Пуск электродвигателя звезда треугольник: Как подключить электродвигатель в схему звезда-треугольник – СамЭлектрик.ру

Содержание

Подключение двигателя со звезды на треугольник

Клеммник двигателя

Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник мощные трехфазные асинхронные двигатели от 30-50 кВт, и высокооборотные ~3000 об/мин, иногда 1500 об/мин.

Известно, что в момент запуска электродвигателя его ток увеличивается до 7 раз. Асинхронный двигатель с короткозамкнутым ротором напоминает трансформатор с замкнутой накоротко вторичной обмоткой.

Если двигатель соединен в звезду то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходиться напряжение 380 Вольт. Здесь в действие вступает закон Ома «I=U/R» чем выше напряжение, тем выше ток, а сопротивление не изменяется.

Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду(220).

Когда электродвигатель разгоняется и набирает полные обороты, картина полностью меняется. Дело в том что двигатель имеет мощность которая не зависит от того подключен он в звезду или на треугольник. Мощность двигателя зависит в большей степени от железа и сечения провода. Здесь действует другой закон электротехники «W=I*U»

Мощность равна сила тока, умноженная на напряжение, то есть чем выше напряжение, тем ниже ток. При подключении в треугольник(380), ток будет ниже, чем в звезду (220).

Прейдем к практике

В двигателе концы обмоток выведены на «клеммник»  таким образом что в зависимости от того каким образом поставить перемычки получится подключение в звезду или в треугольник как это показано на рисунке. Такая схема обычно на рисована на крышке.

перемычки для подключения двигателя в звезду и треугольник

Для того чтобы производить переключения со звезды на треугольник, мы вместо перемычек будем использовать контакты магнитных пускателей.

Рассмотрим схему силовую часть, показана жирными линиями.

схема треугольник звезда

Магнитный пускатель Р1 служит для включения и отключения двигателя. Контакты магнитного пускателя Р2 работают как перемычки для включения асинхронного двигателя в треугольник. Обратите внимания, провода от клеммника двигателя должны быть включены в таком же порядке, как и в самом двигателе, главное не перепутать. Повторю еще раз это самое главное в схеме КОНТАКТЫ Р2 ВЫПОЛНЯЮТ РОЛЬ ПЕРЕМЫЧЕК ДЛЯ ПОДКЛЮЧЕНИЯ В ТРЕУГОЛЬНИК.

Магнитный пускатель Р3 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.

Рассмотрим схему управления, тонкими линиями.

При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель Р1 он срабатывает и на него подается напряжение через  блок контакт теперь кнопку можно отпустить. Далее напряжение подается на реле времени РТ, оно отсчитывает установленное время. Также напряжение через замкнутый контакт реле времени Р1 подается на магнитный пускатель Р3 и двигатель запускается в «звезду».

Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается. Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок контакт магнитного пускателя Р3, а от туда на катушку магнитного пускателя Р2. И

электродвигатель включается в треугольник. Кстати на схеме не показано, но пускатель Р3 следует также подключать через  нормально-замкнутый блок контакт пускателя Р2, для защиты от одновременного включения пускателей.

Магнитные пускатели Р2 и Р3 лучше взять сдвоенные с механической блокировкой одновременного включения.

Кнопкой «СТОП» схема отключается, последовательно с этой кнопкой можно подключит «концевики», «аварийники», и так далее.

Если в сети напряжение 220/380, то двигатель следует брать 380/660

Мощность трех фазного двигателя в однофазной сети

Трехфазный двигатель в однофазной сети

Подбор контактора по току в схеме «звезда — треугольник».

Общая часть

При запуске электродвигатель испытывает крутящий момент нагрузки и инерцию рабочей машины. Для более плавного пуска электродвигателя следует обеспечить пусковой ток в силовой цепи в пределах рабочего диапазона. Этот вид запуска понижает пусковые токи до необходимой величины. Также и происходит снижение крутящего момента разгоняемого двигателя.

 

Технические характеристики

При запуске:

  • бросок пускового тока снижен до одной трети от его величины при обычном пуске,
  • крутящий момент электродвигателя снижен до одной трети или даже меньше от его величины при обычном пуске.

При пуске переключением со «звезды» на «треугольник» в общем случае наблюдаются переходные токи.

Область применения

В начальный момент процесса запуска (соединение типа «звезда») до момента переключения на «треугольник» крутящий момент сопротивления рабочей машины, независимо от скорости вращения, должен оставаться меньшим, чем крутящий момент электродвигателя, собранного в «звезду».

Подобный режим идеально подходит для двигателей, пускающихся в отсутствии нагрузки:

  • механические станки,
  • центробежные компрессоры,
  • деревообрабатывающие станки.

Чтобы предотвратить большой бросок тока в момент переключения со «звезды» на «треугольник», электродвигатель должен развить частоту вращения 80-85% от номинальной.

Указание по мерам безопасности

Номинальное рабочее напряжение обмоток электродвигателя при соединении их в «треугольник» должно быть равным напряжению силовой цепи.

Пример:

Электродвигатель для сети 400 В, пускаемый переключением со «звезды» на «треугольник», должен быть рассчитан на напряжение 400 В при соединении его обмоток в «треугольник». Обычно это обозначается как «электродвигатель на 400/690 В». Обмотки электродвигателя должны иметь 6 отдельных выводов.

Порядок работы

  • 1-й этап — подключение «звезды»

Нажмите кнопку «Пуск» цепи управления для замыкания контактора «звезды» KM2. После чего замыкается линейный контактор KM1, и электродвигатель запускается. При этом начинается отсчёт заданного времени пуска (обычно от 6 до 10 с).

  • 2-й этап — переключение со «звезды» на «треугольник»

По истечении заданного времени размыкается контактор звезды KM2.

  • 3-й этап — подключение «треугольника»

Между моментами размыкания контактора «звезды» и замыкания контактора «треугольника», при помощи реле времени типа TE5S, задаётся время переключения (задержки) в 50 мс. Этим достигается отсутствие перекрытия цепей «звезды» и «треугольника».

Примечание

При использовании в качестве контакторов «треугольника» и «звезды» контакторов «AF…» или контакторов «A…» в качестве контактора «звезды», а «AF…» контактора «треугольника», нет необходимости применять реле времени, задающего время переключения (задержки), т.е. TE5S или аналогичное. Достаточно реле времени, задающего длительность подключения «звезды» при пуске. Необходимая электрическая блокировка между контакторами «звезды» и «треугольника» осуществляется при помощи устройства VE 5 или вспомогательными контактами.

Однако в этом случае, при переключении контактора в разомкнутое состояние (перерыв в подаче напряжения может достигать 95 мс), то необходимо проверить допустимость подобного режима, т.е. уменьшения скорости вращения электродвигателя при пуске, для практических условий.

Как подключить асинхронный двигатель

Дорогие читатели, а  вы знаете как подключить асинхронный двигатель?

Имею в виду, можете определить по шильдику, когда надо подключить обмотки электродвигателя звездой, а когда треугольником?

В этой статье я подробно расскажу как подключить асинхронный двигатель. А также Вы узнаете много разных нюансов при подключении электродвигателя.

А вы знали, что если двигатель рассчитан на напряжение 380/660В- треугольник/звезда, и если его подключить по схеме звезда на напряжение 380 вольт, то в определённых условиях он сгорит. Стало интереснее? Тогда советую ознакомиться со статьёй.

Перед чтением этой статьи рекомендую прочитать статью «Что такое мощность».

Как подключить асинхронный двигатель

Специалист перед подключением электродвигателя всегда поглядит на его шильдик и ознакомится со схемой подключения обмоток электродвигателя.

Шильдик электродвигателя

Шильдик асинхронного электродвигателя выглядит примерно вот так:

По информации на шильдике мы делаем вывод, что если у нас напряжение 380 вольт, то подключаем электродвигатель по схеме треугольник. Если у нас 660 вольт, то по схеме звезда.

Так же бывают двигатели на 220/380 вольт:

Подключение двигателя (звезда или треугольник)

По шильдику видно, что если у нас напряжение в сети 220 вольт, то подключаем треугольником. Следовательно, если 380 вольт, то звездой.

Теперь Вы уже хотя бы понимаете, как подключить асинхронный двигатель, ориентируясь на шильдик.

Почему сгорит электродвигатель при неправильном соединении

Сейчас я вкратце расскажу, почему электродвигатель, у которого обмотки на 380/660 треугольник/звезда, нельзя подключать звездой на 380 вольт.

Давайте представим, что в данный момент у нас линейное напряжение равно 380 вольт.

Что такое линейное напряжение, а фазное? Не знаете? Сейчас расскажу!

Линейное напряжение – это напряжение между линейными проводами (фазами), а фазное между линейным проводом и нейтральным.

Дело в том, что при соединении обмоток треугольником, на каждую обмотку приходится линейное напряжение 380 вольт,

Схема соединения обмоток треугольником

а при соединении звездой фазное —  220 вольт.

Схема подключения обмоток звездой

В итоге нам надо поддерживать требуемую мощность на валу двигателя, а напряжение упало с 380 вольт до 220 вольт (переключили обмотки с треугольника на звезду), что же делать? Ток всё сделает за нас. Он начнёт расти.

Вот пример:

Это формула для однофазной сети, но для понимания сути пойдёт.

P=UI

Где, P- мощность, U-напряжение, I-ток.

Подставим в нашу формулу выдуманные значения и получим следующее: 440=220*2, а теперь уменьшим напряжение в два раза, 440=110*4. Увидели? Напряжение уменьшили в два раза, но, чтобы поддержать заданную мощность у нас вырос ток в два раза.

Почему при подключении звездой, ток не становится меньше (при неизменной нагрузке)

При соединении обмоток электродвигателя треугольником фазный ток в 1.73 раза меньше линейного.

Как подключить асинхронный двигатель

Давайте приведу пример: На шильдике электродвигателя указан ток 30А при соединении обмоток треугольником и напряжением 380 вольт. 30 ампер — это линейный ток, значит,  чтобы получить фазный, нам надо 30/1.73. В итоге фазный ток равен 17,3 Ампера. Т.е. номинальный ток для обмотки двигателя 17,3 Ампера.

А теперь мы переключим двигатель с треугольника на звезду, но нагрузка на валу двигателя остаётся таже самая.

Схема подключения обмоток звездой

При соединении электродвигателя звездой линейный ток будет равен фазному. Напряжение на обмотке уменьшится в 1.73 раза. Следовательно на обмотку будет подаваться уже не 380 вольт, а 220.

В результате по обмотке будет протекать не 17,3 А, а целых 30 Ампер.  Почему?

Потому что ток будет компенсировать падение напряжения на обмотке, которое у нас упало в 1,73 раза. Значит ток вырастит в 1,73 раза.  Двигатель греется и если отсутствует защита — сгорает. А двигатель стоит немалых денег, поэтому Вы должны знать как подключить асинхронный двигатель!

Еще один пример для понимания. Обратите внимание на следующий шильдик электродвигателя:

Шильдик электродвигателя

Электродвигатель треугольник/звезда: 220 вольт/380 вольт: 38,3/22,2 Ампера.

Соединяем двигатель треугольником и подаём напряжение 220 вольт. Ток (линейный) по шильдику равен 38,3 Ампер. Следовательно, фазный будет равен 38,3/1,73= 22,2 Ампер. Т.е мы определили, что фазный номинальный ток для обмотки = 22,2 Ампер. Поехали дальше…

А теперь соединяем обмотки электродвигателя звездой и подаём напряжение 380 Вольт. Ток будет равен 22,2 Ампер. В звезде линейный ток равен фазному току.

Вывод:

При треугольнике и питающем напряжении 220 вольт, фазный ток равен 22,2 Ампер.

При звезде и питающем напряжении 380 вольт, фазный ток равен 22,2 Ампер. Следовательно мощность у двигателя будет одинаковая при таких подключениях.

А, что если мы соединим этот двигатель звездой и подадим напряжение 220 вольт. На обмотку будет приходиться уже 127 Вольт. Поэтому ток будет компенсировать падение напряжение на обмотке в 1,73 раза и будет равен 38,3 Ампер. А обмотка у нас рассчитана на 22,2 Ампер. Двигатель сгорит.

Схема подключения обмоток электродвигателя звездой

Вот так выглядит борно электродвигателя и здесь обмотки соединены звездой.  Т.е. концы обмоток соединены в одной точке.

Правильное подключение асинхронного двигателя

Мои коллеги-инженеры сталкивались с такими случаями, когда перемычки кидали на начало обмоток, куда подключался питающий кабель. Сразу возникало короткое замыкание.

Фазное и линейное напряжение при соединении обмоток в звезду разное, а ток одинаковый.

Формула фазное напряжение

А теперь давайте найдём полную мощность,  развиваемую электродвигателем.

Полная мощность в трёхфазной системе равна сумме полных мощностей трёх фаз:

Полная мощность

И теперь формула полной мощности будет выглядеть вот так:

Формула полной мощности

А чтобы найти активную мощность применим следующую формулу:

Формула активной мощностигде cosф- коэффициент мощности, n- КПД

 Из формулы активной мощности выразим ток:

Формула определения тока электродвигателя где cosф- коэффициент мощности, n- КПД

Схема подключения обмоток электродвигателя треугольником

Вот так выглядит борно электродвигателя и здесь обмотки соединены треугольником.  Т.е. конец обмотки соединён с началом следующей обмотки.

Как подключить асинхронный двигатель

Фазное и линейное напряжение равны. Линейный  ток в 1,73 раза больше фазного.

Формула полной мощности будет выглядеть вот так:

Формула полной мощности

Если обратить внимание на формулу полной мощности при подключении звездой, то мы заметим, что формулы полной мощности одинаковые.

А чтобы найти активную мощность применим следующую формулу:

Формула полной мощности где cosф- коэффициент мощности, n- КПД

 Из формулы активной мощности выразим ток:

Формула определения тока электродвигателя где cosф- коэффициент мощности, n- КПД

Внимательный читатель должен был заметить, что формула мощности одинаковая при подключении треугольником и при подключении звездой.  Так и есть, просто, чтобы поддержать необходимую мощность, у нас будет меняться ток.

Но чтобы двигатель не сгорел при переключении с треугольника на звезду, надо уменьшить нагрузку на валу двигателя до тех пор, пока фазный ток не станет равный фазному току при подключении треугольником.

Поэтому и говорят, что мощность при подключении обмоток электродвигателя звездой меньше, чем при соединении треугольником.

Почему при пуске применяют схему звезда-треугольник

Формула мощности в момент пуска не действует, т.к. двигатель не вращается – ЭДС Самоиндукции отсутствует (индуктивное сопротивление).

По факту у нас есть обмотка с очень маленьким сопротивлением и напряжение, подаваемое на двигатель. И ток здесь рассчитывается по закону Ома. Чем меньше у нас подаваемое напряжение на обмотку электродвигателя, тем меньше будет ток в обмотке.

А мы помним, что при треугольнике у нас на обмотку подаётся линейное напряжение, а при звезде напряжение будет в 1.73 раза меньше чем на треугольнике. Следовательно, и пусковые токи будут меньше.

Но не забываем, что закон Ома действует только в момент пуска электродвигателя. Когда двигатель выходит на номинальные обороты, ему необходимо поддерживать мощность, которая присутствует на валу. А так как напряжение при звезде меньше в 1.73 раза, то начинает подниматься ток, чтобы компенсировать падение напряжения на обмотках электродвигателя.

Будьте внимательны!!!

Бывает попадаются шильдики электродвигателей, которые путают электриков, и они могут допустить ошибку при подключении. Например:  Написана буква V, под ней нарисован треугольник, а внизу два напряжения 400 Вольт на 50 Герц и 460 Вольт на 60 Герц. Специалист думает, что буква V-это значок звезды, а так как у него напряжение 400 Вольт, то подключает звездой. А на самом деле этот движок рассчитан на одно лишь подключение- треугольником. А буква V обозначает напряжение.

Подводим итоги:

  • При треугольнике линейное и фазное напряжение равны (т.е на обмотку подаётся линейное напряжение), а линейный ток больше фазного в 1,73 раза.
  • При звезде фазное напряжение на обмотке в 1,73 раза меньше линейного, а линейный ток равен фазному.
  • Если нагрузка на валу двигателя не меняется и мы делаем переключение с треугольника на звезду, то ток начнёт расти. Ток растёт, потому что при звезде у нас уменьшилось напряжение на обмотке в 1,73 раза. И, чтобы компенсировать падение напряжения, начинает увеличиваться ток.
  • Звезду применяют для уменьшения пусковых токов. В момент пуска формула мощности не действует, а действует закон Ома. Чем меньше напряжение, тем меньше ток.

Электрические схемы

Режим работы звезда-треугольник, нереверсивный (1 фидер).

Способ переключения со звезды на треугольник используется в двигателях, которые рассчитаны на работу при соединении обмоток треугольником. Этот способ осуществляется в три этапа. В начале, двигатель запускают при соединении обмоток звездой, на этом этапе двигатель разгоняется. Затем переключают на рабочую схему соединения треугольник, причем при переключении нужно учитывать пару нюансов. Во-первых, нужно правильно рассчитать время переключения, потому что если слишком рано замкнуть контакты, то не успеет погаснуть электрическая дуга, а также может возникнуть короткое замыкание. Если переключение будет слишком долгим, то это может привести к потери скорости двигателя, а в следствии к увеличению броска тока. На третьем этапе, когда обмотка статора уже соединена треугольником, двигатель переходит в установившийся режим работы.

Спецификация оборудования фирмы (Германия)

Наименование Код Кол-во    
1 Автоматич.выключ. MS116-16.0 16 кА с регулир. тепловой защитой 1SAM250000R1011 1    
2 Боковые доп.контакты 1НО+1НЗ HK1-11 для автоматов типа MS116 1SAM201902R1001 1    
3 Контактор AF16-30-10-13 с универсальной катушкой управления 100-250BAC/DC 1SBL177001R1310 2    
4 Контактор AF12-30-10-13 с универсальной катушкой управления 100-250BAC/DC 1SBL157001R1310 1    
5 Блокировка электромеханическая VEM4 для контакторов AF09…AF38 1SBN030111R1000 1    
6 Контактный блок CA5-01 1Н3 фронтальный для A9..A110 1SBN010010R1001 4    
7 Контактный блок CA5-10 1НО фронтальный для A9..A110 1SBN010010R1010 5    
8 Реле времени CT-SDS.22S (переключение звезда-треугольник) 24-240B AC, 24- 48B DC, 2ПК 1SVR730210R3300 1    
9 Переключатель ONU1PBR 3-х поз.(1-0-2) (одноуровневый) 1SCA113978R1001 1    
10 Кнопка двойная MPD4-11G (зеленая/красная) зеленая линза с текстом (START/STOP) 1SFA611133R1102 1    
11 Патрон MLB-1 230В д/лампы до 230В AC 1SFA611620R1001 1    
12 Монтажная колодка MCBH-00 (на 3 элемента) 1SFA611605R1100 1    
13 Контакт MСВ-10 ф/монтажа 1НО 1SFA611610R1001 1    
14 Контактный блок MCB-01 фронтального монтажа 1НЗ 1SFA611610R1010 1    
15 Клемма M4/6 винт 4мм.кв. серая 1SNA115116R0700 9    
16 Клемма M4/6.N винт 4мм.кв., синяя 1SNA125116R0100 1    
17 Клемма M4/6.P винт 4мм.кв. Земля 1SNA165113R1600 3    
18 Клемма MA2,5/5 винт 2,5мм.кв. оранжевая 1SNA105075R2000 17    
19 Клемма MA2,5/5.N винт 2,5мм.кв. синяя 1SNA125486R0500 2    
20 Изолятор FEM6 Торц. для MA2,5-M10 серый 1SNA118368R1600 1    
21 Фиксатор BAM3 Торц. для рейки DIN3, универсальный 1SNK900001R0000 2    
22 SR2 Корпус шк.с монт.плат.500х400х200мм SRN5420K 1    
23 Автомат.выкл-ль 1-полюсной S201 C6 2CDS251001R0064 1    
24 Провод, маркировка, расходные материалы    

 

Описание и свойства пуска звезда-треугольник асинхронного электродвигателя

Способ переключения со звезды на треугольник используется в двигателях, которые рассчитаны на работу при соединении обмоток треугольником. Этот способ осуществляется в три этапа. В начале, двигатель запускают при соединении обмоток звездой, на этом этапе двигатель разгоняется. Затем переключают на рабочую схему соединения треугольник, причем при переключении нужно учитывать пару нюансов. Во-первых, нужно правильно рассчитать время переключения, потому что если слишком рано замкнуть контакты, то не успеет погаснуть электрическая дуга, а также может возникнуть короткое замыкание. Если переключение будет слишком долгим, то это может привести к потери скорости двигателя, а в следствии к увеличению броска тока. На третьем этапе, когда обмотка статора уже соединена треугольником, двигатель переходит в установившийся режим работы. 

При запуске:

  • бросок пускового тока снижен до одной трети от его величины при обычном пуске
  • крутящий момент электродвигателя снижен до одной трети или даже меньше от его величины при обычном пуске. При пуске переключением со «звезды» на «треугольник» в общем случае наблюдаются переходные токи.

В начальный момент процесса запуска (соединение типа «звезда»)до момента переключения на «треугольник» крутящий момент сопротивления рабочей машины, независимо от скорости вращения, должен оставаться меньшим, чем крутящий момент электродвигателя, собранного в «звезду».

Подобный режим идеально подходит для двигателей, пускающихся в отсутствии нагрузки:

  • механические станки,
  • центробежные компрессоры,
  • деревообрабатывающие станки.

Чтобы предотвратить большой бросок тока в момент переключения со «звезды» на «треугольник», электродвигатель должен развить частоту вращения 80-85% от номинальной.

Номинальное рабочее напряжение обмоток электродвигателя при соединении их в «треугольник» должно быть равным напряжению силовой цепи.

Пример:

Электродвигатель для сети 400 В, пускаемый переключением со «звезды» на «треугольник», должен быть рассчитан на напряжение 400 В при соединении его обмоток в «треугольник». Обычно это обозначается как «электродвигатель на 400/690 В». Обмотки электродвигателя должны иметь 6 отдельных выводов.

Порядок работы

1й этап – подключение «звезды»

Нажмите кнопку «Пуск» цепи управления для замыкания контактора «звезды» KM2. После чего замыкается линейный контактор KM1, и электродвигатель запускается. При этом начинается отсчёт заданного времени пуска (обычно от 6 до 10 с).

2й этап – переключение со «звезды» на «треугольник»

По истечении заданного времени размыкается контактор звезды KM2.

3й этап – подключение «треугольника»

Между моментами размыкания контактора «звезды» и замыкания контактора «треугольника», при помощи реле времени CT-SDS, задаётся время переключения (задержки) в 50 мс. Этим достигается отсутствие перекрытия цепей «звезды» и «треугольника».

Примечание. При использовании в качестве контакторов «треугольника» и «звезды» контакторов AF или контакторов A в качестве контактора «звезды», а AF контактора «треугольника», нет необходимости применять реле времени, задающего время переключения (задержки), т.е. TE5S или аналогичное. Достаточно реле времени, задающего длительность подключения «звезды» при пуске. Необходимая электрическая блокировка между контакторами «звезды» и «треугольника» осуществляется при помощи устройства VE 5 или вспомогательными контактами. Однако в этом случае, при переключении контактора в разомкнутое состояние, перерыв в подаче напряжения может достигать 95 мс: необходимо проверить допустимость подобного режима, т.е. уменьшения скорости вращения электродвигателя при пуске, для практических условий.

Предупреждения:

  1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат.
  2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, т. е. имеющие обмотки, рассчитанные на линейное напряжение сети.

Схема переключения звезда треугольник асинхронного двигателя

Пуск электродвигателя способом звезда, треугольник

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник применяют для снижения пускового тока. Пусковой ток при запуске может превышать рабочий ток электродвигателя в 5-7 раз. У двигателей большой мощности пусковой ток бывает настолько велик, что может вызвать перегорание различных предохранителей, отключение автоматического выключателя и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей, может вызвать отключение контакторов и магнитных пускателей. Поэтому многие стремятся уменьшить пусковой ток. Это достигается несколькими способами, но все они в итоге сводятся к понижению напряжения в цепи статора электродвигателя на период пуска . Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор, либо переключают обмотку со звезды в треугольник.


Действительно, перед пуском и в первый период пуска обмотки соединены в звезду, поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает частоту вращения и ток снижается. После этого обмотки переключают в треугольник.

Схема управления


Подключение оперативного напряжения, через контакт реле времени К1 и контакт К2, в цепи катушки контактора К3. Включение контактора К3, размыкает контакт К3 в цепи катушки контактора К2 (блокировка ошибочного включения), замыкается контакт К3, в цепи катушки контактора К1 совмещенного с пневматическим реле времени.

Включение контактора К1, замыкает контакт К1 в цепи катушки контактора К1 (самоподпитка), одновременно включается пневматическое реле времени, которое размыкает через определенное время свой контакт К1 в цепи катушки контактора К3, а также замыкает свой контакт К1 в цепи катушки контактора К2. Отключение контактора К3, замыкается контакт К3 в цепи катушки контактора К2. Включение контактора К2, размыкает контакт К2 в цепи катушки контактора К3 (блокировка ошибочного включения).

Схема питания


На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Предупреждения

  1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат.
  2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, т. е. имеющие обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos§. Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos? переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока, в противном случае электродвигатель перегреется.

Запуск электродвигателя по схеме «звезда-треугольник» номиналом 30 кВт

Если Вы нашли ошибку на нашем сайте, выделите текст и нажмите Ctrl+Enter

Запуск асинхронного электродвигателя по схеме «Звезда-треугольник» номиналом 30 кВт с использованием реле времени Finder 80.82

Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.

Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени.

Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.

Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.


Рисунок 1 — Схема подключения «звезда»

При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:


где Uл — напряжение между двумя фазами, Uф — напряжение между фазой и нейтральным проводом

Значения линейного и фазного токов совпадают, т. е. Iл = Iф.

При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.
Рисунок 2 — Схема подключения «треугольник»

Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:


где Iл — линейный ток, Iф — фазный ток

Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:


где U — фазное напряжение обмотки статора, r1 — активное сопротивление фазы обмотки статора, r2 — приведенное значение активного сопротивления фазы обмотки ротора,
x1 — индуктивное сопротивление фазы обмотки статора, x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора,
m — количество фаз, p — число пар полюсов

Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:

Фазный ток равен линейному току и равен:

После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:

Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.

С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.


Рисунок 3 — Временная диаграмма реле времени 80.82

Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.


Рисунок 4 — Силовая часть схемы «звезда-треугольник»

Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.


Рисунок 5 — Управление схемой «звезда-треугольник»

Разберем алгоритм работы данной схемы:

После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.

Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.

    Список используемой литературы:
  1. ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
  2. Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
  3. Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907

Запуск электродвигателя по схеме «звезда-треугольник»

Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.

Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени. Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.

Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.

Рисунок 1 — Схема подключения «звезда»

При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:

где Uл — напряжение между двумя фазами, Uф — напряжение между фазой и нейтральным проводом

Значения линейного и фазного токов совпадают, т. е. Iл = Iф.

При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.

Рисунок 2 — Схема подключения «треугольник»

Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:

Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:

где U — фазное напряжение обмотки статора, r1 — активное сопротивление фазы обмотки статора, r2 — приведенное значение активного сопротивления фазы обмотки ротора,

x1 — индуктивное сопротивление фазы обмотки статора, x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора,

m — количество фаз, p — число пар полюсов

Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:

Фазный ток равен линейному току и равен:

После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:

Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.

С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.

Рисунок 3 — Временная диаграмма реле времени 80.82

Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.

Рисунок 4 — Силовая часть схемы «звезда-треугольник»

Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.

Рисунок 5 — Управление схемой «звезда-треугольник»

Разберем алгоритм работы данной схемы:

После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.

Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.

Список используемой литературы:

  1. ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
  2. Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
  3. Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907

{SOURCE}

Пуск электродвигателя «Звезда-Треугольник» с одной пневматической приставкой выдержки времени DEKraft

Принцип работы пуска электродвигателя «Звезда-Треугольник» довольно прост и я думаю вы без особого труда, разберетесь как это все работает.

В качестве выдержки времени для переключения контакторов KM2 и KM3используется всего лишь одна пневматическая приставка выдержки времени PV1, которая устанавливается на контактор KM1.

Связь между приставкой PV1 и контактором KM1 я выделил зеленой пунктирной линией.

Принцип работы электрической схемы «Звезда-Треугольник» с приставкой выдержки времени

При нажатии на кнопку SB2 включается контактор KM1 и контактор KM3. Таким образом, осуществляется пуск двигателя по схеме «Звезда».

По истечении времени (время устанавливается на пневматическом реле PV1от 0,1 до 30 секунд для дальнейшего переключения электродвигателя из«Звезды» в «Треугольник») срабатывает пневматическое реле PV1,установленное на контакторе KM1.

Реле PV1 отключает контактор KM3 (в это время происходит отключение электродвигателя по схеме «Звезда».) и включает контактор KM2, тем самым, происходит запуск электродвигателя по схеме «Треугольник».

Чтобы остановить электродвигатель, вам нужно разомкнуть цепь управления контакторами и осуществляется это, путем нажатия на кнопку SB1. КнопкуSB1, я рекомендую всегда устанавливать самой первой!

Важно учесть! что между контакторами KM2 и KM3 в обязательном порядке, рекомендуется устанавливать механическую блокировку.

Механическая блокировка для контакторов устанавливается для того, чтобы исключить одновременное включение контакторов в случае какой либо неисправности, тем самым, блокировка предотвратит короткое замыкание и выход из строя электрической схемы, например (Залипания контактов).

Если же выбирать контактор для схемы «звезда-треугольник», то я бы остановился на серии TeSys E от компании Schneider Electric, т.к. по моему мнению, это самое лучшее решение «цена-качество». Я кстати делал небольшой обзор про контактор LC1E160M5, можете почитать.

Напоследок, хочется отметить, что это лишь единичный пример подключения электродвигателя двигателя «Звезда-Треугольник» с применением пневматической приставки, т.к. есть и другие реле.

Взять хотя бы Реле времени RT-SD, реле специально разработано для подключения двигателей «Звезда-Треугольник» и имеет белее тонкую настройку по переключению электродвигателя со звезды в треугольник.

Пример работы Реле времени RT-SD

В дальнейшем, я планирую начертить еще одну схему, с применением Реле времени RT-SD для электродвигателей «Звезда-Треугольник», но все будет зависеть только от вас, насколько такая схема будет вам интересна.

Ну а пока, до новых встреч и не забывайте комментировать и подписываться на новые статьи в моем блоге!

© DSelectric.ru

Переключение звезда треугольник схема - Всё о электрике

Чем отличаются соединения звездой и треугольником

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Запуск электродвигателя по схеме «звезда-треугольник» номиналом 30 кВт

Если Вы нашли ошибку на нашем сайте, выделите текст и нажмите Ctrl+Enter

Запуск асинхронного электродвигателя по схеме «Звезда-треугольник» номиналом 30 кВт с использованием реле времени Finder 80.82

Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.

Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени.

Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.

Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.


Рисунок 1 — Схема подключения «звезда»

При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:


где Uл — напряжение между двумя фазами, Uф — напряжение между фазой и нейтральным проводом

Значения линейного и фазного токов совпадают, т. е. Iл = Iф.

При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.
Рисунок 2 — Схема подключения «треугольник»

Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:


где Iл — линейный ток, Iф — фазный ток

Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:


где U — фазное напряжение обмотки статора, r1 — активное сопротивление фазы обмотки статора, r2 — приведенное значение активного сопротивления фазы обмотки ротора,
x1 — индуктивное сопротивление фазы обмотки статора, x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора,
m — количество фаз, p — число пар полюсов

Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:

Фазный ток равен линейному току и равен:

После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:

Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.

С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.


Рисунок 3 — Временная диаграмма реле времени 80.82

Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.


Рисунок 4 — Силовая часть схемы «звезда-треугольник»

Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.


Рисунок 5 — Управление схемой «звезда-треугольник»

Разберем алгоритм работы данной схемы:

После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.

Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.

    Список используемой литературы:
  1. ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
  2. Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
  3. Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907

Пуск электродвигателя способом звезда, треугольник

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник применяют для снижения пускового тока. Пусковой ток при запуске может превышать рабочий ток электродвигателя в 5-7 раз. У двигателей большой мощности пусковой ток бывает настолько велик, что может вызвать перегорание различных предохранителей, отключение автоматического выключателя и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей, может вызвать отключение контакторов и магнитных пускателей. Поэтому многие стремятся уменьшить пусковой ток. Это достигается несколькими способами, но все они в итоге сводятся к понижению напряжения в цепи статора электродвигателя на период пуска . Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор, либо переключают обмотку со звезды в треугольник.


Действительно, перед пуском и в первый период пуска обмотки соединены в звезду, поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает частоту вращения и ток снижается. После этого обмотки переключают в треугольник.

Схема управления


Подключение оперативного напряжения, через контакт реле времени К1 и контакт К2, в цепи катушки контактора К3. Включение контактора К3, размыкает контакт К3 в цепи катушки контактора К2 (блокировка ошибочного включения), замыкается контакт К3, в цепи катушки контактора К1 совмещенного с пневматическим реле времени.

Включение контактора К1, замыкает контакт К1 в цепи катушки контактора К1 (самоподпитка), одновременно включается пневматическое реле времени, которое размыкает через определенное время свой контакт К1 в цепи катушки контактора К3, а также замыкает свой контакт К1 в цепи катушки контактора К2. Отключение контактора К3, замыкается контакт К3 в цепи катушки контактора К2. Включение контактора К2, размыкает контакт К2 в цепи катушки контактора К3 (блокировка ошибочного включения).

Схема питания


На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Предупреждения

  1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат.
  2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, т. е. имеющие обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos§. Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos? переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока, в противном случае электродвигатель перегреется.

{SOURCE}

Трехфазный асинхронный двигатель

с помощью промышленного пускателя со звездой-треугольником

Трехфазный асинхронный двигатель состоит из статора, который содержит трехфазную обмотку, подключенную к трехфазному источнику переменного тока. Расположение обмотки таково, чтобы создавать вращающееся магнитное поле. Ротор асинхронного двигателя содержит цилиндрический сердечник с параллельными пазами, в которых расположены проводники.

Проблемы, возникающие при запуске двигателя:

Самой основной особенностью асинхронного двигателя является его механизм самозапуска.Из-за вращающегося магнитного поля в роторе индуцируется ЭДС, из-за которой в роторе начинает течь ток. Согласно закону Ленца, ротор начинает вращаться в направлении, препятствующем прохождению электрического тока, и это дает крутящий момент двигателю. Таким образом двигатель запускается самостоятельно.


Motor starting period Vs Steady state running period Motor starting period Vs Steady state running period Период пуска двигателя по сравнению с периодом работы в установившемся состоянии

Во время этого периода самозапуска по мере увеличения крутящего момента в роторе протекает большой ток. Для этого статор потребляет большое количество тока, и к тому времени, когда двигатель достигает своей полной скорости, потребляется большое количество тока, и катушки нагреваются, повреждая двигатель.Следовательно, возникает необходимость контролировать запуск двигателя. Один из способов - уменьшить приложенное напряжение, что, в свою очередь, снижает крутящий момент.

Цели пускателя двигателя по схеме звезда-треугольник:

  • Снижение высокого пускового тока и предотвращение перегрева двигателя
  • Обеспечение перегрузки и отсутствие напряжения

Пускатель звезда-треугольник:

В схеме звезда-треугольник при запуске двигатель подключается в режиме STAR в течение всего периода запуска.Когда двигатель достигает необходимой скорости, двигатель подключается в режиме ТРЕУГОЛЬНИК.

Star Delta Motor Control Power Circuit Star Delta Motor Control Power Circuit Цепь питания управления электродвигателем звезда-треугольник

Компоненты пускателя звезда-треугольник:

Контакторы: Цепь пускателя звезда-треугольник состоит из трех контакторов: главного, звезды и треугольника. Требуется, чтобы три контактора соединяли обмотки двигателя сначала звездой, а затем треугольником.

Таймер: Контакторы регулируются таймером, встроенным в пуск.

PCBWay PCBWay

Блокировочные выключатели: Блокировочные выключатели подключаются между контакторами звезды и треугольника цепи управления в качестве меры безопасности, поэтому нельзя активировать контактор треугольника, не отключив контактор звезды. В случае одновременного срабатывания контакторов со звездой и треугольником двигатель выйдет из строя.

Тепловое реле перегрузки: Тепловое реле перегрузки также объединено в схему управления звезда-треугольник, чтобы защитить двигатель от чрезмерного нагрева, который может ускорить обнаружение возгорания или износ двигателя.В случае, если температура превышает заданное качество, контакт размыкается, и питание отключается таким образом, чтобы обеспечить работу двигателя.

Работа пускателя звезда-треугольник:

Сначала замыкаются первичный контактор и контакторы звезды. Через некоторый промежуток времени таймер подает сигнал контактору звезды, чтобы он перешел в разомкнутое положение, а первичные контакторы треугольника переходят в положение закрытия, соответственно структурируя схему треугольника.

Во время пуска, когда обмотки статора связаны звездой, каждая ступень статора получает напряжение VL / √3, где VL - линейное напряжение.Следовательно, линейный ток, потребляемый двигателем при запуске, уменьшается до одной трети по сравнению с пусковым током с обмотками, соединенными в треугольник. Аналогичным образом, поскольку крутящий момент, развиваемый асинхронным двигателем, соответствует квадрату приложенного напряжения; Пускатель со звезды на треугольник снижает пусковой крутящий момент до одной трети от возможного при немедленном запуске по схеме треугольник.

Таймер управляет преобразованием со звезды в треугольник. Таймер в пускателе со звезды на треугольник для трехфазного двигателя предназначен для перехода от режима звезды, при котором двигатель работает при пониженном напряжении и токе и производит меньший крутящий момент, - в режим треугольника, необходимый для работы двигателя на полную мощность. мощность, использующая высокое напряжение и ток для преобразования высокого крутящего момента.

Клеммные соединения в конфигурациях звезды и треугольника:

L1, L2 и L3 - это трехфазные линейные напряжения, которые подаются на первичный контактор. Катушки главного двигателя U, V и W показаны на рисунке. В режиме звезды обмотки двигателя первичный контактор связывает сеть с клеммами основной обмотки U1, V1 и W1. Контактор звездой замыкает клеммы вспомогательной обмотки U2, V2 и W2, как показано на рисунке. Независимо от того, когда первичный контактор отключен, питание поступает на клеммы A1, B1, C1, и, следовательно, обмотки двигателя находятся под напряжением в звездном режиме.

Таймер запускается в тот момент, когда контактор звезды находится под напряжением. После того, как таймер достигает заданного периода времени, контактор звезды обесточивается, а контактор треугольник включается.

Induction motor winding terminals connected in star and delta configuration Induction motor winding terminals connected in star and delta configuration Клеммы обмотки асинхронного двигателя, подключенные по схеме звезды и треугольника

Точка, когда замыкается контактор треугольником, клеммы обмотки двигателя U2, V2 и W2 связываются с V1, W1 и U1 по отдельности через замыкающие контакты первичного контактора. То есть для объединения в треугольник, выполняющий конец одной обмотки должен быть соединен с начальным концом другой обмотки.Конфигурация обмоток двигателя изменяется по схеме «треугольник» путем подачи сетевого напряжения L1 на выводы обмотки W2 и U1, линейного напряжения L2 на выводы обмотки U2 и V1; и линейное напряжение L3 к клеммам обмотки V2 и W1, как показано на рисунке.

Типы пускателей со звезды на треугольник:

Есть два типа пускателей со звезды на треугольник: открытый и закрытый.

Стартер с открытым переходом «звезда-треугольник»:

Это наиболее широко признанная стратегия пуска «звезда-треугольник». Как следует из названия, в этой стратегии обмотки двигателя открыты в течение всего времени переключения обмоток из режима звезды в режим треугольника.Пускатель с размыканием звезда-треугольник использует 3 контактора двигателя и реле задержки движения.

Достоинства:

Пускатель с открытым переходом очень прост в реализации с точки зрения стоимости и схемотехники, он не требует дополнительного оборудования для определения напряжения.

Недостатки:

Открытый переход вызывает выброс тока и крутящего момента при переключении, который оглушает систему как электрически, так и механически. В электрическом плане результат мгновенных пиков тока может вызвать колебания силы или несчастья.С механической точки зрения увеличенный крутящий момент, возникающий из-за скачка тока, может быть достаточным, чтобы повредить компоненты системы, то есть сломать приводной вал.

Пускатель с замкнутым переходом со звезды на треугольник:

В этом пускателе переключение со звезды на треугольник осуществляется без отключения двигателя от сети. Добавляется пара компонентов, чтобы избавиться от скачков напряжения, связанных с открытым переходом, или уменьшить их. Дополнительные компоненты включают контактор и несколько переходных резисторов. Переходные резисторы потребляют текущий поток во время переключения обмотки.Четвертый контактор дополнительно используется для включения резистора в цепь перед размыканием контактора со звездой и последующей откачкой воздуха из резисторов после замыкания контактора треугольником. Несмотря на необходимость в дополнительных механизмах замены, схема управления более запутана из-за необходимости полной замены резистора.

Достоинства:

Имеется сокращение приращения скачка тока, которое возникает в результате перехода. Таким образом, пускатель с закрытым переходом имеет плавное переключение.

Недостаток:

Помимо необходимости большего количества переключающих устройств, схема управления более сложна из-за необходимости переключения резисторов. Кроме того, добавление схем приводит к значительному удорожанию установки.

Full load current in Open Transition and closed transition Full load current in Open Transition and closed transition Ток полной нагрузки при открытом и закрытом переходе

Пример пускателя звезда-треугольник:

Пускатель звезда-треугольник обычно используется для уменьшения пускового тока двигателя. Дан пример, чтобы знать о пускателе со звезды на треугольник.

Из схемы мы использовали источник питания 440 вольт для запуска двигателя. И здесь мы использовали набор реле для переключения двигателя со звезды на треугольник с задержкой по времени. В этом мы объяснили работу с использованием лампы вместо двигателя для облегчения понимания. Во время работы по схеме «звезда» лампы могут тускло светиться, показывая, что напряжение питания на катушках составляет 440 вольт. При работе в треугольник после срабатывания таймера огни могут гореть с полной интенсивностью, показывая полное напряжение питания 440 вольт.Таймер 555 выполняет моностабильную работу, выход которой поддерживается реле для обновления сетевого питания с трехфазной звезды на треугольник.

Block Diagram Block Diagram Блок-схема от Edgefx Kits

Фото предоставлено:

  • Период пуска двигателя по сравнению с периодом работы в устойчивом состоянии myelectrical
  • Цепь питания управления электродвигателем звезда-треугольник Автор s1.hubimg
  • Клеммы обмотки асинхронного двигателя подключены в конфигурации звезды и треугольника by myelectrical
  • Ток полной нагрузки при открытом переходе и закрытом переходе через электрический нейтрон
.

Motor STAR - Пускатель с треугольником Принцип работы

Двойной пускатель подключает клеммы двигателя непосредственно к источнику питания. Следовательно, на двигатель подается полное напряжение источника питания. Следовательно, через двигатель протекает большой пусковой ток. Этот тип запуска подходит для небольших двигателей мощностью менее 5 л.с. (3,75 кВт).

Пускатели пониженного напряжения используются с двигателями мощностью более 5 л.с. Хотя сдвоенные пускатели доступны для двигателей менее 150 кВт на 400 В и для двигателей менее 1 МВт на 6.6 кВ.

Надежность питания и выработка резервной мощности диктуют необходимость использования пониженного напряжения или отказа от снижения пускового тока асинхронного двигателя, при этом необходимо снизить напряжение на двигателе. Это можно сделать с помощью пускателя с автотрансформатором

  1. , пускателя со звезды на треугольник
  2. или пускателя с резистором
  3. .

Современный привод VVVF (VFD), широко используемый для регулирования скорости, также служит этой цели.

В двойном пускателе двигатель питается напрямую от сети, а в пускателе со звездой-треугольником двигатель запускается сначала со звезды, а затем во время работы по треугольнику.Это метод пуска, который снижает пусковой ток и пусковой момент. Двигатель должен быть подключен по схеме треугольника во время нормальной работы, чтобы можно было использовать этот метод пуска.

Полученный пусковой ток составляет примерно 30% от пускового тока при прямом пуске от сети, а пусковой крутящий момент снижается примерно до 25% крутящего момента, доступного при прямом пуске.

Пускатели звезда / треугольник

Пускатели звезда / треугольник, вероятно, являются наиболее распространенными пускателями пониженного напряжения в мире 50 Гц.(В мире 60 Гц известны как звездообразные / дельта-стартеры). Они используются в попытке уменьшить пусковой ток, подаваемый на двигатель во время пуска, как средство уменьшения помех и помех в электроснабжении.

Деталь: Пускатель звезда / треугольник состоит из трех контакторов, таймера и устройства защиты от тепловой перегрузки. Контакторы меньше, чем одиночный контактор, используемый в пускателях прямого включения, поскольку они регулируют только токи обмоток.

Ток через обмотку 1√3 = 0.58 (58%) тока в линии. эта связь составляет примерно 30% значений дельты. Пусковой ток снижается до одной трети от постоянного пускового тока.

Как это работает?

Есть два контактора, которые замыкаются во время работы, часто называемые главным контактором и контактором треугольника. Это AC3, рассчитанный на 58% номинального тока двигателя.

Третий контактор - это контактор звезды, который пропускает ток звезды только при подключении двигателя звездой.Ток в звезду составляет одну треть тока в треугольнике, поэтому этот контактор может быть рассчитан на AC3 на одну треть номинальной мощности двигателя.

Во время работы главный контактор (KM3) и контактор звезды (KM1) сначала замыкаются, а затем, по прошествии некоторого времени, размыкается контактор звезды, а затем замыкается контактор треугольника (KM2). Управление контакторами осуществляется таймером (K1T), встроенным в пускатель. Звезда и Дельта электрически взаимосвязаны и предпочтительно механически взаимосвязаны.

Фактически, существует четыре состояния:
  1. Состояние ВЫКЛ. : Все контакторы разомкнуты.
  2. Состояние звезды. : Главный контактор и контактор звезды замкнуты, а контактор треугольника разомкнут. Двигатель подключен по схеме звезды и будет производить одну треть крутящего момента прямого тока при одной трети прямого тока.
  3. Открытое состояние : Главный контактор замкнут, а контакторы треугольником и звездой разомкнуты. На одном конце обмотки двигателя есть напряжение, но другой конец открыт, поэтому ток не может течь.Мотор имеет вращающийся ротор и ведет себя как генератор.
  4. Delta State : Главный и треугольный контакторы замкнуты. Контактор звезды разомкнут. Двигатель подключен к полному линейному напряжению, и доступны полная мощность и крутящий момент.

Этот тип операции называется переключением с открытым переходом, потому что между состоянием звезды и состоянием треугольника существует открытое состояние.

Motor STAR - DELTA Working principle

Motor STAR - DELTA Working principle

Читайте также: Принцип работы частотно-регулируемого привода

.

Запуск двигателя звезда-треугольник - производительность

Многие вопросы, отправленные на сайт, связаны с запуском двигателя и, в частности, с переключением со звезды на треугольник. Для всех приложений, кроме самых простых, есть смысл провести более подробное изучение. Проведение исследования программного обеспечения позволяет оценить как электрические характеристики, так и характеристики подключенных механических систем.

Это примечание иллюстрирует на примере один из возможных подходов к изучению характеристик схемы пуска двигателя звезда-треугольник.

Пример

Будет исследован относительно простой пример двигателя мощностью 15 кВт, питаемого напрямую от источника и с нагрузкой, моделируемой простой инерцией. Если модель будет простой, будет легче изучить и понять принципы.

Технические параметры модели:

  • 15 кВт, 380 В, 50 Гц, двигатель с короткозамкнутым ротором с 1 парой полюсов
  • Сопротивление статора, R с = 0,0258 о.е. и реактивное сопротивление L с = 0.0930 о.е.
  • сопротивление ротора, R r ' = 0,0145 о.е. и реактивное сопротивление L r ' = 0,0424 о.е. (относительно статора)
  • индуктивность намагничивания, L м = 1,7562 о.е.
  • индуктивность нулевой последовательности статора L o = 0,930 о.е.
  • инерция подключения = 0,15 кг.м 2

Чтобы проиллюстрировать и понять работу пускателя двигателя, моделирование проводится в три этапа:

  1. создание модели прямого пуска
  2. модификация (1) для моделирования пускателя с разомкнутым переходом звезда-треугольник
  3. модификация (2) для моделирования пускателя с замкнутым переходом звезда-треугольник

Цепи запуска двигателя

При написании поста предполагается, что читатель имеет некоторое представление о схемах запуска двигателей.Если вы не знакомы с этими типами схем, вы можете обратиться к небольшой вводной электронной книге по теме - «Пуск и управление двигателем».

Сначала построив модель прямого доступа, мы можем убедиться, что результат соответствует ожиданиям и что модель работает правильно. Выходные данные модели непосредственно в сети также дают нам базовые характеристики, с которыми можно сравнивать результаты пуска по схеме звезда-треугольник.

Модели для пуска по схеме звезда-треугольник будут охватывать две распространенные реализации: открытый переход и закрытый переход.При разомкнутом переходе при переключении со звезды на треугольник происходит перерыв в питании, тогда как в замкнутом переходе используются резисторы для устранения перебоев в питании.

На практике пускатели со звезды на треугольник обычно используют реле таймера для управления переключением. В модельных примерах используются временные сигналы, чтобы имитировать это поведение. Время перехода от пуска к треугольнику часто называют временем, когда двигатель работает до 75-85% от своей рабочей скорости. Чтобы исследовать это правило, мы рассмотрим три сценария с переключениями, происходящими на 70%, 80% и 90% полной скорости.

Примечание: с точки зрения моделирования, возможно, было проще использовать фактические сигналы скорости для управления переключением. Однако использование сигналов синхронизации и их индивидуальная настройка может упростить выполнение логики модели.

Моделирование цепей

Модели были разработаны с использованием Simulink, и в публикации даются только краткие объяснения того, как они работают. Для получения более подробной информации по любому аспекту вы можете посетить веб-сайт Simulink.

Используя модели, мы можем измерять и анализировать множество параметров. Из них для рассмотрения были выбраны три, которые представляют наибольший интерес для инженеров (и часто являются предметом рассмотрения в учебниках):

  • ток статора
  • электрический крутящий момент
  • скорость

Прямой пуск

Прямой пуск без проблем. Сетевой контактор замыкается, чтобы подключить питание непосредственно к двигателю.Обмотки двигателя соединены по схеме треугольника.


Модель цепи с прямым подключением

На иллюстрации (щелкните, чтобы увеличить изображение) показана схема, используемая для моделирования поведения прямого пуска от сети. Хотя модель довольно проста, я кратко объясню функцию каждого элемента:

  • беличья клетка асинхронной машины - моделирует динамическое поведение нашего двигателя (с использованием преобразования Парка dq0)
  • трехфазный источник напряжения обеспечивает питание к цепи и сопротивлению, R = 0.5 Ом имитирует импеданс источника и путь передачи
  • переключатель (линейный контактор) срабатывает через 0,4 с (устанавливается Ton) для подключения источника питания к двигателю
  • три фазы напрямую подключаются к положительному концу обмоток (~ 1)
  • фазы также транспонированы в «соединении треугольником» и подключены к отрицательному концу обмоток (~ 2)
  • подключенная инерция представлена ​​элементом «инерция»
  • датчиком «тока статора» и (pu ) терминалы позволяют проводить измерения и отображать их с помощью блока осциллографа.

На графике ниже показаны результаты выполнения моделирования.


Результаты прямого включения

Результаты показывают, чего можно было бы ожидать от устройства прямого запуска в соответствии с фундаментальной теорией. Скорость постепенно увеличивается до полной скорости, а электрический крутящий момент следует ожидаемому профилю и увеличивается, а затем падает, когда двигатель набирает скорость. Ток двигателя начинается с высокого уровня, а затем падает до нормального рабочего значения, когда двигатель достигает полной скорости.

Примечание: для всех, кто интересуется теорией электричества, более подробная информация представлена ​​в нашей заметке об эквивалентной схеме асинхронного двигателя.

Скорость и крутящий момент указаны в единицах (о.е.). Для тока нанесены реальные значения, поскольку они представляют наибольший интерес для любого инженера, реализующего пусковую схему. Кроме того, для тока строятся мгновенные и среднеквадратичные кривые.

Изучив результаты, можно сделать важные выводы:

  • время до полной скорости составляет около 2,7 секунды
  • ток полной нагрузки составляет примерно 166 А
  • пусковой ток составляет примерно 21 А (7.В 9 раз больше рабочего тока)

Время (двигатель подключен звездой)

Перед тем, как перейти к рассмотрению пуска со звезды на треугольник, модель прямого включения работает с обмоткой двигателя по схеме звезды. На изображении видно, что это достигается подключением отрицательных обмоток (~ 2) к земле. Целью этого является получение временных точек для переходов звезда-треугольник.


Создание звездообразной обмотки

Выходной сигнал (не показан) соответствует схеме соединения треугольником, но пусковые токи меньше (и, следовательно, крутящий момент), а время ускорения больше.

Изучая график скорости, мы находим длительности (начиная с t = 0), в течение которых двигатель разгонялся до интересующих нас точек переключения.

  • 70% полной скорости за 3,13 секунды
  • 80% полной скорости за 3,36 секунды
  • 90% полной скорости за 3,48 секунды

Переход звезда-треугольник в открытый режим

При открытом переходе звезда-треугольник стартер, сначала питание подается на обмотку по схеме звезды.После соответствующей выдержки времени питание отключается, обмотки переключаются на треугольник, а питание снова подключается. Временная задержка между отключением двигателя по схеме звезды и повторным включением по схеме треугольника обычно составляет около 40 мс.

Используя результаты исследования непосредственно в сети (обмотка, соединенная звездой), временные события для нашей схемы 70% звезда-треугольник могут быть описаны как:

  1. Тонна при 0,4 с - питание подключено, контактор звезды замкнут, Контактор треугольник разомкнут
  2. Ts при 3.53 с (3,13 + 0,4) - контактор звезды разомкнут
  3. Td при 3,57 с (3,53 + 0,04) - контакт треугольник замкнут

Для краткости три рассматриваемых сценария могут быть выражены как:

  1. 70 % - 0,4, 3,53, 3,57
  2. 80% - 0,4, 3,76, 3,80
  3. 90% - 0,4, 3,88, 3,92


Модель разомкнутой цепи звезда-треугольник

Модель разомкнутого перехода звезда-треугольник очень похож на пускатель с прямым пуском.К дополнительным элементам относятся:

  • контакт звезды для установки обмотки двигателя первоначально в пусковую конфигурацию, как выключенный по истечении времени, заданного Ts
  • контактор треугольника для установки обмотки двигателя в конфигурацию треугольника после времени, заданного Td

После запуска моделирования у нас есть следующие графики производительности:


Результаты открытого перехода звезда-треугольник (случай 70%)


Результаты открытого перехода звезда-треугольник (среднеквадратичный ток, случай 80%)
Результаты перехода «звезда-треугольник» в открытый режим (среднеквадратичный ток, случай 90%)

Из кривых видно, что пусковой ток двигателя был уменьшен.Снижение пускового тока двигателя является основной причиной использования пускателя со звезды на треугольник. Хотя пусковой ток был уменьшен, ускоряющий момент также снижается, в результате чего двигателю требуется больше времени для разгона до полной скорости.

Пример с 70% показывает значительный всплеск при переключении, приводящий к падению напряжения, которое не лучше, чем при использовании пускателя с прямым включением. В зависимости от di / dt и величины, это часто может создать худшие проблемы, чем использование более простого прямого запуска.Это типично для плохо настроенного пускателя со звезды на треугольник, и поэтому часто предпочитают пускатель с замкнутым переходом.

Примечание: изучение поведения момента ускорения и поведения любой подключенной механической нагрузки часто является причиной для проведения исследования. Хотя мы не будем делать этого в этом посте, надеюсь, читатель увидит, как этого можно достичь.

Вкратце, по сравнению с прямым пуском от сети, основные электрические параметры следующие:

Прямой режим Звезда-треугольник
Время до полной скорости, с 2.7 3,7
Ток полной нагрузки, А 21 21
Пусковой ток, А 166 81
Пусковой ток, x (раз при полной нагрузке) 7,9257 3,8

Замкнутый переход звезда-треугольник

Пусковые резисторы в замкнутом переходе вставляются в обмотки отрицательного конца, гарантируя, что двигатель никогда не будет отключен от источника питания.

Подобрать резистор может быть сложно, и такие модели могут очень помочь. В этом примере размер резистора выбирается исходя из 30% падения напряжения на резисторе:

R = 0,3 × VLNIa

В LN - это линейное напряжение (2220 В), а I a пусковой ток (81 А). Применение формулы дает расчетное сопротивление R = 0,8148 Ом.


Модель замкнутого перехода звезда-треугольник

Модель замкнутого перехода звезда-треугольник представляет собой небольшую модификацию примера открытого перехода, где:

  • Группа резисторов, соединенных треугольником (R1), включается в цепь посредством Tr1 на одновременно с размыканием контактора звезды (Tr1 = Td)

Для краткости нас интересует только то, что происходит с всплеском тока в случае 70%.


Результаты замкнутого перехода звезда-треугольник (случай 70%)

Как можно видеть, пик тока был значительно уменьшен, что ясно показывает, что даже то, как влияние резисторов улучшает характеристики плохо синхронизированного переключения.

Примечание. Величина пускового тока все еще немного выше, чем хотелось бы, но, используя модель для регулировки размера резистора, можно ее уменьшить. Оптимизации размера резистора (и других компонентов) способствует моделирование пусковых схем.

Заключение

Как показано, исследование цепей пуска двигателя не является обременительным, но тем не менее дает подробное представление о функционировании двигателя и нагрузки при запуске и в установившемся режиме.

Несмотря на то, что приведенный пример упрощен, так же легко расширить модель для представления реальных сетевых условий и / или выполнения различных сценариев «что, если», посмотреть на другие методы запуска или другие параметры (например, резистор I 2 т потерь).

.

Сравнение прямого запуска и запуска двигателя звезда-треугольник

Способы запуска двигателя


Прямой пуск (DOL)

Как следует из названия, прямой запуск означает, что двигатель запускается путем его подключения непосредственно к источнику питания при номинальном напряжении. Прямой пуск (DOL) подходит для стабильных источников питания и механически жестких и хорошо рассчитанных систем валов - и насосы квалифицируются как примеры таких систем.

Comparision of Direct-on-line (DOL) and Star-delta Motor Starting Сравнение прямого запуска двигателя (DOL) и запуска двигателя звезда-треугольник (фото предоставлено Найджелом Дэвидом Брауном) Line diagram for Direct-on-line motor starting Линейная диаграмма для прямого запуска двигателя

Где:

  • K1 - Главный контактор
  • MV1 - Реле перегрузки

Вернуться к методам ↑


Преимущества DOL

Прямой пуск - самый простой, дешевый и самый распространенный метод запуска .Кроме того, это фактически дает самый низкий рост температуры внутри двигателя во время пуска из всех методов пуска.

Это очевидный выбор в тех случаях, когда текущие ограничения энергоснабжающей организации позволяют его использование.

Электростанции могут иметь разные правила и нормы в разных странах. Например: Трехфазные двигатели с токами заторможенного ротора более 60 А не должны использовать прямой пуск в Дании . В таких случаях, очевидно, необходимо выбрать другой способ запуска.

Двигатели, которые часто запускаются и останавливаются, часто имеют какую-то систему управления , которая состоит из контактора и защиты от перегрузки , например теплового реле.

DOL curve - Synchronous speed / Full-load torque Кривая прямого включения - синхронная скорость / крутящий момент при полной нагрузке

Вернуться к методам ↑


Недостатки DOL

Для малых двигателей, которые часто не запускаются и не останавливаются, требуется только очень простое пусковое оборудование , часто в виде автоматический выключатель защиты двигателя с ручным управлением.

Полное напряжение подключается непосредственно к клеммам двигателя. Для небольших двигателей пусковой крутящий момент будет составлять от 150% до 300% от значения полной нагрузки, а пусковой ток будет составлять от до 300% до 800% от тока полной нагрузки или даже выше.

DOL curve - Synchronous speed / Full-load current Кривая прямого включения - синхронная скорость / ток полной нагрузки

Вернуться к методам ↑


Пуск звезда-треугольник

Целью этого метода пуска, который используется с трехфазными асинхронными двигателями, является снижение пускового тока .

В исходном положении подача тока к обмоткам статора подключена в звезду (Y) для запуска . В рабочем положении подача тока снова подключается к обмоткам по схеме дельта (∆), как только двигатель набирает скорость .

Line diagram for star-delta motor starter Линейная схема для пускателя двигателя звезда-треугольник

Вернуться к методам ↑


Преимущества Y-Δ

Обычно низковольтные двигатели мощностью более 3 кВт рассчитаны на работу либо при 400 В в треугольнике ( ∆) соединение или при 690 В звездой (Y) соединение .Гибкость, обеспечиваемая этой конструкцией, также может быть использована для запуска двигателя с более низким напряжением. Соединения "звезда-треугольник" дают низкий пусковой ток, составляющий лишь треть от тока при прямом пуске от сети.

Пускатели со звезды на треугольник особенно подходят для с высокой инерцией , когда нагрузка включается после полной скорости нагрузки.

Start-delta starter curve - Synchronous speed / Full-load torque Кривая пуска-треугольник - синхронная скорость / крутящий момент при полной нагрузке

Вернуться к методам ↑


Недостатки Y-Δ

Но они также снижают пусковой момент примерно до 33%. Двигатель запускается по схеме Y, разгоняется и переключается на соединение звезда-треугольник. Этот метод может использоваться только с асинхронными двигателями, которые подключены по схеме треугольник к источнику питания .

Если переключение со звезды на треугольник происходит на слишком низкой скорости, это может вызвать скачок тока , который возрастает почти до соответствующего значения DOL. В течение даже небольшого периода переключения с пуска на соединение треугольником двигатель очень быстро теряет скорость , что также требует более высокого импульса тока после подключения к треугольнику.

На двух рисунках справа показаны две особенности, которые следует учитывать при пуске со звезды на треугольник. Стартер сначала подключает двигатель в звезду (контакторы K1 и K3). По прошествии определенного периода времени - который зависит от индивидуальных потребностей - он подключает двигатель к контактору треугольник K3 размыканию и контактору K2 замыканию.

Star-delta starter curve – Synchronous speed / Full-load current Кривая пуска звезда-треугольник - синхронная скорость / ток полной нагрузки

Пусковой крутящий момент и ток значительно ниже при пуске звезда-треугольник, чем при прямом пуске: одна треть от эквивалентного значения прямого тока.

Несоответствие кривой крутящего момента двигателя и скорости крутящего момента нагрузки. В показанном здесь примере двигатель будет медленно разгоняться до примерно 50% номинальной скорости .

Mismatching of motor torque speed curve and load torque speed curve Несоответствие кривой крутящего момента двигателя и кривой скорости крутящего момента нагрузки

Вернуться к методам ↑


Сравнение прямого и треугольного пуска

На следующих графиках показаны токи для насоса Grundfos CR, запущенного с Grundfos MG 7,5 кВт двигателя с прямым пуском и пуском со звезды на треугольник соответственно.Как вы увидите, метод прямого пуска имеет очень высокий ток при заторможенном роторе, который в конечном итоге выравнивается и становится постоянным.

Direct-on-line starting of a Grundfos 7.5 kW motor installed on a Grundfos CR pump Прямой пуск двигателя Grundfos 7,5 кВт, установленного на насосе Grundfos CR

Пуск со звезды на треугольник отличается более низким током заторможенного ротора, но имеет пики во время процесса запуска при переключении со звезды на треугольник сделан.

При пуске звездой (t = 0,3 с) ток уменьшается .

Star-delta starting of a 7.5 kW Grundfos motor installed on a Grundfos CR pump Пуск со звезды на треугольник двигателя Grundfos мощностью 7,5 кВт, установленного на насосе Grundfos CR

Однако, когда переключается со звезды на треугольник (при t = 1,7 с), импульс тока достигает того же уровня, что и заблокированный - ток ротора при прямом пуске. Импульс тока может даже стать выше , потому что двигатель в течение периода переключения не запитан, что означает, что он снижает скорость до того, как будет подано полное напряжение (дельта-напряжение).

Вернуться к методам ↑

Ссылка // The Motor Book - Grundfos (Загрузить)

.

Отправить ответ

avatar
  Подписаться  
Уведомление о