Как работает регулятор оборотов электродвигателя. Какие бывают виды регуляторов для двигателей 220В, 12В и 24В. Зачем нужен регулятор оборотов и где он применяется. Как сделать регулятор своими руками.
Что такое регулятор оборотов электродвигателя и зачем он нужен
Регулятор оборотов электродвигателя — это устройство, которое позволяет изменять скорость вращения вала двигателя. Основные функции регулятора:
- Плавное изменение скорости вращения двигателя
- Поддержание заданной скорости под нагрузкой
- Плавный пуск и остановка двигателя
- Защита двигателя от перегрузок
Применение регулятора оборотов позволяет:
- Экономить электроэнергию
- Продлить срок службы двигателя
- Оптимизировать работу оборудования
- Повысить точность управления технологическими процессами
Принцип работы регулятора оборотов электродвигателя
Основной принцип работы регулятора оборотов заключается в изменении параметров питающего напряжения, подаваемого на двигатель. Это может осуществляться несколькими способами:
- Изменение амплитуды напряжения
- Изменение частоты напряжения
- Широтно-импульсная модуляция (ШИМ)
При изменении амплитуды напряжения меняется мощность, подаваемая на двигатель. Изменение частоты позволяет регулировать скорость вращения магнитного поля статора. ШИМ обеспечивает плавное регулирование за счет изменения длительности импульсов напряжения.
Виды регуляторов оборотов электродвигателей
Существует несколько основных видов регуляторов оборотов:
1. Тиристорные регуляторы
Принцип действия основан на изменении угла открытия тиристоров. Преимущества:
- Простота конструкции
- Невысокая стоимость
- Возможность регулировки мощных двигателей
2. Частотные преобразователи
Изменяют частоту питающего напряжения. Достоинства:
- Широкий диапазон регулирования
- Высокий КПД
- Плавность регулировки
3. Транзисторные регуляторы
Работают на принципе широтно-импульсной модуляции. Преимущества:
- Высокая точность регулирования
- Малые габариты
- Низкий уровень помех
Регуляторы для двигателей разного напряжения
Регулятор оборотов для двигателя 220В
Используются для управления однофазными асинхронными двигателями бытовой техники, вентиляторов, насосов. Основные виды:
- Симисторные регуляторы
- Частотные преобразователи
- Тиристорные регуляторы с фазовым управлением
Регулятор оборотов для двигателя 12В
Применяются для коллекторных двигателей постоянного тока в автомобильной технике, моделизме. Типы регуляторов:
- Транзисторные ШИМ-регуляторы
- Импульсные преобразователи напряжения
- Реостатные регуляторы
Регулятор оборотов для двигателя 24В
Используются в промышленном оборудовании, электротранспорте. Основные разновидности:
- Транзисторные ШИМ-контроллеры
- Тиристорные регуляторы
- Частотные преобразователи для двигателей постоянного тока
Области применения регуляторов оборотов
Регуляторы оборотов электродвигателей широко применяются в различных отраслях:
- Промышленное оборудование (станки, конвейеры, насосы)
- Системы вентиляции и кондиционирования
- Бытовая техника (пылесосы, кухонные комбайны)
- Электроинструмент (дрели, шлифмашины)
- Транспорт (электромобили, электровелосипеды)
- Робототехника и автоматизация
Как сделать регулятор оборотов своими руками
Простейший регулятор оборотов можно изготовить самостоятельно. Для этого потребуется:
- Мощный симистор (например, BT138-600)
- Потенциометр
- Резисторы и конденсаторы
- Диодный мост
- Печатная плата
Схема подключения: 1. Симистор подключается в разрыв фазного провода питания двигателя 2. Потенциометр служит для регулировки угла открытия симистора 3. RC-цепочка формирует управляющие импульсы 4. Диодный мост выпрямляет напряжение для питания схемы управления
Преимущества использования регуляторов оборотов
Применение регуляторов оборотов дает ряд важных преимуществ:
- Экономия электроэнергии до 30-50%
- Увеличение срока службы двигателя в 1,5-2 раза
- Снижение пусковых токов и механических нагрузок
- Оптимизация работы оборудования под текущие задачи
- Повышение точности и качества технологических процессов
- Снижение уровня шума и вибраций
Выбор регулятора оборотов электродвигателя
При выборе регулятора оборотов следует учитывать следующие параметры:
- Тип двигателя (асинхронный, коллекторный и т.д.)
- Мощность двигателя
- Напряжение питания (220В, 12В, 24В и др.)
- Требуемый диапазон регулирования
- Необходимость плавного пуска/остановки
- Условия эксплуатации (температура, влажность, вибрации)
Правильно подобранный регулятор обеспечит оптимальную работу двигателя и всей системы в целом.
Регулятор оборотов электродвигателя 220 В без потери мощности: принцип работы, виды двигателей
Каждый из нас дома имеет какой-то электроприбор, который работает в доме не один год. Но со временем мощность техники слабеет и не выполняет своих прямых предназначений. Именно тогда стоит обратить внимание на внутренности оборудования. В основном проблемы возникают с электродвигателем, который отвечает за функциональность техники. Тогда стоит обратить свое внимание на прибор, который регулирует обороты мощности двигателя без снижения их мощности.
Виды двигателей
Регулятор оборотов с поддержанием мощности — изобретение, которое вдохнет новую жизнь в электроприбор, и он будет работать как только что приобретенный товар
. Но стоит помнить о том, что двигатели бывают разных форматов и у каждого своя предельная работа.Двигатели разные по характеристикам. Это значит то, что та или иная техника работает на разных частотах оборота вала, запускающего механизм. Мотор может быть:
- однофазным,
- двухфазным,
- трехфазным.
В основном трехфазные электромоторы встречаются на заводах или крупных фабриках. В домашних условиях используются однофазные и двухфазные. Данного электричества хватает на работу бытовой техники.
Регулятор оборотов мощности
Принципы работы
Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.
С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.
Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.
Вращение вала
Двигатели делят на:
- асинхронные,
- коллекторные.
Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.
Коллекторный двигатель используется очень часто. Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.
Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.
Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.
Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм. Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.
Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера.
Регулятор оборотов электродвигателя постоянного тока 12В: схема своими руками
На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.
Видео №1. Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.
Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.
Видео №3. Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.
Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.
Функции и основные характеристики
Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.
Одноканальный регулятор для мотора
Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.
Конструкция устройства
Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).
Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.
Принцип работы
Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.
Принципиальная электрическая схемаМатериалы и детали
Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.
Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.
Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.
Процесс сборки
Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).
Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.
Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.
Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).
Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!
Двухканальный регулятор для мотора
Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.
Конструкция устройства
Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).
Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.
Принцип работы
Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис. 2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.
Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.
Материалы и детали
Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.
Процесс сборки
После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).
Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .
Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».
Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!
В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.
Источник: servodroid.ru Дополнительная статья ЧИТАТЬ
Тиристорный регулятор мощности для электродвигателя
Как сделать регулятор оборотов электродвигателя 12в, 220в, 24в
Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.
Зачем нужен регулятор оборотов
Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.
Фото — мощный регулятор для асинхронного двигателяСамый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.
Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.
Фото — регулятор оборотов двигателя постоянного токаЗачем нужен регулятор оборотов асинхронного электродвигателя:
- Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
- Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
- Не требуется дополнительного контроллера для плавного пуска;
- Значительно снижаются расходы на техническое обслуживание.
Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т. д.
Фото — шим контроллер оборотовПринцип работы регулятора оборотов
Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:
- Двигателя переменного тока;
- Главного контроллера привода;
- Привода и дополнительных деталей.
Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.
Фото — схема регулятора для коллекторного двигателяВ зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.
Фото — схема регулятора для бесколлекторных двигателейВ данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.
Видео: регулятор оборотов электродвигателя с ШИро V2
Как сделать самодельный регулятор оборотов двигателя
Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.
Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.
Фото — схема регулятора оборотов своими рукамиВ описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.
Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.
Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:
Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.
Управление скоростью вращения однофазных двигателей
Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.
Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки – рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.
Регулировать скорость вращения таких двигателей необходимо, например, для:
- изменения расхода воздуха в системе вентиляции
- регулирования производительности насосов
- изменения скорости движущихся деталей, например в станках, конвеерах
В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.
Способы регулирования
Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.
Рассмотрим способы с изменением электрических параметров:
- изменение напряжения питания двигателя
- изменение частоты питающего напряжения
Регулирование напряжением
Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя – разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:
n1 – скорость вращения магнитного поля
n2– скорость вращения ротора
При этом обязательно выделяется энергия скольжения – из-за чего сильнее нагреваются обмотки двигателя.
Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз – то есть, снижением питающего напряжения.
При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.
Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.
На практике для этого применяют различные схемы регуляторов.
Автотрансформаторное регулирование напряжения
Автотрансформатор – это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.
На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.
Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.
Преимущества данной схемы:- неискажённая форма выходного напряжения (чистая синусоида)
- хорошая перегрузочная способность трансформатора
- большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
- все недостатки присущие регулировке напряжением
Тиристорный регулятор оборотов двигателя
В данной схеме используются ключи – два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.
Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно “отрезается” кусок вначале или, реже в конце волны напряжения.
Таким образом изменяется среднеквадратичное значение напряжения.
Данная схема довольно широко используется для регулирования активной нагрузки – ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).
Ещё один способ регулирования – пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно – шумы и рывки при работе.
Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:
- устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
- добавляют на выходе конденсатор для корректировки формы волны напряжения
- ограничивают минимальную мощность регулирования напряжения – для гарантированного старта двигателя
- используют тиристоры с током в несколько раз превышающим ток электромотора
Достоинства тиристорных регуляторов:
Недостатки:- можно использовать для двигателей небольшой мощности
- при работе возможен шум, треск, рывки двигателя
- при использовании симисторов на двигатель попадает постоянное напряжение
- все недостатки регулирования напряжением
Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.
Транзисторный регулятор напряжения
Как называет его сам производитель – электронный автотрансформатор или ШИМ-регулятор.
Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы – полевые или биполярные с изолированным затвором (IGBT).
Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.
Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.
Выходной каскад такой же как и у частотного преобразователя, только для одной фазы – диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.
Плюсы электронного автотрансформатора:
- Небольшие габариты и масса прибора
- Невысокая стоимость
- Чистая, неискажённая форма выходного тока
- Отсутствует гул на низких оборотах
- Управление сигналом 0-10 Вольт
- Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
- Все недостатки регулировки напряжением
Частотное регулирование
Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина – не было дешёвых силовых высоковольтных транзисторов и модулей.
Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие – массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.
На данный момент частотное преобразование – основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.
Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.
Однофазные двигатели могут управляться:
- специализированными однофазными ПЧ
- трёхфазными ПЧ с исключением конденсатора
Преобразователи для однофазных двигателей
В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей – INVERTEK DRIVES.
Это модель Optidrive E2
Для стабильного запуска и работы двигателя используются специальные алгоритмы.
При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:
f – частота тока
С – ёмкость конденсатора
В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:
Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя – в некоторых моделях это сделать довольно сложно.
Преимущества специализированного частотного преобразователя:
- интеллектуальное управление двигателем
- стабильно устойчивая работа двигателя
- огромные возможности современных ПЧ:
- возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
- многочисленные защиты (двигателя и самого прибора)
- входы для датчиков (цифровые и аналоговые)
- различные выходы
- коммуникационный интерфейс (для управления, мониторинга)
- предустановленные скорости
- ПИД-регулятор
Использование ЧП для трёхфазных двигателей
Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:
Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:
Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого – магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.
В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.
При работе без конденсатора это приведёт к:
- более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
- разному току в обмотках
Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна
Преимущества:
- более низкая стоимость по сравнению со специализированными ПЧ
- огромный выбор по мощности и производителям
- более широкий диапазон регулирования частоты
- все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)
Недостатки метода:
- необходимость предварительного подбора ПЧ и двигателя для совместной работы
- пульсирующий и пониженный момент
- повышенный нагрев
- отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями
Регулятор оборотов коллекторного двигателя без потерь
Для выполнения многих видов работ по обработке древесины, металла или других типов материалов требуются не высокие скорости, а хорошее тяговое усилие. Правильнее будет сказать – момент. Именно благодаря ему запланированную работу можно выполнить качественно и с минимальными потерями мощности. Для этого в качестве приводного устройства применяются моторы постоянного тока (или коллекторные), в которых выпрямление питающего напряжения осуществляется самим агрегатом. Тогда для достижения требуемых рабочих характеристик необходима регулировка оборотов коллекторного двигателя без потери мощности.Особенности регулирования скорости
Важно знать, что каждый двигатель при вращении потребляет не только активную, но и реактивную мощность. При этом уровень реактивной мощности будет больше, что связано с характером нагрузки. В данном случае задачей конструирования устройств регулирования скорости вращения коллекторных двигателей является уменьшение разницы между активной и реактивной мощностями. Поэтому подобные преобразователи будут довольно сложными, и самостоятельно их изготовить непросто.
Своими руками можно сконструировать лишь некоторое подобие регулятора, но говорить о сохранении мощности не стоит. Что такое мощность? С точки зрения электрических показателей, это произведение потребляемого тока, умноженное на напряжение. Результат даст некое значение, которое включает активную и реактивную составляющие. Для выделения только активной, то есть сведения потерь к нулю, необходимо изменить характер нагрузки на активную. Такими характеристиками обладают только полупроводниковые резисторы.
Следовательно, необходимо индуктивность заменить на резистор, но это невозможно, потому что двигатель превратится во что-то иное и явно не станет приводить что-либо в движение. Задача регулирования без потерь заключается в том, чтобы сохранить момент, а не мощность: она все равно будет изменяться. Справиться с подобной задачей сможет только преобразователь, который будет управлять скоростью за счёт изменения длительности импульса открытия тиристоров или силовых транзисторов.
Обобщенная схема регулятора
Примером регулятора, который осуществляет принцип управления мотором без потерь мощности, можно рассмотреть тиристорный преобразователь. Это пропорционально-интегральные схемы с обратной связью, которые обеспечивают жесткое регулирование характеристик, начиная от разгона-торможения и заканчивая реверсом. Самым эффективным является импульсно-фазовое управление: частота следования импульсов отпирания синхронизируется с частотой сети. Это позволяет сохранять момент без роста потерь в реактивной составляющей. Обобщенную схему можно представить несколькими блоками:- силовой управляемый выпрямитель;
- блок управления выпрямителем или схема импульсно-фазового регулирования;
- обратная связь по тахогенератору;
- блок регулирования тока в обмотках двигателя.
Перед тем как углубляться в более точное устройство и принцип регулирования, необходимо определиться с типом коллекторного двигателя. От этого будет зависеть схема управления его рабочими характеристиками.
Разновидности коллекторных двигателей
Известно, как минимум, два типа коллекторных двигателей. К первому относятся устройства с якорем и обмоткой возбуждения на статоре. Ко второму можно отнести приспособления с якорем и постоянными магнитами. Также необходимо определиться, для каких целей требуется сконструировать регулятор:
- Если необходимо регулировать простым движением (например, вращением шлифовального камня или сверлением), то обороты потребуется изменять в пределах от какого-то минимального значения, неравному нулю, — до максимального. Примерный показатель: от 1000 до 3000 об/м
Контроллер двигателя с искровым зажиганием, который использует запрос крутящего момента водителя
Контроллер двигателя с искровым зажиганием, который использует запрос крутящего момента драйвера
Описание
Блок контроллера SI реализует искровое зажигание (SI) контроллер, который использует запрос крутящего момента привода для расчета требуемые команды исполнительного механизма разомкнутого контура подачи воздуха, топлива и искры чтобы удовлетворить спрос водителя.
Вы можете использовать блок контроллера SI в конструкции или исполнении управления двигателем, экономия топлива и исследования компромиссов в отношении выбросов.Основной двигатель, дроссельная заслонка и турбокомпрессор подсистемы Wastgate требуют команд, которые выводятся из SI Блок контроллера.
Блок использует заданный крутящий момент и скорость двигателя для определения эти команды привода без обратной связи:
Блок SI Controller имеет две подсистемы:
Контроллер
Подсистема
— Определяет команды на основе заданного крутящего момента, измеренного двигателя скорость и расчетная воздушная масса цилиндра.Подсистема оценщика
На рисунке показан поток сигналов.
На рисунке используются эти переменные.
N | Частота вращения двигателя |
MAP | Среднее за цикл давление во впускном коллекторе |
IAT | Температура всасываемого воздуха |
T дюйм, EGR | Температура на входе клапана EGR |
MAT | Средний цикл газа во впускном коллекторе абсолютная температура |
φICP, φICPCMD | Угол фазовращателя впускного кулачка и команда угла фазера впускного кулачка, соответственно |
φECP, φECPCMD | Угол фазовращателя выпускного кулачка и команда угла фазера выпускного кулачка, соответственно |
EGRap , EGRap cmd | Команда процента площади клапана EGR и процента площади клапана EGR, соответственно |
ΔP EGR | Перепад давления на входе и выходе клапана рециркуляции ОГ |
WAP cmd | Команда процента площади перепускной заслонки турбокомпрессора |
SA | Spark advance |
Pwinj | Топливная форсунка широтно-импульсная |
TPP cmd | Команда положения дроссельной заслонки в процентах |
Model-Based Calibration Toolbox ™ использовался для разработки таблицы, доступные с Powertrain Blockset ™.
Контроллер
ВоздухБлок определяет заданную нагрузку двигателя (то есть нормированную воздушной массы цилиндра) из справочной таблицы, которая является функцией заданного крутящий момент и измеренные обороты двигателя.
Для достижения заданной нагрузки контроллер устанавливает процент положения дроссельной заслонки и процент площади перепускной заслонки турбокомпрессора с использованием справочных таблиц с прогнозированием. поиск Таблицы представляют собой функции заданной нагрузки и измеренных оборотов двигателя.
Чтобы определить команды угла фазера кулачка, блок использует поиск таблицы, которые являются функциями расчетной нагрузки двигателя и измеренного двигателя скорость.
Блок вычисляет желаемую нагрузку двигателя, используя это уравнение.
В уравнениях используются эти переменные.
L est | Расчетная нагрузка двигателя |
L cmd | Заданная нагрузка двигателя |
N | Частота вращения двигателя |
T cmd | Управляемый крутящий момент двигателя |
TAP cmd | Команда процента площади дроссельной заслонки |
TPP cmd | Положение дроссельной заслонки команда |
WAP cmd | Площадь перепускного клапана турбокомпрессора процентная команда |
Cps | Коленчатый вал оборотов на рабочий ход |
Pstd | Стандартное давление |
Tstd | Стандартная температура |
Rair | Постоянная идеального газа для воздуха и сожженная газовая смесь |
Vd | Вытесненный объем |
м˙воздушный, расчетный расход воздуха в двигателе |
Подсистема контроллера использует эти справочные таблицы для воздуха расчеты.
Поиск команды процента площади дроссельной заслонки таблица, fTAPcmd, является функцией заданной нагрузки и частоты вращения двигателя
где:
TAP cmd есть Команда процента площади дроссельной заслонки в процентах.
L cmd = L является заданная нагрузка двигателя, безразмерная.
N — частота вращения двигателя в об / мин.
Чтобы учесть нелинейность положения дроссельной заслонки относительно области дроссельной заслонки, дроссельная заслонка таблица поиска процентов положения линеаризует массовый расход воздуха без обратной связи контроль.
Поиск команды положения дроссельной заслонки в процентах таблица, fTPPcmd, является функцией команды
процента площади дроссельной заслонкигде:
TPP cmd есть Команда процента положения дроссельной заслонки в процентах.
TAP cmd есть Команда процента площади дроссельной заслонки в процентах.
Команда поиска процента площади перепускного клапана таблица, fWAPcmd, является функцией заданной нагрузки двигателя и частоты вращения двигателя
где:
WAP cmd есть Команда процента площади перепускного клапана, в процентах.
L cmd = L является заданная нагрузка двигателя, безразмерная.
N — частота вращения двигателя в об / мин.
Таблица поиска заданной нагрузки двигателя, fLcmd, является функцией заданного крутящего момента и частоты вращения двигателя
Бесщеточные регуляторы скорости — радиоуправляемые автомобили
Ознакомьтесь со всеми выдающимися характеристиками и параметрами контроллеров MGM для автомобилей.Это не зависит от масштаба вашей модели, регуляторы MGM обеспечивают большую мощность, скорость и возможности настройки для любого размера.
Узнать больше
КонтроллерыMGM могут выдерживать постоянный ток, достигающий 800 А (пиковое значение 1000 А) с LiPol / Li-Ion батареями до 15S, например потрясающие 35 кВт, которые едва ли найдут конкурента. Больше ячеек, более высокий ток и широкий спектр уникальных инструментов позволят вам подобрать наиболее мощную установку для вашего автомобиля.
Другие параметры и характеристики:
- Превосходное качество — гарантия до 5 лет!
- Перед отправкой каждое изделие проходит серию комплексных испытаний
- Professional Data Logger (регистратор данных) — точная регистрация данных + анализ данных
- Телеметрия (обратная передача данных в реальном времени) и функция мониторинга в реальном времени (ПК)
- 32-БИТНАЯ СИСТЕМА, отмеченная наградами
- Gold до 8-слойных печатных плат, 105 мкм
- Уникальная система ухода, контроля и защиты двигателя и аккумуляторных батарей
- Инструменты для оптимальной настройки вашей установки
- Plug and Go — режим «быстрого старта»
- Возможность отправки данных в MGM для детального анализа
- MGM COMPRO Промышленные технологии
- Разработано, разработано и произведено в Европе
Для надежного управления такой мощностью MGM ESC имеют сложную систему внутренней защиты .Мы также разработали множество механизмов для защиты двигателя и аккумуляторов . Одна из главных функций для поиска оптимальной настройки вашей установки, которую вы наверняка оцените, — это наша точная регистрация данных и измерение фазного тока . С помощью таких инструментов вы можете легко настроить свою установку, чтобы выделялся из толпы!
Ваш автомобиль заслуживает точной системы контроля и защиты. Наряду с высочайшей производительностью на рынке, уникальными средствами для анализа данных и первоклассной заботой о клиентах у вас есть решение высшего класса как для , так и для получения рекордов езды и торможения!
Устройство регулирования скорости— регулятор для судового дизельного двигателя
Устройство регулирования скорости — регулятор для судового дизельного двигателя Главная || Дизельные двигатели || Котлы || Системы питания || Паровые турбины || Обработка топлива || Насосы || Охлаждение ||Устройство регулирования скорости — регулятор для судового дизельного двигателя
Главное устройство управления на любом двигателе — это регулятор.Это управляет или контролирует частоту вращения двигателя на некотором фиксированном значении, пока выходная мощность изменения для удовлетворения спроса. Это достигается губернатором автоматически. регулировка настроек топливного насоса двигателя для соответствия желаемой нагрузке на установить скорость.Регуляторы для дизельных двигателей обычно состоят из двух системы: датчик скорости и гидравлический блок, который воздействует на топливные насосы для изменения выходной мощности двигателя.
align = «left»> align = «left»> align = «left»> Механический регуляторДля определения частоты вращения двигателя используется противовес.Два грузика установлен на пластине или шаровой головке, которая вращается вокруг вертикальной оси, приводимой в движение шестерня . Действие центробежной силы отбрасывает грузы наружу; это поднимает вертикальный шпиндель и сжимает пружина, пока не будет достигнута ситуация равновесия. Равновесие положение или установленную скорость можно изменить с помощью переключателя скорости, который изменяет пружина сжатия.
По мере увеличения оборотов двигателя грузы перемещаются наружу и поднимаются шпиндель; уменьшение скорости приведет к опусканию шпинделя.Гидравлический блок соединен с этим вертикальным шпинделем и действует как источник питания для управления топливом двигателя. Подключен поршневой клапан к вертикальному шпинделю подает или сливает масло из силового поршня, который перемещает элементы управления подачей топлива в зависимости от движения грузила. Если частота вращения двигателя увеличивается, вертикальный шпиндель поднимается, поршневой клапан поднимается и масло сливается из силового поршня, что приводит к регулированию подачи топлива движение. Это уменьшает подачу топлива в двигатель и замедляет его.Это по сути, является пропорциональным регулятором.
Фактическое расположение механических регуляторов двигателя может отличаться значительно, но большинство из них будет работать, как описано выше.
Электрический регулятор
Электрический регулятор использует сочетание электрического и механического компоненты в его эксплуатации. Устройство измерения скорости представляет собой небольшой магнитная приемная катушка. Выпрямленный сигнал напряжения постоянного тока используется в в сочетании с желаемым или установленным сигналом скорости для управления гидравлическим Блок.Затем этот блок будет перемещать регуляторы подачи топлива в соответствующие направление для контроля оборотов двигателя.
Регуляторы и отключения при превышении скорости
Они должны быть полностью работоспособными и регулярно проверяться в соответствии с инструкциями производителя. Следует обратить внимание на испытания устройств защиты от превышения скорости. Также необходимо регулярно проверять состояние рычажного механизма, соединяющего рычаги управления топливным насосом двигателя и регулятор. Регулятор не может компенсировать заедание штифтов шарнира или чрезмерные зазоры.
Дополнительная информация:
Устройства для измерения скорости — механические тахометры или электрические тахометры
Муфты, муфты и редукторы судового дизельного двигателя
Судовые дизельные двигатели другие полезные товары :
- Руководство по эксплуатации четырехтактных дизельных двигателей
- Руководство по эксплуатации двухтактных дизельных двигателей
- Измерение мощности судового дизельного двигателя — Индикатор двигателя
- Подача свежего воздуха и отвод выхлопных газов через газообменник.
- Топливная система дизельного двигателя.
- Система смазки для судового дизельного двигателя — принцип работы
- Охлаждение судового двигателя — принцип работы, требования к системе охлаждения пресной и морской водой
- Пневматическая система для дизельного двигателя — принцип работы
- Регулятор — Функция регуляторов, регулирующих скорость судового дизельного двигателя
- Предохранительный клапан цилиндра судового дизельного двигателя — руководство по эксплуатации
- Взрывобезопасный клапан судового дизельного двигателя.
- Руководство по эксплуатации поворотного механизма
Поворотный механизм или двигатель поворота представляет собой реверсивный электродвигатель, который приводит в движение червячную передачу, которая может быть соединена с зубчатым маховиком для очередь большой дизель. Таким образом, предусмотрен низкоскоростной привод, позволяющий размещение деталей двигателя для проведения капитального ремонта.
Подробнее ….. - Муфты, муфты и редукторы судового дизельного двигателя.
- Дизельный двигатель MAN B&W — Основные принципы и инструкция по эксплуатации
- Детектор масляного тумана картера судового дизельного двигателя
- Различные Теплообменники для ходовой части грузовых судов.
- Указания по безопасности и эксплуатации турбокомпрессоров
- Работа поршня и поршневых колец
Четырехтактный цикл завершается за четыре или два хода поршня. обороты коленчатого вала.Для выполнения этого цикла двигатель требуется механизм для открытия и закрытия впускных и выпускных клапанов
Подробнее …..
Двухтактный цикл завершается двумя ходами поршня или одним оборот коленчатого вала. Чтобы управлять этим циклом, где каждый мероприятие осуществляется в очень короткие сроки, двигателю требуется номер специальных договоренностей.
Подробнее …..
Возможны два измерения мощности двигателя: указанная мощность и мощность на валу.Указанная мощность — это развиваемая мощность. внутри цилиндра двигателя и может измеряться индикатором двигателя. Мощность на валу — это мощность, доступная на выходном валу двигателя. и может быть измерен торсиметром или тормозом.
Подробнее …..
Основная часть цикла двигателя внутреннего сгорания — подача свежего воздуха и удаление выхлопных газов. Это газовая биржа процесс.Промывка — это удаление выхлопных газов путем вдувания свежих воздух.
Подробнее …..
Топливную систему дизельного двигателя можно рассматривать в двух части системы подачи топлива и впрыска топлива. Подача топлива связана с предоставление жидкого топлива, пригодного для использования системой впрыска.
Подробнее …..
Система смазки двигателя обеспечивает подачу смазочного масла. к различным движущимся частям двигателя.Его основная функция — включить образование масляной пленки между движущимися частями, что снижает трение и износ. Смазочное масло также используется в качестве очистителя и в некоторые двигатели в качестве охлаждающей жидкости.
Подробнее …..
Охлаждение двигателей достигается за счет циркуляции охлаждающей жидкости по внутренним каналам двигателя. Таким образом, охлаждающая жидкость нагревается. и, в свою очередь, охлаждается охладителем с циркуляцией морской воды.Без адекватного охлаждение определенных частей двигателя, которые подвергаются очень сильному температуры в результате сжигания топлива скоро выйдут из строя.
Подробнее …..
Дизельные двигатели запускаются путем подачи сжатого воздуха в цилиндры в соответствующей последовательности для требуемого направления. Поставка сжатый воздух хранится в воздушных резервуарах или «баллонах», готовых к немедленному использованию. использовать. Возможно до 12 пусков с сохраненным количеством сжатого воздух.
Подробнее …..
Основным устройством управления на любом двигателе является регулятор. Он регулирует или контролирует частоту вращения двигателя на некотором фиксированном значении, в то время как выходная мощность изменения для удовлетворения спроса. Это достигается губернатором автоматически. регулировка настроек топливного насоса двигателя для соответствия желаемой нагрузке на установить скорость.
Подробнее …..
Предохранительный клапан цилиндра спроектирован для сброса давления от 10% до 20% выше нормального.Работа этого устройства указывает на неисправность двигателя, которая должны быть обнаружены и исправлены.
Подробнее …..
В качестве практической защиты от взрывов в картере двигателя, установлены предохранительные клапаны или двери для предотвращения взрыва. Эти клапаны служат для разгрузки чрезмерное давление в картере и остановка пламени, выходящего из картер. Они также должны быть самозакрывающимися, чтобы остановить возврат атмосферный воздух в картер.
Подробнее …..
Основным устройством управления на любом двигателе является регулятор.Он регулирует или контролирует частоту вращения двигателя на некотором фиксированном значении, в то время как выходная мощность изменения для удовлетворения спроса. Это достигается губернатором автоматически. регулировка настроек топливного насоса двигателя для соответствия желаемой нагрузке на установить скорость.
Подробнее …..
Это один из двигателей серии MC введен в 1982 году, имеет более длинный ход и увеличенный максимальный давление по сравнению с более ранними конструкциями L-GF и L-GB.
Подробнее …..
Один из серии MC введен в 1982 году, имеет более длинный ход и увеличенный максимальный давление по сравнению с более ранними конструкциями L-GF и L-GB.
Подробнее …..
Кожухотрубные теплообменники для охлаждающей воды двигателя и охлаждения смазочного масла традиционно использовались для циркуляции морской воды.Море вода контактирует с внутренней частью трубок, трубных пластин и водяных камер.
Подробнее …..
Кожухотрубные теплообменники для охлаждающей воды двигателя и охлаждения смазочного масла традиционно использовались для циркуляции морской воды. Море вода контактирует с внутренней частью трубок, трубных пластин и водяных камер.
Подробнее …..
Поршень образует нижнюю часть камеры сгорания.Он герметизирует цилиндр и передает давление газа на шатун. Поршень состоит из двух частей; Заводная головка и юбка. Заводная головка поршня подвержена механическим и термическим нагрузкам.
Подробнее …..
Судовая техника — Полезные теги
Судовые дизельные двигатели || Парогенераторная установка || Система кондиционирования воздуха || Сжатый воздух || Морские батареи || Грузовые рефрижераторы || Центробежный насос || Различные кулеры || Аварийное электроснабжение || Теплообменники выхлопных газов || Система подачи || Насос для откачки корма || Измерение расхода || Четырехтактные двигатели || Форсунка || Топливная масляная система || Обработка мазута || Коробки передач || Губернатор || Судовой инсинератор || Фильтры смазочного масла || Двигатель MAN B&W || Судовые конденсаторы || Сепаратор нефтесодержащих вод || Устройства защиты от превышения скорости || Поршень и поршневые кольца || Прогиб коленчатого вала || Судовые насосы || Различные хладагенты || Очистные сооружения || Винты || Электростанции || Пневматическая система запуска || Паровые турбины || Рулевой механизм || Двигатель Sulzer || Зубчатая передача турбины || Турбокомпрессоры || Двухтактные двигатели || Операции UMS || Сухой док и капитальный ремонт || Критическое оборудование || Палубное оборудование и грузовые механизмы || КИПиА || Противопожарная защита || Безопасность в машинном отделении ||
Машинные помещения.