Расчет трансформатора блока питания. Расчет трансформатора для импульсного блока питания: пошаговая инструкция

Как рассчитать трансформатор для обратноходового импульсного блока питания. Какие параметры необходимо учитывать при расчете. На что обратить внимание при проектировании импульсного трансформатора.

Содержание

Принцип работы обратноходового импульсного блока питания

Обратноходовой импульсный блок питания (Flyback) состоит из следующих основных элементов:

  • Ключевой транзистор
  • Импульсный трансформатор
  • Выпрямительный диод
  • Выходной конденсатор
  • Входной фильтр
  • Снаббер

Принцип работы обратноходового преобразователя заключается в следующем:

  1. При открытии ключевого транзистора ток протекает через первичную обмотку трансформатора, накапливая энергию в магнитном поле.
  2. При закрытии транзистора энергия из магнитного поля передается во вторичную обмотку.
  3. Ток вторичной обмотки через выпрямительный диод заряжает выходной конденсатор.
  4. Выходной конденсатор питает нагрузку в паузах между импульсами.

Таким образом, передача энергии от входа к выходу происходит не напрямую, а через промежуточное накопление в магнитном поле трансформатора.


Основные особенности обратноходового преобразователя

Обратноходовой импульсный блок питания имеет ряд важных особенностей:

  • Энергия передается от источника к нагрузке не напрямую, а через накопление в трансформаторе
  • Максимальная выходная мощность ограничена энергией, которую может запасти трансформатор
  • Используется только однополупериодный выпрямитель на выходе
  • На закрытый ключевой транзистор прикладывается напряжение выше входного
  • Возможна работа в режиме разрывных или неразрывных токов

Учет этих особенностей необходим при проектировании и расчете импульсного трансформатора.

Исходные данные для расчета трансформатора

Для расчета трансформатора обратноходового блока питания необходимы следующие исходные данные:

  • Входное напряжение (минимальное и максимальное)
  • Выходное напряжение
  • Выходной ток (максимальный)
  • Рабочая частота преобразователя
  • КПД преобразователя (ожидаемый)
  • Максимальный коэффициент заполнения

На основе этих данных можно рассчитать параметры трансформатора и выбрать подходящий сердечник.


Алгоритм расчета трансформатора

Расчет трансформатора для обратноходового блока питания выполняется в следующей последовательности:

  1. Расчет входной и выходной мощности
  2. Определение индуктивности первичной обмотки
  3. Расчет числа витков первичной и вторичной обмоток
  4. Выбор сердечника трансформатора
  5. Расчет зазора в магнитопроводе
  6. Определение сечения проводов обмоток
  7. Проверка возможности размещения обмоток на выбранном сердечнике

Рассмотрим каждый этап расчета более подробно.

Расчет мощности и индуктивности первичной обмотки

Входная мощность преобразователя определяется по формуле:

Pin = Pout / η

где Pout — выходная мощность, η — ожидаемый КПД.

Индуктивность первичной обмотки рассчитывается по формуле:

L1 = (Vin_min^2 * D_max^2) / (2 * Pin * f)

где Vin_min — минимальное входное напряжение, D_max — максимальный коэффициент заполнения, f — рабочая частота.

Зная индуктивность первичной обмотки, можно определить число ее витков и выбрать сердечник трансформатора.

Расчет числа витков обмоток

Число витков первичной обмотки определяется по формуле:


N1 = L1 * Ipk / (Bmax * Ae)

где Ipk — пиковый ток первичной обмотки, Bmax — максимальная индукция в сердечнике, Ae — эффективная площадь сечения сердечника.

Число витков вторичной обмотки:

N2 = N1 * (Vout + Vf) / (Vin_min * D_max)

где Vout — выходное напряжение, Vf — падение напряжения на выпрямительном диоде.

Правильный расчет числа витков обеспечит требуемые параметры трансформатора.

Выбор сердечника и расчет зазора

Сердечник трансформатора выбирается исходя из требуемой энергии, запасаемой в магнитном поле:

E = 0.5 * L1 * Ipk^2

Величина зазора в магнитопроводе рассчитывается по формуле:

lg = (μ0 * N1^2 * Ae) / L1

где μ0 — магнитная проницаемость вакуума.

Правильный выбор сердечника и расчет зазора позволяют обеспечить требуемые параметры трансформатора и избежать насыщения магнитопровода.

Определение сечения проводов

Сечение провода первичной обмотки определяется исходя из действующего значения тока:

S1 = I1_rms / J

где I1_rms — действующее значение тока первичной обмотки, J — допустимая плотность тока (обычно 3-5 А/мм^2).


Аналогично рассчитывается сечение провода вторичной обмотки.

После определения сечения проводов необходимо проверить возможность размещения обмоток на выбранном сердечнике.

Ключевые моменты при проектировании трансформатора

При расчете и конструировании трансформатора для обратноходового блока питания следует обратить внимание на следующие аспекты:

  • Правильный выбор максимальной индукции в сердечнике для снижения потерь
  • Обеспечение требуемой индуктивности рассеяния
  • Оптимизация числа витков для снижения потерь в обмотках
  • Учет скин-эффекта на высоких частотах
  • Обеспечение хорошей изоляции между обмотками
  • Минимизация паразитных емкостей обмоток

Учет этих факторов позволит спроектировать эффективный и надежный трансформатор для импульсного блока питания.


Расчет блоков питания | Начинающим


К вспомогательным, но нужным устройствам относятся выключатель SA1, предохранитель FU1 и индикатор включения — миниатюрная лампа накаливания HL1, с номинальным напряжением, несколько большим напряжения вторичной обмотки трансформатора (лампы, горящие с недокалом, гораздо дольше служат).

Стабилизатор напряжения, если он имеется, включается между выходом выпрямителя и нагрузкой. Напряжение на его выходе, как правило, меньше Uвых, и на стабилизаторе тратится заметная мощность.

Начнем с расчета сетевого трансформатора. Его габариты и масса полностью определяются той мощностью, которую должен отдавать блок питания: Рвых = Uвых • Iвых. Если вторичных обмоток несколько, то надо просуммировать все мощности, потребляемые по каждой из обмоток. К посчитанной мощности следует добавить мощность индикаторной лампочки Ринд и мощность потерь на диодах выпрямителя

Pвыпр = 2Unp • Iвых,

где Unp — прямое падение напряжения на одном диоде, для кремниевых диодов оно составляет 0,6. .. 1 В, в зависимости от тока. Unp можно определить по характеристикам диодов, приводимых в справочниках.

От сети трансформатор будет потреблять мощность, несколько большую рассчитанной, что связано с потерями в самом трансформаторе. Различают «потери в меди» — на нагрев обмоток при прохождении по ним тока — это обычные потери, вызванные активным сопротивлением обмоток, и «потери в железе», вызванные работой по перемагничиванию сердечника и вихревыми токами в его пластинах Отношение потребляемой из сети к отдаваемой мощности равно КПД трансформатора η. КПД маломощных трансформаторов невелик и составляет 60…65 %, возрастая до 90 % и более лишь для трансформаторов мощностью несколько сотен ватт. Итак,

Ртр = (Рвых + Ринд + Рвыпр)/η.

Теперь можно определить площадь сечения центрального стержня сердечника (проходящего сквозь катушку), пользуясь эмпирической формулой:

S2 = Pтр.

В обозначениях магнитопроводов уже заложены данные для определения сечения. Например, Ш25х40 означает ширину центральной части Ш-образной пластины 25 мм, а толщину набора пластин 40 мм. Учитывая неплотное прилегание пластин друг к другу и слой изоляции на пластинах, сечение такого сердечника можно оценить в 8…9 см2 , а мощность намотанного на нем трансформатора — в 65…80 Вт.

Площадь сечения центрального стержня магнитопровода трансформатора S определяет следующий важный параметр — число витков на вольт. Оно не должно быть слишком малым, иначе возрастает магнитная индукция в магнитопроводе, материал сердечника заходит в насыщение, при этом резко возрастает ток холостого хода первичной обмотки, а форма его становится не синусоидальной — возникают большие пики тока на вершинах положительной и отрицательной полуволн. Резко возрастают поле рассеяния и вибрация пластин. Другая крайность — излишнее число витков на вольт — приводит к перерасходу меди и повышению активного сопротивления обмоток. Приходится также уменьшать диаметр провода, чтобы обмотки уместились в окне магнитопровода.

Подробнее эти вопросы рассмотрены в [1].

Число витков на вольт n у фабричных трансформаторов, намотанных на стандартном сердечнике из Ш-образных пластин, обычно рассчитывают , из соотношения n = (45…50)/S, где S берется в см2. Определив n и умножив его на номинальное напряжение обмотки, получают ее число витков. Для вторичных обмоток напряжение следует брать на 10 % больше номинального, чтобы учесть падение напряжения на их активном сопротивлении.

Все напряжения на обмотках трансформатора (UI и UII на рис.) берутся в эффективных значениях. Амплитудное значение напряжений будет в 1,41 раза выше. Если вторичная обмотка нагружена на мостовой выпрямитель, то напряжение на выходе выпрямителя U

вых на холостом ходу получается практически равным амплитудному на вторичной обмотке. Под нагрузкой выпрямленное напряжение уменьшается и становится равным:

Uвых=1,41UII — 2Uпр — Iвых rтр.

Здесь rтр — сопротивление трансформатора со стороны вторичной обмотки. С достаточной для практики точностью можно положить rтp = (0,03…0,07)Uвых/Iвых, причем меньшие коэффициенты берутся для более мощных трансформаторов.

Определив числа витков, следует найти токи в обмотках. Ток вторичной обмотки III = Iинд + Pвых/UII. Активный ток первичной обмотки (обусловленный током нагрузки) I = Р

тр/UI. Кроме того, в первичной обмотке течет еще и реактивный, «намагничивающий» ток, создающий магнитный поток в сердечнике, практически равный току холостого хода трансформатора. Его величина определяется индуктивностью L первичной обмотки: I = UI/2пfL.

На практике ток холостого хода определяют экспериментально — у правильно спроектированного трансформатора средней и большой мощности он составляет (0,1…0,3)IIA. Реактивный ток зависит от числа витков на вольт, уменьшаясь с увеличением n. Для маломощных трансформаторов допускают llp = (0,5…0,7)lIA. Активный и реактивный токи первичной обмотки складываются в квадратуре, поэтому полный ток первичной обмотки II2 = IIA2 + I2.

Определив токи обмоток, следует найти диаметр провода исходя из допустимой для трансформаторов плотности тока 2…3 А/мм2. Расчет облегчает график, показанный на рис.[2].

Расчет трансформаторного блока питания: методика, формула, подбор устройства

Автор otransformatore На чтение 7 мин Опубликовано

Практически любой образец современной техники нуждается в трансформаторе. Этот элемент электрической сети предусматривают в схеме подключения для разделения сетей постоянного и переменного тока, соединений с разными напряжениями и т.д. В домашних условиях сделать простейший трансформатор в состоянии любой радиолюбитель, ничего сложного в состав устройства не входит, однако необходимо рассчитать трансформаторный блок питания.

Методика расчета импульсного трансформатора

Еще со школьной скамьи любой человек помнит, что эффективность преобразования зависит от количества витков на первичной и вторичной обмотке трансформатора, а сама работа устройства основана на явлении индуктивности. Но не совсем ясно, как учесть количество витков, соотнести первичную и вторичную обмотку с выбранным типом трансформатора, а так же учесть неизбежные потери напряжения.

Отмечу, что импульсный трансформатор можно считать простейшим представителем устройств. При этом в заводском варианте выпускают следующие типы подобных устройств:

  1. Стержневой.
  2. Броневой.
  3. Тороидальный.
  4. Бронестержневой.

Сразу скажу, что в статье речь пойдет именно о расчете тороидального трансформатора, поскольку именно этот вид устройства прост в изготовлении и расчете. Теоретически дома можно изготовить и стержневое устройство, но для него требуется обустройство катушки. К этому процессу предъявляются повышенные требования в плане аккуратности выполнения работ. Поэтому проще не замахиваться на изготовление заводской продукции в кустарных условиях, тем более что и тороидальные модели прекрасно работают.

Остальные же варианты трансформаторов и вовсе изготовить в условиях домашней мастерской невозможно. Если говорить о расчете, то в качестве исходных данных вам потребуется:

  • Напряжение на входе. Его можно просто замерить в сети, хотя чаще всего этот параметр равен 220В.
  • Параметры тока на выходе. Сюда в обязательном порядке относят напряжение и силу тока в сети после преобразователя.

Все остальное рассчитывается.

Вручную

Конечной целью расчета считается определение параметров на первичной и вторичной обмотке. Проблемой является необходимость определения трех параметров, которые простому человеку найти довольно сложно. В силу этой причины в СССР была разработана табличная методика расчета.

PW1W2Sη
Меньше 10 Вт41/S38/S0,8
Меньше 30 Вт36/S32/S0,9
Меньше 50 Вт33/S29/S0,92
Меньше 120 Вт
32/S
28/S0,95

Стоит просто идти по строке, расчет строится на результатах проведенных в лабораториях опытов. То есть все формулы – чистая практика.

При помощи специального ПО

Существуют различные программы для обработки данных и расчета трансформатора. Сюда входит множество онлайн и оффлайн приложений. В отдельности стоит выделить программу ExcellentIT 8.1. Это бесплатное программное обеспечение от одного из постоянных обитателей форумов об электросиловых установка.

После запуска программы перед вами появится несколько окон с пустыми полями вводных данных. После их заполнения нажимается кнопка «Ок» и компьютер делает все за вас. Результаты вычислений ПО и ручного расчета примерно одинаковы, так как именно на основании табличной методики разработаны практически коды компьютерного обеспечения для расчета трансформаторов.

Примеры расчета

Порядок вычислений по таблице выглядит следующим образом:

Мощность вторичного пользователя

  • Определим мощность вторичного пользователя трансформатора. Формулу изучали в 9 классе на уроках физики:

Р = Uн * Iн = 24*1,8 = 43,2 Вт – примем условное напряжение вторичного источника в 24 Вт и силу тока в 1,8 А. В общем и целом это рядовые значения электроники средней сложности

Но вот проблема, в таблице используется габаритная мощность. Для ее нахождения придется использовать КПД, а по таблице КПД определяется в зависимости от используемой габаритной мощности. Поэтому используем предположение, что габаритная мощность находится в том же числовом промежутке, что и вычисленное значение («Меньше 50»).

Габаритная мощность

Тогда мы знаем КПД=0,92 и можем посчитать габаритную мощность трансформатора.

  • Рг= Р/ η= 43,2 / 0,92 = 48Вт – а вот по этому значению уже можно выбирать дальнейшее решение, но это все та же категория «Меньше 50». Если бы габаритная мощность не попала в предполагаемый интервал, пришлось бы провести повторные вычисления для большего интервала. Если и больший интервал не подойдет, значит можно смело использовать меньший. Вычисления несложные, поэтому любое их количество все равно сэкономит время на поиск сложных параметров расчета.
  • Определим площадь поперченного сечения. Согласно таблице формула выглядит так:

Результат получаем в см2. Следующим шагом берется любой каталог с выпускаемыми в России сердечниками. В первую очередь нас интересуют сердечники из ферримагнитного железа. Проверяем выбор по соответствию посчитанной площади.

К примеру, нам может подойти модель сердечника – ОЛ50/80 – 40; его площадь поперечного сечения равняется 6, что можно считать практически равной посчитанной.

Количество витков

  • Посчитаем количество витков на первой обмотке.

w= 33.3/S = 33.3/6 = 5.55 витков на 1 вольт

Здесь нужно обратить внимание на две вещи. Во-первых, витки посчитаны на 1 вольт, то есть это еще не конечный результат. Во-вторых, для расчета использовалось значение не теоретического сердечника, а реального, подобранного в соответствии с посчитанной величиной поперечной площади.

Остальные витки

  • Теперь в соответствие с формулами можно найти и оставшиеся значения витков:

W1-1 = w1 * Uс =5.55 * 220 = 1221 виток; W1-2 = w1 * Uн = 5,55 * 24 = 133 витка.

Импульсные трансформаторы отличаются тем, что потери в них преодолеваются с помощью активного сопротивления, а не плотности потока. Чтобы уменьшить потери мощности на этот процесс и приблизить расчеты к реальности, количество витков увеличивают на 3 процента. Во всем мире это значение признается достаточным для того, чтобы уменьшить потери.

W1-2 = 133 * 1,03 = 137 витков

Диаметр провода обмотки

  • Окончательным вычисление станет после определения требуемого диаметра провода обмотки:

d = 1,13 √(I / j)

Иначе говоря, сила тока делится на плотность потока, которую ищут по таблице, представленной внизу.

Конструкция трансформатораГабаритная мощность трансформатора
5-1010-5050-150150-300300-1000
Кольцевая4,5-5,04,0-4,53,5-4,53,0-3,52,5-3,0

Так как мощность приближается к верхней границе интервала 10-50, выберем значение 4,5. Тогда диаметр можно посчитать как:

D=1,13 √(1,8 / 4,5)=0,71 мм – по заводской таблице выбрать подходящий вариант.

Возможные схематические решения

Схем подключения вторичной обмотки трансформаторов, да и вообще всей электроники две:

  • Звезда, которая используется для повышения мощности сети.
  • Треугольник, который поддерживает постоянное напряжение в сети.

Вне зависимости от выбранной схемы, наиболее трудными считается изготовление и подключение небольших трансформаторов. Сюда относится и столь популярный в запросах поисковиков аtx. Это модель, которая устанавливается в системных блоках компьютеров, и изготовить ее самостоятельно крайне трудно.

В число трудностей при изготовлении маленьких трансформаторов стоит отнести сложность обмотки и изоляции, правильного подключения вторичной обмотки вне зависимости от выбранной схемы, а так же сложности с поиском сердечника. Короче говоря, проще и дешевле такой трансформатор купить. А вот как выбрать подходящую модель – это совсем другая история.

Как подобрать подходящий трансформатор

Выбрать подходящий трансформатор можно большим количеством способов, но львиная доля это безысходность или незнание мастера. Выделим три наиболее простых и применимых в практике метода:

  • Первый. Взять старый трансформатор, вышедший из строя. Посмотреть маркировку и найти в Интернете аналог. Если вдруг трансформатор требуется для иных целей, придется повозиться.
  • Второй способ: практический. Для этого следует замерить напряжение и силу тока в сети, а затем посмотреть требуемые параметры устройства, которое планируется подключать через трансформатор. После этого нужно посчитать коэффициент трансформации и, вооружившись этими знаниями, идти выбирать подходящую модель.
  • Третий способ: аналитический. Воспользоваться приведенным в статье расчетом или программным обеспечением, чтобы определить конкретные параметры модели. Если учесть, что в примере используются реальные сердечники и диаметры проводов, то реально найти устройство, которое будет соответствовать заявленным требованиям.

Можно ли использовать планарный трансформатор

Конечно, можно. Но, вопрос в том, нужно ли. Планарным трансформатором зовут устройство на основе распечатанной платы. Использование подобных моделей незаменимо для компактной техники, вроде телефонов, компьютеров и прочего.

Однако, если речь идет о замене или самостоятельном конструировании прибора, то столь инновационная технология не нужна в силу дороговизны и сложности монтажа.

Не нужно изобретать велосипед: есть целый ряд методик расчета, создания и монтажа традиционных трансформаторов, которые готовы выполнить для пользователя практически любую задачу. Использование планарного трансформатора оправдано только при предъявлении к устройству требования особой компактности и мобильности.

8. Блок питания. Расчет трансформатора

Расчет трансформатора

 

Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности.

1. Определяют значение тока, текущего через вторичную обмотку трансформатора:

I2 = 1,5 Iн,

где: I2 — ток через обмотку II трансформатора, А;
Iн — максимальный ток нагрузки, А.

2. Определяют мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:

P2 = U2 I2,

где: P2 — максимальная мощность, потребляемая от вторичной обмотки, Вт;
U2 — напряжение на вторичной обмотке, В;
I2 — максимальный ток через вторичную обмотку трансформатора, А.

3. Подсчитывают мощность трансформатора:

Pтр = 1,25 P2,

где: Pтр — мощность трансформатора, Вт;
P2 — максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.

Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.

4. Определяют значение тока, текущего в первичной обмотке:

I1 = Pтр / U1,

где: I1 — ток через обмотку I, А;
Ртр — подсчитанная мощность трансформатора, Вт;
U1 — напряжение на первичной обмотке трансформатора (сетевое напряжение).

5. Рассчитывают необходимую площадь сечения сердечника магнитопровода:

S = 1,3 Pтр,

где: S — сечение сердечника магнитопровода, см2;
Ртр — мощность трансформатора, Вт.

6. Определяют число витков первичной (сетевой) обмотки:

w1 = 50 U1 / S,

где: w1 — число витков обмотки;
U1 — напряжение на первичной обмотке, В;
S — сечение сердечника магнитопровода, см2.

7. Подсчитывают число витков вторичной обмотки:

w2 = 55 U2 / S,

где: w2 — число витков вторичной обмотки;
U2 — напряжение на вторичной обмотке, В;
S-сечение сердечника магнитопровода, см2.

8. Определяют диаметры проводов обмоток трансформатора:

d = 0,02 I,

где: d-диаметр провода, мм;
I-ток через обмотку, мА.

Диаметр провода обмотки можно также определить по табл. 2.

Iобм, ma£ 2525

60
60

100
100

160
160

250
250

400
400

700
700

1000
d, мм0,10,150,20,250,30,40,50,6

 

        После этого можно приступить к подбору подходящего трансформаторного железа и провода, изготовлению каркаса и, наконец, выполнению обмоток. Но Ш-образные трансформаторные пластины имеют неодинаковую площадь окна, поэтому нужно проверить, подойдут ли выбранные пластины для трансформатора, т. е. разместится ли провод на каркасе трансформатора. Для этого достаточно подсчитанную ранее мощность трансформатора умножить на 50 — получится необходимая площадь окна, выраженная в мм2. Если в подобранных пластинах она больше или равна вычисленной, железо можно использовать для трансформатора.

        При выборе сердечника магнитопровода нужно также учитывать и то обстоятельство, что отношение ширины сердечника к толщине набора (отношение сторон сердечника) должно быть в пределах 1…2.

        В качестве трансформаторов питания радиолюбители часто используют унифицированные выходные трансформаторы кадровой развертки телевизоров (трансформаторы ТВК). Промышленность выпускает несколько видов таких трансформаторов, и каждый из них при работе с выпрямителем, выполненным по мостовой схеме, позволяет получить на нагрузке вполне определенные напряжения в зависимости от потребляемого ею тока. Эти параметры сведены в табл. 3, которая поможет в выборе трансформатора ТВК для того или иного блока питания.

 

ТрансформаторВыпрямленное напряжение при токе нагрузки, А
00,30,50,81,0

ТВК-70Л2

1411,510,598

ТВК-110Л1

2826252423

ТВК-110Л2,
ТВК 110ЛМ

17151413,512,5

 

Расчет трансформатора для обратноходового импульсного источника питания (Flyback)

Популярность обратноходовых источников питания (ОИП, Flyback) последнее время сильно возросла в связи с простотой и дешевизной этого схемного решения – на рынке можно часто встретить интегральные схемы, включающие в себя практически всю высоковольтную часть такого источника, пользователю остается только подключить трансформатор и собрать низковольтную часть по стандартным схемам. Для расчета трансформаторов также имеется большое количество программного обеспечения – начиная от универсальных программ и заканчивая специализированным ПО производителей интегральных схем.

Сегодня же я хочу поговорить о ручном расчете импульсного трансформатора. «Зачем это нужно?», может спросить читатель. Во-первых, ручной расчет трансформатора подразумевает полное понимание процессов, происходящих в источнике питания, чего зачастую не происходит, если начинающий радиолюбитель рассчитывает трансформатор в специальном ПО. Во-вторых, ручной расчет позволяет выбирать оптимальные параметры функционирования источника (и иметь представление, какой параметр в какую сторону надо изменить для достижения заданного результата) еще на этапе разработки.

Итак, начнем. Структурная схема ОИП представлена на рис. 1. Он состоит из следующих основных функциональных узлов: ключ Sw, трансформатор Т1, выпрямитель выходного напряжения VD1 и C2, фильтр высокочастотных помех С1 и снаббер Snb.

Рис. 1

Работает такой источник следующим образом (см. упрощенные графики на рис. 2): в начальный момент времени t0 ключ Sw открывается, подавая входное напряжение Uin на первичную обмотку трансформатора Т1. В это время напряжение на нижнем выводе обмотки I (точка а) равно нулю (относительно отрицательного провода входного напряжения), в обмотке I начинает линейно нарастать ток, а на обмотке II появляется напряжение, пропорциональное коэффициенту трансформации Т1 (UoutInv). Но полярность этого напряжения оказывается отрицательной (на верхнем по схеме выводе обмотки II, точка b), поэтому диод VD1 закрыт и напряжение на выходной конденсатор С2 не проходит. За промежуток Ton (от t0 до t1) ток через обмотку I линейно нарастает до значения Imax, и энергия запасается внутри трансформатора Т1 в виде магнитного поля.


Рис. 2

В момент времени t1 ключ Sw резко закрывается, ток через обмотку I прекращается и в ней возникает ЭДС самоиндукции, направленная так, чтобы продолжить прекратившийся ток. В этот момент обмотка I сама становится источником напряжения. Так получается потому, что энергия в катушке индуктивности запасается в виде тока (на самом деле, в виде магнитного поля, но он пропорционален току через катушку, поэтому формула энергии в катушке A = LI²/2), но по закону сохранения энергии она не может исчезнуть бесследно, она должна куда-то перейти. Следовательно, ток в катушке не может прекратиться мгновенно, поэтому катушка сама становится источником напряжения, причем любой амплитуды (!) – такой, чтобы обеспечить сразу после закрытия ключа продолжение того же самого тока Imax. Это является первой важной особенностью катушки индуктивности, которую следует запомнить – при резком прекращении тока в катушке, она становится источником напряжения любой амплитуды, пытаясь поддержать прекратившийся в ней ток, как по направлению, так и по амплитуде. Какой же именно «любой» амплитуды? Достаточно большой, чтобы, например, вывести из строя высоковольтный ключ или образовать искру в свече зажигания автомобиля (да, в зажигании автомобиля использует именно это свойство катушек индуктивности).

Все, что описано выше так и происходило бы, если бы обмотка I была единственной обмоткой трансформатора Т1. Но в нем еще есть обмотка II, индуктивно связанная с I. Поэтому, в момент времени t1 в ней тоже возникает ЭДС, направленная так, что в точке b оказывается плюс по отношению к земле. Эта ЭДС открывает диод VD1 и начинает заряжать конденсатор C2 током I2max. Т.е. заряд конденсатора C2 и передача энергии в нагрузку происходит в тот момент времени, когда ключ Sw закрыт. Именно поэтому источники питания, построенные по такому принципу, называют обратноходовыми – потому что в них нет прямой передачи энергии из высоковольтной части в низковольтную, энергия сначала запасается в трансформаторе, а потом отдается потребителю.

В интервал времени от t1 до t2 линейно спадающий от I2max до 0 ток I2 вторичной обмотки поддерживает магнитное поле внутри катушки в соответствии с законом сохранения энергии и не дает напряжению на первичной обмотке (т.к. они индуктивно связаны) вырасти до неконтролируемого значения. Напряжение на обмотке I в этот момент становится равно напряжению выхода, умноженному на коэффициент трансформации Т1. Однако, полярность этого напряжения такова, что оно складывается с входным напряжением Uin и прикладывается к закрытому ключу Sw. Т.е. на закрытый ключ Sw прикладывается напряжение больше входного! Это также является важной особенностью ОИП, которую следует запомнить.

В момент времени t2 энергия, запасенная в трансформаторе Т1 заканчивается, диод VD1 закрывается, напряжение в точке b становится равным нулю, в точке a – входному напряжению питания, и все процессы в схеме прекращаются до момента t3, когда весь цикл повторяется с самого начала. При этом, в интервалах времени t0-t1 и t2-t4 питание нагрузки осуществляется исключительно за счет энергии, запасенной выходным конденсатором С2.

Описанный режим работы ОИП называется режимом разрывных токов – т.е. за интервал Toff (t1-t3) вся энергия, запасенная в трансформаторе Т1 передается в нагрузку, поэтому, в момент t3 ток через первичную обмотку I начинает нарастать с нуля. Существует также режим неразрывных токов, когда на момент t3 некоторая часть энергии еще продолжает находиться в трансформаторе Т1, и ток через обмотку I в момент t3 начинается не с нулевого значения. Данный режим имеет свои особенности, преимущества и недостатки, о которых мы поговорим в следующий раз.

Итак, какими основными особенностями обладает ОИП в режиме разрывных токов? Выпишем основные пункты:

  1. Передача энергии от источника к потребителю в ОИП не идет напрямую, энергия сначала запасается в трансформаторе, а затем передается в нагрузку. Это однозначно определяет фазировку первичной и вторичной обмоток, а также заставляет использовать только однополупериодный выпрямитель на выходе блока. Также отсюда следует неявный вывод 2, который, как показала моя личная практика, к сожалению, не до конца понимают даже достаточно опытные конструкторы блоков питания.
  2. Максимальная мощность, которую может выдать ОИП в нагрузку, кроме всего прочего, ограничена максимальным количеством энергии, которую может запасти трансформатор! А это, в свою очередь, определяется конструктивными особенностями сердечника и не зависит от обмоток и количества их витков (ниже в статье я рассмотрю данный «парадокс» отдельно и приведу математические доказательства). Эта особенность ограничивает применение ОИП там, где нужны большие выходные мощности.
  3. Низковольтная цепь ОИП состоит из диода, конденсатора и, возможно, дополнительных фильтрующих элементов. Однако, в ОИП первым всегда стоит диод, затем идет конденсатор и никак иначе.
  4. В установившемся режиме работы ОИП количество энергии, полученное первичной обмоткой I трансформатора Т1 за время Ton равно (без учета потерь) количеству энергии, отданному обмоткой II за время Toff. Поскольку скорость приема или отдачи энергии катушкой определяется напряжением на ней, то зависимость между напряжением «заряда» и «разряда» определяется именно интервалами Toff и Ton. Т.е., по сути, в самом сложном режиме работы блока Duty cycle (коэффициент заполнения, D), равный Ton/(Ton + Toff) определяет отношение обратного напряжения на обмотке I к напряжению питания Uin. Этот пункт будет пояснен подробнее ниже.
  5. По закону сохранения энергии, ток I2max, отдаваемый обмоткой II в нагрузку в момент времени t1 численно равен току Imax, только что протекавшему в первичной обмотке, умноженному на отношение количества витков в обмотке I к количеству витков в обмотке II (пояснение ниже).
  6. Импульсное значение тока I2max значительно превышает средний выходной ток блока питания (в 2.5 и более раз), поэтому на выпрямительном диоде VD1 может рассеиваться значительная мощность. Именно эта особенность ограничивает применение ОИП там, где нужны большие выходные токи.
  7. То же самое (высокое импульсное значение тока) относится и к вторичной обмотке II.
  8. Обратное напряжение на диоде VD1 в несколько раз выше выходного напряжения. Это происходит из-за того, что обычно обратное напряжение на первичной обмотке (которое является прямым для диода) выбирается в несколько раз ниже входного, поэтому входное (которое является обратным для диода) после трансформации оказывается в несколько раз выше выходного.

Пояснение к п. 4. Из физики мы помним формулу для катушки индуктивности:

U(t) = L*(dI(t)/dt),

которая означает, что напряжение на катушке прямо пропорционально ее индуктивности, умноженной на скорость изменения тока в ней. Что это нам дает? Прежде всего, то, что если мы прикладываем к катушке постоянное напряжение U, то скорость изменения тока в ней постоянна. Это позволяет переписать формулу для постоянного напряжения без дифференциалов:

U = L*(ΔI/Δt),

и именно в соответствии с этой формулой графики тока на рис. 2 прямые. Далее, если мы прикладываем напряжение Uin к катушке на время Ton, ток в ней возрастет до значения

Imax = Uin*Ton/L

Теперь мы хотим (в самом нагруженном режиме работы), чтобы вся энергия катушки, которую мы только что набрали, была передана в нагрузку за интервал Toff, т.е. на момент t3 ток в катушке должен упасть до нуля. Здесь для упрощения представим, что мы как подаем, так и снимаем напряжение/ток с одной и той же катушки I, позже я объясню, почему такое допущение возможно. Посчитаем, на какое напряжение мы можем «разряжать» катушку, чтобы ток в момент t3 достиг нуля:

Udis = L*Imax/Toff,

Подставляем и упрощаем:

Udis = L*Uin*Ton/(L*Toff) = Uin*Ton/Toff

Т.е. напряжение, на которое мы должны «разряжать» катушку в моменты закрытия ключа Sw зависит только от входного напряжения и интервалов «заряда»-«разряда». Вспомним формулу коэффициента заполнения D:

D = Ton/(Ton + Toff),

таким образом:

Udis = Uin*D/(1 – D)

Но, напряжение, на которое мы «разряжаем» катушку – это и есть то обратное напряжение, которое возникает в первичной обмотке в моменты закрытия ключа. Т.е. мы получили, что оно зависит только от входного напряжения и коэффициента заполнения D и определяется формулой:

Uinv = Uin*D/(1 – D)

При работе в реальных условиях значение коэффициента заполнения D будет меняться в зависимости от входного напряжения и нагрузки блока питания. Свое максимальное значение D будет принимать при минимальном входном напряжении и максимальной выходной мощности — этот режим работы считается самым сложным, и данное максимальное значение D и задается при проектировании блока. Что будет в те моменты, когда входное напряжение блока будет выше или нагрузка будет неполной? D будет принимать меньшие значения, т.к. от более высокого напряжения энергия быстрее «запасется» в первичной обмотке, или же (в случае меньшей нагрузки) надо просто «запасать» меньшее количество энергии. В любом случае, обратное напряжение на первичной обмотке будет всегда одинаковым, т.к. оно жестко связано с выходным напряжением, а то, в свою очередь, стабилизируется схемой. Итак, максимальное обратное напряжение на ключе равно:

Usw = Umax + Umin*D/(1 – D)

Это важный момент при проектировании ОИП, т.к. обычно максимальное обратное напряжение на ключе является исходным параметром, т.е. максимальный коэффициент заполнения D также является исходной величиной. На практике обычно применяют следующие максимальные значения D: 25% (1/4), 33% (1/3) и реже 50% (1/2). Как вы понимаете, в последнем случае максимальное обратное напряжение на ключе будет равно удвоенному минимальному входному напряжению, что усложняет выбор полупроводникового прибора. Более низкие максимальные значения D, в свою очередь, снижают максимальную мощность при том же токе Imax, затрудняют процесс управления ключом Sw и снижают стабильность работы блока.

Почему же здесь мы применили допущение, что мы как подаем энергию, так и снимаем ее с первичной обмотки I, и что будет в реальности, когда снимается энергия с катушки II? То же самое. Напряжение на выводах любой обмотки трансформатора пропорционально скорости изменения магнитного поля в сердечнике (а поле пропорционально току, поэтому напряжение пропорционально скорости изменения тока). Поэтому не важно, с какой обмотки мы будем снимать энергию, если мы будем делать это с одной и той же скоростью, магнитное поле в трансформаторе будет уменьшаться одинаково, а на выводах первичной обмотки будет одно и то же напряжение. Но на какое напряжение надо «разряжать» вторичную обмотку, чтобы снятие энергии происходило с той же самой скоростью? Для этого сначала рассмотрим ток во вторичной обмотке.

Пояснение к п. 5. Пусть обмотка I имеет N1 витков, в то время как обмотка II – N2. Магнитное поле создается током, проходящим через каждый виток катушки, т.е. оно пропорционально произведению I*N. Тогда, получаем Imax*N1 = I2max*N2 (исходя из того, что обе обмотки намотаны в абсолютно одинаковых условиях), отсюда начальный ток вторичной обмотки:

I2max = Imax*N1/N2

Итак, ток во вторичной обмотке будет в N1/N2 раз выше, чем в первичной. Но на какое напряжение мы должны «разряжать» вторичную обмотку, чтобы к моменту t3 потратить всю энергию, запасенную в трансформаторе? Очевидно, что делать это мы должны с точно такой же скоростью; т.е. в каждый отдельный момент времени трансформатор будет терять одно и то же значение энергии dA(t). Но в первом случае dA(t) = Udis*I1(t)*dt (получено из A = W*T, W = U*I), а теперь это будет dA(t) = Uout*I2(t)*dt. Приравняем эти две функции:

Uout *I2(t) = Udis*I1(t), следовательно, в самом начале «разряда» моментальные мощности разряда должны быть равны:

Uout*I2max = Udis*Imax,

Uout = Udis*Imax/I2max = Udis*Imax/(Imax*N1/N2) = Udis*N2/N1

Т.е. для того, чтобы потратить всю энергию трансформатора к моменту t3, мы должны «разряжать» вторичную обмотку II на напряжение Udis*N2/N1, при этом ток разрядки будет линейно падать от Imax*N1/N2 до нуля. Таким образом, мы установили связь между выходным напряжением блока, количеством витков в обмотках и обратным напряжением на первичной обмотке трансформатора.

На этом сугубо теоретическая часть заканчивается, и мы можем перейти к практике. Первый вопрос, который, скорее всего, возникает на данный момент у читателя – это с чего вообще начать разработку ОИП? Ниже я приведу рекомендованную последовательность шагов. Начнем с ситуации, когда трансформатор планируется изготовить полностью самостоятельно (на него нет жестких ограничений).

  1. Определяем выходные напряжения и токи источника питания.
  2. Увеличиваем выходные напряжения на величину, падающую на выпрямительных диодах (VD1). Лучше всего воспользоваться справочной информацией, но в первом приближении можно брать 1В для обычных кремниевых диодов и 0.3В для диодов Шоттки. Особую точность следует соблюдать, когда ОИП имеет несколько выходных обмоток с разным напряжением, т.к. стабилизовать напряжение возможно только на одной из них.
  3. Считаем суммарную выходную мощность трансформатора.
  4. Считаем расчетную входную мощность блока как Pin = Pout/0.8 (здесь берется КПД блока 80%).
  5. Определяем частоту преобразования F. Обычно выбирается частота от 20КГц до 150КГц. Частоты ниже 20КГц могут быть слышны человеческому уху (блок будет «пищать»), частоты выше 150КГц накладывают более серьезные ограничения на элементную базу, также увеличиваются потери на переключение полупроводников (ключа и диодов). Увеличение частоты преобразования позволяет уменьшить габариты трансформатора, наиболее распространенный диапазон частот для ОИП: от 66 до 100 Кгц.
  6. Вычисляем максимальное входное напряжение, от которого нам придется работать. Обычно оно вычисляется как выпрямленное напряжение сети +20%, т.е. Umax = Uсети*1.7 (391В для сети 230В). На это напряжение также должен быть рассчитан конденсатор входного фильтра (не менее 400В в данном случае).
  7. Вычисляем минимальное входное напряжение, от которого нам придется работать. Обычно вычисляется как минимальное допустимое рабочее напряжение -20%, минус просадка напряжения на фильтрующем конденсаторе за полупериод входного напряжения. Для сети 230В и емкости конденсатора входного фильтра из расчета не менее 1мкф на 1 ватт нагрузки, можно брать (в среднем) значение Umin = 220В. Если представить, что напряжение на конденсаторе вообще не просаживается от одного полупериода входного напряжения до другого, то Umin можно взять 260В.
  8. Определяем коэффициент заполнения D исходя из максимально допустимого обратного напряжения на ключе (считается по формуле Uinv = Umax + Umin*D/(1 – D)).
  9. Рассчитываем количество энергии, которую необходимо передать во вторичную обмотку за один импульс: Aimp = Рin*1s/F = Рin/F.
  10. Решаем систему уравнений для самого тяжелого режима работы: A = LImax²/2, Umin = LImax*F/D, получаем L = Umin²*D²/(2*Aimp*F²), Imax = Umin*D/(L*F) – это будет требуемая индуктивность первичной обмотки и максимальный ток, протекающий через нее.
  11. Исходя из полученного Imax выбираем ключ.
  12. Если Imax получился несколько больше, чем может обеспечить имеющийся (выбранный) ключ, меняем исходные параметры – увеличиваем D (насколько возможно исходя из допустимого обратного напряжения ключа), увеличиваем емкость фильтрующего конденсатора, чтобы поднять Umin. На первый взгляд может показаться удивительным, но максимальный ток в первичной обмотке не зависит от частоты – если всё подставить в формулы, получим Imax = 2*Pin/(Umin*D). Исходя из этой формулы, можно было рассчитать максимальный ток и на этапе 8 (сразу после выбора D), но там было бы сложно объяснить, откуда взялся такой расчет.
  13. Если значение Imax все равно оказывается больше допустимого и увеличить его никак нельзя, следует рассмотреть конструкцию ОИП в режиме неразрывных токов.
  14. Исходя из требуемой индуктивности первичной обмотки и максимального тока в ней, выбираем сердечник трансформатора, рассчитываем необходимый зазор и количество витков первичной обмотки (формулы будут ниже в статье).
  15. По формуле N2 = Uout*N1*(1 – D)/(Umin*D) рассчитываем количество витков вторичной обмотки.
  16. Определяем среднеквадратичное значение токов в обмотках трансформатора по формуле Irms = Imax*SQRT(D/3), исходя из которых рассчитываем диаметр провода, необходимого для намотки. Чаще всего в импульсных источниках питания применяется плотность тока от 2 до 5 А/мм².
  17. Мотаем трансформатор по всем правилам намотки трансформаторов для ОИП.
  18. Для того, чтобы убедиться в правильности намотки, измеряем индуктивность первичной обмотки.

Теперь немного рассмотрим сам трансформатор и его конструкцию. Традиционно для импульсных источников питания трансформатор изготавливается на каком-либо сердечнике, выполненном из материала с высокой магнитной проницаемостью. Это позволяет при том же самом количестве витков обмоток сильно увеличить их индуктивность, т.е. сократить количество витков для достижения заданной индуктивности, и, следовательно, уменьшить габариты намотки. Однако, применение сердечника добавляет и недостатки – за счет магнитного гистерезиса в сердечнике теряется некоторая часть энергии, сердечник нагревается, причем потери в сердечнике растут с увеличением частоты (еще одна причина, из-за которой нельзя сильно повышать частоту преобразования). Также добавление сердечника вносит новое, ранее нигде не озвучиваемое ограничение – максимально допустимую плотность потока магнитной индукции Bmax. На практике это проявляется в том, что если увеличивать ток через обмотку, в определенный момент времени, когда ток достигнет определенного максимального значения, сердечник войдет в насыщение и дальнейшее увеличение тока не будет вызывать такое же как раньше увеличение магнитного потока. Это, в свою очередь, приведет к тому, что «относительная индуктивность» обмотки резко упадет, что вызовет еще более быстрое нарастание тока через нее.

На практике, если не предусмотреть защиту ключа Sw ОИП от входа сердечника в насыщение, ключ просто сгорит от перегрузки по току

. Поэтому во всех схемах ОИП, за исключением простейших блокинг-генераторов, применяется контроль тока через ключ Sw и досрочное закрытие ключа при достижении максимально допустимого тока через первичную обмотку.

Насколько же велико это максимальное значение плотности потока магнитной индукции? Для наиболее распространенного материала сердечников – феррита – оно считается равным 0.3Т. Это – среднее значение, оно может отличаться для каждого конкретного материала, поэтому здесь неплохо обратиться к справочнику. Также, оно зависит от температуры сердечника и, как вы, наверное, уже догадались, падает с ее увеличением. Если вы проектируете ОИП, предназначенный для работы в экстремальных условиях, где температура сердечника может доходить до 125 градусов, уменьшайте Bmax до 0.2Т.

Основная формула, которой вам придется пользоваться при расчете трансформаторов – это индуктивность обмотки по ее габаритам:

L = (μ0*μe*Se*N²)/le, где

μ0 – абсолютная магнитная проницаемость вакуума, 4πе-7,
μe – эффективная магнитная проницаемость сердечника,
Se – эффективная площадь сечения магнитопровода, м².
N – количество витков
le – длина средней магнитной линии сердечника, м

Плотность потока магнитной индукции в сердечнике:

B = (μ0*μe*I*N)/le, где

I – ток через обмотку, А

Таким образом, исходя из максимальной допустимой плотности потока магнитной индукции, максимально допустимый ток для обмотки будет равен:

Imax = (Bmax*le)/(μ0*μe*N)

А теперь еще один очень важный момент – на практике, если подставить реальные данные трансформатора в вышеприведенные формулы, окажется, что максимально допустимый ток в первичной обмотке оказывается в несколько раз меньше того, который нам нужен! Т.е. сердечник будет введен в насыщения еще до того, как мы сможем «вкачать» в него требуемую энергию Aimp. Так что же делать, не увеличивать же габариты трансформатора до неприличных значений?

Нет. Надо вводить в сердечник немагнитный зазор! Введение немагнитного зазора сильно снижает эффективную магнитную проницаемость сердечника, позволяя пропускать через обмотки значительно больший ток. Но, как вы понимаете, это потребует большего числа витков для достижения требуемой индуктивности обмотки.

Рассмотрим формулы для сердечника с зазором. Эффективная магнитная проницаемость сердечника с зазором:

μe = le/g, где

g – суммарная толщина зазора, м.

Следует отметить, что данная формула справедлива только если получаемая μe много меньше исходной магнитной проницаемости (несколько раз), а g много меньше размеров поперечного сечения сердечника. Итак, рассмотрим формулу индуктивности обмотки на сердечнике с зазором:

L = (μ0*Se*N²)/g

Формула от введения зазора стала только проще. Максимально допустимый ток через обмотку:

Imax = (Bmax*g)/(μ0*N)

Ну и последняя формула, которую можно вывести и самостоятельно. Размер зазора для заданного тока:

g = (I*μ0*N)/Bmax

А теперь сделаем интересный вывод. Как вы помните, энергия, запасенная в катушке, выражается формулой A = LI²/2. Так какую максимальную энергию можно запасти в каком-то абстрактном сердечнике? Подставим данные в формулы.

Amax = (μ0*Se*N²)*(Bmax*g) ²/((μ0*N) ²*2g) = Se*g*Bmax²/2μ0

Сейчас вы можете удивиться, но максимальная энергия, которую можно запасти в сердечнике, не зависит от того, какие обмотки на нем намотаны! Но это и логично, ведь энергия выражается в магнитном поле, а обмотки лишь позволяют его менять в ту или другую сторону! Количество витков в обмотках определяет только скорость, с которой магнитная индукция может достигнуть своего максимального значения при данном подведенном напряжении, но это максимальное значение определяется только конструкцией сердечника!

Данный вывод имеет огромное значение при проектировании ОИП на унифицированных сердечниках. Если перед вами стоит именно такая задача, то, прежде всего, вам необходимо рассчитать, какое максимальное количество энергии способен «впитать» выбранный сердечник за один импульс, чтобы понять, подходит ли он для вашей мощности блока. Как вы понимаете, в этом случае максимальную мощность блока можно повысить только за счет повышения частоты преобразования – чем чаще мы будем перекачивать энергию Amax от входа на выход, тем большую мощность блока в результате сможем получить.

Также, из полученной формулы видно, что количество энергии, которое может «уместиться» в сердечнике прямо пропорционально немагнитному зазору! Это позволяет использовать маленькие сердечники на больших мощностях за счет увеличения зазора в них. Ограничением теперь будет только физические размеры – увеличение зазора вызывает уменьшение магнитной проницаемости, что требует большее количество витков.

А теперь вернемся к структурной схеме ОИП на рис. 1. В ней остались два блока, о которых я ничего не сказал – это конденсатор С1 и снаббер Snb.

Назначение конденсатора С1 – заземление выходной части блока по высоким частотам. Дело в том, что любой трансформатор, даже намотанный по всем правилам с экранами, имеет какую-то межобмоточную емкость. Прямоугольное высокочастотное напряжение огромной амплитуды из точки а проходит через эту емкость в выходные цепи блока. Конденсатор С1, имеющий емкость намного больше емкости трансформатора Т1, заземляет выход блока по высоким частотам. Значение емкости этого конденсатора в ОИП чаще всего выбирают в районе 2нф, напряжение – около киловольта. Если предполагается жесткое заземление выхода блока (например, используется только розетка с заземлением), С1 можно не ставить.

Необходимость в Снаббере Snb также вытекает из неидеальности трансформатора Т1, но уже совсем другого рода. Не смотря на то, что обмотки I и II индуктивно связаны между собой, эта связь не составляет 100%. В схемотехнике ОИП принято говорить, что обмотка I представляет собой две части, соединенные последовательно, где первая полностью индуктивно связана с обмоткой II, а вторая – полностью изолирована от нее. Эту вторую часть обмотки I называют «индуктивностью рассеяния».

Когда в момент t1 ток в первичной обмотке (обоих частях ее) резко прекращается, индуктивность рассеяния также пытается его продолжить. А так, как она не связана ни с какой другой обмоткой, она генерирует высоковольтный импульс, прикладываемый к закрытому ключу Sw. Энергия этого импульса во много раз меньше полезной энергии Aimp (чем лучше трансформатор, тем она меньше вообще), но и ее может оказаться достаточно, чтобы повредить ключ (в случае с биполярным транзистором, например, ее вполне хватит для лавинного пробоя). Для защиты ключа от этого импульса, он гасится на специальном схемном решении.


Рис. 3

Самый простой вариант – RCD снаббер, выполненный из диода, конденсатора и резистора (см. рис. 3). Обратное напряжение, возникающее на обмотке I, открывает диод VD и начинает заряжать конденсатор С. В результате, вся энергия импульса передается в конденсатор. В перерывах между импульсами конденсатор разряжается через резистор R. Т.е. энергия, снимаемая с индуктивности рассеяния, превращается в конечном счете в тепло на резисторе R, поэтому мощность этого резистора должна быть значительной (достигает единиц ватт). Преимуществом снаббера можно считать его схемную простоту, и то, что часть энергии из конденсатора С можно выкачать обратно в трансформатор Т применяя медленный диод VD, но эти процессы уже несколько сложней нашей простой статьи. Основным же недостатком снаббера является то, что на нем падает и полезная мощность! Ведь рабочее обратное напряжение первичной обмотки Vinv также заряжает конденсатор до этого значения, т.е. полезная мощность Uinv²/R теряется впустую.

Схемным решением, лишенным этого недостатка является супрессор. Он представляет собой последовательно соединенный быстрый диод VD1 и мощный и быстрый стабилитрон VD2. Когда индуктивность рассеяния генерирует свой высоковольтный импульс, он открывает диод VD1, пробивает стабилитрон VD2 и энергия импульса рассеивается на нем. Стабилитрон VD2 выбирается с большим напряжением пробоя, чем обратное напряжение Uinv, поэтому он не рассеивает полезной мощности блока. К недостаткам супрессора можно отнести более высокий уровень электромагнитных помех, связанный с резким открытием и закрытием полупроводниковых приборов.

Что будет, если этот высоковольтный импульс не погасить ничем? В случае биполярного ключа, скорее всего, в нем возникнет лавинный пробой и блок питания перейдет в режим кипятильника. Современные же полевые транзисторы устойчивы к лавинному пробою и позволяют рассеивать некоторое количество энергии на стоке (это описано в документации), поэтому такой транзистор может работать и без снаббера или супрессора – его роль будет выполнять сам транзистор. Более того, я встречал некоторые дешевые китайские блоки питания, в которых так и было сделано. Однако, я настоятельно не рекомендую такой режим работы, т.к. он дополнительно снижает надежность блока. Супрессорный диод (стабилитрон) стоит очень дешево и рассчитан на колоссальные импульсные мощности (600W, 1.5KW), так почему бы не применять его по назначению?

Также из вышеописанного следует еще один вывод. Независимо от того, решили ли вы применять снаббер или супрессор, обратное напряжение на закрытом ключе будет еще выше, чем рабочее рассчитанное значение Usw! Это следует иметь в виду при выборе ключа.

Обычно современные ключевые транзисторы и микросхемы имеют допустимое обратное напряжение 600 – 800 вольт. При Umax = 391В, Umin = 220В, обратное напряжение на ключе Usw будет иметь следующие значения (в зависимости от D): D = 25%, Usw = 464B; D = 33%, Usw = 501B; D = 50%, Usw = 611B. Это означает, что для ключей с максимальным обратным напряжением 600В следует выбирать только D = 33% или меньше. Для ключей с обратным напряжением 700В можно выбирать D = 50%.

Ну и в завершении статьи приведу простой пример расчета ОИП. Допустим, мы хотим сделать простой блок питания, позволяющий получить на своем выходе 12В 1А. Рассчитаем его по пунктам:

  1. Выход блока – 12В 1А.
  2. До выходного диода (будем применять обычный кремниевый) должно быть 13В.
  3. Выходная мощность трансформатора – 13Вт.
  4. Расчетная входная мощность блока Pin = 13/0.8 = 16Вт.
  5. F = 100 КГц.
  6. Umax = 391В.
  7. Umin = 220В (емкость конденсатора входного фильтра – 22мкф).
  8. D = 33%, Uinv = 110В, Usw = 501В. Будем ориентироваться на ключи с обратным напряжением 600В.
  9. Aimp = 16/100000 = 1.6e-4Дж = 160мкДж.
  10. L = 1.65е-3Гн = 1.65мГн, Imax = 0.44А
  11. Производим выбор сердечника, расчет параметров намотки и зазора.

А теперь, для сравнения рассчитаем тот же ОИП для случая, когда допустимое напряжение сети может быть в интервале 85-230В. В чем будут отличия?

  1. Umax = 391B
  2. Umin = 85B (емкость конденсатора фильтра надо будет увеличить до 47мкф)
  3. D = 60%, Uinv = 128В, Usw = 519В, Будем ориентироваться на ключи с обратным напряжением 600В.
  4. Aimp = 16/100000 = 1.6e-4Дж = 160мкДж.
  5. L = 813мкГн, Imax = 0.63А

Заметьте, что параметры максимального тока через ключ изменились не столь значительно — с 0.44А до 0.63А, индуктивность упала в два раза, однако диапазон допустимых входных напряжений расширился очень существенно. В этом заключается еще одно преимущество ОИП — легкость в создании источников питания, работающих от широкого диапазона входных напряжений.

Возможно, в данной статье не до конца рассмотрены все нюансы построения ОИП, однако ее объем и так получился больше, чем планировалось. Но тем не менее, я надеюсь, что она сможет помочь начинающим радиолюбителям понять принципы и самостоятельно создавать обратноходовые источники питания.

Трансформатор для светодиодной ленты: подбор и расчет, классификация

На чтение 6 мин Просмотров 89 Опубликовано Обновлено

Осветители на базе светодиодных лент со временем приобретают все большую популярность и успешно используются в различных целях. Сегодня они применяются не только для декорирования закрытых и открытых пространств, но и для обустройства общего освещения. Кроме того, с их помощью удается реализовать идею коммерческих световых эффектов, привлекающих внимание к рекламным щитам и баннерам. В состав источников питания для осветителей, рассчитанных на пониженное напряжение, входят трансформаторы для светодиодных лент на 12 Вольт (ТП).

Особенности и характеристики светодиодных источников

Наглядная разница между светодиодными лентами SMD 5730,3528,5050

Различные образцы светодиодных изделий различаются по ряду признаков, основными из которых являются:

  • направленность светового потока;
  • плотность монтажа;
  • номинальное напряжение питания;
  • степень защиты.

По первому показателю известные образцы LED приборов делятся на фронтальные и торцевые изделия. Наибольшее распространение получили ленты с фронтальной ориентацией и углом рассеивания порядка 120 градусов. Гибкие полосы с боковым источником свечения не так популярны, поскольку излучение у них ограничено угловым радиусом в 90 градусов.

Величина светового потока от светодиодной ленты пропорциональна количеству установленных на ней излучающих элементов, приходящихся на один погонный метр. Согласно существующей классификации это число выбирается из следующего ряда: 30, 60, 90, 120 и 240 точечных единиц. Напряжение питания для низковольтных лент бывает либо 12, либо 24 Вольта. Более высокие значения встречаются крайне редко.

Различные марки ЛЕД лент отличаются показателями защищенности от пыли и влаги. Класс защиты указывается на упаковке изделия в виде сочетания букв IP и следующих за ними двух цифр. Полоска с открытым монтажом диодных элементов относится к классу IP20 — герметизация полностью отсутствует. Максимально защищенная от климатических воздействий лента имеет наивысшую степень, обозначаемую как IP68.

Как правильно выбрать ТП для LED–лент

Таблица степеней защиты

Основным рабочим узлом блока питания (БП) является преобразователь напряжения, понижающий сетевые 220 Вольт до нужной величины. Технические параметры, в соответствии с которыми выбирается трансформатор для светодиодов:

  • величина напряжение на выходе устройства;
  • мощность, которую он способен развивать в нагрузке;
  • степень защиты трансформатора от воздействия влаги.

Напряжения питания, на которые рассчитывается БП, выбираются на усмотрение пользователя из ряда рабочих значений 12 и 24 Вольта. Выходная мощность встроенного в него трансформатора зависит от количества подключаемых к блоку осветительных элементов. Степень защиты конструкции от воздействия влаги и пыли обозначается также как и для светодиодов (IP20-IP68) и выбирается в зависимости от условий эксплуатации.

Преимущества импульсных трансформаторов

Импульсный блок питания

При выборе источника питания, оптимально подходящего для эксплуатации в домашних условиях, необходимо учесть следующие особенности входящих в его состав узлов:

  • Типовой трансформатор для светодиодной ленты изготавливается, как правило, по импульсной схеме.
  • Такой подход позволяет сократить размеры и массу самого источника питания (ИБП).
  • Одновременно с этим повышается экономичность всего устройства в целом.
  • Повысить эффективность работы ИБП позволяет электронная схема формирования выходного напряжения с защитой от перегрузок.

Благодаря достоинствам импульсных трансформаторов изготавливаемые на их основе устройства полностью вытеснили устаревшие аналоговые образцы.

Варианты исполнения ИБП

Варианты блоков питания светодиодных лент

По своему исполнению и рабочим характеристикам источники питания для светодиодов подразделяются на следующие виды:

  • компактный сетевой блок, внешне похожий на зарядное устройство для телефонов;
  • небольшой по размерам модуль, помещенный в прямоугольный продолговатый корпус;
  • электронный балласт в полностью герметичной коробке;
  • аналогичная схема, размещенная в негерметичном корпусе стандартного размера.

Блоки имеют небольшую мощность (30-36 Ватт), но зато стоят достаточно дешево. Модули отличаются большим показателем мощности (до 75 Ватт). Подобно первым образцам они рассчитаны на работу с декоративной подсветкой, но в отличие от них имеют более высокую стоимость.

Электронные балласты в полностью герметичном корпусе предназначаются для эксплуатации в суровых климатических условиях. Они используются для освещения рекламных щитов и подобной продукции, размещаемой на улице. Их негерметичные аналоги, помещенные в корпус типового размера, широко применяются в быту и в рабочих офисах. Среди современных производителей трансформаторных источников питания особой популярностью пользуются российские компании ММП «Ирбис» и ИПС, а также зарубежные «Helvar» и «Mean Well» (Тайвань).

Расчет мощности трансформатора ИБП

Таблица мощности диодов

Исходными данными для расчета трансформатора для ИБП являются параметры освещенности, которые предполагается достичь посредством данного устройства. Для успешного решения этой задачи потребуется определиться с длиной ленточки, обеспечивающей нужный световой эффект. Если исходить из того, что на одном ее метре размещается 60 стандартных диодов с суммарным потреблением 4,8 Ватта, посчитать общую мощность удается простым перемножением двух известных цифр. Для этих целей даже не потребуется калькулятор, поскольку все операции легко совершаются в уме.

Если для получения заданного уровня освещенности потребовалось 10 метров по 60 светодиодов – суммарная потребляемая ими мощность будет составлять 4,8х10=48 Ватт. С учетом небольшого запаса по этому параметру следует подобрать блок питания, мощность которого составляет порядка 50-60 Ватт.

Особенности трансформаторов и их подключения

Схема подключения БП

При подключении трансформаторов питания важно учесть некоторые тонкости этой процедуры:

  • включать ИБП без присоединенной к нему нагрузки нежелательно;
  • сначала следует подсоединить светодиоды, а затем подавать на них напряжение;
  • подключать ленточки светодиодов нужно с учетом полярности, указанной на подложке.

Еще одна особенность процедуры состоит в способе соединения нагрузок (отдельных ленточек). Характерным для них является параллельное подсоединение к выходной колодке ИБП посредством специального переходника — его концы подпаиваются к контактным пятачкам ленты. Однако если общая длина одной полоски превышает 5 метров, допускается использовать последовательное включение. Во всех остальных случаях такое соединение нельзя назвать правильным, поскольку оно приведет к снижению яркости свечения задействованных светодиодных элементов.

Чтобы подключить к блоку питания RGB ленту, потребуется дополнительный модуль, управляющий параметрами цветных элементов: их яркостью и интенсивностью свечения. Кроме того, устройство позволяет повысить нагрузочную способность ИБП — используется как своеобразный усилитель.

Самодельный трансформаторный БП на 12 Вольт

Схема блока питания для светодиодной ленты

Самостоятельное изготовление трансформаторного блока питания для лент освещения проще всего рассмотреть на примере аналоговой модели, в которой задействован типовой стабилизатор. Для его сборки потребуются следующие комплектующие и детали:

  • индуктивный трансформатор, понижающий напряжение с 220 до 15 Вольт переменного тока;
  • выпрямительный узел на основе диодного мостика;
  • несколько фильтрующих элементов — конденсаторов емкостью не менее 1000 мкФ;
  • обычный стабилитрон и управляющий транзистор n-p-n структуры;
  • микросхема стабилизатора КРЕН8Б, рассчитанная на выходное напряжение 12 Вольт.

Согласно схеме самодельного блока питания, пониженное до необходимого уровня переменное напряжение выпрямляется диодным мостом, после чего ненужные гармоники отфильтровываются посредством конденсаторов. Постоянное напряжение величиной 15-17 Вольт подается затем на выходную микросхему, где формируется стабилизированное напряжение 12 Вольт.

Самодельный БП ограничен в применении и больше подходит для демонстрационных целей. Для эффективного энергоснабжения разветвленной сети светодиодных лент потребуется промышленный блок питания с набором дополнительных функций.

Распиновка трансформатора блока питания компьютера

Перед тем как начать перемотку трансформатора, его нужно разобрать. О простом методе разборки импульсного трансформатора из блока питания ПК можно прочитать тут.

Итак, разобрали трансформатор. Далее нужно нам разобраться для чего или подо что мы будем перематывать импульсный трансформатор.

Можно перемотать трансформатор для самого блока питания ПК, делается это для того, чтобы повысить выходное напряжение, при переделке БП ПК в регулируемый. В данном случае можно первичную обмотку оставить родной. Чаще всего, первичная обмотка импульсных трансформаторов из БП ПК разделена на две части. То есть, сначала мотается половина первичной обмотки, потом мотаются вторичные обмотки и сверху мотается вторая половина первичной обмотки. Так же, первичные полуобмотки могут иметь экран, в виде медной фольги.

Так вот, разматывая родные вторичные обмотки, можно посчитать количество витков, далее перемотать вторичную обмотку уже на несколько витков больше и восстановить верхнюю половину первичной обмотки. Тем самым мы сэкономим лакированный провод.

Лично я при переделке блоков питания ПК в регулируемый перематываю первичную и вторичную обмотки с нуля, пересчитывая их в программе Lite-CalcIT. При новом расчете следует учесть тот факт, что частота ШИМ у блоков питания ПК 30-36 кГц.

Приведу пример расчета и намотки импульсного трансформатора на сердечнике от БП ПК.

Скачиваем и запускаем программу Lite-CalcIT. Вбиваем нужные нам напряжения и диаметры обмоточных проводов. Также указываем схему преобразования и схему выпрямления. Частота преобразования в моем случае 50 кГц, если трансформатор рассчитывается для переделки БП ПК в регулируемый, то следует указать частоту преобразования 30 кГц, иначе из-за малого количества витков, сердечник войдет в насыщение и по первичной обмотке начнет протекать очень большой ток холостого хода.

Вторичных обмотки будет две, с отводом от середины. Номинальное напряжение указывается для одной обмотки. В моем расчете номинальное напряжение стоит 32 Вольта, это значит, что после выпрямления, относительно среднего вывода мы получим +32 Вольта и -32 Вольта. Так как я рассчитываю трансформатор под импульсный источник питания УНЧ, то мне нужно двухполярное питание +-32 Вольта, соответственно схема выпрямления указана двухполярной, со средней точкой.

Если рассчитывать трансформатор под переделку БП ПК, то ничего в программе менять не нужно, за исключением частоты (30 кГц), то есть будем иметь также две вторичных обмотки. Единственное, что изменится, это схема выпрямления, она будет однополярная со средней точкой.

Далее указываем габариты и другие параметры сердечника, добытого из БП ПК.

Ничего в расчете сложного нет. В ходе него я получил следующие параметры:

— Число витков первичной обмотки 38;

-Число витков вторичной обмотки 10+10 двумя жилами указанного провода.

Начинаем мотать транс.

38 Витков первичной обмотки в один слой не влезут на мой каркас, поэтому мотать буду в два слоя по 18 витков.

Подпаиваем к контакту провод и мотаем 18 витков, один к другому. Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.

Далее кладу слой изоляции. Изоляцию использую, какая есть, либо лавсановая пленка из ненужных обрезков витой пары, либо скотч.

После чего, не меняя направления, мотаем к основанию каркаса еще 18 витков, один к другому. Припаиваем контакт.

Кладем изоляцию. Все, первичка готова.

Пример намотки первичной обмотки на частоту 30 кГц.

По расчетам я получил количество витков первичной обмотки, равное 48. В первый слой я положил 35 витков.

Далее слой изоляции и остальные 13 витков, равномерно расположенных по всей длине каркаса.

Изолируем первичную обмотку от вторичной.

P.S. Если в один слой не влезает расчетное количество витков, то можно разделить на две равные половины, или мотать в один слой такое количество витков, которое влезет на всю длину каркаса. Остальное количество витков, которое не влезло, распределяем равномерно по всей длине каркаса сердечника.

Мотаем вторичную обмотку импульсного трансформатора.

Подпаиваем два провода к выводу нашего транса от БП ПК.

Мотаем в ту же сторону, что и первичную обмотку (в моем случае по часовой стрелке), 10 витков.

Оставляем хвост и изолируем.

Далее подпаиваем еще два провода к другим контактам.

Мотаем еще 10 витков, но уже в противоположную сторону предыдущей обмотки.

Теперь давайте разберемся, если нам отвод от середины не был бы нужен, то мы мотали бы от основания до верха по часовой стрелке 10 витков, потом слой изоляции, и далее в том же направлении еще 10 витков до основания каркаса.

В принципе можно и с отводом от середины так мотать, кому как удобней короче.

P.S. Обмотки должны быть намотаны, как можно симметрично и равномерно распределены по каркасу. Если полуобмотки получаться несимметричными, то будет разное напряжение в плечах.

Едем дальше. Опять изолируем вторичку, хотя крайнюю обмотку можно не изолировать, так лучше проходит охлаждение трансформатора.

Косу, которая получилась, перед скручиванием необходимо зачистить от лака. Далее скрутить и залудить. При желании можно надеть термоусадку.

Похожие статьи

3 Comments

Опа, и ещё одна классная и полезная статья. Да это не сайт, а кладезь полезной информации. Жаль, что нет возможности подписаться на новые материалы

Gregori69, С Вами полностью согласен.Все просто и доступно. Так держать.

Спасибо за статью, очень мне приходилась. Возник вопрос:
Как узнать материал и магнитную проницаемость магнитопровода? Уже сколько трансов перевернул, ничего не нашёл. Может поделитесь опытом?

Leave a Comment

Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Блок питания содержит малое количество компонентов . В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.
На входе стоит NTC термистор (Negative Temperature Coefficient) – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.
Диодный мост на входе для выпрямления сетевого напряжения на ток 10А.
Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы «вытянут» нагрузку в 220Вт.
Драйвер IR2151 – для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс «D», например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.
Полевые транзисторы используются предпочтительно фирмы IR (International Rectifier). Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.
Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В). Вторичные обмотки можно расчитать на другое напряжение .

Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки.
Емкость на выходе – буферная емкость. Не следует злоупотреблять и устанавливать емкость более 10000 мкф.
Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением.
Правильно собранный блок питания не нуждается в настройке и налаживании. Не следует включать блок питания без нагрузки.

Добавить комментарий

Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Если необходимо, можно добавить узел защиты от замыкания и переполюсовки по такой схеме:

При монтаже полевых транзисторов на радиатор использовать изоляционные прокладки и шайбы-втулки. Трансформатор типовой понижающий из блока питания компьютера. Цоколевка как правило, соответствует приведенной на схеме. Диоды на выходе ставьте с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER. Не путать с диодами Шоттки. Емкость на выходе не следует устанавливать более 4700 мкф. Файлы печатной платы качаем тут.

Практика показала, что в работе полевые транзисторы не сильно нагреваются. Для них достаточно пассивного охлаждения. Но при заряде автомобильных аккумуляторов не лишне будет установить небольшой вентилятор.

Составление предварительной схемы блока питания

Содержание

Принцип устройства и
работы электро-
вакуумных приборов
Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Двухэлектродные лампы
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Трехэлектродные лампы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Рабочий режим триода
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Многоэлектродные и
специальные лампы
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Электронно-лучевые
трубки
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Газоразрядные и
индикаторные приборы
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронные
приборы
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Собственные шумы
электронных ламп
Причины собственных шумов
Шумовые параметры
Особенности работы
электронных ламп на СВЧ
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Специальные
электронные
приборы для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных
приборов
Надежность и испытание
электровакуумных приборов
Основы схемотехники
ламповых усилителей
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Искажения в усилителях,
их измерение, меры по
снижению искажений
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Основные сведения
о радиокомпонентах
Радиокомпоненты —
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы —
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Замечания по проектированию источника питания

— MCI Transformer Corporation

Базовое руководство по применению источника питания

Используются четыре основных типа блоков питания:

  • Нерегулируемый линейный
  • Регулируемый линейный
  • Феррорезонанс
  • Режим переключения

Различия между четырьмя типами включают постоянное выходное напряжение, экономическую эффективность, размер, вес и пульсации. В этом руководстве объясняется каждый тип источника питания, описывается принцип работы и выделяются преимущества и недостатки каждого из них.

1. Нерегулируемый линейный источник питания

Нерегулируемые источники питания содержат четыре основных компонента: трансформатор, выпрямитель, конденсатор фильтра и резистор утечки.

Блок питания этого типа из-за своей простоты является наименее дорогостоящим и наиболее надежным для требований низкого энергопотребления. Недостатком является непостоянство выходного напряжения. Оно будет меняться в зависимости от входного напряжения и тока нагрузки, а пульсации не подходят для электронных приложений.Пульсации можно уменьшить, заменив конденсатор фильтра на фильтр IC (индуктор-конденсатор), но затраты на это изменение сделают использование регулируемого линейного источника питания более экономичным выбором.

2. Регулируемый линейный источник питания

Стабилизированный линейный источник питания идентичен нерегулируемому линейному источнику питания, за исключением того, что вместо спускного резистора используется трехконтактный стабилизатор.

Регулируемый линейный источник питания решает все проблемы нерегулируемого источника питания, но не так эффективен, потому что трехконтактный регулятор будет рассеивать избыточную мощность в виде тепла, которое должно быть учтено в конструкции источника питания.Выходное напряжение имеет незначительные пульсации, очень маленькую регулировку нагрузки и высокую надежность, что делает его идеальным выбором для использования в электронных устройствах с низким энергопотреблением.

3. Феррорезонансные источники питания

Феррорезонансный источник питания очень похож на нерегулируемый источник питания, за исключением характеристик феррорезонансного трансформатора.

Феррорезонансный трансформатор будет обеспечивать постоянное выходное напряжение в широком диапазоне входного напряжения трансформатора.Проблемы с использованием феррорезонансного источника питания заключаются в том, что он очень чувствителен к незначительным изменениям в частоте сети и не может быть переключен с 50 Гц на 60 Гц, и что трансформаторы рассеивают больше тепла, чем обычные трансформаторы. Эти источники питания тяжелее и будут иметь более слышимый шум от резонанса трансформатора, чем регулируемые линейные источники питания.

4. Импульсные источники питания

Импульсный источник питания имеет выпрямитель, конденсатор фильтра, последовательный транзистор, регулятор, трансформатор, но он более сложен, чем другие источники питания, которые мы обсуждали.Схема ниже представляет собой простую блок-схему и не отображает все компоненты источника питания.

Переменное напряжение выпрямляется до нерегулируемого постоянного напряжения с помощью последовательного транзистора и регулятора. Этот постоянный ток прерывается до постоянного высокочастотного напряжения, что позволяет значительно уменьшить размер трансформатора и позволяет использовать источник питания гораздо меньшего размера. Недостатки этого типа источника питания состоят в том, что все трансформаторы должны изготавливаться по индивидуальному заказу, а сложность источника питания не подходит для низкопроизводительных или экономичных применений с низким энергопотреблением.


Выпрямительные схемы для регулируемых линейных источников питания

Исходя из нашего предыдущего описания, регулируемый линейный источник питания является наиболее экономичной конструкцией с низким энергопотреблением, низким уровнем пульсаций и низким уровнем регулирования, который подходит для электронных приложений. В этом разделе мы объясним четыре основных используемых схемы выпрямления:

      • Полуволна
      • Полноволновой центральный отвод
      • Полноволновой мост
      • Двойное дополнение

1.Полуволновые схемы

Поскольку конденсаторный входной фильтр потребляет ток из схемы выпрямления только короткими импульсами, частота импульсов вдвое меньше, чем у двухполупериодной схемы, поэтому пиковый ток этих импульсов настолько велик, что эту схему не рекомендуется использовать для Мощность постоянного тока более 1/2 Вт.

2. Полноволновые схемы с центральным ответвлением

Двухполупериодный выпрямитель одновременно использует только половину обмотки трансформатора.Номинальный вторичный ток трансформатора должен в 1,2 раза превышать постоянный ток источника питания. Напряжение вторичной обмотки трансформатора должно быть примерно в 0,8 раза больше напряжения постоянного тока нерегулируемого источника питания на каждую сторону центрального ответвления, или трансформатор должно быть в 1,6 раза больше напряжения постоянного тока с центральным ответвлением.

3. Полноволновой мост

Двухполупериодная мостовая схема выпрямления является наиболее рентабельной, поскольку для нее требуется трансформатор с более низким номиналом в ВА, чем двухполупериодный выпрямитель.В двухполупериодном мосте вся вторичная обмотка трансформатора используется в каждом полупериоде, в отличие от двухполупериодного центрального отвода, который использует только половину вторичной обмотки в каждом полупериоде. Номинальный вторичный ток трансформатора должен в 1,8 раза превышать постоянный ток источника питания. Напряжение вторичной обмотки трансформатора должно быть примерно в 0,8 раза больше постоянного напряжения нерегулируемого источника питания.

4. Двойной дополнительный выпрямитель

Двойной дополнительный выпрямитель используется для подачи положительного и отрицательного выходного постоянного тока с одинаковым напряжением.В большинстве случаев отрицательный ток значительно меньше, чем требуемый положительный ток, поэтому отношение напряжения и тока переменного тока к напряжению и току постоянного тока должно быть таким же, как и для двухполупериодного центрального отвода, описанного ранее.


Как указать трансформатор

Регулируемый линейный источник питания используется для обеспечения постоянного выходного напряжения при различных нагрузках, а также для изменения входного напряжения.Все наши расчеты для определения правильного трансформатора предполагают, что входное напряжение может варьироваться от 95 до 130 В и не влияет на выход нашего источника питания.

Формула, используемая для определения напряжения переменного тока, требуемого от трансформатора, выглядит следующим образом:

      • В = Выходное напряжение
      • Vreg = Падение напряжения регулятора = 3v
      • Врек = падение напряжения на диодах = 1,25 В
      • Врип = пульсация напряжения = 10% от постоянного тока
      • Вном = 115 В
      • Vlowline = 95 В
      • .9 = КПД выпрямителя

Мы суммировали все расчеты для трех основных схем выпрямления в таблице ниже:

Схема выпрямления RMS НАПРЯЖЕНИЕ (ВОЛЬТ) RMS ТОК (AMPS)
Полноволновый центральный метчик Vac C.T. = 2,092 x В = + 8,08 IAC = IDC x 1,2
Полноволновой мост Vac = 1.046 x В постоянного тока +4,04 IAC = IDC x 1,8
Двойной дополнительный В переменного тока CT = 2,092 X В постоянного тока = 8,08 IAC = IDC x 1,8

Существуют регуляторы с малыми потерями, которые имеют падение 0,5 В вместо 3 В, но в настоящее время они не рассматриваются из-за доступности.

ПРИМЕРЫ:

Пример # 1:

Регулируемый линейный источник питания необходим для 5 В постоянного тока на 1 АЦП с первичной обмоткой 115 В или 230 В, и вы не знаете, должен ли он быть двухполупериодным с центральным ответвлением или двухполупериодным мостом.

Полноволновый центральный метчик
В перем. Тока Т.Т. = 2,092 x В пост. Тока + 8,08 Iac = Idc x 1,2
В пер.т. = 2,092 x 5 + 8,08 Iac + 1 x 1,2
Vac C.T. = 18,54 C.T. Iac = 1,2
VA = 18,54 x 1,2 = 22,5

Возможные варианты трансформаторов:
4-02-6020 Крепление для ПК UL
4-05-4020 Низкопрофильный
4-07-6020 Крепление на шасси UL
4-42-3020 Крепление для ПК VDE
4-44-6020 Крепление для ПК VDE
4-47-3020 Крепление на шасси VDE
4-49-4020 Крепление на шасси VDE

Полноволновой мост
Vac = 1.046 x Vdc ​​+ 5,23 Iac = Idc x 1,8
В переменного тока = 1,046 x В постоянного тока + 5,23 Iac = 1 x 1,8
В перем. = 10,46 Iac = 1,8
VA = 10,46x 1,8 = 18,83

Возможные варианты трансформатора:
4-02-6010 Крепление для ПК UL
4-05-4010 Низкопрофильный
4-07-6010 Крепление на шасси UL
4-42-3010 Крепление для ПК VDE
4-47-6010 Крепление для ПК VDE
4-47-3010 Крепление на шасси VDE
4-49-4010 Крепление на шасси VDE

Пример # 2:

Регулируемый линейный источник питания необходим для 12 В постоянного тока при 250 мА постоянного тока с одним первичным напряжением 115 В, а двухполупериодный мост — это схемы выпрямления, которые вы будете использовать.

Полноволновой мост
Vac = 1,046 x Vdc ​​+ 4,04 Iac = Idc x 1,8
В пер. Тока = 1,046 x 12 + 4,04 Iac = 0,25 x 1,8
Vac = 16,59 Iac = .45
VA = 16,59 x 0,45 = 7,47

Возможные варианты трансформатора:
4-01-5020 Крепление для ПК UL
4-03-4020 Крепление для ПК UL
4-05-3020 UL низкопрофильный кронштейн для ПК
4-06-5020 Крепление на шасси UL
4-41-2020 Крепление для ПК VDE
4-44-5020 Крепление для ПК VDE
4-46-2020 Крепление на шасси VDE

При использовании источников питания убедитесь, что выбранный регулятор имеет теплоотвод, достаточный для рассеивания мощности при высокой полной нагрузке линии.

Пример # 3:

Регулируемый линейный источник питания необходим для напряжения ± 15 В постоянного тока при 50 мА с первичной обмоткой 115 В.

Двойной дополнительный:
В перем. Тока CT = 2,092 x В пост. Тока x 8,08 Iac = Idc x 1,8
В перем. Тока CT = 2,092 x 15 + 8,08 Iac = 0,050 x 1,8
В перем. Тока CT = 39,46 Iac = 0,090
ВА = 39.46 х 0,090 = 3,55

Возможные варианты трансформатора:
4-01-4036 Крепление для ПК UL
4-03-3040 Крепление для ПК UL
4-05-2040 UL низкопрофильный кронштейн для ПК
4-06-4036 Крепление на шасси UL
4-44-4036 Крепление для ПК VDE

Давайте теперь посмотрим, как регулятор будет рассеивать тепло в худших условиях при высоком напряжении линии (= 130 В) и полной нагрузке.Регулятор отводит избыточную мощность в виде тепла. Регулятор имеет только максимальное количество мощности, которое он может рассеять, прежде чем внутренняя тепловая защита отключит его. Если источник питания 5 В постоянного тока и 1 А может работать при 95 В RMS, регулятор должен будет рассеивать 5,95 Вт на линии высокого напряжения при полной нагрузке (см. Расчет ниже).

Обычное рассеиваемое тепло:

Конструкция блока питания постоянного тока

Выбор трансформатора и выпрямителя

Для получения постоянного напряжения из сети переменного тока используются трансформатор и выпрямитель, как показано ниже.Трансформатор изменяет сетевое напряжение на более подходящее для наших требований; а выпрямитель удаляет отрицательную часть сигнала, давая на выходе только положительные напряжения. На схеме ниже показан мостовой выпрямитель; можно использовать одинарный диодный выпрямитель, но он менее эффективен; а поскольку кремниевые диоды недороги, конструкция моста стала почти универсальной.

В этом руководстве я буду использовать в качестве примера источник питания с выходом 12 В постоянного тока; однако простая теория позволит вам разработать источники питания для любого желаемого напряжения и тока.В следующих разделах в качестве примера будет использоваться конструкция переменного источника питания 2 А при напряжении до 30 В.

Падение напряжения на выпрямителе

Выпрямитель: одиночный кремниевый выпрямительный диод с прямой проводимостью развивает напряжение около 0,7 В (но может достигать 2 В). Обычно мы допускаем падение напряжения около 2В для конфигурации мостового выпрямителя.

Трансформатор: Потери также возникают в обмотках трансформатора; однако трансформатор с номинальным напряжением 220 В: 30 В при 10 А обычно обеспечивает выходную мощность 30 В (среднеквадратичное значение) при выдаче номинального тока.Это означает, что напряжение без нагрузки будет выше.

Осциллограммы вокруг контура

На этих диаграммах показано напряжение в различных точках цепи для трансформатора 240: 12В.

Здесь вы можете увидеть выходной сигнал трансформатора. На выходе получается синусоида с центром около 0 вольт.

Пиковое напряжение Vpk составляет 1,414 (квадратный корень из 2), умноженное на среднеквадратичное значение на выходе — указанное значение трансформатора.

Например, для трансформатора 240В: 12В пиковое напряжение будет
1.414 умножить на 12 = 17В

На этой схеме показан выходной сигнал мостового выпрямителя.

Вы можете видеть отрицательный «горб» от сигнала переменного тока выше, который был «перевернут вверх дном» блоком мостового выпрямителя. Пиковое напряжение теперь составляет 17 В — 2 В = 15 В.

Среднеквадратичное значение напряжения составляет около 10,6 В при полной нагрузке. Повышается при уменьшении нагрузки. Среднее напряжение 9,27

Вы также можете увидеть плоскую часть около нуля, где ни один из выпрямительных диодов не начал проводить.

Приведенный выше сигнал можно рассматривать как постоянное напряжение постоянного тока 9,27 В с наложенным изменяющимся сигналом примерно 15 В от пика к пику и средним значением 0 В.

Среднеквадратичное значение этого сигнала составляет около 15/2 * 1,414 = 5,4 В

Пример конструкции — выбор компонентов

Спецификация: Разработайте и создайте блок питания для работать от сети 240 В переменного тока. Он должен питать двигатель постоянного тока 12 В, который работает в течение длительного времени и при нормальном использовании потребляет от источника питания максимум 2 А.

Нам понадобится трансформатор на 12 В 2 А = 24 Вт или более

Здесь вы можете увидеть два возможных стиля трансформатора. Либо подойдет.

Оба рассчитаны на 12 В 48 Вт

Это кремниевый мостовой выпрямитель, рассчитанный на пиковое обратное напряжение 200 В и средний прямой ток 4 А. Это было бы хорошо.

Расчет тепла:

При использовании ток будет 2А, а прямое падение напряжения около 0.9 В на диод (техническое описание) или 1,8 В на оба диода.

2A * 1,8 В = 3,6 Вт.

Тепловое сопротивление воздуху (согласно паспорту) составляет 22 градуса Цельсия на ватт, поэтому в упаковке будет температура на 22 * ​​3,6 = 80 градусов выше температуры окружающей среды. Это слишком тепло, поэтому мы добавим небольшой радиатор или прикрутим выпрямитель к металлическому корпусу.

Обсуждение: Схема, показанная на этой странице, подходит для зарядки автомобильного аккумулятора или работы двигателя постоянного тока. В этих приложениях рябь не важна.Выход этого источника питания, как указано выше, будет 12 В — 1,8 = 10,2 В прибл. Мотор работал нормально. Однако для большинства приложений требуется сглаженный выходной сигнал, и для обеспечения этого в следующей схеме мы будем использовать конденсатор. Добавление конденсатора увеличит среднее выходное напряжение — см. Сглаживание.

Определение нагрузки источника питания

Советы по поиску и устранению неисправностей от нашей технической группы

Здесь, в Jameco, мы получаем множество звонков и писем от клиентов с просьбами дать советы по устранению неполадок, а также советы о том, как максимально повысить производительность их продуктов.В этой статье приведены советы по устранению наиболее распространенных вопросов, которые мы получаем. Если вы хотите, чтобы мы решили техническую проблему или нашли решение, которое вы считаете достойным, отправьте сообщение по адресу: [электронная почта защищена].

Вопрос: В техническом описании моего блока питания что-то упоминается о применении полной и минимальной нагрузки. Что такое полная нагрузка, минимальная нагрузка и как узнать ее размер?

Каждый блок питания предназначен для работы в определенном диапазоне условий, и каждый из них имеет максимальные рабочие условия, в которых блок питания не должен превышать.

полная нагрузка блока питания относится к максимальным рабочим характеристикам блока питания. Если он подает номинальный ток (такой же, как максимальный ток) при номинальном напряжении, то подключенная нагрузка является полной нагрузкой. Не существует заданного значения для полной нагрузки, потому что каждый источник питания рассчитан на разные характеристики.

Более важное значение, которое должно волновать многих, — это требование минимальной нагрузки . Это значение необходимо для правильной работы многих импульсных источников питания, а также многих нерегулируемых источников питания.

Когда не применяется надлежащая минимальная нагрузка, источник питания обычно мерцает и, кажется, быстро включается и выключается. Если оставить вывод без нагрузки, это может произойти. Это связано с тем, что для большинства импульсных и нерегулируемых источников питания выходы необходимо стабилизировать.

Используя закон Ома: V = IR, вы можете рассчитать минимальную нагрузку, зная номинальное напряжение и минимальный ток.

I = ток в амперах (A)
V = напряжение в вольтах (V)
R = сопротивление в омах (Ω)

Манипулирование этой формулой дает резистивную нагрузку R = V / I.Отсюда просто введите значения для V и I, и это будет ваше минимальное значение сопротивления нагрузки. Важно: помните о номинальной мощности вашего блока питания. Он должен соответствовать номинальной мощности минимальной резистивной нагрузки. Хорошим практическим правилом является использование нагрузки с номинальной мощностью, по крайней мере, в 1,5 раза большей, чем номинальная мощность источника питания.

Для импульсных и нерегулируемых источников питания :
1) Найдите номинальное напряжение и минимальный ток каждого выхода.
2) Используйте закон Ома: R = V / I для расчета каждой выходной нагрузки.

Пример: У вас есть источник питания переменного / постоянного тока с тройным выходом , который имеет следующие характеристики:

+5 В при 0,6 А (канал 1)
+12 В при 0,2 А (канал 2)
-12 В при 0,1 А (канал 3)
Используя закон Ома, мы рассчитываем минимальную резистивную нагрузку для каждого канала:
Канал 1: R = V / I = 5 В / 0,6 A = 8,3 Ом
Канал 2: R = V / I = 12 В / 0,2 A = 60 Ом
Канал 3: R = V / I = 12 В / 0.1A = 120 Ом

Обратите внимание, что канал 3 рассчитан на -12 В, но это не учитывается как отрицательное значение в наших расчетах. Мы не можем применять отрицательную резистивную нагрузку. Еще раз, номинальная мощность нагрузки должна быть не менее чем в 1,5 раза больше номинальной мощности источника питания. Используйте формулу для мощности: мощность = напряжение x ток или P = VI.

Если вы пытаетесь рассчитать минимальную нагрузку и знаете только номинальную мощность и напряжение вашего источника питания, вы можете использовать формулу P = V 2 / R, которая может стать R = V 2 /П.

Если по какой-либо причине у вас есть только номинальные значения тока и мощности вашего источника питания, вы можете использовать P = I 2 R, которое можно изменить на R = P / I 2 .

Как видите, расчет минимально необходимой нагрузки вашего источника питания — очень простой процесс. Просто найдите несколько оценок в таблице, и вы сможете мгновенно применить нагрузку правильного размера.

Примечание: Помните, что не следует прикладывать нагрузку, превышающую значение полной нагрузки в течение достаточного периода времени, поскольку это может привести к повреждению или перегреву источника питания.

Для получения дополнительной информации о блоках питания и принадлежностях посетите центр ресурсов питания Jameco.

Как рассчитать максимальный входной переменный ток

Как рассчитать максимальный входной переменный ток.
Ан-21

Информация о максимальном входном токе источника питания может быть полезна при выборе требований к электроснабжению, выборе автоматического выключателя, выбора входного кабеля переменного тока и разъема и даже при выборе изолирующего трансформатора для плавающих приложений.Вычислить максимальный входной ток довольно просто, зная несколько основных параметров и некоторую простую математику.

Номинальная мощность высоковольтного блока питания
Все блоки питания Spellman имеют заявленную максимальную номинальную мощность в ваттах. Это первый параметр, который нам понадобится, и его можно найти в паспорте продукта. Большинство блоков питания Spellman имеют максимальную номинальную мощность прямо в номере модели. Как и в этом примере, SL30P300 / 115 представляет собой блок 30 кВ с положительной полярностью, который может обеспечить максимум 300 Вт; работает от входной линии 115Vac.

Эффективность блока питания
Эффективность блока питания — это отношение входной мощности к выходной мощности. Эффективность обычно указывается в процентах или в виде десятичной дроби меньше 1, например, 80% или 0,8. Чтобы вычислить входную мощность, мы берем заявленную максимальную выходную мощность и делим ее на эффективность:

300 Вт / 0,8 = 375 Вт

Коэффициент мощности
Коэффициент мощности — это отношение реальной мощности к полной используемой мощности. Обычно выражается в виде десятичного числа меньше 1.Реальная мощность выражается в ваттах, а полная мощность — в ВА (вольт-амперах). Однофазные импульсные источники питания без коррекции обычно имеют довольно низкий коэффициент мощности, например 0,65. Трехфазные импульсные источники питания без коррекции имеют более высокий коэффициент мощности, например 0,85. Устройства со схемой активной коррекции коэффициента мощности могут иметь очень хороший коэффициент мощности, например 0,98. В нашем примере выше источник питания представляет собой неисправный блок, питаемый от однофазной сети, поэтому:

375 Вт / 0,65 = 577 ВА

Напряжение входной линии
Нам нужно знать входное напряжение переменного тока, от которого устройство предназначено для питания .В приведенном выше примере входное напряжение переменного тока составляет 115 В переменного тока. Это номинальное напряжение, в действительности входное напряжение указано как ± 10%. Нам нужно вычесть 10%, чтобы учесть наихудший случай, состояние низкой линии:

115Vac — 10% = 103,5Vac

Максимальный входной переменный ток
Если мы возьмем 577 VA и разделим его на 103,5Vac, получим:

577 ВА / 103,5 В переменного тока = 5,57 ампер

Если наше входное напряжение переменного тока однофазное, то у нас есть ответ — 5,57 ампер.

Трехфазное входное напряжение
Блоки с трехфазным входным напряжением питаются от трех фаз, поэтому они имеют лучший коэффициент мощности, чем однофазные блоки.Также за счет наличия трех фаз, питающих агрегат, фазные токи будут меньше. Чтобы получить входной ток на каждую фазу, мы разделим наш расчет входного тока на √3 (1,73).

Рассчитаем этот пример: STR10N6 / 208. Из таблицы данных STR мы узнаем, что максимальная мощность составляет 6000 Вт, КПД составляет 90%, а коэффициент мощности составляет 0,85. Несмотря на то, что STR по проекту будет работать с напряжением до 180 В переменного тока, в этом примере он будет питаться от трехфазной сети 208 В переменного тока. Мы получаем максимальный входной ток на фазу следующим образом:

КПД источника питания
6000 Вт /.9 = 6666 Вт

Коэффициент мощности
6666 Вт / 0,85 = 7843 ВА

Напряжение входной линии
208 В переменного тока — 10% = 187 В переменного тока

Максимальный входной ток переменного тока
7843 ВА / 187 В переменного тока = 41,94 ампер (если он был однофазным)

Поправка для трехфазного входа
41,94 ампера / √3 (1,73) = 24,21 ампера на фазу

Итак, у нас есть два уравнения, одно для однофазных входов и одно для трехфазных входов:

Однофазное уравнение максимального входного тока
Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение)

Уравнение трехфазного максимального входного тока
Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение) ( √3)

Эти расчеты входного тока предназначены для наихудшего случая: предполагая, что блок работает на максимальной мощности, работает при низком уровне напряжения в сети и принимает во внимание КПД и коэффициент мощности.

Щелкните здесь, чтобы загрузить pdf.

Расчет силовых трансформаторов сетевой частоты

Расчет силовых трансформаторов сетевой частоты

Введение

На этой странице простая методика расчета частоты сети с закрытым сердечником. силовые трансформаторы. Он предназначен для домашнего пивоварения, ремонта и модификации трансформаторов. Обратите внимание, что даже если этот метод и некоторые уравнения могут быть Обобщенно, только классические сердечники, составленные из стальных листов, принимаются учетная запись.


Размер ядра

При проектировании трансформатора питания с замкнутым сердечником первым шагом является чтобы выбрать подходящий сердечник по мощности, устройство должно ручка. Обычно для большой мощности требуются большие жилы. На самом деле, нет никаких теоретических или физических причин, препятствующих маленькому ядру. от обработки большой мощности, но по практическим соображениям на малом ядре, не хватает места для всех обмоток: большой сердечник — единственный выбор.Чтобы с самого начала выбрать довольно хорошее ядро, следующие эмпирическая формула (для рабочей частоты 50 Гц) может помочь:

Это уравнение связывает (полную) мощность P с поперечным сечением жилы. поверхность А с учетом КПД сердечника η (греч. «эта»). При измерении поперечного сечения жилы следует удалить около 5%, чтобы учесть толщину лака на ферромагнитных пластинах составляя ядро.Сечение А — это минимальное сечение магнитного цепь, обычно измеряемая там, где расположены обмотки, как показано на рисунок ниже:

На приведенной выше диаграмме показан сердечник с двойной петлей, который на сегодняшний день является наиболее распространенным. тип сердечника из-за его низкого потока утечки и небольших размеров. Это называется «двойной петлей», потому что магнитное поле, создаваемое катушки в середине сердечника петляют половину на левой части сердечника и половина в правой части.В этом случае важно измерить поперечное сечение жилы внутри обмотки (как показано), где поток не делится пополам. Если ваш трансформатор имеет одну магнитную петлю, например тороидальный трансформатор, чем поперечное сечение одинаковое по всему сердечнику и не имеет значения, где вы это измеряете.

Эффективность зависит от материала, из которого изготовлен сердечник; если неизвестно, таблица ниже даст общее представление:

Материал опорной плиты Плотность магнитного потока φ
[Вт / м 2 ]
КПД сердечника η
[1/1]
Текстурированная кремнистая сталь (C-образная), M5 1.3 0,88
Текстурированная кремнистая сталь (пластины 0,35 мм), M6 1,2 0,84
Кремнистая сталь без ориентированной зернистости (пластины 0,5 мм), M7 1,1 0,82
Стандартная кремниевая сталь без ориентированной зернистости (или для тяжелых условий эксплуатации) 1,0 0,80
Низкоуглеродистая сталь 0,8 0,70

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:

В этом калькуляторе уже учтено уменьшение ядра на 5%. поперечное сечение.


Плотность потока в активной зоне

Затем необходимо определить плотность потока сердечника φ (греч. «фи»). Опять же, это зависит от материала, и, если он не известен, та же таблица будет помощь. Если трансформатор должен работать непрерывно или в плохо вентилируемом помещении. окружающей среде, небольшое уменьшение плотности потока (например, на 10%) приведет к уменьшите потери и сохраните трансформатор в холодном состоянии за счет большего количества железа и больше меди. Обратное можно рассматривать для снижения стоимости материалов в трансформаторах. используется только в течение коротких периодов времени или не предназначен для работы на полной мощности непрерывно.

После определения плотности потока можно рассчитать трансформатор постоянная γ , выражающая количество витков на вольт всех обмотки по следующей формуле:

Фактор 10 6 учитывает, что поперечное сечение жилы равно выражено в мм 2 . По поводу этой формулы следует отметить еще несколько моментов: например, низкий частоты требуют больше витков, и вы могли заметить, что 60 Гц трансформаторы, которые обычно немного меньше, чем эквивалентные 50 Гц единицы.Более того, низкая магнитная индукция также требует большего количества витков, а это означает, что для уменьшения потока в сердечнике (и уменьшения потерь) приходится наматывать больше витков, даже если это кажется нелогичным. Последнее замечание: для больших сердечников требуется несколько оборотов: если вы когда-нибудь смотрели внутри огромных высоковольтных трансформаторов, используемых энергетическими компаниями для своих высоковольтные линии электропередач, у них всего несколько сотен витков для многих киловольт, в то время как небольшой трансформатор 230 В внутри вашего будильника имеет тысячи поворотов.


Расчет обмоток

Теперь, когда мы знаем постоянную трансформатора γ , легко рассчитайте количество витков N для каждой обмотки по формуле:

Обратите внимание, что все напряжения и токи являются среднеквадратичными значениями, а плотность потока выражается его пиковым значением, чтобы избежать насыщения: это объясняет член √2 в уравнении постоянной трансформатора.

Для вторичных обмоток рекомендуется немного увеличить количество витков, скажем, на 5% или около того, чтобы компенсировать потери в трансформаторе.

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:

Этот калькулятор уже учитывает фактор 5% для вторичного повороты.

Вы могли заметить, что количество витков зависит от размера сердечника и магнитного потока. плотность, но не по мощности. Итак, если вашему трансформатору требуется более одной вторичной обмотки, просто повторите расчет обмоток для каждой вторичной обмотки.Но в этом случае выбирайте сердечник достаточно большой, чтобы вместить все обмотки или, в Другими словами, выберите размер сердечника в соответствии с общей мощностью всех вторичные обмотки. Также используйте первичный провод с поперечным сечением, достаточно большим, чтобы выдержать общую мощность.


Выбор правильного провода

Последний шаг — рассчитать диаметр провода для каждой обмотки. Для этого необходимо выбрать плотность тока в проводнике c . Хороший компромисс — 2,5 А / мм 2 .Более низкое значение потребует больше меди, но приведет к меньшим потерям: это подходит для тяжелых трансформаторов. Более высокое значение потребует меньше меди и сделает трансформатор более дешевым, но из-за повышенного нагрева это будет приемлемо только при кратковременном использовании. время работы на полной мощности или может потребоваться охлаждение. Стандартные значения составляют от 2 до 3 А / мм 2 . После определения плотности тока можно рассчитать диаметр проволоки. используя следующее уравнение:

Или для c = 2.5 А / мм 2 :

Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:


На практике

Теперь, когда вычисления завершены, начинается самое сложное: будет ли рассчитанные обмотки подходят на выбранный сердечник? Что ж, ответ непростой и зависит от большого количества факторов: сечение и форма проволоки, радиус изгиба проволоки, качество намотки, наличие изолирующей фольги между слоями обмотки и т. д.С другой стороны, некоторый опыт будет полезнее, чем много уравнения.

Купить пустой сердечник трансформатора сложно, и обычно начинаются домашние проекты. от старого трансформатора, чтобы раскрутить и восстановить. Не все трансформаторы можно разобрать: некоторые склеены смола, которая слишком сильна, чтобы удалить ее без изгиба основных пластин. К счастью, многие трансформаторы можно разобрать, сняв крышку. который удерживает все пластины вместе или шлифованием двух сварных швов поперек все тарелки.Затем каждую пластину необходимо осторожно снять, чтобы получить доступ к обмотки. Погнутые или поцарапанные пластины следует выбросить.

Если повезет, можно повторно использовать первичную обмотку и восстановить только вторичный, если первичный не наматывается на вторичный или не имеет неподходящее количество оборотов. Решая, следует ли оставить обмотку как есть или нет, полезно определить его количество витков, но подсчитать их без разматывая катушку.К счастью, есть способ определить количество витков: до разбирая сердечник, просто намотайте несколько витков (скажем, 5 или около того) изолированного провода вокруг обмоток и измерьте напряжение, наведенное в этом самодельном вторичный при нормальном питании трансформатора. По этой величине легко рассчитать количество витков на вольт трансформатора. и подсчитайте количество витков каждой обмотки без фактического подсчета их.

После того, как новые обмотки намотаны, самое время восстановить сердечник, ставим все пластины на место.Без силового пресса их все вернуть будет сложно, но если на в конце остается одна-две пластины, трансформатор все равно будет работать нормально. Но по этой причине при выполнении работ следует немного завышать размер трансформатора. расчеты, выбрав меньшее поперечное сечение жилы. Когда трансформатор запитан, сила на пластинах сердечника значительна. и важно их крепко держать или склеивать; в противном случае ядро будет вибрировать и будет очень шумно.

Многие трансформаторы имеют пластины сердечника E-I, как показано на рисунке выше.При восстановлении сердечника пластины должны быть скрещены: E-I для одной слой и I-E для следующего, и так далее. Это минимизирует воздушный зазор и помогает поддерживать высокий коэффициент связи.

Всегда используйте эмалированный медный провод для всех обмоток. Изолированный провод из ПВХ (обычный электрический провод) — очень плохая идея, потому что слой изоляции очень толстый, занимает много места в сердечнике и является очень плохой проводник тепла: ваш трансформатор очень быстро перегреется.

Всегда кладите слой изолирующей фольги между первичной и вторичной обмотками. если они расположены близко друг к другу, чтобы предотвратить опасность поражения электрическим током в случае нарушение изоляции провода.Используйте что-нибудь тонкое, не горит, и это хороший изолятор. Я использую каптоновую ленту, но может подойти и обычная изолента.

Изоляция эмалированного медного провода обычно составляет до 1000 В (пиковое напряжение). ценить). Если возможно, ознакомьтесь со спецификациями проводов, предоставленными его производитель. Если напряжение на крыле превышает это значение, лучше разделить намотка на два или более слоев, разделенных изолирующей фольгой между ними.


Заключение

Представлен простой метод расчета сетевых силовых трансформаторов. и я надеюсь, что это поможет домашним пивоварам в разработке собственных трансформаторов. в соответствии с их конкретными потребностями.Намотка собственных трансформаторов часто является единственным доступным выбором, когда требуются необычные напряжения. Но разобрав трансформатор, сделайте новые обмотки и верните обратно вместе — это много работы, поэтому лучше провести некоторые расчеты, прежде чем получится сразу с первой попытки.


Используемые символы

Символ Описание Установка
A Поперечное сечение жил мм 2
д Диаметр проволоки мм
f Рабочая частота Гц
I Среднеквадратичный ток обмотки А
N Количество витков 1/1
п. Полная мощность трансформатора ВА
U Действующее значение напряжения обмотки В
γ Число оборотов на В витков / В
η Эффективность сердечника 1/1
φ Плотность магнитного потока сердечника Вт / м 2

Примечание: 1 Вт / м 2 = 1 T = 10’000 Гаусс


Библиография

  • Nuova Elettronica, Vol.6, 134
  • с.
  • Nuova Elettronica, Riv 179, p66


Руководство по номинальным характеристикам трансформатора, кВА

Перейти к:

Во многих отраслях промышленности, включая здравоохранение, производство, заключение контрактов на электрооборудование, высшее образование и исправительные учреждения, надежные высококачественные трансформаторы необходимы для обеспечения эффективного функционирования. Крупные предприятия и промышленные процессы требуют значительного количества энергии, и им нужны надежные трансформаторы для преобразования энергии, поступающей от электростанции, в форму, которую они могут использовать для своего оборудования и инженерных сетей.

Как трансформаторы помогают коммерческим и промышленным предприятиям достичь этих целей?

Трансформаторы преобразуют энергию источника в мощность, необходимую для нагрузки. Чтобы использовать свои трансформаторы эффективно, предприятиям необходимо знать, какую мощность могут дать им их трансформаторы. Эту информацию предоставляет рейтинг трансформатора.

Трансформатор обычно состоит из двух обмоток, первичной и вторичной обмоток. Входная мощность проходит через первичную обмотку.Затем вторичная обмотка преобразует мощность и отправляет ее на нагрузку через свои входные провода. Номинал трансформатора или его размер — это уровень его мощности в киловольт-амперах.

Когда часть электрооборудования выходит из строя, часто виноват трансформатор. В этом случае вам, вероятно, потребуется заменить трансформатор, а когда вы это сделаете, вам нужно будет выбрать трансформатор с правильной кВА для ваших нужд. В противном случае вы рискуете поджарить свое ценное оборудование.

Как выбрать размер трансформатора? К счастью, подобрать трансформатор относительно просто.Он включает использование простой формулы для расчета требований кВА на основе тока и напряжения вашей электрической нагрузки. В приведенном ниже руководстве по номинальной мощности трансформатора кВА мы более подробно объясним, как рассчитать требуемую номинальную мощность в кВА.

Для получения дополнительной информации позвоните в ELSCO

Как определить мощность в кВА

Когда вы определяете мощность в кВА, полезно иметь терминологию и сокращения прямо перед тем, как вы начнете. Иногда можно встретить трансформаторы, особенно меньшего размера, с размерами в ВА.ВА расшифровывается как вольт-амперы. Например, трансформатор с номинальной мощностью 100 ВА может выдерживать напряжение 100 В при токе в один ампер (ампер).

Единица измерения кВА представляет собой киловольт-ампер или 1000 вольт-ампер. Трансформатор с номинальной мощностью 1,0 кВА аналогичен трансформатору с номинальной мощностью 1000 ВА и может выдерживать напряжение 100 В при токе 10 ампер.

Расчет кВА Типоразмер

Чтобы определить мощность в кВА, вам необходимо выполнить ряд расчетов на основе вашей электрической схемы.

Электрическая нагрузка, которая подключается к вторичной обмотке, требует определенного входного напряжения или напряжения нагрузки. Назовем это напряжение V. Вам нужно знать, что это за напряжение — вы можете найти его, посмотрев на электрическую схему. Можно сказать, что в примере напряжение нагрузки V должно составлять 150 вольт.

Затем вам нужно будет определить конкретный ток, необходимый для вашей электрической нагрузки. Вы также можете посмотреть на электрическую схему, чтобы определить это число. Если вы не можете определить требуемый ток, его можно рассчитать, разделив входное напряжение на входное сопротивление.Допустим, требуемый ток фазы нагрузки, который мы назовем l, составляет 50 ампер.

После того, как вы нашли или рассчитали эти две цифры, вы можете использовать их для определения требований к мощности нагрузки в киловаттах. Для этого вам нужно умножить требуемое входное напряжение (В) на требуемую токовую нагрузку в амперах (л), а затем разделить это число на 1000:

.

В приведенном выше примере вы должны умножить 150 на 50, чтобы получить 7 500, а затем разделить это число на 1000, чтобы получить 7,5 киловатт.

Последний шаг — преобразовать цифру в киловаттах в киловольт-амперы. Когда вы это сделаете, вам нужно будет разделить на 0,8, что представляет собой типичный коэффициент мощности нагрузки. В приведенном выше примере вы разделите 7,5 на 0,8, чтобы получить 9,375 кВА.

Однако, выбирая трансформатор, вы не найдете трансформатора мощностью 9,375 кВА. Большинство номинальных значений кВА являются целыми числами, а многие, особенно в более высоких диапазонах, кратны пяти или 10–15 кВА, 150 кВА, 1000 кВА и так далее. В большинстве случаев вам нужно выбрать трансформатор с номинальной мощностью, немного превышающей рассчитанную вами — в данном случае, вероятно, 10 или 15 кВА.

Вы также можете работать в обратном направлении и использовать известную мощность трансформатора в кВА для расчета силы тока, которую вы можете использовать. Если ваш трансформатор рассчитан на 1,5 кВА, и вы хотите, чтобы он работал при 25 вольт, умножьте 1,5 на 1000, чтобы получить 1500, а затем разделите 1500 на 25, чтобы получить 60. Ваш трансформатор позволит вам работать с током до 60 ампер. Текущий.

Если идея выполнения расчетов, когда вам нужно вычислить кВА, кажется устрашающей или непривлекательной, вы всегда можете обратиться к диаграммам. Многие производители предоставляют диаграммы, чтобы упростить определение правильной мощности в кВА.Если вы используете диаграмму, вы найдете напряжение и силу тока вашей системы в строках и столбцах, а затем найдете в списке кВА, где пересекаются выбранные вами строка и столбец.

Запрос цены на трансформатор

Стартовый фактор и особенности специализации

В приведенном выше примере мы разделили на 0,8, чтобы немного увеличить кВА трансформатора. Почему мы это сделали?

Для запуска устройства обычно требуется больше тока, чем для запуска. Чтобы учесть это дополнительное текущее требование, часто бывает полезно включить начальный фактор в свои расчеты.Хорошее практическое правило — умножить напряжение на силу тока, а затем умножить на дополнительный пусковой коэффициент 125%. Деление на 0,8, конечно, то же самое, что умножение на 1,25.

Однако, если вы запускаете трансформатор часто — скажем, чаще, чем один раз в час — вам может потребоваться кВА даже больше, чем рассчитанный вами размер. А если вы работаете со специализированными нагрузками, например, с двигателями или медицинским оборудованием, ваши требования кВА могут существенно отличаться. Для специализированных приложений вам, вероятно, захочется проконсультироваться с профессиональной компанией по производству трансформаторов, чтобы узнать, какая кВА вам нужна.

Уравнение для трехфазных трансформаторов, которое мы обсудим более подробно ниже, также немного отличается. Когда вы выполняете расчеты с трехфазными трансформаторами, вам нужно включить константу, чтобы убедиться, что ваша работа работает правильно.

Стандартные размеры трансформатора

Легко говорить о расчетах размеров трансформаторов абстрактно и придумать массив чисел. Но каковы стандартные размеры трансформаторов, которые вы могли бы купить?

Наиболее распространенными размерами трансформаторов, особенно для коммерческих зданий, являются:

  • 3 кВА
  • 6 кВА
  • 9 кВА
  • 15 кВА
  • 30 кВА
  • 37.5 кВА
  • 45 кВА
  • 75 кВА
  • 112,5 кВА
  • 150 кВА
  • 225 кВА
  • 300 кВА
  • 500 кВА
  • 750 кВА
  • 1000 кВА

Как определить напряжение нагрузки

Прежде чем вы сможете рассчитать необходимую кВА для вашего трансформатора, вам нужно вычислить напряжение нагрузки, которое является напряжением, необходимым для работы электрической нагрузки. Чтобы определить напряжение нагрузки, вы можете взглянуть на свою электрическую схему.

В качестве альтернативы, у вас может быть кВА вашего трансформатора и вы хотите рассчитать необходимое напряжение. В этом случае вы можете скорректировать уравнение, которое мы использовали выше. Поскольку вы знаете, что кВА = V * 1/1000, мы можем решить для V, чтобы получить V = kVA * 1000 / л.

Итак, вы умножите свою номинальную мощность в кВА на 1000, а затем разделите на силу тока. Если ваш трансформатор имеет номинальную мощность 75 кВА, а ваша сила тока 312,5, вы подставите эти числа в уравнение — 75 * 1000 / 312,5 = 240 вольт.

Как определить вторичное напряжение

Первичная и вторичная цепи наматываются вокруг магнитной части трансформатора.Пара различных факторов определяет вторичное напряжение — количество витков в катушках, а также напряжение и ток первичной цепи.

Вы можете рассчитать напряжение вторичной цепи, используя соотношение падений напряжения в первичной и вторичной цепях, а также количество витков цепи вокруг магнитной части трансформатора. Мы будем использовать уравнение t 1 / t 2 = V 1 / V 2 , где t 1 — количество витков в катушке первичной цепи, t 2 — количество витков витков в катушке вторичной цепи, V 1 — падение напряжения в катушке первичной цепи, а V 2 — падение напряжения в катушке вторичной цепи.

Допустим, у вас есть трансформатор с 300 витками первичной обмотки и 150 витками вторичной обмотки. Вы также знаете, что падение напряжения на первой катушке составляет 10 вольт. Подставляя эти числа в приведенное выше уравнение, получаем 300/150 = 10 / t 2 , так что вы знаете, что t 2 , падение напряжения на вторичной катушке, составляет 5 вольт.

Как определить первичное напряжение

Помните, что у каждого трансформатора есть первичная и вторичная стороны. Во многих случаях вам нужно рассчитать первичное напряжение, то есть напряжение, которое трансформатор получает от источника питания.

Вы можете определить это первичное напряжение, используя соотношение тока и напряжения на первичной и вторичной обмотках трансформатора. Возможно, вы знаете, что ваш трансформатор имеет ток 4 ампера и падение напряжения на вторичной обмотке 10 вольт. Вы также знаете, что ваш трансформатор пропускает через первичную обмотку ток 6 ампер. Каким должно быть падение напряжения на первичной обмотке?

Пусть i 1 и i 2 равны токам через две катушки. Можно использовать формулу i 1 / i 2 = V 2 / V 1 .В этом случае i 1 равно 6, i 2 равно 4, а V 2 равно 10, и если вы подставите эти числа в формулу, вы получите 6/4 = 10 / V 1 . Решение для V 1 дает V 1 = 10 * 4/6, поэтому падение напряжения в первичной цепи должно составлять 6,667 вольт.

Запрос цены на трансформатор

Однофазный номинальный ток, кВА

Однофазный трансформатор использует однофазный переменный ток. Он имеет две линии переменного тока (AC).Ниже приведены несколько распространенных типов:

  • залитый: Однофазный залитый трансформатор полезен для различных общих нагрузок, включая как внутренние, так и внешние нагрузки. Эти трансформаторы широко используются в промышленных и коммерческих операциях, включая многие типы осветительных приборов. При желании предприятия могут объединить эти блоки для создания трехфазных трансформаторов. Эти трансформаторы имеют относительно низкие номиналы, часто от 50 ВА до 25 кВА.
  • Вентилируемый: Однофазный вентилируемый трансформатор полезен для нескольких однофазных нагрузок внутри и вне помещений.Эти трансформаторы широко используются в коммерческих и промышленных приложениях, включая системы освещения. Они часто имеют номиналы от 25 до 100 кВА.
  • Полностью закрытые невентилируемые трансформаторы : Полностью закрытые невентилируемые трансформаторы могут быть однофазными или трехфазными. Они идеально подходят для сред, содержащих большое количество грязи и мусора. Их номинальные характеристики обычно варьируются от 25 до 500 кВА.

Трехфазная мощность, кВА

Трехфазный трансформатор может иметь одну из нескольких различных форм.Обычно он имеет три линии питания, каждая из которых сдвинута по фазе с двумя другими на 120 градусов.

По сравнению с однофазными трансформаторами, трехфазные трансформаторы бывают аналогичных типов:

  • залитый: Трехфазный залитый трансформатор полезен для множества общих нагрузок, как наружных, так и внутренних, коммерческих и промышленных, включая системы освещения. Эти трансформаторы часто имеют номинальные характеристики от 3 до 75 кВА.
  • Вентилируемый: Трехфазный вентилируемый трансформатор полезен для многих типов общих внутренних и внешних нагрузок, как промышленных, так и коммерческих, включая системы освещения.Эти трансформаторы могут иметь огромные мощности, до 1000 кВА.
  • Полностью закрытые, без вентиляции: как и однофазные блоки, эти трехфазные системы идеальны для сред, содержащих большое количество грязи и мусора. Их номинальные характеристики обычно варьируются от 25 до 500 кВА.

Расчет для трехфазного трансформатора кВА немного отличается от расчета для однофазного кВА. После того, как вы умножите свое напряжение и силу тока, вам также нужно будет умножить его на константу — 1.732, который представляет собой квадратный корень из 3, усеченный до трех десятичных знаков:

Итак, если вы работаете с трехфазным трансформатором, вместо того, чтобы умножать напряжение на силу тока и делить на 1000, чтобы получить кВА, вы умножаете напряжение на силу тока на 1,732 и все равно делите на 1000, чтобы получить кВА.

Обратитесь в ELSCO Transformers, чтобы получить помощь с трансформатором

Чтобы увидеть преимущества качественных, высокопроизводительных трансформаторов для вашего бизнеса, станьте партнером ELSCO Transformers.Мы предоставляем ряд услуг по обслуживанию трансформаторов, чтобы обеспечить бесперебойную работу вашего бизнеса, включая ремонт трансформаторов, реконструкцию, модернизацию, перемотку и аварийную замену.

Мы также предлагаем несколько различных типов новейших трансформаторов среднего напряжения, в том числе сухие трансформаторы, трансформаторы для установки на площадках, блочные подстанции и трансформаторы подстанционного типа. Мы также рады разработать трансформаторы на заказ, чтобы удовлетворить уникальные потребности и характеристики вашего предприятия. У нас есть многолетний опыт поставок трансформаторов для различных отраслей промышленности, включая подрядчиков по электротехнике, дома электроснабжения, больницы, медицинские клиники и производственные предприятия, а также многие другие.

Неисправный или неисправный трансформатор может привести к дорогостоящим задержкам и снизить прибыльность вашего бизнеса. Поддерживайте эффективную работу своей работы, следя за ремонтом трансформатора или приобретая новую систему от ELSCO Transformers. Наши основные сотрудники имеют более чем двадцатилетний опыт работы в отрасли, и мы используем этот обширный опыт, знания и опыт, чтобы предоставить вам надежные устройства, которые будут надежно работать и работать в течение многих лет.

Свяжитесь с нами сегодня, чтобы узнать больше.

Запрос цены на трансформатор

Мощность трансформатора

PowerVolt для источника питания

Цель этой статьи — предоставить практическое руководство по выбору номиналов трансформатора источника питания. Чтобы упростить это обсуждение, были сделаны различные основные предположения.

Номинальные параметры трансформатора зависят от типа используемого фильтра и конфигурации выпрямителя. Обычно используемые типы фильтров — это входные фильтры индуктивности и конденсатора. Однако из-за увеличенного веса и стоимости индуктивный фильтр не пользуется большой популярностью.В большинстве источников питания используется стабилизатор напряжения, который обеспечивает дополнительное снижение пульсаций, поэтому L-C фильтр не требуется. В результате емкостного фильтра достаточно для большинства приложений, и он очень популярен среди разработчиков источников питания.

Ток, потребляемый от вторичной обмотки трансформатора, зависит от типа используемой выпрямительной схемы. Наиболее часто используемые однофазные цепи:

  • Полуволна (одиночный диод) — HW
  • Full Wave Center Tap (два диода) — FWCT
  • Полноволновой мост (четыре диода) — FWB
  • Двойной дополнительный ректификатор

Однополупериодный выпрямитель прост и дешевле.Однако очень сильные всплески тока во время интервала емкостной зарядки и однонаправленный постоянный ток во вторичной обмотке трансформатора требуют большего сердечника трансформатора, чтобы избежать насыщения. Следовательно, однополупериодный выпрямитель не очень популярен, и единственный случай, когда его стоит рассмотреть, — это уровни мощности ниже одного ватта.

Полуволна

Чаще используются схемы двухполупериодного выпрямителя.Всплески вторичного тока происходят дважды за цикл, поэтому они меньше по величине при удвоенной частоте питания. Выпрямитель FWCT использует два диода, и только половина вторичной обмотки трансформатора загружается одновременно. С другой стороны, выпрямитель FWB использует 4 диода, а вторичная обмотка трансформатора постоянно нагружается. Для источников низкого напряжения обычно предпочтительнее использовать FWCT, тогда как схема FWB чаще используется для источников более высокого напряжения.

Полноволновой или

Полноволновой Центральный ответвитель

Полноволновой мост

Схема двойного дополнительного выпрямителя представляет собой комбинацию двух схем FWCT.Этот тип выпрямительной схемы очень часто используется в источниках питания с двумя выходами, где два выхода имеют обратную полярность с заземлением. Он также назван «мостовым выпрямителем с центральным отводом».

Схема двойного дополнительного выпрямителя

Полноволновой центральный ответвитель (FWCT)

На приведенной выше диаграмме представлен двухполупериодный выпрямитель с центральным ответвлением и емкостным фильтром.Для расчета вторичного напряжения трансформатора можно сделать следующие допущения:

  • В рег., Падение напряжения на регуляторе примерно 3 В постоянного тока или более
  • Vrect, падение напряжения на выпрямителе составляет приблизительно 1,25 В постоянного тока или более
  • В, пульсации напряжения составляют примерно 10% пика выходного напряжения.

Тогда для определения номинального напряжения вторичной обмотки трансформатора можно использовать следующую формулу:

где 0.9 — типичный КПД выпрямителя, Vном = номинальное входное линейное напряжение, а Vlow = необходимое низкое линейное напряжение.

В качестве примера мы можем рассмотреть источник питания с емкостным фильтром и выходом 24 В постоянного тока при 2,4 А для работы при низком линейном напряжении 95 В переменного тока.

Следовательно, вторичное напряжение трансформатора может быть указано как 59 В переменного тока с центральным ответвлением.

Чтобы точно определить вторичный среднеквадратичный рейтинг манжеты, необходимо провести сложные вычисления.Однако для всех практических целей можно безопасно использовать приведенную ниже таблицу.

Тип выпрямителя

Тип выпрямителя Тип фильтра Среднеквадратичный вторичный ток
Полноволновой центральный метчик Вход дросселя = 0,7 х постоянного тока
Полноволновой центральный метчик Вход конденсатора = 1 к 1.2 x усилителя постоянного тока
Полноволновой мост Вход дросселя = 1 х постоянного тока
Полноволновой центральный метчик Вход конденсатора = от 1,6 до 1,8 x постоянного тока

В приведенном выше примере среднеквадратичный вторичный ток трансформатора должен быть: 1,2 x 2,4 = 2,88 А (среднеквадратичное значение). Полная спецификация трансформатора может быть определена как: 59VCT @ 2.88 А при 170 ВА

Полноволновой мост (FWB)

Те же соображения для FWCT применимы и к FWB. Единственное отличие — падение выпрямителя в два раза больше (4 диода вместо 2). Следовательно, для тех же требований к выходу, что и выше, Vrect = 2 x 1,25 = 2,5 В.

То есть, напряжение переменного тока можно указать на уровне 30,5 В переменного тока. Согласно приведенной выше таблице, номинал манжеты для емкостного фильтра должен быть 1.8 x 2,4 = 4,32 А среднеквадратичное значение. Таким образом, полные характеристики трансформатора можно определить как: 30,5 В при 4,32 А при 132 ВА

Двойная дополнительная поставка

Вышеупомянутые вычисления для FWCT также применимы к двойной дополнительной цепи. Рассмотрим пример источника питания с двумя выходами на 15 В постоянного тока при 800 мА. Таким образом, Vout = 15V, Vreg = 3V, Vrect = 1,25V, Vripple = 0,75V (1,0V P-P)

Следовательно, VAC = 38 В с центральным отводом; IAC = 1.8 x 800 = 1,44 А (среднеквадратичное значение). Таким образом, вторичный номинал трансформатора может быть определен как: 38VCT @ 1,44 А среднеквадратичное значение, при 55 ВА

Наконец, следует обратить особое внимание на влияние высокой входной линии. Если предположить, что максимальное входное линейное напряжение составляет 130 В переменного тока, вторичное напряжение трансформатора повысится в соотношении 130/115 по сравнению с номинальным линейным входом. Таким образом, на входе 130 В переменного тока для источника питания 24 В постоянного тока, описанного выше, В переменного тока = (130/115) x 29,15 = 33,34 В

.

Для схемы двойного дополнения VAC = (130/115) x 19 = 21.5 В

Увеличение выходного напряжения должно падать на стабилизаторе, что приводит к увеличению рассеиваемой мощности в регуляторе. Все конкретные случаи должны быть проверены на безопасную работу при этом условии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *