Как проверить работоспособность резистора мультиметром. Какие режимы использовать для измерения сопротивления. На что обратить внимание при прозвонке резисторов. Как интерпретировать показания прибора.
Подготовка к проверке резисторов
Перед началом проверки резисторов мультиметром необходимо выполнить несколько подготовительных действий:
- Отключить питание схемы, в которой установлен проверяемый резистор
- По возможности выпаять резистор из платы хотя бы одним выводом
- Очистить выводы резистора от остатков припоя
- Подготовить мультиметр — установить его в режим измерения сопротивления
Выполнение этих простых шагов позволит получить наиболее точные результаты измерений.
Выбор режима измерения на мультиметре
Для проверки резисторов на мультиметре необходимо выбрать режим измерения сопротивления. Обычно он обозначается символом Ω (Ом). На многих моделях мультиметров есть несколько диапазонов измерения сопротивления:
- 200 Ом
- 20 кОм
- 200 кОм
- 2 МОм
- 20 МОм
Выбирать нужно диапазон, соответствующий номиналу проверяемого резистора. Например, для резистора на 1 кОм подойдет диапазон 2 кОм.
Подключение щупов к резистору
После выбора нужного режима измерения необходимо правильно подключить щупы мультиметра к выводам резистора:
- Черный щуп подключается к разъему COM на мультиметре
- Красный щуп — к разъему VΩmA или просто Ω
- Прижмите концы щупов к выводам резистора, соблюдая хороший контакт
Полярность подключения щупов к резистору не имеет значения. Главное обеспечить надежный контакт.
Как правильно читать показания мультиметра
После подключения щупов на дисплее мультиметра отобразится измеренное значение сопротивления. Как его интерпретировать:
- Если показания близки к номиналу резистора (с учетом допуска) — резистор исправен
- Если сопротивление намного меньше номинала — возможно, резистор пробит
- Если сопротивление стремится к бесконечности — вероятен обрыв резистора
- Нестабильные «плавающие» показания говорят о плохом контакте
Помните, что точность измерений зависит от класса точности мультиметра. Дешевые модели могут давать погрешность до 5-10%.
Проверка переменных резисторов
Для проверки переменных резисторов (потенциометров) применяется следующая методика:
- Измерьте сопротивление между крайними выводами — оно должно соответствовать номиналу
- Подключите один щуп к среднему выводу, второй к крайнему
- Плавно вращайте ось резистора, наблюдая за показаниями
- Сопротивление должно плавно меняться от 0 до максимума
Скачки сопротивления или отсутствие изменений при вращении говорят о неисправности переменного резистора.
Особенности проверки SMD резисторов
При проверке миниатюрных SMD-резисторов возникают некоторые сложности:
- Сложно обеспечить надежный контакт щупов с контактными площадками
- Маркировка номинала часто нечитаема из-за малых размеров
- Велик риск повреждения резистора при выпаивании
Поэтому SMD-резисторы рекомендуется проверять специальными тонкими щупами-иглами. А номинал уточнять по документации на плату.
На что обратить внимание при проверке резисторов
При измерении сопротивления резисторов мультиметром следует учитывать несколько важных моментов:
- Сопротивление может отличаться от номинала в пределах допуска (обычно ±5% или ±10%)
- На точность влияет температура окружающей среды
- Параллельно включенные элементы могут искажать результат
- Загрязнение или окисление выводов увеличивает погрешность
- Собственное сопротивление щупов мультиметра может влиять на измерения малых сопротивлений
Учет этих факторов позволит получить наиболее достоверные результаты при проверке резисторов.
Часто задаваемые вопросы о проверке резисторов
Можно ли проверять резисторы, не выпаивая их из платы?
Проверка резисторов без выпаивания возможна, но менее точна. Параллельно подключенные элементы схемы могут искажать результат измерений. По возможности рекомендуется выпаивать резистор хотя бы одним выводом.
Как проверить резистор на обрыв?
Для проверки резистора на обрыв нужно измерить его сопротивление. Если показания мультиметра стремятся к бесконечности или превышают верхний предел измерений — вероятен обрыв резистора.
Почему показания «плавают» при измерении?
Нестабильные «плавающие» показания обычно свидетельствуют о плохом контакте щупов с выводами резистора. Убедитесь, что контактные поверхности чистые, а щупы надежно прижаты.
Заключение
Проверка резисторов мультиметром — несложная, но важная процедура при ремонте и отладке электронных устройств. Соблюдение описанных выше рекомендаций позволит быстро и точно оценить исправность резистора. При возникновении сомнений рекомендуется перепроверить результат на другом диапазоне измерений или другим прибором.
Резистор- как проверить
Резистор это один из самых простейших радиоэлементов и на первый взгляд проверить его особого труда в составляет. Он имеет всего лишь два основных параметра- сопротивление и мощность- сопротивление элементарно замеряется мультиметром, а мощность- это уже зависит от его размеров.
Однако (удивительно, но это факт…) встречались мне уже случаи когда с проверкой и заменой перегоревших резисторов у людей возникали трудности- или номинал определили не правильно, или не устранили причину из-за которой он сгорел, а иногда не учли тот факт при внутрисхемной проверке еще и другие тонкости надо учитывать. Впрочем, давайте обо всем по-порядку…
Маркировка резисторов
Итак, все мы знаем что основной параметр резистора- его сопротивление. Измеряется оно в Омах или кратных этому значениях- килоОмах, мегаОмах.
На корпусе и на схемах обычно это обозначается буквами:
R— Омы (иногда значком Ω)
K— килоОмы ( 1 кОм= 1000 Ом)
M— мегаОмы ( 1 мОм= 1000 кОм)
И вот тут-то и возникают некоторые приколы…
1. На схемах (да и на корпусах) эта самая буковка может играть роль запятой. Ну то есть, к примеру, резистор номиналом 4,7 кОм обычно всегда обозначается 4k7. Вроде все понятно, однако бывали в моей практике случаи когда человек вместо 4k7 устанавливал 47k и думал что это одно и тоже…
2. Примерно похожая ситуация выглядит и с резиками номиналом менее 1 Ома. Они могут применяться в токовых датчиках или просто в качестве предохранителей. На схемах они обозначаются в виде «R цифра». Например R47 означает 0,47 Ома, R22 означает 0,22 Ома и так далее…
Здесь от новичков мне встречались несколько видов типовых ошибок:
а. Конечно такое низкое сопротивление мультиком не определить, он просто покажет КЗ. Иногда люди начинают думать что он пробит и его надо менять (по примеру пробоя диода). Полнейший абсурд, так как резистор это не полупроводниковый прибор и электрический пробой у него не возможен.
б. Так как сопротивление очень низкое, то некоторые товарищи рассуждаю типа «нафиг он там вообще нужен» и просто замыкают его. Опять-же не совсем правильно… Здесь многое зависит от того где он установлен- если в качестве предохранителя, то надо искать причину его перегорания, а если это токовый датчик на импульсном источнике, то тогда вообще могут произойти печальные последствия…
в. Встречались мне случаи когда обозначение R47 воспринималось как 47R, резистор менялся, схема не заработала, и начинали дальше перепахивать весь аппарат…
Цветовая маркировка резисторов
Цветовой код резисторов стал обильно применяться еще где-то (дай бог памяти) в середине 1990-х и, сказать откровенно, поначалу особого восторга не вызвал…
Наверное просто это было не совсем привычно, да и, что греха таить, обычно всегда все новое тяжело воспринимается…
Однако потом оказалось что это очень даже удобно. Дело в том что во времена цифро-буквенной маркировки номинал резистора не всегда свободно читался- он мог просто оказаться снизу корпуса и чтобы его посмотреть необходимо было резик выпаивать. Ну вот, например- на приложенной картинке отметил пару резисторов, номинал которых не виден
Конечно это довольно сильно раздражало, однако куда было деваться… Ведь дело в том, что при поточном производстве, когда за смену собирается не одна сотня печатных плат, при формовке выводов никто сильно следить не будет чтобы номинал был вверху корпуса.
Даже более скажу— довелось мне работать на производстве в конце 1980-х годов…
Формовка выводов производилась вручную по шаблону. Это был очень нудный, однообразный и низкооплачиваемый труд. Занимались этим так называемые «легкотрудницы»- дамочки пред-декретного периода, студентки-практикантки, люди из общества слепых, да старшеклассники решившие подработать в период каникул.
В общем попробуйте представить себе ситуацию, когда за семичасовую смену нужно загнуть несколько тысяч выводов у радиодеталек под нужным углом!!! Ладно-бы если этот «обезьяний труд» был один раз в неделю, а то ведь нет… Это ежедневно и на долго…
Так что каких-то дополнительный требований насчет расположения маркировки, конечно-же, не предъявлялись.
С приходом цветовой маркировки ситуация изменилась в лучшую сторону- цветовое кольцо с маркировкой стало видно со всех сторон и процесс диагностики намного упростился.
Как читать цветовую маркировку на резисторах
Цветовая маркировка на резисторах обычно состоит из 4-5 разноцветных колец и каждому цвету соответствует определенная цифра, определяется она вот по такой таблице
Читается цветовая маркировка таким образом: первые два кольца это две цифры, третье кольцо- множитель, четвертое колечко- допуск. Причем скажу даже так: запоминать все эти циры и цвета совершенно не обязательно- существует специальная программка, в которую достаточно просто подставить необходимые значения и она сама определит номинал резика. На моем сайте эта прога находится вот здесь, она бесплатна, а как ей пользоваться, я лучше покажу на следующем примере.
Нам нужно определить номинал резистора по цветовой маркировке (я его отметил на картинке)
Открываем программу, подставляем туда значения, жмем на кнопку R справа, и полжалуйста- вот вам номинал. Ничего сложного 😎
В общем скачивайте программу, пользуйтесь на здоровье, она бесплатная. Архив без вирусов, это я Вам обещаю.
Маркировка SMD резисторов
На SMD резиках маркировка выглядит таким образом: там места маловато и поэтому маркировка состоит из 3 символов. На низкоомных резисторах обычно всегда ставится буква R, и тут с маркировкой все понятно. На всех остальных резисторах ставятся 3 цифры- первые две цифры означают номинал, последняя- множитель. Лучше всего это посмотреть на примере: прикладываю картинку на которой я отметил 3 разных SMD резистора.
Определяем их номинал (слева направо)
Первый резистор. Написано 100. Это означает: 10 и 0 нулей. Вывод- 10 Ом.
Второй резистор. Написано 220. Это означает 22 и 0 нулей. Вывод- 22 Ома.
Третий резистор. Написано 222. Это означает 22 и 2 нуля. То есть 2200 Ома (2,2 кОм).
Думаю все понятно, ничего сложного здесь нет 😎
Параллельное и последовательное включение резисторов
В принципе данную тему проходят в средней школе, но давайте повторимся…
Итак, резисторы могут включаться параллельно или последовательно друг другу и тогда их общий номинал высчитывается вот по таким формулам:
Может возникнуть вопрос- а, собственно, зачем их так включать? Например зачем включать последовательно два резика по 1 кОм? Не проще-ли поставить один на 2 кОм?
А здесь в первую очередь все упирается в суммарную мощность:
При параллельном включении мощность резисторов складывается. То есть если мы включим напримиер два резистора по 1W, то в результате получим 2W. Это удобно если места маловато (например при использовании SMD резисторов)
При последовательном сопротивлении мощность будет равна среднеарифметическому значению используемых резисторов. Что это нам дает: суммарная мощность не увеличивается, но мы можем ее равномерно распределить по всей цепочке. Вот пример: цепь, формирующая пусковое напряжение для импульсного источника питания (отметил на картинке)
Здесь три SMD резика по 470 кОм каждый. Можно было-бы использовать и один на 1,4 мОма, но тогда потребовался-бы более мощный, а в данном случае на каждом резисторе будет рассеиваться 1/3 от общей мощности.
Помимо этого различные способы включения резисторов дают нам и некоторые полезные свойства- если в наличие нет необходимого номинала, мы всегда можем прибегнуть к некоторым хитростям.
Например если нету резистора на 0,5 Ома, то можно использовать два резика по 1 Ому, включив их параллельно или, например, чтобы получить сопротивление в 54 Ом, мы можем включить последовательно два резистора по 27 Ом.
Проверка терморезисторов
Что касается терморезисторов- то тут из названия понятно что их номинал зависит от температуры. Следовательно чтобы проверить терморезистор достаточно просто сравнить значения при разных температурах. Вроде все легко и просто, однако и здесь есть кое-какие тонкости…
Сами по себе терморезисторы делятся на два вида- у одних с нагревом сопротивление увеличивается, а других наоборот уменьшается. Первый вариант широко применяется в бытовой радиоаппаратуре и их называют позистор (от слова positiv- положительный). Выглядят они вот так:
И еще вот так:
Применяются они обычно в устройствах размагничивания кинескопных телевизоров и на входе источников питания для сглаживания броска при включении. В последнем случае он может и роль предохранителя сыграть… 😉
Что касается терморезисторов с уменьшением сопротивления при нагреве, то их в бытовой аппаратуре не применяют- они используются в основном в различных устройствах автоматики в качестве термодатчика.
Например- на терморегуляторах инкубаторов. Обозначаются они аббревиатурой NTC.
В обеих видах терморезисторов за номинальное сопротивление принимается значение, соответствующее значению при комнатной температуре (ну то есть примерно +20°C)
Что-же касается проверки терморезисторов, то тут есть кое-какие тонкости: применяемые в телеках позисторы в холодном виде всегда имеют низкое сопротивление
Да только вот греть их вручную (феном например) бесполезно- сопротивление у них меняется только при прохождении электрического тока. Правда замкнутый позистор с петли размагничивания можно определить и визуально
Обычно такой дефект всегда вызывает перегорание предохранителя.
А вот проверить NTC термак в общем-то не трудно. Вот, например, я взял термодатчик от инкубатора.
В холодном виде мультик показал 19,8 кОм.
Нагрел его фоном- сопротивление упало
Переменные и подстроечные резисторы
Переменные резисторы (да и подстроечные тоже) в наше время уже мало где применяются. Встретить их можно разве что в старых телевизорах да в дешевой аудиоаппаратуре, однако их тоже иногда требуется проверять на работоспособность.
Чтобы проверить переменный резистор нужно просто-напросто знать его устройство. Выглядит он как пластина с резистивным слоем (иногда, правда в мощных переменниках это может быть и спиралька из проволоки), по которой бегает ползунок. То есть, по сути, здесь возможны две неисправности- обрыв слоя или плохой контакт на ползунке.
Для начала проверяем резистивный слой- подключаем мультик к крайним выводам
Показывает 21 кОм, на самом корпусе написано 22 кОм, так что все в порядке.
Затем производим замер сопротивления между ползунком и одним из крайних контактов, плавно вращая ручку
Сопротивление должно плавно меняться. На примере выше- бегунок находится примерно в среднем положении
Типовые ошибки
1. Увидели обугленный резистор- ищем причину! Бывают иногда у меня ситуации, когда человек говорит: «да там всего-лишь одни резистор заменить надо». Смотришь- да, действительно, имеется выгоревший резистор, вот только весь процесс ремонта вряд-ли ограничится простой заменою…
Очень многие знают что резистор это сопротивление, но вот мало кто понимает зачем он вообще нужен в электрической цепи. Попробую пояснить, что называется, на пальцах…
Резистор, по сути, создает дополнительную нагрузку в электрической цепи чтобы снизить ток в основном элементе этой-же цепочки. Причем номинал его подбирается таким образом, чтобы он вносил минимальные искажения для протекающего тока. Для ясности- вот пара примеров:
Пример первый:
Резистор R821 (я его пометил на схеме). Здесь он установлен на входе диодного моста и служит балластом: при включении телевизора в сеть, начнет заряжаться конденсатор C817. Емкость у него довольно большая и поэтому во время зарядки по входу диодного мостика возникнет большая нагрузка по току. Чтобы ее немного сгладить и служит помеченный кондер- он здесь сыграет роль своеобразного амортизатора- заберет на себя разницу по току между входом диодного мостика и сетью. Затем (уже когда процесс зарядки сетевого конденсатора завершится), этот резистор не должен влиять на работу источника питания. Поэтому он в данном случае должен быть достаточно мощным и низкоомным.
Пример второй:
На этой картинке я пометил сразу два резистора.
R805. Он установлен на входе стабилизатора 7805. Это микросхема, позволяющая получить стабильно е напряжение +5V на выходе. Микросхемка очень распространенная так как она имеет минимум обвеса, очень простая в использовании, выпускаются с различными выходными напряжениями и поэтому часто применяются в различной аппаратуре. Однако у нее есть и свои особенности- для того чтобы она стабильно работала, ей нужно чтобы входное и выходное напряжение имело разницу минимум 1,5V и не превышало 10-15V.
В первом случае (когда разница между входом и выходом небольшая)- микросхема не сможет работать и просто начнет пропускать входное напряжение напрямую.
Во втором случае (когда будет большая разница между входом и выходом) микросхеме придется девать куда-то большой излишек напряжения и она начнет сильно нагреваться.
На данной схеме ( это кусок схемы телевизионного шасси кинескопного телека LG) входное напряжение на микросхеме получается +24V в рабочем режиме. Для 5-ти Вольтового стабилизатора это, конечно, многовато и поэтому на входе установили резистор R805- он немного ограничивает входной ток.\
FR812. Установлен на входе однополупериодного выпрямителя, имеет очень низкое сопротивление и никакой существенной роли в протекание тока в цепь не вносит. Однако- в случае возникновения КЗ в этой цепочке, он сыграет роль предохранителя.
Какие из всего этого вышесказанного можно сделать выводы? Резистор может сам по себе оборваться. Это на практике иногда встречается, но…. Если по резистору видно что он грелся во время работы, то явно он работал не в режиме и является не причиной, а последствием неисправности. Поэтому простая его замена ни к чему не приведет- он скорее всего опять перегорит. Так что надо искать перегрузку в цепи, в которой он применяется.
Резистор не может оказаться пробитым подобно диоду или конденсатору. Бывает иногда такое- начинаешь проверять резистор, он вроде-бы не низкоомный, однако прибор показывает пониженное сопротивление или вообще КЗ…
Друзья мои, резистор это не полупроводниковый прибор и электрический пробой в нем наступить никак не может!! 😉 В этом случае резистор показать пониженное сопротивление может только из-за каких-то других цепей, имеющихся на самой плате, и для того чтобы точное его проверить, нужно его просто-напросто выпаять.
Резисторы с сопротивлением от 470 кОм и выше не всегда можно проверить внутрисхемно. Признаться честно, сам не знаю в чем тут дело, но это факт… Возможно у мультиметра просто току не хватает, так что высокоомные резики для проверки всегда необходимо выпаивать.
Ну и напоследок
Небольшой тест на сообразительность
Приведу я Вам сейчас небольшой пример. Вот картинка
Здесь показана цепочка формирующая пусковое напряжение для ШИМки импульсного источника питания. Напряжения я указал на картинке.
На выходе крайнего правого резистора должно быть примерно +11V, но там 0. Есть какие-нибудь мысли?
Первое что сразу приходит в голову- обрыв крайнего правого резика, однако это в корне не правильно и вот почему: закон Ома в общем-то никто не отменял, а он гласит что ток в цепи может быть только лишь при нагрузке. Если крайний правый резистор в этой цепочке оборвется, то все остальные просто-напросто окажутся ни к чему не подключены, ток в этой цепи не возникнет и в точках соединения резисторов никакого падения напряжения не будет.
Так что вывод- на выходе крайнего правого резистора имеется КЗ.
Ну вот, дорогие читатели, на этом вроде-бы как-бы и все…
Сказать откровенно и сам удивлен что теме проверки такого простого радиоэлемента, такая длинная статья получилась- просто хотелось рассказать как можно более подробно. 😎
Удачи в ремонтах 😉
Как пользоваться мультиметром
При применении стрелочного мультиметра, его необходимо класть на горизонтальную поверхность, поскольку в других положения точность показаний заметно ухудшается. Мультиметр не следует оставлять включенным, даже в том случае, если на приборе отсутствует положение «выкл.». Прибор не следует оставлять в режиме омметра, поскольку в этом режиме заряд батареи постоянно теряется. Переключатель лучше поставить в режим измерения напряжения.
Проверка напряжения, сопротивления, тока.
Напряжение (режим вольтметра) измеряется следующим образом: если требуется измерить постоянное напряжение ставится dcv (или V=), если переменное — acv (или V~), подключаются щупы и результат выводится на дисплей, если на экране ничего нет, то нет и напряжения. Если величина измеряемого напряжения не известна (например, батарейка типа «Крона» имеет постоянное напряжение 9В, а в бытовая розетка 220В переменного напряжения), то измерение следует начинать с самого большого предела измерения, уменьшая предел измерения до тех пор, пока измеряемая величина не окажется максимально близка к пределу измерения, но при этом все еще будет меньше его. К примеру, для измерения постоянного напряжения устанавливается предел 200В и при измерении напряжения получается значение равное 12,0 В.
Полученное значение напряжение 12В меньше следующего после 200В предела измерения мультиметра от 0 до 20В, а значит необходимо выбрать этот предел измерения. Измерив тоже самое напряжение 12,0В на пределе 20В можно получить наиболее точное значение напряжения 11,98В.При измерении сопротивления (Ω) (режим омметра), щупы прикасаются к двум концам того объекта, сопротивление которого необходимо узнать. Тем же способом в режиме омметра пользуются при «прозвоне» провода или дорожки на обрыв.
Измерение силы постоянного тока (dca или А)(режим амперметра) отличается тем, что щупы мультиметра должны быть «врезаны» в цепь, как будто это один из компонентов этой самой цепи. Измерения следует начинать с наибольшего предела измерения.
Проверка резисторов.
Чтобы быть уверенным в том, что никакие другие элементы схемы цепи не окажут влияния на результат, необходимо выпаять резистор из электрической цепи хотя бы одним концом. Щупы подключаются к двум концам резистора и затем показания омметра сравниваются со значением сопротивления, которое указано на самом резисторе.
При проверке стоит учитывать величину допуска (возможные отклонения от нормы), т.е. если по маркировке, номинально, резистор на 200кОм и допуском ± 15%, его действительное сопротивление может быть в пределах 170-230 кОм. Однако, при более серьезных отклонениях резистор считается неисправным.При проверке переменных резисторов, сначала измеряется сопротивление между крайними выводами (при этом сопротивление должно соответствовать номиналу резистора), а затем подключив щуп мультиметра к среднему выводу, поочередно замеряется сопротивление с каждым из крайних выводов. При вращении оси переменного резистора, сопротивление должно изменяться плавно, от нуля до его максимального значения. Для таких случаев удобнее пользоваться аналоговым мультиметром, наблюдая за движением стрелки, нежели за быстро меняющимися цифрами на жидкокристалическом экране цифрового мультиметра.
Проверка диодов.
При наличии функции проверки диодов, то щупы просто подключаются к диоду. При этом в одну сторону диод «звонится», а в другую нет.
Проверка конденсаторов.
Для проверки конденсаторов рекомендуется использовать специальные приборы, однако обычный аналоговый мультиметр тоже может быть полезен. Пробой конденсатора можно обнаружить при помощи проверки сопротивления между его выводами, в таком случае сопротивление будет равно нулю. Повышенную утечку конденсатора обнаружить сложнее.
При подключении мультиметра в режиме омметра к выводам электролитического конденсатора, при соблюдении полярности (плюс к плюсу, минус к минусу), внутренние цепи прибора заряжают конденсатор, при этом стрелка медленно ползет вверх, отображая увеличение сопротивления. Чем выше номинал конденсатора, тем медленнее движется стрелка. Когда она практически остановится, необходимо изменить полярность, после чего стрелка должна начать возвращаться в нулевое положение. Если что-то не так, то вероятнее всего конденсатор имеет утечку и к дальнейшему использованию он не пригоден.
Проверка транзисторов.
Обычный биполярный транзистор это, по сути, два диода, подключенных навстречу друг к другу. Зная, как проверяются диоды, несложно проверить и такой транзистор. Однако, стоит учитывать, что транзисторы бывают разных типов, (p-n-p) — когда их условные диоды соединены катодами, и (n-p-n) — когда они соединены анодами. Для измерения прямого сопротивления транзисторных (p-n-p) переходов, минус мультиметра подключается к базе, а плюс поочередно к коллектору и эмиттеру. Измеряя обратное сопротивление необходимо изменить полярность. Для проверки транзисторов (n-p-n) типа все проделывается наоборот. Таким образом, переходы база-коллектор и база-эмиттер в одну сторону должны прозваниваться, в другую — нет.
Следует ли проводить проверку непрерывности при выключенном устройстве? Почему?
спросил
Изменено 7 лет, 4 месяца назад
Просмотрено 18 тысяч раз
\$\начало группы\$
Можно ли проверить электронную цепь, по которой протекает ток, с помощью мультиметра? Будет ли это иметь смысл или вред? Почему?
- тест
- непрерывность
\$\конечная группа\$
\$\начало группы\$
Проверка непрерывности аналогична упрощенному измерению сопротивления/ом. Вы знаете, как работает такое измерение? Основной метод заключается в подаче напряжения на резистор и измерении тока ИЛИ при подаче тока и измерении напряжения. Затем через R = V/I можно рассчитать сопротивление.
Теперь представьте, что вы измеряете резистор таким образом, но в то же время, когда вы измеряете, я подаю дополнительное напряжение или ток. Будет ли тогда измерение по-прежнему точным? Вот что происходит, когда вы выполняете проверку непрерывности на устройстве, которое все еще находится под напряжением. Теперь представьте, что я подаю 100 В постоянного тока, но ваш измеритель может работать только с 10 В в режиме проверки непрерывности. Что будет теперь?
\$\конечная группа\$
\$\начало группы\$
Такой тест совершенно бессмысленен и потенциально может повредить счетчик. Если вы хотите проверить непрерывность или сопротивление, отключите все источники питания и разрядите все накопившиеся источники энергии.
FakeMustache объяснил, что, говоря простым языком, измеритель ПОЛУЧАЕТ (обычно низкое) тестовое напряжение. Если вы подключаете его к чему-то, что уже запитано, вы соединяете два источника вместе, и измеритель не предназначен для работы с внешними источниками в режиме непрерывности или сопротивления (или емкости, или индуктивности, или любого другого пассивного режима).
Когда измеритель настроен на напряжение, он представляет очень высокий импеданс по отношению к измеряемому источнику. Когда он установлен на ток, он имеет очень низкий импеданс, но оба они разработаны специально для чтения активного источника. Когда он настроен на измерение пассивной цепи или устройства, он должен подавать собственное тестовое напряжение, а прецизионный регулируемый источник легко повреждается внешним источником питания.
\$\конечная группа\$
3
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
. Мультиметр— Почему я вижу сопротивление в настройках непрерывности, а не в настройках сопротивления?
спросил
Изменено 4 года, 10 месяцев назад
Просмотрено 1к раз
\$\начало группы\$
Отказ от ответственности: Newbe
В учебнике по мультиметру на Youtube сказано, что для проверки непрерывности соленоида впускного клапана стиральной машины я могу использовать либо самую низкую настройку сопротивления (200 на моем DT830B), либо настройку непрерывности. Если я попытаюсь установить омы, цифровое показание не сдвинется с 1. Если я попытаюсь установить непрерывность, оно изменится на 12,2 на моей оригинальной детали, но на 12,02 на моей новой сменной детали.
Почему настройка сопротивления не работает, если работает настройка непрерывности?
- Мультиметр
- Допуск
\$\конечная группа\$
\$\начало группы\$
Почему использование настройки сопротивления не работает, когда работает настройка непрерывности?
Вы можете убедиться, что ваш омметр работает, замкнув провода. Оно должно быть от 0,0 Ом до, возможно, 0,3 Ом (сопротивление провода).
Если в этом тесте или измерении отображается выход за пределы диапазона «1—», то сопротивление выше 200 Ом, и вам необходимо переключиться на следующий диапазон, возможно, 2 кОм. Продолжайте, пока не получите достоверные показания.
Если под «проверкой непрерывности» вы подразумеваете функцию проверки диодов, то она подает другой ток через клеммы и сообщает о падении напряжения на устройстве. Он хорошо работает с диодами, но не очень полезен с резисторами.