При этом одним из немаловажных параметров новой технологии являются низкая стоимость устройства связи (в пределах 20 долларов), его небольшие размеры.  Подробнее …
 

Arduino проект 30:  Беспроводная связь. Модуль Wi-Fi ESP8266 Arduino проект 30:  Беспроводная связь. Модуль Wi-Fi ESP8266

В этом эксперименте мы познакомимся с модулем ESP8266, с помощью которого можно подключить плату Arduini к сетям Wi-Fi, и напишем скетч для передачи данных датчика температуры на веб-сервис Народный мониторинг. Платы на ESP8266 – это не просто модули для связи по Wi-Fi. Чип, по сути, является микроконтроллером со своими интерфейсами SPI, UART, а также портами GPIO, а это значит, что модуль можно использовать автономно без Arduino и других плат с микроконтроллерами.  Подробнее …
 

Arduino Проект 29: Работа с Интернетом на примере Arduino Ethernet Shield W5100 Arduino проект 29: Работа с Интернетом на примере Arduino Ethernet Shield W5100

В этом эксперименте мы покажем, как нашей плате Arduino получить доступ к сети Интернет с помощью модуля Ethernet shield W5100. Ethernet Shield позволяет легко подключить вашу плату Arduino к локальной сети или сети Интернет. Он предоставляет возможность Arduino отправлять и принимать данные из любой точки мира с помощью интернет-соединения.  Подробнее …
 

Arduino проект 28:  Считыватель RFID на примере RC522. Принцип работы, подключение Arduino проект 28:  Считыватель RFID на примере RC522. Принцип работы, подключение

В этом эксперименте мы покажем, как плата Arduino получает доступ к данным RFID-карт и брелоков Mifare с помощью RFID-считывателя RC522C. Идентификация объектов производится по уникальному цифровому коду, который считывается из памяти электронной метки, прикрепляемой к объекту идентификации. Считыватель содержит в своем составе передатчик и антенну, посредством которых излучается электромагнитное поле определенной частоты.  Подробнее …
 

Arduino проект 27:  SD-карта. Чтение и запись данных Arduino проект 27:  SD-карта. Чтение и запись данных

В этом эксперименте мы покажем, как к плате Arduino подключить SD-карту. Если вашим Аrduino-проектам не хватает памяти, а объем энергонезависимой памяти EEPROM в платах Arduino совсем небольшой, можно использовать внешние носители. Один из самых простых по подключению к платам Arduino – это SD-карта. Можно подсоединиться к SD-карте напрямую, а можно использовать модули.  Подробнее …
 

Arduino проект 26:  Часы реального времени. Принцип работы, подключение, примеры Arduino проект 26:  Часы реального времени. Принцип работы, подключение, примеры

В этом эксперименте мы рассмотрим модуль часов реального времени на микросхеме DS1307. Микросхема Dallas DS1307 представляет собой часы реального времени с календарем и дополнительной памятью NW SRAM (56 байт). Микросхема подключается к микроконтроллеру при помощи шины I2C. Количество дней в месяце рассчитывается с учетом високосных лет до 2100 г. В микросхеме DS1307 имеется встроенная схема, определяющая аварийное отключение питания  Подробнее …
 

Arduino проект 25:  ИК-фотоприемник и ИК-пульт. Обрабатываем команды от пульта Arduino проект 25:  ИК-фотоприемник и ИК-пульт. Обрабатываем команды от пульта

В этом эксперименте мы организуем беспроводную ИК-связь, которая нам позволит отправлять на плату Arduino команды с помощью любого ИК-пульта. В качестве приемника будем использовать микросхему TSOP31236. В одном корпусе она объединяет фотодиод, предусилитель и формирователь. На выходе формируется обычный ТТЛ-сигнал без заполнения, пригодный для дальнейшей обработки микроконтроллером.  Подробнее …
 

Arduino Проект 24:  3-осевой гироскоп + акселерометр на примере GY-521 Arduino проект 24:  3-осевой гироскоп + акселерометр на примере GY-521

В этом эксперименте мы познакомимся с акселерометром и гироскопом и будем с помощью Arduino получать показания с этих датчиков. Модуль GY-521 на микросхеме MPU6050 содержит гироскоп, акселерометр и температурный сенсор. На плате модуля GY-521 расположена необходимая обвязка MPU6050, в том числе подтягивающие резисторы, стабилизатор напряжения на 3,3 В с малым падением напряжения с фильтрующими конденсаторами. Обмен с микроконтроллером осуществляется по шине I2C.  Подробнее …
 

Arduino проект 23:  Ультразвуковой датчик расстояния HC-SR04. Принцип работы, подключение, пример Arduino проект 23:  Ультразвуковой датчик расстояния HC-SR04. Принцип работы, подключение, пример

В этом эксперименте мы рассмотрим ультразвуковой датчик для измерения расстояния и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. Ультразвуковой дальномер HC-SR04 – это помещенные на одну плату приемник и передатчик ультразвукового сигнала. Излучатель генерирует сигнал, который, отразившись от препятствия, попадает на приемник. Измерив время, за которое сигнал проходит до объекта и обратно, можно оценить расстояние.  Подробнее …
 

Arduino проект 22:  Датчики газов. Принцип работы, пример работы Arduino проект 22:  Датчики газов. Принцип работы, пример работы

В этом эксперименте мы рассмотрим ультразвуковой датчик для измерения расстояния и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. Серия MQ-сенсоров для Ардуино, построены на базе мини-нагревателя внутри и используют электрохимический сенсор. Они чувствительны для определенных диапазонов газов и используются в помещениях при комнатной температуре.  Подробнее …
 

Arduino проект 21:  Датчик влажности и температуры DHT11 Arduino проект 21:  Датчик влажности и температуры DHT11

В этом эксперименте мы рассмотрим датчик для измерения относительной влажности воздуха и температуры DHT11 и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. Датчик DHT11 состоит из емкостного датчика влажности и термистора. Кроме того, датчик содержит в себе простенький АЦП для преобразования аналоговых значений влажности и температуры.  Подробнее …
 

Arduino проект 20:  Датчик температуры DS18B20

Arduino проект 20:  Датчик температуры DS18B20


В этом эксперименте мы рассмотрим популярный цифровой датчик температуры DS18B20, работающий по протоколу 1-Wire, и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. DS18B20 – цифровой термометр с программируемым разрешением от 9 до 12 битов, которое может сохраняться в EEPROM-памяти прибора. DS18B20 обменивается данными по шине 1-Wire и при этом может быть как единственным устройством на линии, так и работать в группе. Все процессы на шине управляются центральным микропроцессором.  Подробнее …
 
Arduino проект 19:  Шаговый двигатель 4-фазный, с управлением на ULN2003 (L293) Arduino проект 19:  Шаговый двигатель 4-фазный, с управлением на ULN2003 (L293)

В этом эксперименте мы рассмотрим подключение к Arduino шагового двигателя. Шаговые двигатели представляют собой электромеханические устройства, задачей которых является преобразование электрических импульсов в перемещение вала двигателя на определенный угол. ШД нашли широкое применение в области, где требуется высокая точность перемещений или скорости.  Подробнее …
 

Arduino проект 18:  Обрабатываем данные от джойстика. Управление Pan/Tilt Bracket с помощью джойстика Arduino проект 18:  Обрабатываем данные от джойстика. Управление Pan/Tilt Bracket с помощью джойстика

В этом эксперименте мы рассмотрим подключение к Arduino двухосевого аналогового джойстика. Для плат Arduino существуют модули аналогового джойстика, имеющие ось X, Y (потенциометры 10 кОм) и дополнительную кнопку – ось Z. Джойстик позволяет плавно и точно отслеживать степень отклонения от нулевой точки. Сам джойстик подпружиненный, поэтому он будет возвращаться в центральное состояние после его отпускания из определенной позиции.  Подробнее …
 

Arduino проект 17:  Сервопривод. Крутим потенциометр, меняем положение Arduino проект 17:  Сервопривод. Крутим потенциометр, меняем положение

Сервопривод управляется с помощью импульсов переменной длительности. Угол поворота определяется длительностью импульса, который подается по сигнальному проводу. Это называется широтно-импульсной модуляцией. Сервопривод ожидает импульса каждые 20 мс. Длительность импульса определяет, насколько далеко должен поворачиваться мотор.  Подробнее …
 

Arduino проект 16:  Графический индикатор. Подключение дисплея Nokia 5110 Arduino проект 16:  Графический индикатор. Подключение дисплея Nokia 5110

В этом эксперименте мы рассмотрим графический дисплей Nokia 5110, который можно использовать в проектах Arduino для вывода графической информации. Жидкокристаллический дисплей Nokia 5110 – монохромный дисплей с разрешением 84×48 на контроллере PCD8544, предназначен для вывода графической и текстовой информации. Питание дисплея должно лежать в пределах 2.7–3.3 В (максимум 3.3 В, при подаче 5 В на вывод VCC дисплей может выйти из строя). Но выводы контроллера толерантны к +5 В, поэтому их можно напрямую подключать к входам Arduino. Немаловажный момент – низкое потребление, что позволяет питать дисплей от платы Arduino без внешнего источника питания.  Подробнее …
 

Arduino проект 15:  Индикатор LCD1602. Принцип подключения, вывод информации на него

Arduino проект 15:  Индикатор LCD1602. Принцип подключения, вывод информации на него


В этом эксперименте мы познакомимся с жидкокристаллическими индикаторами Winstar для вывода символьной информации. Научимся в Arduino-проектах применять библиотеки и создадим проект вывода показаний датчика температуры LM335 на экран дисплея. Жидкокристаллические индикаторы (ЖКИ, англ. LCD) являются удобным и недорогим средством для отображения данных ваших проектов. Символьный индикатор Wh2602 позволяет выводить на экран 2 строки по 16 символов (размером 5×7 или 5×10 и дополнительная строка под курсор). Управляет работой дисплея контроллер.  Подробнее …
 
Arduino проект 14:  Датчик температуры аналоговый LM335. Принцип работы, пример работы Arduino проект 14:  Датчик температуры аналоговый LM335. Принцип работы, пример работы

В этом эксперименте мы познакомимся с аналоговым датчиком для измерения температуры LM335. LM335 – это недорогой температурный чувствительный элемент с диапазоном от –40 °C до +100 °C и точностью в 1 °C. По принципу действия датчик LM335 представляет собой стабилитрон, у которого напряжение стабилизации зависит от температуры.  Подробнее …
 

Arduino проект 13:  Фоторезистор. Обрабатываем освещённость, зажигая или гася светодиоды Arduino проект 13:  Фоторезистор. Обрабатываем освещённость, зажигая или гася светодиоды

В этом эксперименте мы познакомимся с аналоговым датчиком для измерения освещенности – фоторезистором. Распространённое использование фоторезистора – измерение освещённости. В темноте его сопротивление довольно велико. Когда на фоторезистор попадает свет, сопротивление падает пропорционально освещенности.  Подробнее …
 

Arduino проект 12:  Управляем реле через транзистор Arduino проект 12:  Управляем реле через транзистор

В этом эксперименте мы познакомимся с реле, с помощью которого с Arduino можно управлять мощной нагрузкой не только постоянного, но и переменного тока. При подключении реле к Arduino контакт микроконтроллера не может обеспечить мощность, необходимую для нормальной работы катушки. Поэтому следует усилить ток – поставить транзистор. Для усиления удобнее применять n-p-n-транзистор.  Подробнее …
 

Arduino проект 11:  Транзистор MOSFET. Показываем усилительные качества транзистора. На примере электродвигателя изменяем обороты Arduino проект 11:  Транзистор MOSFET. Показываем усилительные качества транзистора. На примере электродвигателя изменяем обороты

В этом эксперименте мы познакомимся с транзистором MOSFET и с помощью него будем управлять мощной нагрузкой – электродвигателем. Выводы Arduino, сконфигурированные как OUTPUT, находятся в низкоимпедансном состоянии и могут отдавать 40 мА в нагрузку и не в состоянии обеспечить питание мощной нагрузки и большого напряжения. Одним из способов управления мощной нагрузкой является использование полевых MOSFET-транзисторов.  Подробнее …
 

Arduino проект 10:  Управляем пьезоизлучателем: меняем тон, длительность, играем музыку Arduino проект 10:  Управляем пьезоизлучателем: меняем тон, длительность, играем музыку

В этом эксперименте мы произведем генерацию звуков на Arduino c помощью пьзоизлучателя. Пьезоизлучатели бывают двух типов – со встроенным генератором и без. Пьезоизлучатели со встроенным генератором излучают фиксированный тональный сигнал сразу после подачи на них номинального напряжения. Они не могут воспроизводить произвольного сигнала.  Подробнее …
 

Arduino проект 9:  Матрица светодиодная 8x8 Arduino проект 9:  Матрица светодиодная 8×8

В этом эксперименте мы рассмотрим каскадное подключение нескольких микросхем 74HC595, что позволит, используя 3 вывода Arduino, управлять множеством контактов, что будет продемонстрировано в примере вывода фигур на экран светодиодной матрицы 8×8. В эксперименте будем использовать двухцветную светодиодную матрицу FYM-23881BUG-11.  Подробнее …
 

Arduino проект 8:  Микросхема сдвигового регистра 74НС595. Управляем матрицей из 4 разрядов, экономим выходы Arduino

Arduino проект 8:  Микросхема сдвигового регистра 74НС595. Управляем матрицей из 4 разрядов, экономим выходы Arduino


В этом эксперименте мы рассмотрим работу Arduino с микросхемой 74HC595 – расширителем выходов, позволяющей уменьшить количество выводов Arduino для управления 4-разрядной семисегментной матрицей. Цифровых выводов Arduino Nano и UNO, а иногда даже и Arduino Mega может не хватить, если требуется управлять большим количеством выводов. В этом случае можно использовать микросхему 74HC595.  Подробнее …
 
Arduino проект 8:  Микросхема сдвигового регистра 74НС595. Управляем матрицей из 4 разрядов, экономим выходы Arduino Arduino проект 7: Матрица 4-разрядная из 7-сегментных индикаторов. Делаем динамическую индикацию

В этом эксперименте мы рассмотрим работу Arduino с 4-разрядной семисегментной матрицей. Получим представление о динамической индикации, позволяющей использовать одни выводы Arduino при выводе информации на несколько семисегментных индикаторов. Предназначена для одновременного вывода на матрицу 4 цифр, также есть возможность вывода десятичной точки.  Подробнее …
 

Arduino проект 6:  Семисегментный индикатор одноразрядный. Выводим цифры

Arduino проект 6:  Семисегментный индикатор одноразрядный. Выводим цифры


В этом эксперименте мы рассмотрим работу с семисегментным светодиодным индикатором, которая позволяет Arduino визуализировать цифры. Светодиодный семисегментный индикатор представляет собой группу светодиодов, расположенных в определенном порядке и объединенных конструктивно. Светодиодные контакты промаркированы метками от a до g (и дополнительно dp – для отображения десятичной точки), и один общий вывод, который определяет тип подключения индикатора (схема с общим анодом ОА, или общим катодом ОК).  Подробнее …
 
Arduino проект 5: RGB-светодиод. Широтно-импульсная модуляция. Переливаемся цветами радуги

Arduino проект 5: RGB-светодиод. Широтно-импульсная модуляция. Переливаемся цветами радуги


В этом эксперименте мы рассмотрим широтно-импульсную модуляцию, которая позволяет Arduino выводить аналоговые данные на цифровые выводы, и применим эти знания для создания прозвольных цветов свечения с помощью RGB-светодиода.  Подробнее …
 
Arduino проект 4: Светодиодная шкала 10 сегментов. Вращением потенциометра меняем количество светящихся светодиодов

Arduino проект 4: Светодиодная шкала 10 сегментов. Вращением потенциометра меняем количество светящихся светодиодов


В этом эксперименте мы рассмотрим работу аналоговых входов Arduino, работу потенциометра в качестве аналогового датчика и будем демонстрировать показания аналогового датчика с помощью светодиодной шкалы. ля получения аналоговых данных Arduino имеет аналоговые входы, оснащенные 10-разрядным аналого-цифровым преобразователем для аналоговых преобразований.  Подробнее …
 
Arduino проект 4: Светодиодная шкала 10 сегментов. Вращением потенциометра меняем количество светящихся светодиодов Arduino проект 3: Потенциометр. Показываем закон Ома на примере яркости светодиода

В этом эксперименте мы познакомимся с потенциометром и будем управлять яркостью светодиода и изменением сопротивления потенциометра. Сейчас мы рассмотрим, как подобрать ограничительный резистор и как будет влиять номинал резистора на яркость светодиода.  Подробнее …
 

Arduino проект 2: Обрабатываем нажатие кнопки на примере зажигания светодиода. Боремся с дребезгом контактов Arduino проект 2: Обрабатываем нажатие кнопки на примере зажигания светодиода. Боремся с дребезгом контактов

Это эксперимент по работе с кнопкой. Мы будем включать светодиод по нажатии кнопки и выключать по отпускании кнопки. Рассмотрим понятие дребезга и программные методы его устранения. При использовании Arduino в качестве входов используют pull-up- и pulldown-резисторы, чтобы вход Arduino не находился в «подвешенном» состоянии (в этом состоянии он будет собирать внешние наводки и принимать произвольные значения), а имел заранее известное состояние (0 или 1).  Подробнее …
 

Arduino проект 1:  Мигаем светодиодом Arduino проект 1:  Мигаем светодиодом

В этом эксперименте мы научимся управлять светодиодом. Заставим его мигать. Светодиод – это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. По-английски светодиод называется light emitting diode, или LED.  Подробнее …
 

Схемы, устройства и проекты на Arduino Uno, Mega, Nano и Mini

В настоящее время наблюдается небывалый интерес к конструированию различных летающих механизмов – дронов, планеров, глайдеров, вертолетов и т.д. Сейчас их можно легко сконструировать самостоятельно благодаря большому количеству материалов по ним в сети интернет. Все эти летающие механизмы используют для своего … Читать далее →

Все мы знакомы со счетчиками электроэнергии, которые установлены сейчас в каждой квартире или домохозяйстве. Обычно мы смотрим их показания один раз в месяц когда заполняем квитанции на оплату коммунальных услуг. Но иногда количество потребленной электроэнергии становится для нас неожиданностью – … Читать далее →

В этой статье мы рассмотрим создание на основе платы Arduino простого пианино, которое будет включать в себя 8 кнопок и зуммер. Для воспроизведения звука с помощью Arduino будет использоваться функция tone(). Чтобы сделать проект более интересным мы добавили в него … Читать далее →

Наверняка многие из вас в отелях или где-нибудь в других местах уже встречались с электронными замками, которые можно открыть с помощью карты с радиочастотной идентификацией (RFID), без использования привычного механического ключа. Чтобы открыть такую дверь надо просто приложить карту к … Читать далее →

Проблема экономии электроэнергии является одной из ключевых в современном мире. Часто можно наблюдать, как где-нибудь горит электрический свет в то время как в помещении (на улице) достаточно светло, тем самым растрачивая впустую электроэнергию. На нашем сайте мы уже рассматривали детектор … Читать далее →

На первый взгляд, управление светодиодом с помощью голоса может показаться достаточно трудной задачей, но с помощью такой платформы как Arduino в этом нет ничего сложного. Все, что нам нужно будет сделать – это соединить плату Arduino по последовательному каналу связи … Читать далее →

Как сделать какой-нибудь уголок нашей комнаты более привлекательным? Конечно же добавить в него цветомузыку. В этой статье мы рассмотрим проект простой цветомузыки на основе платы Arduino и трехцветного светодиода, который будет изменять цвет в зависимости от освещенности в комнате. Как … Читать далее →

С тех пор как появилось программирование появились и различные электронные игры. При этом программированием игр часто занимаются даже опытные программисты, улучшая с помощью этого свои навыки программирования, а также получая удовольствие от создания интересной игры. В этом проекте мы рассмотрим … Читать далее →

Датчик наклона представляет собой электронное устройство, способное определять ориентацию объекта и обеспечивать на своем выходе, соответственно, высокий или низкий уровень напряжения. В своем составе датчик наклона имеет ртутный шарик, который может двигаться и замыкать цепь. Таким образом, электрическая цепь датчика … Читать далее →

В этой статье мы научимся устанавливать аппаратную поддержку для работы с Arduino в математической системе MATLAB и управлять платой Arduino из программы на MATLAB. Обычно мы используем среду Arduino IDE для написания и загрузки программного кода в плату Arduino. Так … Читать далее →

10 интересных вещей, которые можно сделать на Arduino

Если у вас есть тяга к тех­но­ло­ги­ям (или ребё­нок с такой тягой), рас­смот­ри­те Arduino. Эта шту­ка оза­да­чит вас и ребён­ка на мно­го часов, а на выхо­де полу­чат­ся уди­ви­тель­ные про­ек­ты.

Что за Arduino

Arduino — это про­грам­ми­ру­е­мый мик­ро­кон­трол­лер. То есть это пла­та, на кото­рую мож­но запи­сать вашу про­грам­му, и эта пла­та смо­жет управ­лять дру­ги­ми шту­ка­ми: напри­мер, зажечь лам­поч­ку, издать звук, вклю­чить элек­тро­при­бор, изме­рить тем­пе­ра­ту­ру, отпра­вить СМС.

На самом базо­вом уровне Arduino про­сто отправ­ля­ет и счи­ты­ва­ет элек­три­че­ские импуль­сы. Напри­мер, мож­но под­клю­чить к нему тер­мо­метр, и Arduino смо­жет счи­тать тем­пе­ра­ту­ру в ком­на­те. А потом, в зави­си­мо­сти от про­грам­мы, отпра­вить сиг­нал на устрой­ство, кото­рое вклю­чит вен­ти­ля­тор.

Или мож­но под­клю­чить к Arduino дат­чик угле­кис­ло­го газа. Arduino мож­но научить счи­ты­вать пока­за­ния дат­чи­ка каж­дые пять минут и, когда уро­вень угле­кис­ло­го газа пре­вы­ша­ет нор­му, запи­щать, зами­гать лам­поч­кой или с помо­щью серии мотор­чи­ков открыть окно.

К Arduino есть мно­го плат рас­ши­ре­ния и дат­чи­ков. Сфе­ры при­ме­не­ния пла­ты почти без­гра­нич­ны: авто­ма­ти­за­ция, систе­мы без­опас­но­сти, умный дом, музы­ка, робо­то­тех­ни­ка и мно­гое дру­гое. Вот что мож­но делать на этой умной ита­льян­ской пла­те и на её рос­сий­ских и зару­беж­ных кло­нах.

1. Робот-бармен с Bluetooth-управлением

Слож­ность: 4/5.

Вре­мя: 5/5.

Робот-бармен с Bluetooth-управлением

Неза­ме­ни­мое устрой­ство для любой вече­рин­ки: рабо­та­ет от вось­ми бата­ре­ек, гото­вит мно­го кок­тей­лей и управ­ля­ет­ся без про­во­дов. В осно­ве меха­ни­че­ско­го бар­ме­на — пла­та Arduino, при­во­ды для пози­ци­о­ни­ро­ва­ния шей­ке­ра и пода­чи напит­ков, дат­чи­ки поло­же­ний.

Глав­ная слож­ность при изго­тов­ле­нии — инже­нер­ная. Нуж­но точ­но при­кру­тить все дета­ли и соеди­нить их меж­ду собой, что­бы ёмкость ока­зы­ва­лась точ­но под нуж­ны­ми бутыл­ка­ми.

Подроб­но­сти: usamodelkina.ru.

2. Светящийся куб на 512 светодиодов

Слож­ность: 3/5.

Вре­мя: 3/5.

Светящийся куб на 512 светодиодов

Кра­си­вая шту­ка, кото­рая может све­тить­ся в такт музы­ке как трёх­мер­ный эква­лай­зер и пока­зы­вать 3D-анимацию. А ещё это может рабо­тать как необыч­ный ноч­ник.

Для сбор­ки пона­до­бит­ся дере­вян­ное шас­си с отвер­сти­я­ми, что­бы каж­дый ярус был таким же по раз­ме­ру и фор­ме, что и осталь­ные. Чис­ло све­то­ди­о­дов в каж­дой гра­ни выбра­но не слу­чай­но: 8 ламп = 8-битная логи­ка, самая про­стая в про­грам­ми­ро­ва­нии и управ­ле­нии через кон­трол­лер.

Подроб­но­сти: instructables.com.

3. Взломщик кодовых замков

Слож­ность: 5/5.

Вре­мя: 4/5.

Светящийся куб на 512 светодиодов

Этот про­ект раз­ра­бо­тал хакер Сэми Кам­кар, и мы при­во­дим его толь­ко в демон­стра­ци­он­ных целях. Для взло­ма, кро­ме пла­ты Arduino, автор взял серво- и шаго­вый дви­га­те­ли для пере­бо­ра ком­би­на­ций и соеди­нил всё на само­дель­ном шас­си из алю­ми­ния. В осно­ве алго­рит­ма — про­стой пере­бор всех ком­би­на­ций, но робот это дела­ет быст­рее чело­ве­ка.

Подроб­но­сти: YouTube.

4. Nod Bang — киваем головой и делаем бит

Слож­ность: 2/5.

Вре­мя: 3/5.

Nod Bang — киваем головой и делаем бит

Идея в том, что­бы не про­сто кивать в такт музы­ке, а кив­ка­ми само­му гене­ри­ро­вать звук. Энд­рю Ли сде­лал спе­ци­аль­ное устрой­ство, кото­рое сле­дит за поло­же­ни­ем голо­вы и в момент накло­на вос­про­из­во­дит нуж­ный звук.

В науш­ни­ки он встро­ил аксе­ле­ро­метр, кноп­ки отве­ча­ют за выбор зву­ка, а Arduino — за вос­про­из­ве­де­ние зву­ка на ком­пью­те­ре через MIDI-интерфейс. Что­бы всё выгля­де­ло эффект­нее, у кно­пок есть под­свет­ка, и они тоже дела­ют бит.

Подроб­но­сти: YouTube.

5. Поющее растение

Слож­ность: 2/5.

Вре­мя: 2/5.

Поющее растение

По сути это тер­мен­вокс, кото­рый сде­ла­ли в виде рас­те­ния. Все осталь­ные прин­ци­пы рабо­ты оста­лись теми же: звук воз­ни­ка­ет при дви­же­нии рук, и раз­ные дви­же­ния гене­ри­ру­ют раз­ную мело­дию.

Пла­та реги­стри­ру­ет изме­не­ние ампли­ту­ды сиг­на­ла, для чего автор исполь­зу­ет само­дель­ный сен­сор­ный детек­тор для ана­ли­за при­кос­но­ве­ний к цвет­ку. Кро­ме это­го пона­до­би­лась пла­та рас­ши­ре­ния Gameduino и сам цве­ток.

Подроб­но­сти: Vimeo.

6. Замок, который открывается на секретный стук

Слож­ность: 3/5.

Вре­мя: 2/5.

Замок, который открывается на секретный стук

Инте­рес­ная вещь для тех, кто хочет поиг­рать в шпи­о­нов или пус­кать в ком­на­ту толь­ко сво­их дру­зей. Замок рас­по­зна­ёт стук по две­ри и срав­ни­ва­ет его с базо­вым зву­ча­ни­ем, кото­рое уста­но­вил вла­де­лец. Если сов­па­да­ет — при­во­ды ото­дви­га­ют замок и дверь откры­ва­ет­ся, если нет — ниче­го не про­ис­хо­дит, мож­но посту­чать зано­во.

Что­бы уста­но­вить новый стук на откры­тие, нуж­но зажать кноп­ку на руч­ке и посту­чать по две­ри новым спо­со­бом. Пье­зо­сен­сор рас­по­зна­ёт виб­ра­ции и запи­сы­ва­ет их в память пла­ты.

Подроб­но­сти: grathio.com.

7. Горшок для цветов с автополивом

Слож­ность: 4/5.

Вре­мя: 3/5.

Замок, который открывается на секретный стук

Полез­ный гор­шок для тех, кто забы­ва­ет полить цве­ты перед отъ­ез­дом или про­сто не зна­ет, как часто надо их поли­вать. Вся элек­тро­ни­ка, насо­сы и ёмкость для воды нахо­дят­ся внут­ри горш­ка. Для каж­до­го рас­те­ния мож­но запро­грам­ми­ро­вать свой режим поли­ва в каж­дом горш­ке.

Основ­ные харак­те­ри­сти­ки чудо-горшка:

  • встро­ен­ный резер­ву­ар для воды;
  • дат­чик кон­тро­ля уров­ня влаж­но­сти поч­вы;
  • насос для пода­чи воды;
  • дат­чик уров­ня воды в резер­ву­а­ре;
  • све­то­ди­од, инфор­ми­ру­ю­щий о недо­стат­ке воды в резер­ву­а­ре.

Подроб­но­сти: usamodelkina.ru.

8. Драм-машина

Слож­ность: 1/5.

Вре­мя: 2/5.

Драм-машина

Про­стая драм-машина на Arduino. Про­ект инте­ре­сен тем, что это не обыч­ный пере­бор запи­сан­ных семплов, а насто­я­щая гене­ра­ция зву­ка с помо­щью встро­ен­но­го желе­за. Ещё здесь есть ана­ли­за­тор спек­тра зву­ка: через видео­вы­ход мож­но посмот­реть на диа­грам­мы и частот­ные харак­те­ри­сти­ки.

Мате­ма­ти­че­ская осно­ва это­го устрой­ства — раз­ло­же­ние в ряд Фурье, кото­рое реша­ет­ся под­клю­че­ни­ем стан­дарт­ной биб­лио­те­ки.

Подроб­но­сти: YouTube.

9. Шагающий робот

Слож­ность: 2/5.

Вре­мя: 1/5.

Шагающий робот

Про­стой в изго­тов­ле­нии четы­рёх­но­гий робот, кото­рый шага­ет и само­сто­я­тель­но пре­одо­ле­ва­ет пре­пят­ствия в сан­ти­метр высо­той.

Что­бы его сде­лать, вам пона­до­бят­ся сер­во­мо­то­ры для ног, немно­го про­во­ло­ки и любой пла­стик, из кото­ро­го дела­ет­ся шас­си. Для пита­ния — акку­му­ля­тор любой моде­ли, кото­рый кре­пит­ся на спине робо­та.

Подроб­но­сти: xakep.ru.

10. Робот-пылесос

Слож­ность: 4/5.

Вре­мя: 5/5.

Робот-пылесос

Дмит­рий Ива­нов из Сочи собрал насто­я­щий робот-пылесос, кото­рый дела­ет всё то же самое, что и про­мыш­лен­ные устрой­ства, толь­ко с воз­мож­но­стью тон­кой настрой­ки под себя и свою квар­ти­ру.

Основ­ные дета­ли — пла­та Arduino, 6 инфра­крас­ных дат­чи­ков, тур­би­на с дви­га­те­лем и щёт­ка­ми и акку­му­ля­тор. Ещё у робо­та есть дат­чи­ки столк­но­ве­ния, кото­рые помо­га­ют объ­ез­жать пре­пят­ствия, и кон­трол­лер акку­му­ля­то­ра, кото­рый сле­дит за уров­нем бата­рей и пре­ду­пре­жда­ет о том, что пыле­сос надо заря­дить.

Подроб­но­сти: habr.com.

Проекты Arduino для всех

Проекты Arduino для всех

Все об ардуино и электронике ! 

Arduino — торговая марка аппаратно-программных средств для построения простых систем автоматики и робототехники, ориентированная на непрофессиональных пользователей. Программная часть состоит из бесплатной программной оболочки (IDE) для написания программ, их компиляции и программирования аппаратуры. Аппаратная часть представляет собой набор смонтированных печатных плат, продающихся как официальным производителем, так и сторонними производителями. Полностью открытая архитектура системы позволяет свободно копировать или дополнять линейку продукции Arduino.

Название платформы происходит от названия одноимённой рюмочной в Иврее, часто посещавшейся учредителями проекта, а название это в свою очередь было дано в честь короля Италии Ардуина Иврейского[2].

Arduino может использоваться как для создания автономных объектов автоматики, так и подключаться к программному обеспечению на компьютере через стандартные проводные и беспроводные интерфейсы


Как прошить ардуино плату другой ардуиной Arduino ISP
Что такое ISP?
ISP (In-System Programming) расшифровывается как внутрисхемное программирование. Это технология, которая позволяет программировать микроконтроллер, установленный в устройство. До появления этой технологии микроконтроллеры программировались перед установкой в устройство, а для их перепрограммирования требовалось их извлечение из устройства.
Существует 2 основных подхода внутрисхемного программирования:
Выставка электроники Hong Kong Electronics Fair 2019 которую стоит посетить

Почему стоит посещать выставки? На хорошей Экспо всегда можно увидеть, что нас ждёт в ближайшее время, какие веяния и тенденции будут актуальными в ближайшие полгода. Hong Kong Electronics Fair – как раз одна из таких выставок, где экспоненты демонстрируют на что они способны, а мы – гости мероприятия знакомимся и активно тестируем продукты, оцениваем их и решаем, что станет хитом, что просто заслуживает интереса, а что обречено лежать без внимания на стенде. Напомним, что все это проводится под крышей красивейшего выставочного центра Гонконга – Hong Kong Convention & Exhibition Centre.

Подключение датчика сердечного ритма AD8232 , кардиограмма на Arduino ЭКГ

AD8232   — это мелкая плата с чипом , используемый для измерения импульсов электрической активности сердца. Эту электрическую активность можно обозначить как ЭКГ или электрокардиограмма. Электрокардиография используется для диагностики различных заболеваний сердца. 

Электрическая система сердца управляет генерацией и распространением электрических сигналов по сердечной мышце, в результате чего сердце периодически сокращается и расслабляется, перекачивая кровь. В процессе цикла работы сердца происходит упорядоченный процесс деполяризации. Деполяризация – это резкое изменение электрического состояния клетки, когда отрицательный внутренний заряд клетки становится на короткое время положительным. В сердце деполяризация начинается в специализированных клетках водителя сердечного ритма в синусно-предсердном узле. Далее волна возбуждения распространяется через атриовентикулярный (предсердно-желудочковый) узел вниз к пучку Гиса, переходя в волокна Пуркинье и далее приводит к сокращению желудочков. В отличие от других нервных клеток, которые неспособны генерировать электрический сигнал в автоколебательном режиме, клетки синусно-предсердного узла способны создавать ритмичный электрический сигнал без внешнего воздействия. Точнее, внешние воздействия (например, физическая нагрузка) влияют только на частоту колебаний, но не нужны для запуска этого «генератора». При этом происходит периодическая деполяризация и реполяризация клеток водителя ритма. В электрокардиостимуляторе также имеется генератор стабильной частоты, выполняющий роль синусно-предсердного узла. Мембраны живых клеток действуют как конденсаторы. Из-за того, что процессы в клетках электрохимические, а не электрические, деполяризация и реполяризация в них происходят намного медленнее, чем в конденсаторе той же емкости.

ESP8266 Wi-Fi термометр на 2 датчика 18b20 через blynk
В данном материале будет предоставлен пример как использовать несколько датчиков температуры 18b20 + добавлять нужное количество и производить удаленный мониторинг по средствам платы esp8266 nodemcu и приложения blynk. Данный материал будет полезен если нужно снимать удаленно несколько показаний температуры для мониторинга. 
Установка и настройка RetroPie на Orange pi \ Raspberry Pi

Хотите поиграть в видеоигры из детства? Танчики, Контра, Чип и Дэйл, Черепашки Ниндзя… Все эти игры ждут вас! Из данного руководства вы узнаете как просто и быстро собрать и настроить ретро-консоль на базе микрокомпьютера Raspberry Pi и сборки эмуляторов RetroPie.

Снежинка Ардуинщика на ардуино NANO с эффектами (проект к Новому Году )
Интерактивная снежинка соответствующей формы, созданная Ардуино Нано. Используя 17 независимых каналов PWM и сенсорный датчик для включения  и эффектов.
Снежинка состоит из 30 светодиодов, сгруппированных в 17 независимых сегментов, которые могут управляться отдельно микроконтроллером Arduino Nano. Каждый блок управляется отдельным пином PWM, и регулирует яркость каждого блока светодиодов и эффекты отдельно.
Пайка для начинающих от выбора паяльника до практики
Вначале статьи будет изложена теория, ближе к ее середине будет рассмотрена практика, максимально кратко так же расскажем об инструменте, о химии, которая необходима в пайке, о дополнительных инструментах. Для того, чтобы получить действительно качественную пайку, Вам все эти вопросы следует хорошо изучить, где-то узнавать подробности, но мы постараемся объяснить все максимально доступно «на пальцах», так что после прочтения вы гарантированно сможете выполнить поставленные задачи.

Показано с 1 по 16 из 98 (всего 7 страниц)

Проекты на Arduino

Автоматический дозатор мыла и антисептика своими руками.

Автоматический дозатор мыла и антисептика своими руками.

В школе робототехники, где я работаю преподавателем, попросили сделать автоматический дозатор мыла на Arduino. Начал я разрабатывать данный проект и тут закрыли всех на карантин. Проект автоматического сенсорного дозатора для жидкого мыла так и стоял недоделанным. Решил я исправить данную ситуацию и вот что получилось. Дозатор работает от батарейки крона 9v, что обеспечивает автономность и безопасность работы, но есть и минусы. Но обо всем по порядку.

Обновлено: 21 апреля , 2020

Самодельные часы — плеер на Arduino с сенсорным дисплеем Nextion.

Самодельные часы - плеер на Arduino с сенсорным дисплеем Nextion.

Разработка часов на Arduino достаточно увлекательная и интересная тема. На моём сайте вы найдете большое количество различных проектов часов, в том числе и проект часов на Arduino с дисплеем Nextion.

В данном проекте будем дорабатывать часы на Arduino с сенсорным дисплеем Nextion. Напечатаем новый корпус на 3D принтере и добавим возможность воспроизведения MP3 файлов с карты памяти.

Обновлено: 13 апреля , 2020

Ночник со стеклянными шарами на Arduino своими руками.

Ночник со стеклянными шарами на Arduino своими руками.

Сегодня расскажу про светильник, который сделал своими руками на Arduino (DigiSpark). В качестве рассеивателя установил стеклянные шарики, которые фиксируются с помощью оргстекла молочного цвета.

Заготовки для светильника вырезал на своем самодельном фрезерном ЧПУ станке больше года назад. После склейки корпуса установил электронику и протестировал работу. Но меня не устроили некоторые моменты и проект отложил. И вот, дошли руки его доработать. Изначально стеклянные шарики прижимались куском фанеры, и свет плохо рассеивался. Чтобы устранить данный конструктивный изъян заменил верхнюю часть на 2 детали. Стеклянные шарики зажимаются оргстеклом и для того, чтобы стекло сильно не прогибалось, фиксирую его куском фанеры. Такая конструкция позволяет надежно зафиксировать шарики без прогиба оргстекла.

Обновлено: 12 марта , 2020

Oled часы с выводом температуры на Arduino своими руками.

Oled часы с выводом температуры на Arduino своими руками.

Я люблю разрабатывать различные часы на Arduino. Свои первые часы делал на сдвиговых регистрах, светодиодах и Arduino. Вторая версия светодиодных часов уже была сделана на адресных светодиодах (данные часы до сих пор работают и висят у меня в коридоре). С ребёнком делали часы из Лего, семисегментного индикатора и digispark. Последние, четвёртые, реализованы на Arduino и дисплее Nextion. Подписчики написали мне, что часы получаются достаточно дорогие и собирать их нецелесообразно. Согласен, что дисплей Nextion дорогой, поэтому решил собрать часы на OLED дисплее и Arduino.

Обновлено: 8 февраля , 2020

Cамодельный сенсорный светильник на Arduino (Digispark).

Cамодельный сенсорный светильник на Arduino (Digispark).

На рынке достаточно много светильников с различными сенсорными кнопками. Что бы включить такой светильник необходимо прикоснуться к определённой области на корпусе прибора. Подобное управление я уже реализовывал, и меня не удивить таким управлением. Недавно делал елочную гирлянду, в которой управление сенсорной кнопкой выступало как альтернативное, основное управление реализовано по Wi-fi.

Недавно в гостях мне показали светильник с сенсорным управлением, который можно включить прикоснувшись к самому светильнику. Корпус светильника сделан из алюминиевого профиля. И тут меня посетила идея реализовать с помощью Arduino что-то подобное.

Обновлено: 30 января , 2020

15 отличных проектов Arduino для начинающих

MakeUseOf — Политика конфиденциальности

Мы уважаем вашу конфиденциальность и обязуемся защищать вашу конфиденциальность при работе в сети на нашем сайт. Ниже раскрываются методы сбора и распространения информации для этой сети. сайт.

Последний раз политика конфиденциальности обновлялась 10 мая 2018 г.

Право собственности

MakeUseOf («Веб-сайт») принадлежит и управляется Valnet inc.(«Нас» или «мы»), корпорация зарегистрирован в соответствии с законодательством Канады, с головным офисом по адресу 7405 Transcanada Highway, Люкс 100, Сен-Лоран, Квебек h5T 1Z2.

Собранные персональные данные

Когда вы посещаете наш веб-сайт, мы собираем определенную информацию, относящуюся к вашему устройству, например, ваше IP-адрес, какие страницы вы посещаете на нашем веб-сайте, обращались ли вы к другим веб-сайт, и в какое время вы заходили на наш веб-сайт.

Мы не собираем никаких других персональных данных.Если вы заходите на наш сайт через учетной записи в социальной сети, пожалуйста, обратитесь к политике конфиденциальности поставщика социальных сетей для получения информации относительно их сбора данных.

Файлы журнала

Как и большинство стандартных серверов веб-сайтов, мы используем файлы журналов. Это включает интернет-протокол (IP) адреса, тип браузера, интернет-провайдер (ISP), страницы перехода / выхода, тип платформы, дата / время и количество кликов для анализа тенденций, администрирования сайта, отслеживания пользователей движение в совокупности и собирать широкую демографическую информацию для совокупного использования.

Файлы cookie

Файл cookie — это фрагмент данных, хранящийся на компьютере пользователя, связанный с информацией о пользователе. Мы и некоторые из наших деловых партнеров (например, рекламодатели) используем файлы cookie на нашем веб-сайте. Эти файлы cookie отслеживают использование сайта в целях безопасности, аналитики и целевой рекламы.

Мы используем следующие типы файлов cookie:

  • Основные файлы cookie: эти файлы cookie необходимы для работы нашего веб-сайта.
  • Функциональные cookie-файлы: эти cookie-файлы помогают нам запоминать выбор, который вы сделали на нашем веб-сайте, запоминать ваши предпочтения и персонализировать ваш опыт работы с сайтом.
  • Аналитические и рабочие файлы cookie: эти файлы cookie помогают нам собирать статистические и аналитические данные об использовании, чтобы помочь проанализировать использование веб-сайта.
  • Файлы cookie социальных сетей: Эти файлы cookie позволяют вам взаимодействовать с контентом на определенных платформах социальных сетей, например, «лайкать» наши статьи. В зависимости от ваших социальных сетей настройки, сеть социальных сетей будет записывать это и может отображать ваше имя или идентификатор в связи с этим действием.
  • Рекламные и таргетированные рекламные файлы cookie: эти файлы cookie отслеживают ваши привычки просмотра и местоположение, чтобы предоставить вам рекламу в соответствии с вашими интересами. См. Подробности в разделе «Рекламодатели» ниже.

Если вы хотите отключить файлы cookie, вы можете сделать это в настройках вашего браузера. Для получения дополнительной информации о файлах cookie и способах управления ими, см. http://www.allaboutcookies.org/.

Пиксельные теги

Мы используем пиксельные теги, которые представляют собой небольшие графические файлы, которые позволяют нам и нашим доверенным сторонним партнерам отслеживать использование вашего веб-сайта и собирать данные об использовании, включая количество страниц, которые вы посещаете, время, которое вы проводите на каждой странице, то, что вы нажимаете дальше, и другую информацию о посещении вашего веб-сайта.

Рекламодатели

Мы пользуемся услугами сторонних рекламных компаний для показа рекламы, когда вы посещаете наш веб-сайт. Эти компании могут использовать информацию (не включая ваше имя, адрес, адрес электронной почты или номер телефона) о ваших посещениях этого и других веб-сайтов для размещения рекламы товаров и услуг, представляющих для вас интерес. Если вы хотите получить дополнительную информацию об этой практике и узнать, как можно не использовать эту информацию этими компаниями, щелкните здесь.

Рекламодатели, как сторонние поставщики, используют файлы cookie для сбора данных об использовании и демографических данных для показа рекламы на нашем сайте. Например, использование Google Файлы cookie DART позволяют показывать рекламу нашим пользователям на основе их посещения наших сайтов и других сайтов в Интернете. Пользователи могут отказаться от использования DART cookie, посетив политику конфиденциальности Google для рекламы и содержательной сети.

Мы проверили все политики наших рекламных партнеров, чтобы убедиться, что они соответствуют всем применимым законам о конфиденциальности данных и рекомендуемым методам защиты данных.

Мы используем следующих рекламодателей:

Ссылки на другие веб-сайты

Этот сайт содержит ссылки на другие сайты. Помните, что мы не несем ответственности за политика конфиденциальности таких других сайтов. Мы призываем наших пользователей знать, когда они покидают нашу сайт, и прочитать заявления о конфиденциальности каждого веб-сайта, который собирает лично идентифицируемая информация. Это заявление о конфиденциальности применяется исключительно к информации, собираемой этим Интернет сайт.

Цель сбора данных

Мы используем информацию, которую собираем, чтобы:

  • Администрирование нашего веб-сайта, включая устранение неполадок, статистический анализ или анализ данных;
  • Для улучшения нашего Веб-сайта и повышения качества обслуживания пользователей, обеспечивая вам доступ к персонализированному контенту в соответствии с вашими интересами;
  • Анализируйте использование пользователями и оптимизируйте наши услуги.
  • Для обеспечения безопасности нашего веб-сайта и его защиты от взлома или мошенничества.
  • Делитесь информацией с нашими партнерами для предоставления таргетированной рекламы и функций социальных сетей.
Данные передаются третьим лицам

Мы не продаем и не сдаем в аренду ваши личные данные третьим лицам. Однако наши партнеры, в том числе рекламные партнеры, может собирать данные об использовании вашего веб-сайта, как описано в настоящем документе. См. Подробности в разделе «Рекламодатели» выше.

Как хранятся ваши данные

Все данные, собранные через наш Веб-сайт, хранятся на серверах, расположенных в США.Наши серверы сертифицированы в соответствии с Соглашением о защите конфиденциальности между ЕС и США.

IP-адрес и строковые данные пользовательского агента от всех посетителей хранятся в ротационных файлах журнала на Amazon. сервера на срок до 7 дней. Все наши сотрудники, агенты и партнеры стремятся сохранить ваши данные конфиденциальны.

Мы проверили политику конфиденциальности наших партнеров, чтобы убедиться, что они соответствуют аналогичным политикам. для обеспечения безопасности ваших данных.

Согласие в соответствии с действующим законодательством

Если вы проживаете в Европейской экономической зоне («ЕЭЗ»), окно согласия появится, когда доступ к этому сайту.Если вы нажали «да», ваше согласие будет храниться на наших серверах в течение двенадцать (12) месяцев, и ваши данные будут обработаны в соответствии с настоящей политикой конфиденциальности. После двенадцати месяцев, вас снова попросят дать согласие.

Мы соблюдаем принципы прозрачности и согласия IAB Europe.

Вы можете отозвать согласие в любое время. Отзыв согласия может ограничить вашу возможность доступа к определенным услугам и не позволит нам обеспечить персонализированный опыт работы с сайтом.

Безопасность данных

Наши серверы соответствуют ISO 27018, сводам правил, направленных на защиту личных данных. данные в облаке. Мы соблюдаем все разумные меры предосторожности, чтобы гарантировать, что ваши данные безопасность.

В случае, если нам станет известно о любом нарушении безопасности данных, изменении, несанкционированном доступе или раскрытие каких-либо личных данных, мы примем все разумные меры предосторожности для защиты ваших данных и уведомит вас в соответствии с требованиями всех применимых законов.

Доступ, изменение и удаление ваших данных

Вы имеете право запросить информацию о данных, которые у нас есть для вас, чтобы запросить исправление и / или удаление вашей личной информации. пожалуйста, свяжитесь с нами в [email protected] или по указанному выше почтовому адресу, внимание: Отдел соблюдения требований данных.

Возраст

Этот веб-сайт не предназначен для лиц младше 16 лет. Посещая этот веб-сайт. Вы настоящим гарантируете, что вам исполнилось 16 лет или вы посещаете Веб-сайт под присмотром родителей. надзор.

Заявление об отказе от ответственности

Хотя мы прилагаем все усилия для сохранения конфиденциальности пользователей, нам может потребоваться раскрыть личную информацию, когда требуется по закону, когда мы добросовестно полагаем, что такие действия необходимы для соблюдения действующего судебное разбирательство, постановление суда или судебный процесс, обслуживаемый на любом из наших сайтов.

Уведомление об изменениях

Каждый раз, когда мы меняем нашу политику конфиденциальности, мы будем публиковать эти изменения на этой странице Политики конфиденциальности и других места, которые мы считаем подходящими, чтобы наши пользователи всегда знали, какую информацию мы собираем, как мы ее используем, и при каких обстоятельствах, если таковые имеются, мы ее раскрываем.

Контактная информация

Если у пользователей есть какие-либо вопросы или предложения относительно нашей политики конфиденциальности, свяжитесь с нами по адресу [email protected] или по почте на указанный выше почтовый адрес, внимание: Департамент соответствия данных.

.

Arduino — Введение

Что такое Ардуино?

Arduino — это электронная платформа с открытым исходным кодом, основанная на простом в использовании аппаратном и программном обеспечении. Платы Arduino могут считывать входные данные — свет на датчике, палец на кнопке или сообщение Twitter — и превращать его в выходной сигнал — активировать двигатель, включать светодиод, публиковать что-то в Интернете. Вы можете указать своей плате, что делать, отправив набор инструкций микроконтроллеру на плате. Для этого вы используете язык программирования Arduino (на основе проводки) и программное обеспечение Arduino (IDE), основанное на обработке.

На протяжении многих лет Arduino был мозгом тысяч проектов, от повседневных предметов до сложных научных инструментов. Мировое сообщество разработчиков — студенты, любители, художники, программисты и профессионалы — собралось вокруг этой платформы с открытым исходным кодом, их вклад позволил создать невероятное количество доступных знаний, которые могут оказаться большой помощью как новичкам, так и экспертам.

Arduino был создан в Ivrea Interaction Design Institute как простой инструмент для быстрого прототипирования, предназначенный для студентов, не имеющих опыта работы в области электроники и программирования.Как только она достигла более широкого сообщества, плата Arduino начала меняться, чтобы адаптироваться к новым потребностям и задачам, дифференцируя свое предложение от простых 8-битных плат до продуктов для приложений IoT, носимых устройств, 3D-печати и встроенных сред. Все платы Arduino имеют полностью открытый исходный код, что дает пользователям возможность создавать их независимо и, в конечном итоге, адаптировать к своим конкретным потребностям. Программное обеспечение также имеет открытый исходный код, и его объем растет благодаря участию пользователей со всего мира.

Почему Ардуино?

Благодаря простому и доступному пользовательскому интерфейсу, Arduino использовался в тысячах различных проектов и приложений.Программа Arduino проста в использовании для новичков, но достаточно гибка для опытных пользователей. Он работает на Mac, Windows и Linux. Учителя и студенты используют его для создания недорогих научных инструментов, для доказательства принципов химии и физики или для начала работы с программированием и робототехникой. Дизайнеры и архитекторы создают интерактивные прототипы, музыканты и художники используют их для инсталляций и экспериментов с новыми музыкальными инструментами. Создатели, конечно же, используют его для создания многих проектов, представленных, например, на Maker Faire.Arduino — ключевой инструмент для изучения нового. Любой человек — дети, любители, художники, программисты — может начать возиться, просто следуя пошаговым инструкциям набора, или делиться идеями в Интернете с другими членами сообщества Arduino.

Существует множество других микроконтроллеров и микроконтроллерных платформ, доступных для физических вычислений. Parallax Basic Stamp, Netmedia BX-24, Phidgets, MIT’s Handyboard и многие другие предлагают аналогичные развлечения

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *