Рабочее заземление его назначение и устройство. Защитное заземление: назначение, устройство и принцип работы

Что такое защитное заземление. Как устроена система защитного заземления. Для чего нужно защитное заземление в электроустановках. Какие бывают типы заземляющих устройств. Как рассчитать параметры заземлителей.

Содержание

Назначение и устройство защитного заземления

Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением в результате повреждения изоляции.

Основное назначение защитного заземления — обеспечение электробезопасности людей при прикосновении к металлическим нетоковедущим частям электроустановок, оказавшимся под напряжением из-за повреждения изоляции.

Устройство защитного заземления включает в себя следующие основные элементы:

  • Заземлители — металлические проводники, находящиеся в непосредственном контакте с землей
  • Заземляющие проводники — проводники, соединяющие заземляемые части электроустановки с заземлителями
  • Главная заземляющая шина — шина, к которой присоединяются заземляющие проводники, проводники основной системы уравнивания потенциалов и проводники дополнительной системы уравнивания потенциалов

Принцип работы системы защитного заземления

Принцип работы защитного заземления основан на снижении напряжения прикосновения и шага до безопасных значений при замыкании на корпус электроустановки. Как это происходит.


  1. При повреждении изоляции и замыкании фазы на корпус электроустановки, корпус оказывается под напряжением относительно земли.
  2. Через заземляющее устройство протекает ток замыкания на землю.
  3. За счет сопротивления заземляющего устройства напряжение на корпусе снижается до безопасного значения.
  4. Чем меньше сопротивление заземляющего устройства, тем ниже напряжение прикосновения.

Таким образом, защитное заземление выполняет роль шунта, отводящего ток замыкания в землю в обход тела человека.

Область применения защитного заземления

Защитное заземление применяется в следующих случаях:

  • В электроустановках до 1 кВ с изолированной нейтралью
  • В электроустановках выше 1 кВ с любым режимом нейтрали
  • Во взрывоопасных зонах независимо от значения напряжения
  • В передвижных электроустановках

Защитное заземление обязательно для электрооборудования, эксплуатируемого в помещениях с повышенной опасностью и особо опасных помещениях.

Типы заземляющих устройств

Различают два основных типа заземляющих устройств:


Естественные заземлители

К естественным заземлителям относятся:

  • Металлические конструкции зданий и сооружений, имеющие надежное соединение с землей
  • Металлические трубы водопровода, проложенные в земле
  • Обсадные трубы скважин
  • Металлические шпунты гидротехнических сооружений

Искусственные заземлители

Искусственные заземлители специально изготавливаются для целей заземления. Основные типы:

  • Вертикальные стержневые заземлители из угловой стали или труб
  • Горизонтальные полосовые заземлители из стальной полосы
  • Комбинированные заземлители из вертикальных и горизонтальных элементов

Расчет параметров заземляющих устройств

Основной параметр, определяющий эффективность защитного заземления — сопротивление заземляющего устройства. Допустимые значения сопротивления заземления регламентированы в ПУЭ.

Для расчета сопротивления заземлителей используются следующие исходные данные:

  • Удельное сопротивление грунта
  • Размеры и конфигурация заземлителей
  • Глубина заложения заземлителей
  • Климатическая зона

Расчет выполняется с учетом сезонных изменений сопротивления грунта путем введения повышающих коэффициентов.


Схемы заземления в электроустановках зданий

В электроустановках зданий применяются следующие основные схемы заземления:

TN-C-S

Особенности схемы TN-C-S:

  • Нейтраль трансформатора заземлена
  • Открытые проводящие части электроустановки присоединены к PEN-проводнику
  • Функции нулевого защитного и нулевого рабочего проводников объединены в одном проводнике в части сети

TT

Особенности схемы TT:

  • Нейтраль трансформатора заземлена
  • Открытые проводящие части электроустановки заземлены при помощи отдельного заземлителя
  • Обязательно применение УЗО

Правильный выбор и реализация схемы заземления обеспечивает эффективную защиту от поражения электрическим током.


Рабочее заземление

Согласно Правилам устройства электроустановок, рабочим (или функциональным/технологическим) заземлением называется заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки, но не в целях электробезопасности.

Подразумевается, что оборудование работает надежно, а если сопротивление функционального заземления ≤4 Ом, то проблемы электробезопасности вообще исключены.

Понятие функционального заземления (далее FE) для сетей питания информационного оборудования и систем связи описано в следующих нормативных документах:

  • ГОСТ Р 50571.22-2000, п. 3.14 (707.2): «Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал (иногда для этого требуется наличие отдельного электрически независимого заземлителя)».
  • ГОСТ Р 50571.21-2000, п. 548. 3.1: «Функциональное заземление может выполняться путем использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.

Допускается функциональный заземляющий проводник (FE-проводник) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его главной заземляющей шине (ГЗШ)».

Для правильного понимания определений, данных выше, необходимо договорится о смысле некоторых слов:

  • «Как правило» подразумевает, что требование (условие, решение) является преобладающим. Его несоблюдение возможно, но требует весомых обоснований.
  • «Допускается» означает, что условие следует выполнять лишь как исключение в силу вынужденных обстоятельств.
  • «Рекомендуется» – решение является оптимальным, но его выполнение не обязательно.
  • «Может» символизирует правомерный вариант, один из нескольких.

 

Причины распространения функционального заземления

Первая причина
В 90-х гг. с увеличением распространения вычислительной техники, мощность которой постоянно увеличивалась, возникла необходимость обеспечить ее надежную работу в сетях типа ТN-C.

На рис. 1 показана схема рабочего заземления с использованием PEN-проводника (совмещенного нулевого рабочего N и нулевого защитного PE):

Информация передается по линии связи между 2-мя компьютерами. Возьмем за отправную точку корпусное заземление. Заземление, выполненное проводником РЕN, по которому текут рабочие токи, приводит к разнице потенциалов между корпусами приборов. Получается, что в линию связи вносится разница потенциалов, пульсации, гармоники и высокочастотные помехи при работе оборудования с большими реактивными токами.

Решением проблемы служило локальное применение отдельной системы рабочего заземления, которое обеспечивало устойчивую работу компьютеров. Стоит отметить, что стоимость перехода на «пятипроводную» систему типа TN-S была значительно выше.

Вторая причина
Распространению функционального заземления также способствовало плохое состояние защитного заземления в электроустановках. При поставках «чувствительной» электронной техники от заказчика требовалось создание отдельного заземления.

Третья причина
Возникновение специфических и строгих требований по защите информации, особых лабораторий и других аналогичных объектов также послужило распространению FE.

 

Основные схемы выполнения функционального заземления

Вариант «А» существует и даже исполняется, но является самым опасным из представленных с точки зрения электробезопасности и безопасности объекта в целом. Подробные объяснения приведены ниже.

Вариант «В» является формальным подходом, выполнение системы с его использованием полностью законно. Это качественное защитное заземление с радиальной схемой разводки, которое используется для вновь строящихся объектов.

Вариант «С» – удобная схема для реконструируемых объектов. С точки зрения воздействия помех на ответственное оборудование данный вариант значительно лучше, чем «В».

Недостатки варианта «А»:

1. Разрушается целостность основной системы уравнивания потенциалов, что приводит к появлению разности потенциалов на независимых системах заземления в процессе эксплуатации.

Причины появления разности потенциалов могут быть такими:

  • КЗ на корпус в сети ТN-S до срабатывания системы защиты (~110B).
  • Внешние электромагнитные поля (близкий разряд молнии) из-за разницы в длине проводников. Иногда измеряется в кВ.
  • Занос потенциала на ГЗШ при срабатывании молниеприемника, при этом разница потенциалов достигает исчисляется сотнями кВ. Подробнее написано в статье «Защитное заземление. Основная и дополнительные системы уравнивания потенциала».

2. Крайне низкие токи короткого замыкания фаза-корпус относительно сетей типа TN-S со всеми вытекающими последствиями (см. рис. 3).

Рис. 3. Схема протекания тока замыкания на корпус аппарата при использовании независимого функционального заземления в сети типа TN

FE не имеет точки соединения с ГЗШ и с нейтралью, и токи короткого замыкания составят только десятки ампер. Ситуация ухудшается отсутствие в цепи устройства защитного отключения. Максимальный ток короткого замыкания составит 36,6 А:

Время отключения составит 30-120 сек, и все это время на корпусе будет присутствовать практически фазное напряжение по корпусным элементам, и протекать ток большой величины, что может привести к возгоранию. При наличии автоматов с номинальным рабочим током более 32 А цепь вообще не отключится.

Повторим: вариант «А» использовать для сетей типа TN-S крайне опасно.

  

  

Ф – сетевой фильтр, ФЗ – фильтр заземления.

Вариант «D» демонстрирует соединение FE и ГЗШ с использованием разрядника уравнивания потенциалов. Вариант имеет проблему: он сработает только в случае заноса потенциала при грозовых разрядах, когда разница в напряжении достаточна для срабатывания разрядника (600-900В). В остальных случаях целостность системы основного уравнивания потенциалов электроустановки остается нарушенной и электробезопасности при первичном пробое не обеспечивается.

Вариант «Е» разработан с учетом установки в разрыв проводника уравнивания потенциалов дроссельного фильтра заземления (например, «Квазар Ф-ХХХРЕ», изготовитель ГК «Полигон»).

Варианты «F», «G», «H» показывают построение FE с постепенным улучшением уровня защиты ответственного электрооборудования от помех без проблем с электробезопасностью.

 

Функциональное заземление в лечебно-профилактических учреждениях

Функциональное заземление относительно ЛПУ осуществляется для обеспечения нормальной стабильной работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования.

В циркуляре №24/2009 написано, что при отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом.

Требование подключения к главной заземляющей шине: «…Устройство независимых заземлителей для защитного и/или функционального заземления медицинского оборудования, не подключенных к ГЗШ, в зданиях с медицинскими помещениями не допускается…».

 

Взаимное влияние разных систем заземления отдельных помещений при наличии связи через сторонние проводящие части

В качестве примера рассмотрим следующую ситуацию:

Есть 2 помещения с электрооборудованием, в каждом установлена дополнительная система уравнивания потенциалов. Помещение номер №1 подключено к системе защитного заземления (РЕ) и имеет помехообразующую нагрузку. В помещении №2 есть ответственное электрооборудование и организовано подключение к системе FE.

На рисунке видно, что между двумя системами заземления за счет сторонних проводящих частей (в данном случае система отопления) образуется «паразитная» связь с сопротивлением RСП.

В итоге по FE-проводникам протекает часть тока утечки IУ2. Вычислить величину этого тока достаточно сложно. С одной стороны, FE-проводники из медного провода с хорошей проводимостью и небольшим сопротивлением. С другой стороны, водопроводные трубы и прочие сторонние проводящие части в сумме могут обладать значительным сечением, что компенсирует плохую проводимость железа. Поэтому IУ2 = 0,5*IУ допустимое реальное соотношение.
Избавиться хотя бы от одного проводника «А», «В» или «С» невозможно по причине безопасности объекта и электробезопасности персонала.
Как вариант, можно сильно увеличить сечение проводника «D», что пропорционально уменьшит ток утечки IУ2. Но, как вы понимаете, это повлечет значительные затраты.

Защитное заземление — устройство, принцип работы, виды, расчет и схемы

Вне зависимости от эксплуатационных характеристик, электрифицируемое здание должно иметь качественно организованную систему защитной электробезопасности. Защитное заземление позволяет создать такую систему.

Этот тип заземления характеризуется соединением определенных элементов электроустановки с ЗУ (заземляющим устройством) и ориентирован на уменьшение показателей напряжений прикосновения и шага, возникающих при замыкании циркулирующих токов на корпусах электрооборудования.

Содержание

  • Назначение и устройство защитного заземления
  • Заземляющая система: область применения и принцип работы
  • Классификация заземляющих устройств
  • Как производится расчет параметров основных заземляющих элементов
  • Принцип расчета сопротивления заземлителей
  • Схемы заземления дома

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

Монтаж устройства защитного заземления востребован практически повсеместно.

Заземляющая система: область применения и принцип работы

При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

  1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
  2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

  1. Электрической сети напряжением менее 1 кВт:
  • с переменным током трех трехфазных проводников с изоляцией нейтрали;
  • с переменным током двух однофазных проводников, которые изолированы от земли;
  • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
  1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.

Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.

Классификация заземляющих устройств

В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

  1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
  • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
  • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

Самыми распространенными конструкциями такого типа заземлителей выступают:

  • металлоконструкции зданий и фундаментов;
  • металлические оболочки проводников;
  • обсадные трубы.

Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.

  1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
  • определенного размера стальные трубы;
  • сталь полосовую толщиной свыше 4 мм;
  • сталь прутковую.

Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества — малозатратность производства и долговечность элементов.

Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

Как производится расчет параметров основных заземляющих элементов

На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.

Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

Выполняются расчеты на основании таких данных:

  1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
  2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
  3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
  4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
  5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
  6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
  7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
  8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.

Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.

Принцип расчета сопротивления заземлителей

Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:

  • I — показатель расчетного тока заземления;
  • R — показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.

В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).

Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна — достичь максимально низкого сопротивления системы.

Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.

Схемы заземления дома

Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.

Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:

  1. Схема TN-C-S. При организации защитного заземления объекта по данной схеме, предусмотрена реализация следующих моментов:
    • Схема TT. Прежде чем применить эту схему, необходимо аргументировать отказ от использования TN-C-S системы. Предусмотрена обязательная реализация нормативных требований, установленных к системе TT, а именно:
    • производится независимое подключение элементов, исключается соединение с нейтралью трансформатора;
    • заземлитель всех корпусов электрооборудования дома не зависит от аналогичного элемента источника питания;
    • в электрической проводке дома обязательно применяется УЗО (устройство защитного отключения).

Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.

Важно! В схеме TT полностью отсутствует организация защиты пользователя при утечке тока во время повреждения изоляции. Следовательно, монтировать УЗО для электрической проводки, реализованной по ТТ схеме, — обязательно.

В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

Как работает электрическое заземление?

Дата публикации: 24 июня 2021 г. | Категория: Сообщения в блогах, Кабели и проводка | теги: электрика, заземление


Электропроводка часто требует заземления. Например, большинство автомобилей и самолетов имеют заземление. Это важный механизм безопасности, который защищает от выгибания, которое в противном случае может привести к пожару или травмам. Что такое электрическое заземление и как оно работает?

Обзор электрического заземления


Электрическое заземление — это процесс создания эффективного пути для разряда электричества. Это известно как «заземление», потому что электричество обычно направляется к земле, где оно может разряжаться. Без заземления внутри проводов или подключенных устройств может накапливаться электричество до опасного уровня. Когда это происходит, провода или устройства могут искрить. Заземление предотвращает это, обеспечивая безопасный разряд избыточного электричества.

Как работает электрическое заземление


Заземление работает, используя отрицательные электрические свойства земли. Земля, по которой вы ходите, имеет отрицательный электрический заряд. Следовательно, он способен нейтрализовать положительно заряженное электричество. Заземление позволяет лишнему электричеству отводиться через землю.

Большинство электрических систем имеют заземляющий провод. Вы можете найти заземляющий провод в автомобильных батареях, электрических розетках, бытовых приборах и многом другом. Заземляющий провод специально предназначен для соединения с землей. Из-за отрицательных электрических свойств земли она способна отводить избыточное электричество.

Электрические системы изначально питаются от электричества. Однако по мере того, как электричество проходит через них, оно может достигать опасного уровня. Вот почему большинство электрических систем заземлены. Заземление гарантирует, что лишнее электричество будет отведено. Избыточное электричество пойдет по пути наименьшего сопротивления, которым будет заземляющий провод, идущий к земле. Хотя существуют разные способы заземления электрической системы, большинство из них состоит из заземляющего провода, который подключается либо к земле, либо к шасси автомобиля или самолета.

Комплекты заземления

Если вы ищете решение для электрического заземления, вам следует подумать о выборе комплекта заземления. Комплекты заземления состоят из всего необходимого для заземления электрической системы. Типовой комплект заземления состоит из плетеного токопроводящего провода с монтажным комплектом. Вы можете установить комплект заземления с помощью прилагаемых крепежных элементов, после чего вы можете запустить его на шасси или на землю.

В заключение

Прочитав это, вы должны лучше понять электрическое заземление и принцип его работы. Электрическое заземление — это процесс направления избыточного электричества на землю по проводу. Известный как заземляющий провод, он является важным компонентом безопасности в большинстве электрических систем. Заземляющий провод безопасно отводит лишнее электричество на землю, чтобы не вызвать травм или пожара.

Теги: электрическое, заземление

Как работает электрическое заземление?

Доступна круглосуточная служба экстренной помощи

Принимаются все основные кредитные карты

100% гарантия качества — позвоните сегодня! 770-913-6412

Как домовладелец, вы, вероятно, уже слышали термин «электрическое заземление». Но что это на самом деле означает?

Заземление обеспечивает наиболее эффективный способ возвращения электричества в землю через электрический щит. Заземляющий провод дает электроприбору или электрическому устройству безопасный способ разрядки избыточного электричества.

Электрическая цепь зависит как от положительного, так и от отрицательного электричества. Это соединение дает электроприбору или электронному устройству необходимую для работы мощность. Если что-то пойдет не так, произойдет накопление энергии. Это может привести к тому, что электрическое соединение и корпус будут накапливать избыточную мощность.

При возникновении электрической неисправности эта энергия сохраняется во внутренней проводке и внешнем металлическом корпусе. Поражение статическим током — простой пример. Вы заметите это накопление только тогда, когда будет установлено соединение, позволяющее потерять накопленное электричество.

При коротком замыкании отключается автоматический выключатель. Однако без заземляющего провода электричество все равно будет.

Заземляющий провод принимает электричество, накопленное во время неисправности, и отправляет его за пределы вашего дома обратно в землю. Заземляющий провод обычно подключается либо к металлической внутренней конструкции внутри прибора, либо к внешнему корпусу. Когда происходит неисправность, вместо того, чтобы накапливать энергию в цепи, она течет обратно в землю и отключает цепь.

Этот заземляющий провод представляет собой соединение, через которое электричество можно безопасно разряжать, не создавая угрозы для ваших приборов или электроники и не подвергая вас риску поражения электрическим током.

Заземляющий провод входит в состав большинства электрических розеток, осветительных приборов, приборов и электроники. В большинстве случаев заземляющий провод представляет собой третий круглый контакт в нижней части сетевой вилки. Электрический заземляющий провод должен каким-то образом подключаться к земле за пределами вашего дома. В зависимости от кодов зонирования вашего города или округа это может произойти одним из двух способов.

Заземляющий стержень — обычно это медный стержень длиной 8 футов, который забивается в землю за пределами вашего дома. Он расположен достаточно далеко от вашего дома, чтобы не столкнуться с гравием, бетоном или другими строительными материалами, используемыми для вашего фундамента, дренажной или трубопроводной системы.

Медная водопроводная труба – заземляющий провод может быть подведен к водопроводному соединению, которое питает ваш водонагреватель холодной водой. Эта медная труба уходит в землю и может обеспечивать заземление.

Есть вопросы по поводу заземления дома? Мы можем помочь.

Смотрите наши купоны и специальные предложения!

Пожалуйста, посетите сайт администратора, чтобы повторно активировать подписку

Зоны обслуживания: Атланта, Альфаретта, Чамбли, Сэнди-Спрингс, Декейтер, Розуэлл, Мариэтта и другие.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *