Как работает фотодиод в фотогальваническом и фотодиодном режимах. Какие основные характеристики фотодиода влияют на его работу. Какие схемы включения фотодиодов используются на практике. Каковы особенности работы фотодиодов в различных режимах.
Принцип работы и основные характеристики фотодиода
Фотодиод представляет собой полупроводниковый прибор, преобразующий световой сигнал в электрический. Основной принцип его работы заключается в генерации фототока при поглощении света в области p-n перехода. Рассмотрим ключевые параметры, влияющие на работу фотодиода:
- Чувствительность — отношение генерируемого фототока к мощности падающего излучения
- Темновой ток — ток, протекающий через фотодиод в отсутствие освещения
- Емкость p-n перехода — влияет на быстродействие фотодиода
- Спектральный диапазон — зависит от материала фотодиода
Эквивалентная схема фотодиода включает генератор тока, параллельно которому подключены емкость и сопротивление p-n перехода. Выходной ток фотодиода I

IPD = S * P
где S — чувствительность фотодиода, P — мощность падающего излучения.
Режимы работы фотодиода: фотогальванический и фотодиодный
Фотодиоды могут работать в двух основных режимах:
Фотогальванический режим
В этом режиме фотодиод работает без внешнего источника питания. Основные особенности:
- Минимальный темновой ток
- Высокая линейность преобразования
- Низкое быстродействие из-за большой емкости перехода
- Используется в солнечных батареях и фотодатчиках
Фотодиодный режим
В этом режиме на фотодиод подается обратное напряжение смещения. Характерные черты:
- Более высокий темновой ток
- Меньшая емкость p-n перехода
- Высокое быстродействие
- Используется в быстродействующих фотоприемниках
Выбор режима зависит от требований к быстродействию и допустимому уровню темнового тока.
Влияние температуры на характеристики фотодиода
Температура оказывает существенное влияние на параметры фотодиода:
- При повышении температуры на 10°C темновой ток увеличивается примерно в 2 раза
- Шунтирующее сопротивление удваивается при повышении температуры на 6°C
- Спектральная характеристика смещается в длинноволновую область при охлаждении фотодиода
Для стабильной работы фотодиода важно обеспечить постоянство его температуры.

Схемы включения фотодиодов
На практике используются различные схемы включения фотодиодов. Рассмотрим наиболее распространенные:
Схема с обратно смещенным фотодиодом
В этой схеме фотодиод работает в фотодиодном режиме. Основные особенности:
- Высокое быстродействие
- Линейность преобразования в широком диапазоне
- Повышенный уровень шумов
Схема с операционным усилителем
Позволяет работать как в фотогальваническом, так и в фотодиодном режиме. Преимущества:
- Высокая чувствительность
- Возможность регулировки коэффициента усиления
- Низкий уровень шумов в фотогальваническом режиме
Выбор конкретной схемы зависит от требований к параметрам фотоприемника.
Особенности работы фотодиодов в режиме счета фотонов
Для детектирования предельно слабых световых потоков фотодиоды могут работать в режиме счета отдельных фотонов. Основные принципы:
- Используются лавинные фотодиоды
- Напряжение смещения превышает напряжение пробоя
- Каждый фотон вызывает лавинный пробой
- Требуется схема гашения лавины
Этот режим позволяет регистрировать предельно слабые световые потоки вплоть до отдельных фотонов.

Применение фотодиодов в позиционно-чувствительных датчиках
Фотодиоды широко используются в позиционно-чувствительных датчиках для определения положения световых пучков. Основные типы таких датчиков:
Двумерные позиционно-чувствительные датчики
Принцип работы основан на распределении фототока между электродами. Особенности:- Высокая линейность
- Независимость от формы светового пятна
- Возможность определения положения в двух координатах
Квадрантные фотодиоды
Состоят из четырех разделенных фотодиодов. Характерные черты:
- Высокая точность
- Чувствительность к форме и распределению интенсивности пучка
- Применяются в системах автоюстировки
Выбор типа датчика зависит от конкретной задачи и параметров регистрируемого излучения.
Основные материалы для изготовления фотодиодов
Выбор материала фотодиода определяет его спектральный диапазон и другие характеристики:
- Кремний (Si) — видимый и ближний ИК диапазон, низкий темновой ток
- Германий (Ge) — ближний ИК диапазон, высокий темновой ток
- Арсенид галлия-индия (InGaAs) — ближний ИК диапазон, высокое быстродействие
- Антимонид индия (InSb) — средний ИК диапазон
Правильный выбор материала позволяет оптимизировать характеристики фотодиода для конкретного применения.

Детекторы от компании Thorlabs Фотодиоды Принцип работы Фотодиод – быстродействующее линейное устройство, которое обладает высокой квантовой эффективностью, и генерирует фототок, когда свет поглощается в обедненной области полупроводникового перехода. На рис. 1 представлена эквивалентная схема, отражающая принцип работы фотодиода. Рис.1 Эквивалентная схема фотодиода Уровень выходного тока фотодиода определяется по формуле: Основные понятия Чувствительность фотодиода определяется как отношение генерируемого фототока (IPD) к мощности (P) падающего излучения на заданной длине волны.Режимы работы (Фотодиодный и Фотогальванический) Фотодиоды могут работать в двух режимах: фотогальваническом (без внещнего источника эдс) и фотодиодном (с подачей на p- n- переход обратного смещения от внешнего источника эдс). Выбор режима работы зависит от требований к быстродействию и допустимого значения темнового тока (ток обратно смещенного p-n перехода) Фотодиодный режим В фотодиодном режиме используется источник питания, который смещает фотодиод в обратном направлении (фотодетекторы DET серии от компании Thorlabs). При этом через фотодиод течет обратный ток, пропорциональный падающей мощности излучения. Приложение напряжения обратного смещения расширяет обедненный слой, что приводит к уменьшению емкости перехода и обеспечивает линейность отклика. Работа в фотодиодном режиме характеризуется большими значениями темнового тока. Его величина зависит от материала полупроводника. Фотогальванический режим В фотогальваническом режиме фотодиод работает без внешнего источника питания (напряжение обратного смещения отсутствует). Темновой ток Темновой ток – это ток утечки, который растет при увеличении напряжения обратного смещения. При работе в фотодиодном режиме наблюдаются более высокие значения темнового тока, которые зависят от температуры окружающей среды. При увеличении температуры на 10 °C величина темнового тока увеличивается примерно в 2 раза, а шунтирующее сопротивление удваивается при увеличении температуры на 6 °C. Чем выше напряжение смещения, тем меньше емкость перехода, но тем больше величина темнового тока. Темновой ток также зависит от материала полупроводника и размера активной области. Например, у кремниевых фотодиодов значения темнового тока значительно ниже, чем у германиевых. В таблице ниже представлены различные полупроводниковые материалы и их относительные значения темнового тока, чувствительности, быстродействия и стоимости.
Емкость перехода Емкость перехода (Cj) является важной характеристикой фотодиода и имеет большое влияние на быстродействие и ширину полосы пропускания фотоприемника. Ширина полосы пропускания и отклик Нагрузочное сопротивление (RLOAD) и емкость перехода влияют на частотную характеристику фотодетектора. Ширину полосы пропускания (fBW) и время нарастания (tr) можно оценить по формулам: Эквивалентная мощность шума (NEP) Эквивалентная мощность шума (NEP) это среднеквадратическое значение генерируемого напряжения, когда отношение сигнал/шум равно единице. Данная величина характеризует способность детектора регистрировать слабые световые сигналы. Эквивалентная мощность шума возрастает при увеличении площади активной области и определяется по формуле: , где S/N – отношение сигнал/шум, Δf — ширина шумовой полосы частот, Incident Energy – энергия светового потока (единицы измерения Вт/см2). Согласованное нагрузочное сопротивление Нагрузочное сопротивление используется для преобразования генерируемого фототока в напряжение (VOUT): В зависимости от типа фотодиода сопротивление нагрузки может повлиять на скорость отклика. Для обеспечения оптимальной ширины полосы пропускания компания Thorlabs рекомендует использовать коаксиальный кабель (50 Ом) с терминатором на 50 Ом. Это минимизирует паразитные затухающие колебания благодаря согласованной нагрузке. Если ширина полосы пропускания не важна, то выходное напряжение можно увеличить путем увеличения нагрузки (RLOAD). При несогласованной нагрузке длина коаксиального кабеля может иметь большое влияние на отклик фотодетектора, поэтому рекомендуется использовать короткий кабель. Шунтирующее сопротивление Шунтирующее сопротивление – это сопротивление несмещенного перехода. Идеальный фотодиод будет иметь бесконечное шунтирующее сопротивление, но реальные приборы имеют сопротивление порядка 10 Ом – 1000 МОм, значение которого зависит от материала фотодиода. Например, InGaAs детекторы обладают шунтирующим сопротивлением порядка 10 МОм, тогда как сопротивление Ge детектора составляет несколько кОм. Это может существенно повлиять на уровень шума, но для большинства приложений высокое сопротивление оказывает незначительное влияние и им можно пренебречь. Последовательное сопротивление Последовательное сопротивление определяется сопротивлением полупроводникового материала. Оно пренебрежимо мало, и его влиянием в большинстве случаев можно пренебречь. Последовательное сопротивление возникает благодаря контактам и проводным соединениям фотодиода. В основном оно используется для определения линейности фотодиода при нулевом смещении. Стандартные схемы детекторов
Рис.2 Схема детекторов с обратно смещенным диодом (детекторы DET серии) На рис.2 представлена схема, отражающая принцип работы детекторов DET серии с обратно смещенным фотодиодом. Величина генерируемого фототока зависит от светового потока и длины волны излучения. При подключении нагрузочного сопротивления данную величину можно наблюдать с помощью осциллографа. Функция RC-фильтра заключается в подавлении высокочастотного шума источника питания. Рис.3 Схема детектора с усилителем При использовании схемы фотоприемников с усилителем пользователь может выбирать режим работы фотодиода (фотогальванический или фотодиодный). Каждый режим обладает своими преимуществами: — Фотогальванический режим: в фотогальваническом режиме к диоду не прикладывается напряжение, и потенциал на входе A операционного усилителя равен потенциалу в точке B. — Фотодиодный режим: в фотодиодном режиме к p-n переходу приложено напряжение обратного смещения, что уменьшает емкость перехода и увеличивает полосу пропускания. Усиление зависит от резистора обратной связи (Rf). Ширина полосы пропускания детектора определяется по формуле: , где GBP – это произведение коэффициента усиления на ширину полосы пропускания ОУ, CD – сумма емкости перехода и усилителя. Частота модуляции Спектральная плотность шума большинства детекторов, включая PbS, PbSe, HgCdTe (MCT) и InAsSb, имеет зависимость вида 1/f (шум уменьшается при увеличении частоты), что оказывает значительное влияние на постоянную времени в области низких частот. Таким образом, частота модуляции (скорость изменения интенсивности) излучения оказывает влияние на чувствительность прибора. Оптимальные значения характеристик фотоприемника достигаются при частоте:
Срок службы батареи При использовании фотодетектора, работающего от батареи, важно понимать, каков срок службы аккумулятора и как он влияет на работу детектора. Выходной ток детектора прямо пропорционален потоку падающего излучения. Большинство пользователей преобразуют этот ток в напряжение с помощью согласованной нагрузки. Величина сопротивления приблизительно равна коэффициенту усиления схемы. Для высокоскоростных детекторов, например, таких как DET08, необходимо использовать нагрузку с сопротивлением 50 Ом для согласованности с импедансом стандартных коаксиальных кабелей. Это позволит уменьшить обратные отражения и улучшить качество выходного сигнала. Срок службы батареи напрямую зависит от тока в детекторе. Большинство производителей батареек выражают срок службы батарейки в мА*ч (миллиампер-час). Например, если аккумулятор рассчитан на 190 мА*ч, он будет работать в течении 190 ч при потреблении тока 1. Пусть источник, излучение которого падает на детектор, работает на длине волны 780 нм со средней мощностью 1мВт. Чувствительность детектора на данный длине волны 0.5 А/Вт. Фототок можно рассчитать по формуле: Таким образом срок службы батареи равен: или 16 дней непрерывной работы. При уменьшении средней мощности падающего излучения до 10 мкВт, срок службы той же батарейки увеличится до 4 лет непрерывной работы. При использовании рекомендуемой согласованной нагрузки в 50 Ом, фототок (0.5 мА) преобразуется в напряжение:Если величина мощности падающего излучения уменьшится до 40 мкВт, то выходное напряжение станет равно 1 мВт. Для некоторых измерительных устройств, данное значение может оказаться слишком маленьким, поэтому необходимо искать компромисс между сроком службы батареи и точностью проводимых измерений. При использовании детекторов на батарейках необходимо использовать излучение малой интенсивности, учитывая минимально необходимый уровень напряжения. Также важно помнить, что батарейка перестанет производить ток не сразу, как только приблизится к концу срока своей службы. Сначала напряжение батарейки упадет, и электрический потенциал, прикладываемый к фотодиоду уменьшится. А это в свою очередь приведет к увеличению времени отклика детектора и уменьшению ширины полосы пропускания. Таким образом, важно убедиться, что батарейка обеспечивает достаточное напряжение для оптимальной работы детектора. Для задач, в которых детекторы DET серии, облучаются непрерывно источником достаточно высокой мощности, или постоянная замена батарей является неприемлемой, компания Thorlabs предлагает адаптер DET1B и источник питания. Недостатком этого варианта является шум, который добавится к выходному сигналу и может увеличить погрешность измерений. PbS и PbSe детекторы Детекторы на основе сульфида свинца (PbS) и селенида свинца (PbSe) широко используются для регистрации излучения в диапазоне от 1000 до 4800 нм. Принцип работы При поглощении света в фотопроводящем материале возникают избыточные носители заряда, приводящие к увеличению проводимости и уменьшению сопротивления. Изменение сопротивления приведет изменению величина измеряемого напряжения. На рис. представлена схема, отражающая принцип работы детекторов на основе фотопроводящих материалов. Следует отметить, что представленная схема не рекомендуется для применения на практике из-за присутствия низкочастотных шумов. Механизм детектирования основан на проводимости тонкой пленки светочувствительного элемента. Сигнал на выходе детектора при отсутствии падающего излучения определяется уравнением: Изменение напряжения на выходе ΔVOUT происходит из-за изменения сопротивления ΔRDark, когда свет попадает на активную область датчика: Частотная характеристика Для детекторов зависимость чувствительности от частоты модуляции света имеет вид: , где fc – частота модуляции, R0 – чувствительность при частоте 0 Гц, τr– время нарастания. Воздействие температуры Светочувствительный элемент PbS и PbSe детекторов представляет собой тонкую пленку на стеклянной подложке. Форма и активная область фотопроводящего элемента меняются в зависимости от условий эксплуатации, таким образом изменяя и другие характеристики. В частности, чувствительность детектора будет изменяться в зависимости от рабочей температуры. Охлаждение детектора сместит спектральный диапазон чувствительности в область более длинных волн. Для получения оптимальных результатов рекомендуется использовать представленные детекторы в условиях контроля параметров окружающей среды. Схема детектора на основе фотопроводящего материала с усилителем Из-за шумовых характеристик предпочтительнее включение фоторезистора в цепь переменного тока. При включении фоторезистора в цепь постоянного тока шум, обусловленный приложенным напряжением, будет увеличиваться с ростом напряжения, таким образом, ограничивая чувствительность детектора. Для поддержания стабильности характеристик и получения высоких значений коэффициента усиления сигнала необходимо использовать предусилитель. Согласно схеме (рис. выше), операционный усилитель (ОУ) стремится сравнять потенциалы в точках A и B с помощью контура обратной связи. Разница напряжений на входе ОУ усиливается и передается на выход. Следует отметить, что высокочастотный фильтр на входе усилителя не пропускает сигнал постоянного тока. Кроме того, нагрузочное сопротивление должно быть равно темновому сопротивлению детектора, чтобы обеспечить получение максимального сигнала. Величина напряжения источника питания (+V) должна быть такой, чтобы величина отношения сигнал/шум была оптимальной и приближалась к единице. Некоторые задачи требуют более высокого уровня напряжения, что приведет к увеличению уровня шума. Напряжение на выходе определяется по формуле: Отношение сигнал/шум Поскольку уровень шума детектора обратно пропорционален частоте модуляции сигнала, шум будет возрастать на малых частотах. Сигнал на выходе детектора линейно увеличивается при увеличении напряжения смещения, однако шумовые характеристики мало зависят от напряжения смещения при его низком уровне. При достижении определенного уровня напряжения смещения, шум детектора начнет линейно увеличиваться с ростом напряжения. Темновое сопротивление Темновое сопротивление – это сопротивление детектора при отсутствии освещения. Следует отметить, что темновое сопротивление будет увеличиваться или уменьшается при изменении температуры. Охлаждение детектора будет снижать величину темнового сопротивления. Обнаружительная способность (D) и удельная обнаружительная способность (D*) Обнаружительная способность (D) — это еще одна величина, используемая для оценки эффективности фотоприемника. Обнаружительная способность характеризует чувствительность и обратно пропорциональна эквивалентной мощности шума (NEP): Чем выше значение обнаружительной способности, тем выше чувствительность, то есть детектор способен регистрировать слабые сигналы. Обнаружительная способность зависит от длины волны падающих фотонов. NEP детектора, а следовательно и его обнаружительная способность зависят от активной области, поэтому сравнение свойств двух детекторов является непростой задачей. Чтобы избавится от этой зависимости, используют удельную обнаружительную способность (D*), которая не зависит от площади детектора и используется для оценки эффективности фотоприемника. В уравнении ниже, А – площадь фоточувствительной области. Позиционно-чувствительные детекторы Двумерные позиционно-чувствительные датчики Обзор Двумерные позиционно-чувствительные датчики позволяют измерить положение, расстояние перемещения или углы падения пучка, а также они могут использоваться в качестве обратной связи в системах юстирования, например, для контроля положения зеркал, фокусировки микроскопа, и т. Датчики с двухсторонним расположением электродов обладают резистивными слоями, нанесенными с обеих сторон подложки. Датчик имеет четыре вывода. Фототок распределяется на две входных и две выходных компоненты. Распределение выходных токов определяет положение координаты Y, а распределение входных –координаты X положения пучка. Датчики с четырехсторонним расположением электродов обладают одним чувствительным резистивным слоем, расположенным с одной стороны подложки. Такие датчики значительно дешевле датчиков с двухсторонним расположением электродов. Однако линейность отклика этих датчиков падает по мере удаления пучка от центра. Это связано с расположением анодов по периметру сенсора, особенно нелинейность заметна в углах датчика, где аноды приближаются друг к другу. Компания Thorlabs использует один из вариантов датчиков с четырехсторонним расположением электродов – датчик в форме «подушечки». Модель такого датчика представлена на рисунке сверху. Аноды перемещаются в углы датчика, фигурная форма электродов обеспечивает компенсацию искажений сигнала вблизи периметра. Такая модель обладает линейностью на уровне датчиков с двухсторонним расположением электродов, но значительно меньшей стоимостью. Принцип вычисления положения луча PDP90A детектор от компании Thorlabs оснащен схемой для вычисления Δx, Δy и суммы сигналов по формулам: Согласно этим формулам расстояние в единицах измерения длины можно вычислить с помощью уравнений: где x и y – это расстояния от центра до края сенсора, Lx и Ly – характерные размеры резистивного слоя. Погрешность определения положения В отличие от квадрантных датчиков, где требуется перекрытие всех четырех активных областей, представленные датчики позволяют получить информацию о нахождении пучка в любой точке детектора не зависимо от формы, размера и распределения мощности в пучке. Датчик определяет положение центра пятна света до тех пор, пока пятно находится на светочувствительной области. Если часть светового пятна покидает светочувствительную поверхность, это приведет к сдвигу центра, и измерения станут ненадежными. К ошибкам в измерении положения пучка также может привести уровень внешней освещенности. Для уменьшения погрешностей измерения лучше проводить в темноте. Использование фокусирующей оптики и диафрагм, также позволит снизить ошибки, связанные с внешней освещенностью. Разрешение Разрешение позиционно-чувствительного детектора – это минимальное детектируемое смещение светового пятна на поверхности сенсора датчика. Разрешение (ΔR) зависит как от размеров резистивного слоя (Lx или Ly), так и от отношения сигнал/шум (S/N). Отношение сигнал/шум этой системы можно определить как отношение суммы выходных сигналов (Vo) к напряжению шума (en). Шум на выходе детектора PDP90A составляет <2 мВ (двойная амплитуда сигнала) или 300 мкВ (среднеквадратичное значение). , где ΔR – разрешение, Lx – характерный размер резистивного слоя, en – шумовое напряжение на выходе детектора, Vo – сумма выходных напряжений. Для детектора PDP90A: Для получения оптимальных результатов значение Voнеобходимо увеличить до 4 В, что обеспечит разрешение детектора на уровне 0. Позиционно-чувствительный детектор на основе квадрантных фотодиодов Сенсор такого детектора состоит из четырех идентичных квадрантных фотодиода, которые разделены зазором ~0.1 мм и вместе образуют круглую зону детектирования для определения положения падающего пучка (в формате 2D). При попадании света на сенсор фототок генерируется в каждой области (на рис. Q1, Q2, Q3 и Q4). На основе этих сигналов с помощью АЦП вычисляются разностные сигналы. Также вычисляется сумма всех четырех сигналов для нормировки. Нормированные координаты (Х, У) положения пучка определяются с помощью уравнений: Если симметричный пучок падает в центр сенсора, то система на выходе зарегистрирует 4 одинаковых фототока, т.е. разностные сигналы будут равны 0, а нормированные координаты (X, Y) = (0, 0). Фототоки изменятся, если пучок сдвинуть относительно центра. В этом случае разностные токи не будут раны 0. Детекторы на основе квадрантных фотодиодов очень точные и отлично подходят для систем автоюстировки. Однако необходимо следить за формой и распределением интенсивности в пучке, т.к. данный вид детекторов чувствителен к этим параметрам. Для пучков, распределение мощности в которых не является Гауссовым, центр будет определяется на основе распределения мощности (не геометрический центр пучка). Счетчики одиночных фотонов Лавинные фотодиоды в режиме Гейгера обладают способностью детектировать одиночные фотоны. Чувствительность на уровне одиночных фотонов может быть достигнута за счет увеличения напряжения смещения выше напряжения пробоя (т. А на рис.4). Лавинный фотодиод будет оставаться в метастабильном состоянии, пока не поглотиться фотон, который приведет к генерации лавины (т. B). Эта лавина гасится с помощью активной схемы гашения в фотодиоде (т. C), которая понижает напряжение смещения до значений ниже напряжения пробоя (VBR). Рис.4: Вольтамперная характеристика лавинного фотодиода в режиме Гейгера После этого высокое значение напряжения смещения может быть восстановлено. В течении описанного процесса, которое известно как мертвое время диода, лавинный фотодиод нечувствителен к любым падающим фотонам. Когда диод находится в метастабильном состоянии, возможно спонтанное формирование лавин. Если спонтанное формирование лавин происходит хаотично, то зарегистрированный сигнал называется темновым отсчетом. Если спонтанное формирование лавин по времени коррелирует с импульсами от падающих фотонов, то такой сигнал называется послеимпульсом. Чтобы избежать регистрации послеимпульсов при проведении измерений, можно ввести дополнительное мертвое время программными средствами (с помощью ПО), что приведет к игнорированию счетчиком всех импульсов, возникших в течении этого времени. Основные характеристики и понятия Режим Гейгера В этом режиме диод работает при напряжении смещения выше напряжения пробоя. Следовательно, одна электрон-дырочная пара (сгенерированная в результате поглощения фотона или тепловых флуктуаций) может вызвать лавинный процесс. Скорость темнового счета Это средний показатель зарегистрированных отсчетов при отсутствии падающего излучения, который определяет минимальную скорость счета, при которой зарегистрированный сигнал в основном вызван реальными фотонами. Регистрация ложных фотонов в основном связана с тепловыми флуктуациями и таким образом, ее можно избежать с помощью использования охлаждаемых детекторов Активное гашение происходит, когда дискриминатор регистрирует возникновение лавинного тока и резко уменьшает напряжение смещения до значений ниже напряжения пробоя. При подготовке к регистрации следующего фотона напряжение смещения снова увеличивается до значений выше напряжения пробоя. Мертвое время – это временной интервал, который необходим детектору для восстановления состояния, при котором он может регистрировать события без искажений. В течении этого времени он не видит падающих фотонов. Часть мертвого времени, связанная с активной схемой гашения, может быть определена как отношение пропущенных фотонов к падающим. Послеимпульсы Во время лавинного процесса некоторые заряды могут быть захвачены ловушками. При освобождении эти заряды могут привести к формированию лавины. Такие «ложные события» называют послеимпульсами (Afterpulses). Время жизни таких захваченных зарядов составляет порядка нескольких десятых микросекунды. Следовательно, возникновение послеимпульсов более вероятно непосредственно после импульса от реального фотона. Основные модели фотодетекторов от компании Thorlabs В таблице представлены модели фотодетекторов от компании Thorlabs. Модели, расположенные в одной и той же строке, оснащены одинаковыми светочувствительными элементами. Примечания: aКалиброванный фотодиод bКорпус TO-46 cКорпус TO-46 + разъем FC/PC ФЭУ Принцип работы С момента появления первых коммерческих ФЭУ в 1940 году, этот вид детекторов остается одним из самых популярных при проведении экспериментов, в которых требуется малое время отклика и высокая чувствительность. Фотоэлектронные умножители (ФЭУ) – это чувствительные детекторы с высоким коэффициентом усиления, выходной ток которых пропорционален падающему излучению. ФЭУ состоит из стеклянной вакуумной трубки, в которой расположены фотокатод (фотоэмиссионный материал), 8-14 динодов (вторичная эмиссия) и анод (коллектор вторичных электронов). Если фотон с достаточно высокой энергией (т.е. с энергией больше энергии связи электронов материала фотокатода) падает на фотокатод, то он поглощается и испускается электрон (фотоэффект). Поскольку на первом диноде потенциал выше, чем потенциал на катоде (между этими элементами создается разность потенциалов), то выпущенный электрон ускоряется в электрическом поле и направляется на систему динодов, где за счет вторичной (ударной) электронной эмиссии образуют нарастающую от динода к диноду электронную лавину, поступающую на анод. Как правило, каждый динод обладает потенциалом, который на 100 – 200 В выше, чем потенциал предыдущего динода. Ток анода преобразуют в напряжение, для этого нагрузку с малым сопротивлением включают в цепь между анодом и землей. ФЭУ PMM01 и PMM02 от компании Thorlabs используют трансимпедансный усилитель (TIA) для преобразования тока анода (нА или мкА) в напряжение (мВ или В). Модули PMTSS, PMTSS2, и PMTSS2-SCM не содержат трансимпедансного усилителя. Например, если ФЭУ состоит из 8 динодов, как показано на рис. ниже и каждый электрон приводит к появлению 4 вторичных электронов, то усиление тока после системы динодов будет составлять 48 ≈ 66,000. В приведенном примере, каждый фотоэлектрон приводит к появлению лавины с зарядом Q = 48e, которая приходит на анод. Импульс напряжения при этом равен V = Q/C = 48e /C, где C – емкость анода. Спектральная чувствительность При выборе ФЭУ необходимо обратить внимание на материал фотокатода, т.к. он определяет длинноволновую границу спектральной чувствительности. Коротковолновая граница определяется материалом окна. Сегодня изготавливают различные виды ФЭУ для работы в диапазоне от УФ до ИК, при этом используют различные материалы фотокатода, каждый из который предназначен для работы в определенном спектральном диапазоне. Квантовая эффективность (QE) – это величина, выражаемая в %, которая характеризует способность ФЭУ преобразовывать падающие фотоны в электроны. Например, QE равно 20%. Это означает, что один из 5 фотонов, падающих на фотокатод, приведет к появлению фотоэлектронов. Для задач счета фотонов, желательно иметь ФЭУ с высоким показателем квантовой эффективности. Поскольку QE зависит от длины волны, необходимо подобрать ФЭУ, с максимальной квантовой эффективностью в интересующем спектральном диапазоне. Следует отметить, что фотокатоды для видимой области спектра, как правило, обладают QE <30%. Вычислить квантовую эффективность ФЭУ можно по формуле: где S – это интегральная чувствительность [А/Вт], λ – длина волны [нм]. Конфигурация ФЭУ Доступны две основные конфигурации ФЭУ: входное окно располагается на торце или на боковой стенке вакуумной колбы. В случае, когда входное окно расположено на торце, ФЭУ оснащен полупрозрачными фотокатодами и характеризуется большой площадью активной области, пространственной однородностью, и более высокой производительностью в синей и зеленой областях спектра. Такая конфигурация предпочтительнее для применений, требующих широкой спектральной чувствительности, таких как спектроскопия. В ФЭУ с боковым окном используют непрозрачные фотокатоды, такая конфигурация чаще всего используется при работе в УФ и ИК диапазоне. 8-14 динодов располагают линейно или по кругу. При линейном расположении (как показано на рис.) ФЭУ обладает малым временем отклика, высоким разрешением и линейностью. Диноды располагаются по кругу в ФЭУ с боковым окном и в некоторых ФЭУ с торцевым окном, при этом система обладает компактными размерами и малым временем отклика. Коэффициент усиления ФЭУ – уникальны, так как способны усиливать очень слабые сигналы от фотокатода до детектируемого уровня выше шума считывания без внесения существенных помех. За усиление сигнала в ФЭУ отвечают диноды, и коэффициент усиления зависит от прилагаемого напряжения. ФЭУ может работать при напряжениях, превышающих значения, рекомендуемые производителем, обеспечивая при этом коэффициент усиления в 10-100 раз выше указанного в спецификации. При работе в таком режиме на ФЭУ не оказывается негативного влияния, если ток анода ниже предельно допустимых значений. Темновой ток В случае идеального ФЭУ, все сигналы, производимые фотокатодом, являются следствием попадания в трубку света. Однако, настоящие ФЭУ генерируют ток даже в отсутствии падающего излучения. Сигнал, генерируемый ФЭУ в отсутствии света, называется темновым током. Этот сигнал сильно снижает отношение сигнал/шум ФЭУ. Темновой ток главным образом обусловлен термоэлектронной эмиссией электронов из фотокатода и нескольких первых динодов, и в меньшей степени космическими лучами и радиацией. ФЭУ, разработанные для применений в красной области спектра, обладают более высокими значениями темнового тока, чем другие ФЭУ, за счет малых значений энергии связи электронов в фотокатодах, обладающих чувствительностью в красной области спектра. Термоэлектронная эмиссия зависит от температуры фотокатода и работы выхода, а значит охлаждение ФЭУ может значительно снизить темновой ток. Время Нарастания Для экспериментов, требующих высокого временного разрешения, время нарастания должно быть коротким. Время нарастания импульса тока анода чаще всего используется в качестве характеристики быстродействия ФЭУ. В конечном счете, время нарастания импульса определяется временем распространения разных электронов. Оно отличается по нескольким причинам. Во-первых, начальные скорости вторичных электронов различаются. т.к. они выбиваются из разных по глубине мест материала динодов. Некоторые электроны вылетая обладают ненулевой начальной энергией, поэтому достигнут следующего динода за более короткое время. Время пролета электронов также будет зависеть от длины пути. В результате всех этих эффектов, время нарастания импульса анодного тока будет уменьшаться с увеличением напряжения как V-1/2. Другие факторы При работе с ФЭУ следует тщательно выбирать электронику, которая будет использоваться. Даже небольшие флуктуации высокого напряжения, прилагаемого между катодом и анодом могут сильно повлиять на выходной сигнал. Кроме того, условия окружающей среды также могут влиять на работу ФЭУ. Изменения температуры и влажности, а также вибрации негативно влияют на производительность ФЭУ. Корпус ФЭУ также имеет большое значение, он не только защищает трубку от постороннего света, но и снижает влияние внешних магнитных полей. Поле с магнитной индукцией в несколько гауссов, может уменьшить коэффициент усиления. Этого можно избежать путем использования магнитного экрана из материала с высокой магнитной проницаемостью.
|
Советские фотодиоды технические характеристики и схемы включения. Схема включения фотодиода. p – i – n фотодиод
Основными характеристиками фотодиода являются: ВАХ, световая и спектральная.
Вольт-амперная характеристика . В общем случае (при любой полярности U) ток фотодиода описывается выражением (1). Это выражение представляет собой зависимость тока фотодиода I ф от напряжения на фотодиоде U при разных значениях потока излучения Ф, т.е. является уравнением семейства вольт-амперных характеристик фотодиода. Графики вольт-амперных характеристик приведены на рис. 1.7.
Рис. 1.7 ВАХ фотодиода.
Семейство вольт-амперных характеристик фотодиода расположено в квадрантах I, III и IV. Квадрант I – это нерабочая область для фотодиода: в этом квадранте к p-n переходу прикладывается прямое напряжение и диффузионная составляющая тока полностью подавляет фототок (I p — n >> I ф). Фотоуправление через диод становится невозможным.
Квадрант III – это фотодиодная область работы фотодиода. К p-n переходу прикладывается обратное напряжение. Следует подчеркнуть, что в рабочем диапазоне обратных напряжений фототок практически не зависит от обратного напряжения и сопротивления нагрузки. Вольт-амперная характеристика нагрузочного резистора R представляет собой прямую линию, уравнение которой имеет вид:
E обр — I ф · R = U,
где U обр – напряжение источника обратного напряжения; U – обратное напряжение на фотодиоде; I ф – фототок (ток нагрузки).
Фотодиод и нагрузочный фоторезистор соединены последовательно, т.е. через них протекает один и тот же ток I ф. Этот ток I ф можно определить по точке пересечения вольт-амперных характеристик фотодиода и нагрузочного резистора (рис 1.7 квадрант III) Таким образом, в фотодиодном режиме при заданном потоке излучения фотодиод является источником тока I ф по отношению к внешней цепи. Значение тока I ф от параметров внешней цепи (U обр, R) практически не зависит (Рис 1.7.).
Квадрант IV семейства вольт-амперных характеристик фотодиода соответствует фотогальваническому режиму работы фотодиода. Точки пересечения вольт-амперных характеристик с осью напряжения соответствуют значениям фото-ЭДС E ф или напряжениям холостого хода U хх (R н = ∞) при разных потоках Ф. У кремниевых фотодиодов фото-ЭДС 0,5-0,55 В. Точки пересечения вольт-амперных характеристик с осью токов соответствуют значениям токов короткого замыкания I кз (R н = 0). Промежуточные значения сопротивления нагрузки определяются линиями нагрузки, которые для разных значений R н выходят из начала координат под разным углом. При заданном значении тока по вольт-амперным характеристикам фотодиода можно выбрать оптимальный режим работы фотодиода в фотогальваническом режиме (Рис. 1.8). Под оптимальным режимом в данном случае понимают выбор такого сопротивления нагрузки, при котором в R н будет передаваться наибольшая электрическая мощность.
Рис.1.8. ВАХ фотодиода в фотогальваническом режиме.
Отимальному режиму соответствует для потока Ф1 линия нагрузки R 1 (площадь заштрихованногопрямоугольника с вершиной в точке А, где пересекаются линии Ф 1 и R 1 , будет наибольшей – рис.1.8). Для кремниевых фотодиодов при оптимальной нагрузке напряжение на фотодиоде U=0,35-0,4 В.
Световые (энергетические) характеристики фотодиода – это зависимость тока от светового потока I = f(Ф):
Рис. 1.9. Световая характеристика ФД.
В фотодиодном режиме энергетическая характеристика в рабочем диапазоне потоков излучений линейна.
Это говорит о том, что практически все фотоносители доходят до p-n перехода и принимают участие в образовании фототока, потери неосновных носителей на рекомбинацию не зависят от потока излучения.
В фотогальваническом режиме энергетические характеристики представляются зависимостями либо тока короткого замыкания I кз, либо фото-ЭДС E ф от потока излучения Ф. При больших потоках Ф закон изменения этих зависимостей существенно отклоняется от линейного (рис. 1.10).
|
Рис.1.10.Световые характеристики ФД
Для функции I кз = f(Ф) появление нелинейности связанно с ростом падения напряжения на объемном сопротивлении базы полупроводника. Снижение фото-ЭДС объясняется уменьшением высоты потенциального барьера при накоплении избыточного заряда электронов в n-области и дырок p-области.
Диодный режим имеет по сравнению с генераторным следующие преимущества:
· выходной ток в фотодиодном режиме не зависит от сопротивления нагрузки, в генераторном режиме максимальный входной ток может быть получен только при коротком замыкании в нагрузке.
· фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p-n перехода уменьшается).
Недостатком фотодиодного режима работы является зависимость темнового тока (обратного тока p-n перехода) от температуры.
Основными параметрами являются:
· темновой ток I т.
· рабочее напряжение U раб – напряжение, прикладываемое к диоду в фотопреобразовательном режиме.
· Интегральная чувствительность K ф.
В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях.
Принцип действия фотодиода
Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.
Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.
Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля. В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок. Данный вид тока с участием фотоносителей получил название фототока.
Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС. Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии. В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.
Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве . Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.
В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.
Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами. Они размещаются в общем корпусе, при этом, расположение светочувствительной площадки фотодиода наиболее оптимально к излучающей светодиодной площадке. Данные приборы получили название оптронов. Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.
Характеристики фотодиодов
Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2.
Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения.
Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость. Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением. Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения.
Фотодиод — это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В дальнейшем мы будем говорить именно про обратный ток.
В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи.
Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.
Фотодиоды широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков — концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.
На электрических схемах фотодиод обозначается как диод, с двумя направленными к нему стрелочками. Стрелки символизируют падающее на фотодиод излучение. Не путайте с обозначением светодиода, у которого стрелки направлены от него.
Буквенное обозначение фотодиода может быть VD или BL (фотоэлемент).
Фотодиод работает в двух режимах: фотодиодном и фотогальваническом (фотовольтаическом, генераторном).
В фотодиодном режиме используется источник питания, который смещает фотодиод в обратном направлении. В этом случае через фотодиод течет обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.
В фотогальваническом режиме фотодиод работает без внешнего источника питания. В этом режиме он может работать в качестве датчики или в качестве элемента питания (солнечной батареи), так как под воздействием света на выводах фотодиода появляется напряжение, зависящее от потока излучения и нагрузки.
Чтобы получше разобраться с режимами работы фотодиода, нужно рассмотреть его вольтамперную характеристику.
График состоит из 4 областей, так называемых квадрантов. Фотодиодному режиму соответствует работа в 3-м квадранте.
При отсутствии излучения график представляет собой обратную ветвь вольтамперной характеристики обычного полупроводникового диода. Присутствует небольшой обратный ток, который называется тепловым (темновым) током обратно смещенного p-n перехода.
При наличии светового потока, сопротивление фотодиода уменьшается и обратный ток фотодиода возрастает. Чем больше света падает, тем больший обратный ток течет через фотодиод. Зависимость обратного тока фотодиода от светового потока в этом режиме линейная.
Из графика видно, что обратный ток фотодиода слабо зависит от обратного напряжения. Посмотрите на наклон графика от нулевого напряжения до напряжения пробоя, он маленький.
Фотогальваническому режиму соответствует работа фотодиода в 4-м квадранте. И здесь можно выделить два предельных случая:
Холостой ход (хх),
— короткое замыкание (кз).
Режим близкий к холостому ходу используется для получения энергии от фотодиода. То есть для применения фотодиода в качестве солнечной батареи. Конечно, от одного фотодиода будет мало проку, да и КПД у него невысокий. Но если соединить много элементов, то такой батареей можно запитать какое-нибудь мало-потребляющее устройство.
В режиме короткого замыкания, напряжение на фотодиоде близкое к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим используется для построения фотодатчиков.
В чем преимущество и недостатки фотодиодного и фотогальванического режимов работы? Фотодиодный режим обеспечивает большее быстродействие фотодиода, но в этом режиме всегда есть темновой ток. В фотогальваническом режиме темнового тока нет, но быстродействие датчиков будет ниже.
Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков.
Принцип работы фотодиодов
Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.
- При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
- Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
- Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
- Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
- Чем выше освещенность, тем больше обратный ток
Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.
Схема фотодиода
Режимы работы
Фотодиоды разделяют по режиму функционирования.
Режим фотогенератораОсуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.
Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.
Основные параметры
Свойства фотодиодов определяют следующие характеристики:
- Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
- Спектральная. Характеризует влияние длины световой волны на фототок
- Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
- Порог чувствительности – минимальный световой поток, на который реагирует диод
- Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
- Инерционность
Из чего состоит фотодиод?
Разновидности фотодиодов
P-i-nДля этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.
ЛавинныеЭтот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.
С барьером ШотткиСостоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.
Образуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.
Фотодиод может работать в фотодиодном и гальваническом режиме.
В фотодиодном режиме p-n переход
смещается обратным напряжением величина которого
зависит от конкретного фотодиода от единиц до
сотни вольт, чем больше смещение тем быстрее он
будет работать, и больше токи через него будут
течь.
Недостаток фотодиодного режима в том, что
с ростом обратного тока, в последствии увеличения
напряжения или освещения, увеличивается уровень
шумов, а уровень полезного сигнала в целом
остается постоянным, считается, что в этом режиме
диод имеет меньшую постоянную
времени.
Фотодиодная схема включения.
Приведенная схема включения фотодиода является
универсальной и подходит для тестирования и
выбора, применительно к окончательной схеме своей
конструкции.
Изменяя положение подстроечного
резистора, в приведенной схеме, можно
протестировать и выбрать оптимальный режим работы
фотодиода.
Изменяя сопротивление резистора от
минимального до максимального, можно подобрать
наилучший режим смещения на фотодиоде.
Вывернув
резистор на минимум, замкнув подвижный контакт на
землю, мы переведем схему в фотогальванический
режим.
Можно попробовать работу фотодиода и в
прямом смещении (он все равно будет реагировать на
свет), для этого надо поменять схему включения,
перевернув диод.
Сопротивление в 50 Ком, не
должно дать повредить фотодиод, а по переменной
составляющей оно оказывается включенным
параллельно с нагрузкой (меньше 5 КОм), и полезный
сигнал практически не ослабляет. Конденсатор
избавляет нас от постоянной составляющей. Если мы
принимаеи импульсный сигнал то от постоянной
составляющей, которая меняется в зависимости от
фоновой засветки, лучше избавится сразу, смысла ее
усиливать нет.
Еще одна стандартная
схема включения фотодиода показана на
рисунке.
В данной установке для уменьшения
влияния шумов и наводок в схему добавлены буферные
конденсаторы в цепи питания, накопительный
конденсатор С3 и интегрирующая цепочка R2С4 на
выходе.
C1- электролитический конденсатор
большой ёмкости С = 100 мкФ, С2 — быстрый
керамический 0,1 мкФ, С3, С4 — керамические по 100
пФ, R1 — 8 кОм, R2- 5,6 кОм.
Нагрузкой для достижения максимального быстродействия должен быть или каскад с общей базой или быстродействующий операционник включенный по схеме преобразователя ток-напряжение. Эти усилители имеют минимальное входное сопротивление.
Практическая схемотехника включения фотодиода со смещением.
Практическая
схемотехника включения фотодиода со
смещением.
Величина R фильтра подбирается в
зависимости от засвечивания фотодиода в рабочем
варианте с установленной оптикой, учитывается
направление по азимуту (юг,запад и т.д.) в разных
направлениях разные засветки от солнца.
Ёмкость
Сф=0.1мкФ ещё и замыкает цепь фотодиода по высокой
частоте на землю.
Вместо Rн можно поставить
дроссель, либо трансформатор, надо смотреть, не
будет ли искажений или затяжек импульсов или
прочих подводных камней.
Включение фотодиода в каскад с общей базой.
Схема включения
фотодиода ФД 263 в каскад с общей
базой.
В схеме с ОБ — база разделяет входную и выходную цепи, и практически исключает влияние выходного напряжения на вход схемы (подобно экранной сетке в пентоде) по-этому имеется возможность увеличить нагрузочное сопротивление и получить больший размах напряжения на выходе схемы без ущерба для скорости.
Виды фотодиодов.

Фотодиод — это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В дальнейшем мы будем говорить именно про обратный ток.
В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи.
Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.
Фотодиоды широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков — концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.
На электрических схемах фотодиод обозначается как диод, с двумя направленными к нему стрелочками. Стрелки символизируют падающее на фотодиод излучение. Не путайте с обозначением светодиода, у которого стрелки направлены от него.
Буквенное обозначение фотодиода может быть VD или BL (фотоэлемент).
Фотодиод работает в двух режимах: фотодиодном и фотогальваническом (фотовольтаическом, генераторном).
В фотодиодном режиме используется источник питания, который смещает фотодиод в обратном направлении. В этом случае через фотодиод течет обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.
В фотогальваническом режиме фотодиод работает без внешнего источника питания. В этом режиме он может работать в качестве датчики или в качестве элемента питания (солнечной батареи), так как под воздействием света на выводах фотодиода появляется напряжение, зависящее от потока излучения и нагрузки.
Чтобы получше разобраться с режимами работы фотодиода, нужно рассмотреть его вольтамперную характеристику.
График состоит из 4 областей, так называемых квадрантов. Фотодиодному режиму соответствует работа в 3-м квадранте.
При отсутствии излучения график представляет собой обратную ветвь вольтамперной характеристики обычного полупроводникового диода. Присутствует небольшой обратный ток, который называется тепловым (темновым) током обратно смещенного p-n перехода.
При наличии светового потока, сопротивление фотодиода уменьшается и обратный ток фотодиода возрастает. Чем больше света падает, тем больший обратный ток течет через фотодиод. Зависимость обратного тока фотодиода от светового потока в этом режиме линейная.
Из графика видно, что обратный ток фотодиода слабо зависит от обратного напряжения. Посмотрите на наклон графика от нулевого напряжения до напряжения пробоя, он маленький.
Фотогальваническому режиму соответствует работа фотодиода в 4-м квадранте. И здесь можно выделить два предельных случая:
Холостой ход (хх),
— короткое замыкание (кз).
Режим близкий к холостому ходу используется для получения энергии от фотодиода. То есть для применения фотодиода в качестве солнечной батареи. Конечно, от одного фотодиода будет мало проку, да и КПД у него невысокий. Но если соединить много элементов, то такой батареей можно запитать какое-нибудь мало-потребляющее устройство.
В режиме короткого замыкания, напряжение на фотодиоде близкое к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим используется для построения фотодатчиков.
В чем преимущество и недостатки фотодиодного и фотогальванического режимов работы? Фотодиодный режим обеспечивает большее быстродействие фотодиода, но в этом режиме всегда есть темновой ток. В фотогальваническом режиме темнового тока нет, но быстродействие датчиков будет ниже.
Фотодиод активно используется в современных электронных устройствах, из названия становится понятно, что прибор из себя представляет конструкцию с применением полупроводника, так давайте рассмотрим, что такое фотодиод Фотодиод — это полупроводниковый диод, который обладает свойством односторонней проводимости при воздействия на него оптического излучения. Фотодиод представляет собой полупроводниковый кристалл, обычно с электронно — дырочным переходом (пн). Он снабжен двумя металлическими выводами и вмонтированный в пластмассовый или же в металлический корпус.
Различают два режима работы фотодиода.
1) фотодиодный — когда во внешней цепи фотодиода содержится источник постоянного тока, который создает на переходе обратное смещение и вентильный, когда такой источник отсутствует. В фотодиодном режиме фотодиод, как и фоторезистор используют для управления током. Фототок фотодиода сильным образом зависит от интенсивности падающего излучения и не зависит от напряжения смещения.
2) Вентильный режим — когда фотодиод, как и фотоэлемент, используют в качестве генератора ЭДС.
Основные параметры фотодиода — порог чувствительности, уровень шумов, область спектральной чувствительности лежит в пределах от 0,3 до 15 мкм (микрометров), инерционность — время восстановления фототока, Существуют также фотодиоды с прямой структурой.Фотодиод является составным элементом во многих опто- электронных устройствах. фотодиоды и фотоприемники широко применяются в опронных парах, приемниках излучения видео — аудио сигналов. Широко применяется для принятия сигнала с лазерных диодов в CD и DVD дисководах.
Сигнал от лазерного диода, который в себе содержит кодированную информацию, сначала попадает на фотодиод, который в данных устройствах имеет сложную конструкцию, затем после расшифровки информация поступает на центральный процессор, где после обработки превращается в аудио или видеосигнал. На таком принципе работают все современные дисководы. Так же фотодиоды применяются в различных охранных устройствах, в инфракрасных датчиках движения и присутствия. Очередной обзор для начинающего радиолюбителя подошел к концу, удачи в мире радиоэлектроники — АКА.
Теория для начинающих
Обсудить статью ФОТОДИОДЫ
radioskot.ru
Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков. Принцип работы фотодиодовОснова действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.
Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле. Схема фотодиодаРежимы работыФотодиоды разделяют по режиму функционирования. Режим фотогенератораОсуществляется без источника электропитания. Режим фотопреобразованияИсточник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности. Основные параметрыСвойства фотодиодов определяют следующие характеристики:
Из чего состоит фотодиод?Разновидности фотодиодовP-i-nДля этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие. ЛавинныеЭтот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. С барьером ШотткиСостоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов. С гетероструктуройОбразуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления. Области применения фотодиодов
Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии. |
www.radioelementy.ru
Фотодиоды
Фотодиодом принято называть полупроводниковый прибор с одним p-n переходом, вольтамперная характеристика которого зависит от воздействующего на него света.
Условное графическое обозначение, структура и внешний вид фотодиода представлены на рис. 17.6.
Рис. 17.6. Фотодиод:
а — условное графическое обозначение; б – структура; в – внешний вид
Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р-n переход. В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычному p-n переходу (см. рис. 1.3).
При воздействии излучения в направлении, перпендикулярном плоскости p-n перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями. При диффузии фотоносителей вглубь n области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p-n перехода. Здесь фотоносители разделяются электрическим полем p-n перехода, причем дырки переходят в p область, а электроны не могут преодолеть поле перехода, и скапливаются у границы p-n перехода и n области. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, ток через p-n переход обусловлен дрейфом небазовых носителей – дырок. Дрейфовый ток фотоносителей принято называть фототоком.
Фотоносители – дырки заряжают p область положительно относительно n области, а фотоносители – электроны – n область отрицательно по отношению к p области. Возникающая разность потенциалов принято называть фото ЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.
Фотодиоды могут работать в одном из двух режимов – с внешним источником электрической энергии (режим преобразователя), либо без внешнего источника электрической энергии (режим генератора).
При работе фотодиода в режиме преобразователя на него подают обратное напряжение (рис. 17.7, а). Используются обратные ветви ВАХ фотодиода при различных уровнях освещенности Ф, Ф1, Ф2 (рис. 17.7, б).
Учитывая зависимость отуровня освещённости изменяется обратный ток фотодиода, и на резисторе нагрузки изменяется напряжение. В системах железнодорожной автоматики по такой схеме включён германиевый фотодатчик в приборах обнаружения нагретой буксы (германий чувствителен к ИК лучам, а кремний – к видимому свету).
Рис. 17.7. Работа фотодиода в режиме фотопреобразователя:
а – схема включения; б – вольтамперные характеристики
Фотодиоды, работающие в режиме генератора, используют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Οʜᴎ называются солнечными элементами и входят в состав солнечных батарей. Выходное напряжение солнечной батареи сильно зависит от уровня освещённости. Чтобы получить стабильное напряжение в нагрузке, солнечную батарею используют совместно с аккумулятором. Схема солнечно-аккумуляторной батареи представлена на рис. 17.8.
Рис. 17.8. Принципиальная схема солнечно-аккумуляторной батареи
При максимальной освещённости солнечная батарея питает нагрузку и заряжает аккумулятор. Размещено на реф.рфВ темноте нагрузка питается только от аккумулятора, а чтобы аккумулятор не разряжался на солнечную батарею, в схеме установлен диод VD1.
КПД кремниевых солнечных элементов составляет около 20 %. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2 соответственно.
Более подробные сведения о фотодиодах приведены в литературе .
Читайте также
Лекция 14 Фоторезисторами называют полупроводниковые приборы, принцип действия которых основан на изменение сопротивления полупроводника под действием светового излучения. На рис.7.31 показано устройство фоторезистора, состоящего из диэлектрической подложки 1,… [читать подробнее].
Фотодиодами называют полупроводниковые диоды, в которых осуществляется управление величиной обратного тока с помощью света. Фотодиод устроен так, что в нем обеспечивается доступ света к — переходу. В отсутствие светового потока в фотодиоде при обратном напряжении… [читать подробнее].
Рис. 9. Фотодиод в режиме фотосопротивления
Фотодиод в режиме фотосопротивления и его ВАХ показаны на рис. 9. К фотодиоду от источника ЭДС прикладывается обратное напряжение, поэтому его переход закрыт. Если поток равен нулю, то обратный ток через фотодиод примерно… [читать подробнее].
Фотодиод – полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том что под действием энергии светового излучения в области p – n – перехода… [читать подробнее].
Фотодиодом называют фотогальванический приёмник с электронно-дырочным переходом, облучение которого светом вызывает увеличение силы обратного тока. Материалом полупроводника фотодиода обычно выступает кремний, сернистое серебро, сернистый таллий или арсенид галлия…. [читать подробнее].
Фотоприемники. В сканерах плоскостного и проекционного типов применяются приборы с зарядовой связью (ПЗС), а в барабанных — фотоэлектронные умножители и фотодиоды. Иногда бывает наоборот. Работа ПЗС основана на свойстве конденсаторов МОП-структуры (металл — оксид -… [читать подробнее].
Фотодиод имеет структуру обычного p-n- перехода. Обратный ток фотодиода зависит от уровня освещенности. Фотодиоды помещаются в металлический корпус с прозрачным окном. Условное графическое изображение фотодиода и его схема замещения приведены на рис.3.11. На рис.3.12… [читать подробнее].
referatwork.ru
Фотодиоды | Техника и Программы
Принцип действия фотодиода
Полупроводниковый фотодиод — это полупроводниковый диод обратный ток которого зависит от освещенности.
Обычно в качестве фотодиода используют полупроводниковые диоды с р-п переходом, который смещен в обратном направлении внешним источником питания. При поглощении квантов света в р-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к р-п переходу на расстоянии, не превь,’ ,ающем диффузионной длины, диффундируют в р-п переход и проходя* через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в р-п переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.
Характеристики фотодиодов
Свойства фотодиода можно охарактеризовать следующими характеристиками:
Вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока 1т от напряжения.
Световая характеристика фотодиода обусловлена зависимостью фототока от освещенности. При увеличении освещенности фототок возрастает.
Спектральная характеристика фотодиода — это зависимость фототока от длины волны падающего света на фотодиод. Она определяется для больших длин волн шириной запрещенной зоны, а при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
Постоянная времени — это время, в течение которого фото- ток фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.
Темновое сопротивление — сопротивление фотодиода в отсутствие освещения.
Интегральная чувствительность определяется формулой:
где 1ф — фототок, Ф — освещенность.
Инерционность
Существует три физических фактора, влияющих на инерционность:
1. Время диффузии или дрейфа неравновесных носителей через базу т;
2. Время пролета через р-n переход т,;
3. Время перезарядки барьерной емкости р-п перехода, характеризующееся постоянной времени RC6ap.
Толщина р-п перехода, зависящая от обратного напряжения и концентрации примесей в базе, обычно меньше 5 мкм, а значит, т, — 0,1 не. RC6ap определяется барьерной емкостью р-п перехода, зависящей от напряжения и сопротивления базы фотодиода при малом сопротивлении нагрузки во внешней цепи. Величина RC6ap обычно составляет нескольких наносекунд.
Расчет КПД фотодиода и мощности
КПД вычисляется по формуле:
где Росв — мощность освещенности; I — сила тока;
U — напряжение на фотодиоде.
Расчет мощности фотодиода иллюстрирует рис. 2.12 и таблица 2.1.
Рис. 2.12. Зависимость мощности фотодиода от напряжения и силы тока
Максимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.
Таблица 2.1. Зависимость мощности от КПД
Мощность освещенности, мВт | Сила тока, мА | Напряжение, В | |
Применение фотодиода в олтоэлектронике
Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах:
Оптоэлектронные интегральные микросхемы.
Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств, а именно: почти идеальная гальваническая развязка управляющих цепей от силовых при сохранении между ними сильной функциональной связи.
Многоэлементные фотоприемники.
Эти приборы (сканистор, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Оптоэлектрический «глаз» на основе фотодиода способен реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.
Число фоточувствительных ячеек в приборе является достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).
Как происходит восприятие образов?
Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. Тогда на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.
При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования. Оптроны.
Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической связи между ними, конструктивно объединенные и помещенные в один корпус. Между управляющей цепью (ток в которой мал, порядка нескольких мА), куда включен излучатель, и исполнительной, в которой работает фотоприемник, отсутствует электрическая (гальваническая) связь, а управляющая информация передается посредством светового излучения.
Это свойство оптоэлектронной пары (а в некоторых видах оптронов присутствует по несколько не связанных друг с другом даже оптически оптопар) оказалось незаменимым в тех электронных узлах, где нужно максимально устранить влияние выходных электрических цепей на входные. У всех дискретных элементов (транзисторов, тиристоров, микросхем, являющихся коммутационными сборками, или микросхем с выходом, позволяющим коммутировать нагрузку большой мощности) управляющие и исполнительные цепи электрически связаны друг с другом. Это часто недопустимо, если коммутируется высоковольтная нагрузка. К тому же, возникающая обратная связь неминуемо приводит к появлению дополнительных помех.
Конструктивно фотоприемник обычно крепится на дне корпуса, а излучатель — в верхней части. Зазор между излучателем и фотоприемником заполнен иммерсионным материалом — чаще всего эту роль выполняет полимерный оптический клей. Этот материал исполняет роль линзы, фокусирующей излучение на чувствительный слой фотоприемника. Иммерсионный материал снаружи покрыт специальной пленкой, отражающей световые лучи внутрь, чтобы препятствовать рассеянию излучения за пределы рабочей зоны фотоприемника.
Роль излучателей в оптронах, как правило, выполняют светодиоды на основе арсенид-галлия. Светочувствительные элементы в оптопарах могут представлять собой фотодиоды (оптопары серии АОД…), фототранзисторы, фототринисторы (оптопары серии АОУ.,.) и высокоинтегрированные схемы фотореле. В диодной оптопаре, например, в качестве фотоприемного элемента используется фотодиод на основе кремния, а излучателем служит инфракрасный излучающий диод. Максимум спектральной характеристики излучения диода приходится на длину волны около 1 мкм. Диодные оптопары применяются в фотодиодном и фотогенераторном режимах.
Транзисторные оптроны (серия АОТ…) имеют некоторые преимущества относительно диодных. Коллекторным током биполярного транзистора управляют как оптически (воздействуя на светодиод), так и электрически по базовой цепи (в данном случае работа фототранзистора при отсутствии излучения управляющего светодиода оптрона практически не отличается от работы обыкновенного кремниевого транзистора). У полевого транзистора управление осуществляется через цепь затвора.
Кроме того, фототранзистор может работать в ключевом и усилительных режимах, а фотодиод — только в ключевом. Оптроны с составными-транзисторами (например, АОТ1ЮБ), имеют наибольший коэффициент усиления (как и обычный узел на составном транзисторе), могут коммутировать напряжение и ток достаточно больших величин и по данным параметрам уступают только тиристорным оптронам и оптоэлектронным реле типа КР293КП2 — КР293КП4, которые приспособлены для коммутации высоковольтных и сильноточных цепей. Сегодня в розничной продаже появились новые оптоэлектронные реле серий К449 и К294. Серия К449 позволяет коммутировать напряжение до 400 В при токе до 150 мА. Такие микросхемы в четырехвы- водном компактном корпусе DIP-4 приходят на смену маломощным электромагнитным реле и имеют по сравнению с реле массу преимуществ (бесшумность работы, надежность, долговечность, отсутствие механических контактов, широкий диапазон напряжения срабатывания). Кроме того, их доступная цена объясняется тем, что нет необходимости использовать драгметаллы (в реле ими покрываются коммутирующие контакты).
В резисторных оптронах (например, ОЭП-1) и-злучателями являются электрические минилампы накаливания, помещенные также в один корпус.
Графическим обозначениям оптронов по ГОСТу присвоен условный код — латинская буква U, после которой следует порядковый номер прибора в схеме.
В главе 3 книги описаны приборы и устройства, иллюстрирующие применение оптронов.
Применение фотоприемников
Любое оптоэлектронное устройство содержит фотоприемный блок. И в большинстве современных оптоэлектронных устройств фотодиод составляет основу фотоприемника.
В сопоставлении с другими, более сложными фотоприемниками, они обладают наибольшей стабильностью температурных характеристик и лучшими эксплуатационными свойствами.
Основной недостаток, на который обычно указывают, — отсутствие усиления. Но он достаточно условен. Почти в каждом оп- тоэлектронном устройстве фотоприемник работает на ту или иную согласующую электронную схему. И введение усилительного каскада в нее значительно проще и целесообразнее, чем придание фотоприемнику несвойственных ему функций усиления.
Высокая информационная емкость оптического канала, связанная с тем, что частота световых колебаний (около 1015 Гц) в 103…104 раз выше, чем в освоенном радиотехническом диапазоне. Малое значение длины волны световых колебаний обеспечивает высокую достижимую плотность записи информации в оптических запоминающих устройствах (до 108 бит/см2).
Острая направленность (кучность) светового излучения, обусловленная тем, что угловая расходимость луча пропорциональна длине волны и может быть меньше одной минуты. Это позволяет концентрированно и с малыми потерями передавать электрическую энергию в любую область пространства.
Возможность двойной — временной и пространственной — модуляции светового луча. Так как источник и приемник в опто- электронике не связаны друг с другом электрически, а связь между ними осуществляется только посредством светового луча (электрически нейтральных фотонов), то они не влияют друг на друга. И поэтому в оптоэлектронном приборе поток информации передается лишь в одном направлении — от источника к приемнику. Каналы, по которым распространяется оптическое излучение, не воздействуют друг на друга и практически не чувствительны к электромагнитным помехам, что определяет их высокую помехозащищенность.
Важная особенность фотодиодов — высокое быстродействие. Они могут работать на частотах до нескольких МГц. обычно изготовляют из германия или кремния.
Фотодиод является потенциально широкополосным приемником. Этим обуславливается его повсеместное применение и популярность.
ИК спектра
Инфракрасный излучающий диод (ИК диод) представляет собой полупроводниковый диод, который при протекании через него прямого тока излучает электромагнитную энергию в инфракрасной области спектра.
В отличие от видимого человеческим глазом спектра излучения (какое, например, производит обычный светоизлучающий диод на основе фосфида галлия) ИК излучение не может быть воспринято человеческим глазом, а регистрируется с помощью специальных приборов, чувствительных к данному спектру излучения. Среди популярных фотоприемных диодов ИК спектра можно отметить фоточувствительные приборы МДК-1, ФД263-01 и подобные им.
Спектральные характеристики ИК излучающих диодов имеют выраженный максимум в интервале волн 0,87…0,96 мкм. Эффективность излучения и КПД данных приборов выше, чем у светоизлучающих диодов.
На основе ИК диодов (которые в электронных конструкциях занимают важное место передатчиков импульсов ИК спектра) конструируются волоконно-оптические линии (выгодно отличающиеся своим быстродействием и помехозащищенностью), многоплановые электронные бытовые узлы и, конечно же, электронные узлы охраны. В этом есть свое преимущество, т.к. ИК луч невидим человеческим глазом и в некоторых случаях (при условии использования нескольких разнонаправленных ИК лучей) определить визуально наличие самого охранного устройства невозможно до его перехода в режим «тревога»). Опыты работы в сфере производства и обслуживания систем охраны на основе ИК излучателей позволяют все же дать некоторую рекомендацию по определению рабочего состояния ИК излучателей.
Если близко всмотреться в излучающую поверхность ИК диода (например, АЛ147А, АЛ156А), когда на него подан сигнал управления, то можно заметить слабое красное свечение. Световой спектр этого свечения близок к цвету глаз животных альбиносов (крыс, хомяков и т.д.). В темноте ИК свечение еще более выражено. Необходимо заметить, что длительное время всматриваться в излучающий ИК световую энергию прибор нежелательно с медицинской точки зрения.
Кроме систем охраны, ИК излучающие диоды в настоящее время находят применение в брелоках сигнализации для автомобилей, различного рода беспроводных передатчиках сигналов на расстояние. Например, подключив к передатчику модулированный НЧ сигнал от усилителя, с помощью ИК приемника на некотором расстоянии (зависит от мощности излучения и рельефа местности) можно прослушивать звуковую информацию, телефонные переговоры также можно транслировать на расстояние. Этот способ сегодня менее эффективен, но все же является альтернативным вариантом домашнему радиотелефону. Самым популярным (в быту) применением ИК излучающих диодов являются пульты дистанционного управления различными бытовыми приборами.
Как может легко убедиться любой радиолюбитель, вскрыв крышку ПДУ, электронная схема этого прибора не сложна и может быть повторена без особых проблем. В радиолюбительских конструкциях, некоторые из которых описаны в третьей главе данной книги, электронные устройства с ИК излучающими и приемными приборами намного проще, чем промышленные устройства.
Параметры, определяющие статические режимы работы ИК диодов (прямое и обратное максимально допустимое напряжение, прямой ток и т.д.) сходны с параметрами фотодиодов. Основными специфическими параметрами, по которым их идентифицируют, для ИК диодов являются:
Мощность излучения — Ризл — поток излучения определенного спектрального состава, излучаемого диодом. Характеристикой диода, как источника ИК излучения, является ватт-амперная характеристика — зависимость мощности излучения в Вт (милливаттах) от прямого тока, протекающего через диод. Диаграмма направленности излучения диода показывает уменьшение мощности излучения в зависимости от угла между направлением излучения и оптической осью прибора. Современные ИК диоды различаются между имеющими остронаправленное излучение и рассеянное.
При конструировании электронных узлов следует учитывать, что дальность передачи ИК сигнала прямо зависит от угла наклона (совмещения передающей и приемной частей устройства) и мощности ИК диода. При взаимозаменах ИК диодов необходимо учитывать этот параметр мощности излучения. Некоторые справочные данные по отечественным ИК диодам приведены в табл. 2.2.
Данные по взаимозаменам зарубежных и отечественных приборов приведены в приложении. Сегодня наиболее популярными типами ИК диодов среди радиолюбителей считаются приборы модельного ряда АЛ 156 и АЛ147. Они оптимальны по универсальности применения и стоимости.
Импульсная мощность излучения — Ризл им — амплитуда потока излучения, измеряемая при заданном импульсе прямого тока через диод.
Ширина спектра излучения — интервал длин волн, в котором спектральная плотность мощности излучения составляет половину максимальной.
Максимально допустимый прямой импульсный ток 1пр им (ИК диоды в основном используются в импульсном режиме работы).
Таблица 2.2. Излучающие диоды инфракрасного спектра
Мощность излучения, мВт | Длина волны, мкм | Ширина спектра, мкм | Напряжение на приборе, В | Угол излучения, град | |
нет данных | нет данных | ||||
Время нарастания импульса излучения tHapизл — интервал времени, в течение которого мощность излучения диода нарастает с 10 до 100% от максимального значения.
Параметр времени спада импульса tcnM3J1 аналогичен предыдущему.
Скважность — Q — отношение периода импульсных колебаний к длительности импульса.
В основе предлагаемых к повторению электронных узлов (глава 3 данной книги) лежит принцип передачи и приема модулированного ИК сигнала. Но не только в таком виде можно использовать принцип работы ИК диода. Такие оптореле могут работать и в режиме реагирования на отражение лучей (фотоприемник размещается рядом с излучателем). Этот принцип воплощен в электронные узлы, реагирующие на приближение к объединенному приемо-передающему узлу какого-либо предмета или человека, что также может служить датчиком в системах охраны.
Вариантов применения ИК диодов и устройств на их основе бесконечно много и они ограничиваются только эффективностью творческого подхода радиолюбителя.
nauchebe.net
Фотодиод — это… Что такое Фотодиод?
Фотодиод ФД-10-100 активная площадь-10х10 мм² ФД1604 (активная площадь ячейки 1,2х4мм2 — 16шт) Обозначение на схемахФотодио́д — приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.
Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n- области, за счёт чего образуется заряд и ЭДС), называется солнечным элементом. Кроме p-n фотодиодов, существуют и p-i-n фотодиоды, в которых между слоями p- и n- находится слой нелегированного полупроводника i. p-n и p-i-n фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов и фототранзисторов.
Описание
Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Φ — поток электромагнитного излучения; Е — источник постоянного тока; RH — нагрузка.Принцип работы:
При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n
Фотодиод может работать в двух режимах:
- фотогальванический — без внешнего напряжения
- фотодиодный — с внешним обратным напряжением
Особенности:
- простота технологии изготовления и структуры
- сочетание высокой фоточувствительности и быстродействия
- малое сопротивление базы
- малая инерционность
Параметры и характеристики фотодиодов
Параметры:
- чувствительность отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприёмника, к световому потоку или потоку излучения, его вызвавшему. ; — токовая чувствительность по световому потоку; — вольтаическая чувствительность по энергетическому потоку
- шумы помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.
Характеристики:
- вольт-амперная характеристика (ВАХ) зависимость выходного напряжения от входного тока.
- спектральные характеристики зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещённой зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
- световые характеристики зависимость фототока от освещённости, соответствует прямой пропорциональности фототока от освещённости. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
- постоянная времени это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63 %) по отношению к установившемуся значению.
- темновое сопротивление сопротивление фотодиода в отсутствие освещения.
- инерционность
Классификация
- В p-i-n структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область, и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n переходов. Это дает выигрыш в быстродействии и чувствительности. Повышение быстродействия в p-i-n фотодиоде обусловлено тем, что процесс диффузии заменяется дрейфом электрических зарядов в сильном электрическом поле. Уже при Uобр≈0.1В p-i-n фотодиод имеет преимущество в быстродействии.
- Фотодиод Шоттки (фотодиод с барьером Шоттки) Структура металл-полупроводник. При образовании структуры часть электронов перейдет из металла в полупроводник p-типа.
- Лавинный фотодиод
- В структуре используется лавинный пробой. Он возникает тогда, когда энергия фотоносителей превышает энергию образования электронно-дырочных пар. Очень чувствительны. Для оценки существует коэффициент лавинного умножения: Для реализации лавинного умножения необходимо выполнить два условия: 1) Электрическое поле области пространственного заряда должно быть достаточно большим, чтобы на длине свободного пробега электрон набрал энергию, большую, чем ширина запрещённой зоны: 2) Ширина области пространственного заряда должна быть существенно больше, чем длина свободного пробега: Значение коэффициентов внутреннего усиления составляет M=10-100 в зависимости от типа фотодиодов.
- Фотодиод с гетероструктурой Гетеропереходом называют слой, возникающий на границе двух полупроводников с разной шириной запрещённой зоны. Один слой р+ играет роль «приёмного окна». Заряды генерируются в центральной области. За счет подбора полупроводников с различной шириной запрещённой зоны можно перекрыть весь диапазон длин волн. Недостаток — сложность изготовления.
ФОТОЭЛЕКТРОННЫЕ ПРИБОРЫ — электровакуумные или полупроводниковые приборы,преобразующие эл—магн. сигналы оптич. диапазона в электрические токи, напряжения или преобразующие изображения в невидимых (напр., ИК) лучах в видимые изображения. Ф. п. предназначены для преобразования, накопления, хранения, передачи и воспроизведения информации (включая информацию в виде изображения объекта). Действие Ф. п. основано на использовании фотоэффектов: внешнего (фотоэлектронной эмиссии), внутреннего (фотопроводимости) или вентильного. К Ф. п. относятся разл. фотоэлементы, фотоэлектронные умножители, фоторезисторы , фотодиоды, электронно-оптич. преобразователи, усилители яркости изображения, а также передающие электронно-лучевые трубки.
Фотоэлектронными называются приборы, преобразующие энергию оптического излучения в электрическую. В спектре длин волн оптического излучения для фотоэлектронных приборов в основном используются ультрафиолетовые излучения (диапазон длин волн λ=10-400 нм), видимое (λ=0,38-0,76 мкм) и инфракрасное (λ=0,74-1 мкм).
Работа фотоэлектронных приборов основана на явлениях внутреннего и внешнего фотоэффектов. Внутренний фотоэффект, используемый в основном в полупроводниковых фотоэлектронных приборах, заключается в том, что под действием лучистой энергии оптического излучения электроны получают дополнительную энергию для их освобождения от межатомных связей и перехода из валентной зоны в зону проводимости, в результате чего электропроводимость полупроводника существенно возрастает. При этом, согласно теории Эйнштейна, энергия световых квантов (фотонов) оптического излучения должна превышать ширину запрещенной зоны полупроводника. (36)
Следовательно, фотоэффект возможен только при воздействии на полупроводник излучения с длиной волны λ ф, меньшей некоторого граничного значения, называемого «красной границей».
(37)
где λ ф – длинноволновая граница спектральной чувствительности материала, мкм;
с – скорость света в вакууме;
– постоянная Планка;
– ширина запрещенной зоны (рис.3), ограниченная краями энергетических зон ЗП, ВЗ, в электрон-вольтах (эВ).
Следует отметить, что возможности фотоэлектронных приборов могут расширяться при воздействии энергии разнообразных источников излучения. Такими источниками могут быть как источники фотонов (солнечная энергия, гамма-излучение, рентгеновское излучение), так и источники частиц с высокой энергией (электронная пушка, бета-излучение, альфа-частицы, протоны и др.) .
Фотодиод – это двухэлектродный полупроводниковый диод, в котором в результате внутреннего фотоэффекта в p-n переходе возникает односторонняя фотопроводимость при воздействии на него оптического излучения. Конструктивно он представляет собой кристалл с p-n переходом, причём световой поток при освещении прибора направляется перпендикулярно плоскости p-n перехода (рис.36). Различают два режима работы фотодиода: фотогенераторный (или, в различных источниках – запирающий, фотогальванический, фотовольтаический, вентильный) – без внешнего источника питания, и фотодиодный (иногда фотопреобразовательный) – с внешним источником.
Рис. 36. Структура фотодиода
Принцип работы фотодиода
Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Ф — поток электромагнитного излучения; Е — источник постоянного тока; Rн — нагрузка.
При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и емкостью p-n-перехода C p-n
Фотодиод может работать в двух режимах:
§ фотогальванический — без внешнего напряжения
§ фотодиодный — с внешним обратным напряжением
Особенности:
§ простота технологии изготовления и структур
§ сочетание высокой фоточувствительности и быстродействия
§ малое сопротивление базы
§ малая инерционность
Параметры и характеристики фотодиодов
Параметры:
чувствительность
отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприемника, к световому потоку или потоку излучения, его вызвавшему.
Si ,Φv =I ΦΦv ; Si ,Ev =I ΦEv — токовая чувствительность по световому потоку
Su ,Φe =U ΦΦe ; Si ,Ee =U ΦEe — вольтаическая чувствительность по энергетическому потоку
помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.
Характеристики:
вольт-амперная характеристика (ВАХ)
зависимость выходного напряжения от входного тока. U Φ=f (I Φ)
спектральные характеристики
зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещенной зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
световые характеристики
зависимость фототока от освещенности, соответствует прямой пропорциональности фототока от освещенности. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
постоянная времени
это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.
темновое сопротивление
сопротивление фотодиода в отсутствие освещения.
Инерционность
Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7,а, а его условное графическое изображение – на рис. 6.7,б.
Рис. 6.7. Структура (а) и обозначение (б) фотодиода
Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.
Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак>0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n-перехода).
Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).
Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.
Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n–перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n–перехода носители тока движутся к электродам (дырки – к электроду слоя p, электроны – к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.
Рис. 6.8. Вольт-амперные характеристики фотодиода
На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).
В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.
Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).
Рис. 6.9 Рис. 6.10
Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107–1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).
При поглощении световых квантов в p-n переходе или в примыкающих к нему областях генерируются новые носители заряда (электроны и дырки), которые проходя через него и вызывают появление напряжение на выводах фотодиода или протекание тока в замкнутой цепи. Величина, на которую возрастает обратный ток протекающий через переход, называют фототоком.
Фотодиод, в зависимости от материала из которого он изготовлен, используется для регистрации светового потока в оптическом инфракрасном, и ультрафиолетовом диапазоне. Эти радиокомпоненты обычно изготавливают из германия, кремния, арсенида галлия, индия и т.п.
В фотодиодном режиме применяется внешний источник питания, который смещает полупроводниковый прибор в обратном направлении. В этом случае через протекает обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.
В фотогальваническом режиме фотодиод работает в роли датчики или в роли слаботочного элемента питания, так как под воздействием светового потока на выводах фотоэлемента генерируется напряжение, зависящее от потока излучения и нагрузки.
Чтобы лучше разобраться с режимами работы этого компонента, рассмотрим его вольтамперную характеристику.
При отсутствии светового излучения график представляет собой обратную ветвь ВАХ типичного диода. Присутствует небольшой ток обратки, называемый темновым током обратно смещенного.
При наличии излучения, сопротивление фотодиода снижается и обратный ток увеличивается. Чем больший световой поток падает на фотоэлемент, тем больший обратный ток протекает через фотодиод. Зависимость в этом режиме линейная. Как видим из ВАХ обратный ток фотодиода практически не зависит от обратного напряжения.
Фотогальваническому режиму соответствует работа в четвертой четверти графика. И здесь можно выделить два предельных варианта: режим холостого хода и короткого замыкания.
Режим приближенный к холостому ходу применяется для получения энергии от фотодиода, хотя КПД у него невысокий. Но если соединить последовательно и параллельно много таких компонентов, то такой получившейся батареей можно запитать мало-потребляющую схему.
В режиме короткого замыкания, напряжение на фотоэлементе стремится к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим применяется для построения фотодатчиков.
Характеристики фотодиода |
Помимо ВАХ, рассмотренной выше существкует еще ряд основных параметров фотоэлемента.
Световая характеристика фотодиода , зависимость фототока от освещенности, которая прямопропорционально генерируемому фототоку от освещенности. Это объясняется тем, что толщина базы фотодиода гораздо меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, появившиеся в базе, учувствуют в образовании фототока.
Спектральная характеристика фотодиода — это зависимость фототока от длины волны светового потока воздействующего на фотоэлемент.
постоянная времени — в течение этого времени фототок фотоэлемента изменяется после освещения или после затемнения фотодиода по отношению к установившемуся значению.
темновое сопротивление — сопротивление радиокомпонента при отсутствии освещения.
Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.
В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычной p-n-структуре.
При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями .
При диффузии фотоносителей в глубь n-области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Здесь фотоносители разделяются электрическим полем p–n-перехода, причем дырки переходят в p-область, а электроны не могут преодолеть поле перехода и скапливаются у границы p–n-перехода и n-области.
Таким образом, ток через p–n-переход обусловлен дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей называется фототоком .
Фотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область отрицательно по отношению к p-области. Возникающая разность потенциалов называется фотоЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.
Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя).
Фотодиоды, работающие в режиме фотогенератора, часто применяют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Они называются солнечными элементами и входят в состав солнечных батарей, используемых на космических кораблях.
КПД кремниевых солнечных элементов составляет около 20 %, а у пленочных солнечных элементов он может иметь значительно большее значение. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2, соответственно.
При работе фотодиода в фотопреобразовательном режиме источник питания Е включается в цепь в запирающем направлении (рис. 1, а). Используются обратные ветви ВАХ фотодиода при различных освещенностях (рис. 1,б).
Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а — схема включения, б — ВАХ фотодиода
Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам пересечения ВАХ фотодиода и линии нагрузки, соответствующей сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 — 30 мкА, у кремниевых 1 — 3 мкА.
Если в фотодиодах использовать обратимый электрический пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а следовательно, и чувствительность значительно возрастут.
Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).
Лавинные фотодиоды являются быстродействующими фотоэлектрическими приборами, их частотный диапазон может достигать 10 ГГц. Недостатком лавинных фотодиодов является более высокий уровень шумов по сравнению с обычными фотодиодами.
Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) характеристики фоторезистора
Кроме фотодиодов, применяются фоторезисторы (рис 2), фототранзисторы и фототиристоры , в которых используется внутренний фотоэффект. Характерным недостатком их является высокая инерционность (граничная рабочая частота fгр
Конструкция фототранзистора подобна обычному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с двумя стрелками, направленными к нему.
Светодиоды и фотодиоды часто используются в паре. При этом они помещаются в один корпус таким образом, чтобы светочувствительная площадка фотодиода располагалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», называются (рис. 3).
Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод
Входные и выходные цепи в таких приборах оказываются электрически никак не связанными, поскольку передача сигнала осуществляется через оптическое излучение.
Потапов Л. А.
Фотодиоды свойства, схемы включения, применение. Фотоэлектронные приборы. Принцип работы, основные параметры и характеристики фотодиода
Фоторезистор
ИМХО вымирающий вид. Последний раз я его видел еще в детстве. Обычно представляет собой такой металический кругляк со стеклянным окошком, в котором видна этакая . При освещении его сопротивление падает, правда незначительно, раза в три четыре.
Фототранзистор
Последнее время я на них натыкаюсь постоянно, неиссякаемый источник фототранзисторов — пятидюймовые дисководы. Последний раз я, по цене грязи, надыбал на радио барахолке штук 5 платок от дисковертов, там светотранзисторы стоят напротив дырок контроля записи и вращения дискеты. Еще сдвоенный фототранзистор (а может и фотодиод, как повезет) стоит в обычной шариковой мышке.
Выглядит как обычный светодиод, только корпус прозрачный. Впрочем, светодиоды тоже такие же бывают так что перепутать кто из них кто раз плюнуть. Но это не беда, партизан легко вычисляется обычным мультиметром. Достаточно включить омметр между его эмитером и коллектором (базы у него нет) и посветить на него, как его сопротивление рухнет просто катастрофически — с десятков килоом до считанных ом. Тот который у меня в детекторе вращения шестерен в роботе меняет свое сопротивление с 100кОм до 30 Ом. Работает фототранзистор подобно обычному — держит ток, но в качестве управляющего воздействия тут не ток базы, а световой поток.
Фотодиод
Внешне ничем не отличается от фототранзистора или обычного светодиода в прозрачном корпусе. Также порой встречаются древние фотодиоды в металлических корпусах. Обычно это совковые девайсы, марки ФД-чето там. Такой металлический цилиндрик с окошком в торце и торчащими из задницы проводками.
В отличии от фототранзистора, может работать в двух разных режимах. В фотогальваническом и фотодиодном.
В первом, фотогальваническом, варианте фотодиод ведет себя как солнечная батарейка, то есть посветил на него — на выводах возникло слабенькое напряжение. Его можно усилить и применить =). Но куда проще работать в фотодиодном режиме. Тут мы подаем на фотодиод обратное напряжение. Поскольку он хоть и фото, но диод, то в обратную сторону напряжение не пойдет, а значит его сопротивление будет близко к обрыву, а вот если его засветить, то диод начнет очень сильно подтравливать и сопротивление его будет резко падать. Причем резко, на пару порядков, как у фототранзистора.
Спектр
Кроме типа прибора у него еще есть рабочий спектр. Например, фотодетектор заточенный на инфракрасный спектр (а их большинство) практически не реагирует на свет зеленого или синего светодиода. Плохо реагирует на лампу дневного света, но хорошо реагирует на лампу накаливания и красный светодиод, а уж про инфракрасный и говорить нечего. Так что не удивляйся если у тебя фотодатчик плохо реагирует на свет, возможно ты со спектром ошибся.
Подключение
Теперь пора показать как это подключить к микроконтроллеру. С фоторезистором все понятно, тут заморочек нет никаких — берешь и подцепляешь как по схеме.
С фотодиодом и фототранзистором сложней. Надо определить где у него анод/катод или эмитер/коллектор. Делается это просто. Берешь мультиметр, ставишь его в режим прозвонки диодов и цепляешься на свой датчик. Мультиметр в этом режиме показывает падение напряжения на диоде/транзисторе, а падение напряжения тут в основном зависит от его сопротивления U=I*R. Берешь и засвечиваешь датчик, следя за показаниями. Если число резко уменьшилось, значит ты угадал и красный провод у тебя на катоде/коллекторе, а черный на аноде/эмитторе. Если не изменилось, поменяй выводы местами. Если не помогло, то либо детектор дохлый, либо ты пытаешься добиться реакции от светодиода (кстати, светодиоды тоже могут служить детекторами света, но там не все так просто. Впрочем, когда будет время я покажу вам это технологическое извращение).
Теперь о работе схемы, тут все элементарно. В затемненном состоянии фотодиод не пропускает ток в обратном направлении, фототранзистор тоже закрыт, а у фоторезистора сопротивление весьма высоко. Сопротивление входа близко к бесконечности, а значит на входе будет полное напряжение питания aka логическая единица. Стоит теперь засветить диод/транзистор/резистор как сопротивление резко падает, а вывод оказывается посажен наглухо на землю, ну или весьма близко к земле. Во всяком случае сопротивление будет куда ниже 10кОмного резистора, а значит напряжение резко пропадет и будет где то на уровне логического нуля. В AVR и PIC можно даже резистор не ставить, вполне хватит внутренней подтяжки. Так что DDRx=0 PORTx=1 и будет вам счастье. Ну а обратывать это как обычную кнопку. Единственная сложность может возникнуть с фоторезистором — у него не настолько резко падает сопротивление, поэтому до нуля может и не дотянуть. Но тут можно поиграть величиной подтягивающего резистора и сделать так, чтобы изменения сопротивления хватало на переход через логический уровень.
Если надо именно измерять освещенность, а не тупо ловить светло/темно, то тогда надо будет подцеплять все на АЦП и подтягивающий резистор делать переменным, для подстройки параметров.
Есть еще продвинутый тип фотодатчиков — TSOP там встроенный детектор частоты и усилитель, но о нем я напишу чуть попозже.
З.Ы.
У меня тут некоторые запарки, поэтому сайт будет сильно тупить с обновлением, думаю это до конца месяца. Дальше надеюсь вернуться в прежний ритм.
Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков.
Принцип работы фотодиодов
Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.
- При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
- Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
- Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
- Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
- Чем выше освещенность, тем больше обратный ток
Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.
Схема фотодиода
Режимы работы
Фотодиоды разделяют по режиму функционирования.
Режим фотогенератораОсуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.
Режим фотопреобразованияИсточник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.
Основные параметры
Свойства фотодиодов определяют следующие характеристики:
- Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
- Спектральная. Характеризует влияние длины световой волны на фототок
- Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
- Порог чувствительности – минимальный световой поток, на который реагирует диод
- Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
- Инерционность
Из чего состоит фотодиод?
Разновидности фотодиодов
P-i-nДля этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.
ЛавинныеЭтот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.
С барьером ШотткиСостоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.
С гетероструктуройОбразуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.
Области применения фотодиодов
- Оптоэлектронные интегральные микросхемы. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи.
- Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.
Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.
Другие материалы по теме
Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
Простой фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.
В сбалансированном состоянии, когда поток излучения стопроцентно отсутствует, концентрация носителей, рассредотачивание потенциала и энергетическая зонная диаграмма фотодиода стопроцентно соответствуют обыкновенной p-n-структуре.
При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в итоге поглощения фотонов с энергией, большей, чем ширина нелегальной зоны, в n-области появляются электронно-дырочные пары. Эти электроны и дырки именуют фотоносителями .
При диффузии фотоносителей в глубь n-области основная толика электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Тут фотоносители делятся электронным полем p–n-перехода, при этом дырки перебегают в p-область, а электроны не могут преодолеть поле перехода и накапливаются у границы p–n-перехода и n-области.
Таким образом, ток через p–n-переход обоснован дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей именуется фототоком .
Фотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область негативно по отношению к p-области. Возникающая разность потенциалов именуется фотоЭДС Eф. Генерируемый ток в фотодиоде – оборотный, он ориентирован от катода к аноду, при этом его величина тем больше, чем больше освещенность.
Фотодиоды могут работать в одном из 2-ух режимов – без наружного источника электронной энергии (режим фотогенератора) или с наружным источником электронной энергии (режим фотопреобразователя).
Фотодиоды, работающие в режиме фотогенератора, нередко используют в качестве источников питания, модифицирующих энергию солнечного излучения в электронную. Они именуются солнечными элементами и входят в состав солнечных батарей, применяемых на космических кораблях и спутниках.
КПД кремниевых солнечных частей составляет около 20 %, а у пленочных солнечных частей он может иметь существенно большее значение. Необходимыми техническими параметрами солнечных батарей являются дела их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти характеристики добиваются значений 200 Вт/кг и 1 кВт/м2, соответственно.
При работе фотодиода в фотопреобразовательном режиме источник питания Е врубается в цепь в запирающем направлении (рис. 1, а). Употребляются оборотные ветки ВАХ фотодиода при разных освещенностях (рис. 1,б).
Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а — схема включения, б — ВАХ фотодиода.
Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам скрещения ВАХ фотодиода и полосы нагрузки, соответственной сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 — 30 мкА, у кремниевых 1 — 3 мкА.
Если в фотодиодах использовать обратимый электронный пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а как следует, и чувствительность существенно вырастут.
Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).
Лавинные фотодиоды являются быстродействующими фотоэлектрическими устройствами, их частотный спектр может достигать 10 ГГц. Недочетом лавинных фотодиодов является более высочайший уровень шумов по сопоставлению с обыкновенными фотодиодами.
Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) свойства фоторезистора.
Не считая фотодиодов, используются фоторезисторы (рис 2), фототранзисторы и фототиристоры, в которых используется внутренний фотоэффект. Соответствующим недостатком их является высочайшая инерционность (граничная рабочая частота fгр
Конструкция фототранзистора подобна обыкновенному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с 2-мя стрелками, направленными к нему.
Светодиоды и фотодиоды нередко употребляются в паре. При всем этом они помещаются в один корпус таким образом, чтоб светочувствительная площадка фотодиода размещалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», именуются оптронами (рис. 3).
Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод
Входные и выходные цепи в таких устройствах оказываются электрически никак не связанными, так как передача сигнала осуществляется через оптическое излучение.
ФОТОЭЛЕКТРОННЫЕ ПРИБОРЫ — электровакуумные или полупроводниковые приборы,преобразующие эл—магн. сигналы оптич. диапазона в электрические токи, напряжения или преобразующие изображения в невидимых (напр., ИК) лучах в видимые изображения. Ф. п. предназначены для преобразования, накопления, хранения, передачи и воспроизведения информации (включая информацию в виде изображения объекта). Действие Ф. п. основано на использовании фотоэффектов: внешнего (фотоэлектронной эмиссии), внутреннего (фотопроводимости) или вентильного. К Ф. п. относятся разл. фотоэлементы, фотоэлектронные умножители, фоторезисторы , фотодиоды, электронно-оптич. преобразователи, усилители яркости изображения, а также передающие электронно-лучевые трубки.
Фотоэлектронными называются приборы, преобразующие энергию оптического излучения в электрическую. В спектре длин волн оптического излучения для фотоэлектронных приборов в основном используются ультрафиолетовые излучения (диапазон длин волн λ=10-400 нм), видимое (λ=0,38-0,76 мкм) и инфракрасное (λ=0,74-1 мкм).
Работа фотоэлектронных приборов основана на явлениях внутреннего и внешнего фотоэффектов. Внутренний фотоэффект, используемый в основном в полупроводниковых фотоэлектронных приборах, заключается в том, что под действием лучистой энергии оптического излучения электроны получают дополнительную энергию для их освобождения от межатомных связей и перехода из валентной зоны в зону проводимости, в результате чего электропроводимость полупроводника существенно возрастает. При этом, согласно теории Эйнштейна, энергия световых квантов (фотонов) оптического излучения должна превышать ширину запрещенной зоны полупроводника. (36)
Следовательно, фотоэффект возможен только при воздействии на полупроводник излучения с длиной волны λ ф, меньшей некоторого граничного значения, называемого «красной границей».
(37)
где λ ф – длинноволновая граница спектральной чувствительности материала, мкм;
с – скорость света в вакууме;
– постоянная Планка;
– ширина запрещенной зоны (рис.3), ограниченная краями энергетических зон ЗП, ВЗ, в электрон-вольтах (эВ).
Следует отметить, что возможности фотоэлектронных приборов могут расширяться при воздействии энергии разнообразных источников излучения. Такими источниками могут быть как источники фотонов (солнечная энергия, гамма-излучение, рентгеновское излучение), так и источники частиц с высокой энергией (электронная пушка, бета-излучение, альфа-частицы, протоны и др.) .
Фотодиод – это двухэлектродный полупроводниковый диод, в котором в результате внутреннего фотоэффекта в p-n переходе возникает односторонняя фотопроводимость при воздействии на него оптического излучения. Конструктивно он представляет собой кристалл с p-n переходом, причём световой поток при освещении прибора направляется перпендикулярно плоскости p-n перехода (рис.36). Различают два режима работы фотодиода: фотогенераторный (или, в различных источниках – запирающий, фотогальванический, фотовольтаический, вентильный) – без внешнего источника питания, и фотодиодный (иногда фотопреобразовательный) – с внешним источником.
Рис. 36. Структура фотодиода
Принцип работы фотодиода
Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Ф — поток электромагнитного излучения; Е — источник постоянного тока; Rн — нагрузка.
При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и емкостью p-n-перехода C p-n
Фотодиод может работать в двух режимах:
§ фотогальванический — без внешнего напряжения
§ фотодиодный — с внешним обратным напряжением
Особенности:
§ простота технологии изготовления и структур
§ сочетание высокой фоточувствительности и быстродействия
§ малое сопротивление базы
§ малая инерционность
Параметры и характеристики фотодиодов
Параметры:
чувствительность
отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприемника, к световому потоку или потоку излучения, его вызвавшему.
Si ,Φv =I ΦΦv ; Si ,Ev =I ΦEv — токовая чувствительность по световому потоку
Su ,Φe =U ΦΦe ; Si ,Ee =U ΦEe — вольтаическая чувствительность по энергетическому потоку
помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.
Характеристики:
вольт-амперная характеристика (ВАХ)
зависимость выходного напряжения от входного тока. U Φ=f (I Φ)
спектральные характеристики
зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещенной зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
световые характеристики
зависимость фототока от освещенности, соответствует прямой пропорциональности фототока от освещенности. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
постоянная времени
это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.
темновое сопротивление
сопротивление фотодиода в отсутствие освещения.
Инерционность
Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7,а, а его условное графическое изображение – на рис. 6.7,б.
Рис. 6.7. Структура (а) и обозначение (б) фотодиода
Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.
Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак>0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n-перехода).
Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).
Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.
Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n–перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n–перехода носители тока движутся к электродам (дырки – к электроду слоя p, электроны – к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.
Рис. 6.8. Вольт-амперные характеристики фотодиода
На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).
В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.
Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).
Рис. 6.9 Рис. 6.10
Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107–1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).
Фотодиод активно используется в современных электронных устройствах, из названия становится понятно, что прибор из себя представляет конструкцию с применением полупроводника, так давайте рассмотрим, что такое фотодиод Фотодиод — это полупроводниковый диод, который обладает свойством односторонней проводимости при воздействия на него оптического излучения. Фотодиод представляет собой полупроводниковый кристалл, обычно с электронно — дырочным переходом (пн). Он снабжен двумя металлическими выводами и вмонтированный в пластмассовый или же в металлический корпус.
Различают два режима работы фотодиода.
1) фотодиодный — когда во внешней цепи фотодиода содержится источник постоянного тока, который создает на переходе обратное смещение и вентильный, когда такой источник отсутствует. В фотодиодном режиме фотодиод, как и фоторезистор используют для управления током. Фототок фотодиода сильным образом зависит от интенсивности падающего излучения и не зависит от напряжения смещения.
2) Вентильный режим — когда фотодиод, как и фотоэлемент, используют в качестве генератора ЭДС.
Основные параметры фотодиода — порог чувствительности, уровень шумов, область спектральной чувствительности лежит в пределах от 0,3 до 15 мкм (микрометров), инерционность — время восстановления фототока, Существуют также фотодиоды с прямой структурой.Фотодиод является составным элементом во многих опто- электронных устройствах. фотодиоды и фотоприемники широко применяются в опронных парах, приемниках излучения видео — аудио сигналов. Широко применяется для принятия сигнала с лазерных диодов в CD и DVD дисководах.
Сигнал от лазерного диода, который в себе содержит кодированную информацию, сначала попадает на фотодиод, который в данных устройствах имеет сложную конструкцию, затем после расшифровки информация поступает на центральный процессор, где после обработки превращается в аудио или видеосигнал. На таком принципе работают все современные дисководы. Так же фотодиоды применяются в различных охранных устройствах, в инфракрасных датчиках движения и присутствия. Очередной обзор для начинающего радиолюбителя подошел к концу, удачи в мире радиоэлектроники — АКА.
Теория для начинающих
Обсудить статью ФОТОДИОДЫ
radioskot.ru
Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков. Принцип работы фотодиодовОснова действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.
Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле. Схема фотодиодаРежимы работыФотодиоды разделяют по режиму функционирования. Режим фотогенератораОсуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы. Режим фотопреобразованияИсточник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности. Основные параметрыСвойства фотодиодов определяют следующие характеристики:
Из чего состоит фотодиод?Разновидности фотодиодовP-i-nДля этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие. ЛавинныеЭтот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов. С барьером ШотткиСостоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов. С гетероструктуройОбразуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления. Области применения фотодиодов
Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии. |
www.radioelementy.ru
Фотодиоды
Фотодиодом принято называть полупроводниковый прибор с одним p-n переходом, вольтамперная характеристика которого зависит от воздействующего на него света.
Условное графическое обозначение, структура и внешний вид фотодиода представлены на рис. 17.6.
Рис. 17.6. Фотодиод:
а — условное графическое обозначение; б – структура; в – внешний вид
Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р-n переход. В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычному p-n переходу (см. рис. 1.3).
При воздействии излучения в направлении, перпендикулярном плоскости p-n перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями. При диффузии фотоносителей вглубь n области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p-n перехода. Здесь фотоносители разделяются электрическим полем p-n перехода, причем дырки переходят в p область, а электроны не могут преодолеть поле перехода, и скапливаются у границы p-n перехода и n области. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, ток через p-n переход обусловлен дрейфом небазовых носителей – дырок. Дрейфовый ток фотоносителей принято называть фототоком.
Фотоносители – дырки заряжают p область положительно относительно n области, а фотоносители – электроны – n область отрицательно по отношению к p области. Возникающая разность потенциалов принято называть фото ЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.
Фотодиоды могут работать в одном из двух режимов – с внешним источником электрической энергии (режим преобразователя), либо без внешнего источника электрической энергии (режим генератора).
При работе фотодиода в режиме преобразователя на него подают обратное напряжение (рис. 17.7, а). Используются обратные ветви ВАХ фотодиода при различных уровнях освещенности Ф, Ф1, Ф2 (рис. 17.7, б).
Учитывая зависимость отуровня освещённости изменяется обратный ток фотодиода, и на резисторе нагрузки изменяется напряжение. В системах железнодорожной автоматики по такой схеме включён германиевый фотодатчик в приборах обнаружения нагретой буксы (германий чувствителен к ИК лучам, а кремний – к видимому свету).
Рис. 17.7. Работа фотодиода в режиме фотопреобразователя:
а – схема включения; б – вольтамперные характеристики
Фотодиоды, работающие в режиме генератора, используют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Οʜᴎ называются солнечными элементами и входят в состав солнечных батарей. Выходное напряжение солнечной батареи сильно зависит от уровня освещённости. Чтобы получить стабильное напряжение в нагрузке, солнечную батарею используют совместно с аккумулятором. Схема солнечно-аккумуляторной батареи представлена на рис. 17.8.
Рис. 17.8. Принципиальная схема солнечно-аккумуляторной батареи
При максимальной освещённости солнечная батарея питает нагрузку и заряжает аккумулятор. Размещено на реф.рфВ темноте нагрузка питается только от аккумулятора, а чтобы аккумулятор не разряжался на солнечную батарею, в схеме установлен диод VD1.
КПД кремниевых солнечных элементов составляет около 20 %. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2 соответственно.
Более подробные сведения о фотодиодах приведены в литературе .
Читайте также
Лекция 14 Фоторезисторами называют полупроводниковые приборы, принцип действия которых основан на изменение сопротивления полупроводника под действием светового излучения. На рис.7.31 показано устройство фоторезистора, состоящего из диэлектрической подложки 1,… [читать подробнее].
Фотодиодами называют полупроводниковые диоды, в которых осуществляется управление величиной обратного тока с помощью света. Фотодиод устроен так, что в нем обеспечивается доступ света к — переходу. В отсутствие светового потока в фотодиоде при обратном напряжении… [читать подробнее].
Рис. 9. Фотодиод в режиме фотосопротивления Фотодиод в режиме фотосопротивления и его ВАХ показаны на рис. 9. К фотодиоду от источника ЭДС прикладывается обратное напряжение, поэтому его переход закрыт. Если поток равен нулю, то обратный ток через фотодиод примерно… [читать подробнее].
Фотодиод – полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том что под действием энергии светового излучения в области p – n – перехода… [читать подробнее].
Фотодиодом называют фотогальванический приёмник с электронно-дырочным переходом, облучение которого светом вызывает увеличение силы обратного тока. Материалом полупроводника фотодиода обычно выступает кремний, сернистое серебро, сернистый таллий или арсенид галлия…. [читать подробнее].
Фотоприемники. В сканерах плоскостного и проекционного типов применяются приборы с зарядовой связью (ПЗС), а в барабанных — фотоэлектронные умножители и фотодиоды. Иногда бывает наоборот. Работа ПЗС основана на свойстве конденсаторов МОП-структуры (металл — оксид -… [читать подробнее].
Фотодиод имеет структуру обычного p-n- перехода. Обратный ток фотодиода зависит от уровня освещенности. Фотодиоды помещаются в металлический корпус с прозрачным окном. Условное графическое изображение фотодиода и его схема замещения приведены на рис.3.11. На рис.3.12… [читать подробнее].
referatwork.ru
Фотодиоды | Техника и Программы
Принцип действия фотодиода
Полупроводниковый фотодиод — это полупроводниковый диод обратный ток которого зависит от освещенности.
Обычно в качестве фотодиода используют полупроводниковые диоды с р-п переходом, который смещен в обратном направлении внешним источником питания. При поглощении квантов света в р-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к р-п переходу на расстоянии, не превь,’ ,ающем диффузионной длины, диффундируют в р-п переход и проходя* через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в р-п переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.
Характеристики фотодиодов
Свойства фотодиода можно охарактеризовать следующими характеристиками:
Вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока 1т от напряжения.
Световая характеристика фотодиода обусловлена зависимостью фототока от освещенности. При увеличении освещенности фототок возрастает.
Спектральная характеристика фотодиода — это зависимость фототока от длины волны падающего света на фотодиод. Она определяется для больших длин волн шириной запрещенной зоны, а при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
Постоянная времени — это время, в течение которого фото- ток фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.
Темновое сопротивление — сопротивление фотодиода в отсутствие освещения.
Интегральная чувствительность определяется формулой:
где 1ф — фототок, Ф — освещенность.
Инерционность
Существует три физических фактора, влияющих на инерционность:
1. Время диффузии или дрейфа неравновесных носителей через базу т;
2. Время пролета через р-n переход т,;
3. Время перезарядки барьерной емкости р-п перехода, характеризующееся постоянной времени RC6ap.
Толщина р-п перехода, зависящая от обратного напряжения и концентрации примесей в базе, обычно меньше 5 мкм, а значит, т, — 0,1 не. RC6ap определяется барьерной емкостью р-п перехода, зависящей от напряжения и сопротивления базы фотодиода при малом сопротивлении нагрузки во внешней цепи. Величина RC6ap обычно составляет нескольких наносекунд.
Расчет КПД фотодиода и мощности
КПД вычисляется по формуле:
где Росв — мощность освещенности; I — сила тока;
U — напряжение на фотодиоде.
Расчет мощности фотодиода иллюстрирует рис. 2.12 и таблица 2.1.
Рис. 2.12. Зависимость мощности фотодиода от напряжения и силы тока
Максимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.
Таблица 2.1. Зависимость мощности от КПД
Мощность освещенности, мВт | Сила тока, мА | Напряжение, В | |
Применение фотодиода в олтоэлектронике
Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах:
Оптоэлектронные интегральные микросхемы.
Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств, а именно: почти идеальная гальваническая развязка управляющих цепей от силовых при сохранении между ними сильной функциональной связи.
Многоэлементные фотоприемники.
Эти приборы (сканистор, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Оптоэлектрический «глаз» на основе фотодиода способен реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.
Число фоточувствительных ячеек в приборе является достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).
Как происходит восприятие образов?
Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. Тогда на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.
При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования. Оптроны.
Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической связи между ними, конструктивно объединенные и помещенные в один корпус. Между управляющей цепью (ток в которой мал, порядка нескольких мА), куда включен излучатель, и исполнительной, в которой работает фотоприемник, отсутствует электрическая (гальваническая) связь, а управляющая информация передается посредством светового излучения.
Это свойство оптоэлектронной пары (а в некоторых видах оптронов присутствует по несколько не связанных друг с другом даже оптически оптопар) оказалось незаменимым в тех электронных узлах, где нужно максимально устранить влияние выходных электрических цепей на входные. У всех дискретных элементов (транзисторов, тиристоров, микросхем, являющихся коммутационными сборками, или микросхем с выходом, позволяющим коммутировать нагрузку большой мощности) управляющие и исполнительные цепи электрически связаны друг с другом. Это часто недопустимо, если коммутируется высоковольтная нагрузка. К тому же, возникающая обратная связь неминуемо приводит к появлению дополнительных помех.
Конструктивно фотоприемник обычно крепится на дне корпуса, а излучатель — в верхней части. Зазор между излучателем и фотоприемником заполнен иммерсионным материалом — чаще всего эту роль выполняет полимерный оптический клей. Этот материал исполняет роль линзы, фокусирующей излучение на чувствительный слой фотоприемника. Иммерсионный материал снаружи покрыт специальной пленкой, отражающей световые лучи внутрь, чтобы препятствовать рассеянию излучения за пределы рабочей зоны фотоприемника.
Роль излучателей в оптронах, как правило, выполняют светодиоды на основе арсенид-галлия. Светочувствительные элементы в оптопарах могут представлять собой фотодиоды (оптопары серии АОД…), фототранзисторы, фототринисторы (оптопары серии АОУ.,.) и высокоинтегрированные схемы фотореле. В диодной оптопаре, например, в качестве фотоприемного элемента используется фотодиод на основе кремния, а излучателем служит инфракрасный излучающий диод. Максимум спектральной характеристики излучения диода приходится на длину волны около 1 мкм. Диодные оптопары применяются в фотодиодном и фотогенераторном режимах.
Транзисторные оптроны (серия АОТ…) имеют некоторые преимущества относительно диодных. Коллекторным током биполярного транзистора управляют как оптически (воздействуя на светодиод), так и электрически по базовой цепи (в данном случае работа фототранзистора при отсутствии излучения управляющего светодиода оптрона практически не отличается от работы обыкновенного кремниевого транзистора). У полевого транзистора управление осуществляется через цепь затвора.
Кроме того, фототранзистор может работать в ключевом и усилительных режимах, а фотодиод — только в ключевом. Оптроны с составными-транзисторами (например, АОТ1ЮБ), имеют наибольший коэффициент усиления (как и обычный узел на составном транзисторе), могут коммутировать напряжение и ток достаточно больших величин и по данным параметрам уступают только тиристорным оптронам и оптоэлектронным реле типа КР293КП2 — КР293КП4, которые приспособлены для коммутации высоковольтных и сильноточных цепей. Сегодня в розничной продаже появились новые оптоэлектронные реле серий К449 и К294. Серия К449 позволяет коммутировать напряжение до 400 В при токе до 150 мА. Такие микросхемы в четырехвы- водном компактном корпусе DIP-4 приходят на смену маломощным электромагнитным реле и имеют по сравнению с реле массу преимуществ (бесшумность работы, надежность, долговечность, отсутствие механических контактов, широкий диапазон напряжения срабатывания). Кроме того, их доступная цена объясняется тем, что нет необходимости использовать драгметаллы (в реле ими покрываются коммутирующие контакты).
В резисторных оптронах (например, ОЭП-1) и-злучателями являются электрические минилампы накаливания, помещенные также в один корпус.
Графическим обозначениям оптронов по ГОСТу присвоен условный код — латинская буква U, после которой следует порядковый номер прибора в схеме.
В главе 3 книги описаны приборы и устройства, иллюстрирующие применение оптронов.
Применение фотоприемников
Любое оптоэлектронное устройство содержит фотоприемный блок. И в большинстве современных оптоэлектронных устройств фотодиод составляет основу фотоприемника.
В сопоставлении с другими, более сложными фотоприемниками, они обладают наибольшей стабильностью температурных характеристик и лучшими эксплуатационными свойствами.
Основной недостаток, на который обычно указывают, — отсутствие усиления. Но он достаточно условен. Почти в каждом оп- тоэлектронном устройстве фотоприемник работает на ту или иную согласующую электронную схему. И введение усилительного каскада в нее значительно проще и целесообразнее, чем придание фотоприемнику несвойственных ему функций усиления.
Высокая информационная емкость оптического канала, связанная с тем, что частота световых колебаний (около 1015 Гц) в 103…104 раз выше, чем в освоенном радиотехническом диапазоне. Малое значение длины волны световых колебаний обеспечивает высокую достижимую плотность записи информации в оптических запоминающих устройствах (до 108 бит/см2).
Острая направленность (кучность) светового излучения, обусловленная тем, что угловая расходимость луча пропорциональна длине волны и может быть меньше одной минуты. Это позволяет концентрированно и с малыми потерями передавать электрическую энергию в любую область пространства.
Возможность двойной — временной и пространственной — модуляции светового луча. Так как источник и приемник в опто- электронике не связаны друг с другом электрически, а связь между ними осуществляется только посредством светового луча (электрически нейтральных фотонов), то они не влияют друг на друга. И поэтому в оптоэлектронном приборе поток информации передается лишь в одном направлении — от источника к приемнику. Каналы, по которым распространяется оптическое излучение, не воздействуют друг на друга и практически не чувствительны к электромагнитным помехам, что определяет их высокую помехозащищенность.
Важная особенность фотодиодов — высокое быстродействие. Они могут работать на частотах до нескольких МГц. обычно изготовляют из германия или кремния.
Фотодиод является потенциально широкополосным приемником. Этим обуславливается его повсеместное применение и популярность.
ИК спектра
Инфракрасный излучающий диод (ИК диод) представляет собой полупроводниковый диод, который при протекании через него прямого тока излучает электромагнитную энергию в инфракрасной области спектра.
В отличие от видимого человеческим глазом спектра излучения (какое, например, производит обычный светоизлучающий диод на основе фосфида галлия) ИК излучение не может быть воспринято человеческим глазом, а регистрируется с помощью специальных приборов, чувствительных к данному спектру излучения. Среди популярных фотоприемных диодов ИК спектра можно отметить фоточувствительные приборы МДК-1, ФД263-01 и подобные им.
Спектральные характеристики ИК излучающих диодов имеют выраженный максимум в интервале волн 0,87…0,96 мкм. Эффективность излучения и КПД данных приборов выше, чем у светоизлучающих диодов.
На основе ИК диодов (которые в электронных конструкциях занимают важное место передатчиков импульсов ИК спектра) конструируются волоконно-оптические линии (выгодно отличающиеся своим быстродействием и помехозащищенностью), многоплановые электронные бытовые узлы и, конечно же, электронные узлы охраны. В этом есть свое преимущество, т.к. ИК луч невидим человеческим глазом и в некоторых случаях (при условии использования нескольких разнонаправленных ИК лучей) определить визуально наличие самого охранного устройства невозможно до его перехода в режим «тревога»). Опыты работы в сфере производства и обслуживания систем охраны на основе ИК излучателей позволяют все же дать некоторую рекомендацию по определению рабочего состояния ИК излучателей.
Если близко всмотреться в излучающую поверхность ИК диода (например, АЛ147А, АЛ156А), когда на него подан сигнал управления, то можно заметить слабое красное свечение. Световой спектр этого свечения близок к цвету глаз животных альбиносов (крыс, хомяков и т.д.). В темноте ИК свечение еще более выражено. Необходимо заметить, что длительное время всматриваться в излучающий ИК световую энергию прибор нежелательно с медицинской точки зрения.
Кроме систем охраны, ИК излучающие диоды в настоящее время находят применение в брелоках сигнализации для автомобилей, различного рода беспроводных передатчиках сигналов на расстояние. Например, подключив к передатчику модулированный НЧ сигнал от усилителя, с помощью ИК приемника на некотором расстоянии (зависит от мощности излучения и рельефа местности) можно прослушивать звуковую информацию, телефонные переговоры также можно транслировать на расстояние. Этот способ сегодня менее эффективен, но все же является альтернативным вариантом домашнему радиотелефону. Самым популярным (в быту) применением ИК излучающих диодов являются пульты дистанционного управления различными бытовыми приборами.
Как может легко убедиться любой радиолюбитель, вскрыв крышку ПДУ, электронная схема этого прибора не сложна и может быть повторена без особых проблем. В радиолюбительских конструкциях, некоторые из которых описаны в третьей главе данной книги, электронные устройства с ИК излучающими и приемными приборами намного проще, чем промышленные устройства.
Параметры, определяющие статические режимы работы ИК диодов (прямое и обратное максимально допустимое напряжение, прямой ток и т.д.) сходны с параметрами фотодиодов. Основными специфическими параметрами, по которым их идентифицируют, для ИК диодов являются:
Мощность излучения — Ризл — поток излучения определенного спектрального состава, излучаемого диодом. Характеристикой диода, как источника ИК излучения, является ватт-амперная характеристика — зависимость мощности излучения в Вт (милливаттах) от прямого тока, протекающего через диод. Диаграмма направленности излучения диода показывает уменьшение мощности излучения в зависимости от угла между направлением излучения и оптической осью прибора. Современные ИК диоды различаются между имеющими остронаправленное излучение и рассеянное.
При конструировании электронных узлов следует учитывать, что дальность передачи ИК сигнала прямо зависит от угла наклона (совмещения передающей и приемной частей устройства) и мощности ИК диода. При взаимозаменах ИК диодов необходимо учитывать этот параметр мощности излучения. Некоторые справочные данные по отечественным ИК диодам приведены в табл. 2.2.
Данные по взаимозаменам зарубежных и отечественных приборов приведены в приложении. Сегодня наиболее популярными типами ИК диодов среди радиолюбителей считаются приборы модельного ряда АЛ 156 и АЛ147. Они оптимальны по универсальности применения и стоимости.
Импульсная мощность излучения — Ризл им — амплитуда потока излучения, измеряемая при заданном импульсе прямого тока через диод.
Ширина спектра излучения — интервал длин волн, в котором спектральная плотность мощности излучения составляет половину максимальной.
Максимально допустимый прямой импульсный ток 1пр им (ИК диоды в основном используются в импульсном режиме работы).
Таблица 2.2. Излучающие диоды инфракрасного спектра
Мощность излучения, мВт | Длина волны, мкм | Ширина спектра, мкм | Напряжение на приборе, В | Угол излучения, град | |
нет данных | нет данных | ||||
Время нарастания импульса излучения tHapизл — интервал времени, в течение которого мощность излучения диода нарастает с 10 до 100% от максимального значения.
Параметр времени спада импульса tcnM3J1 аналогичен предыдущему.
Скважность — Q — отношение периода импульсных колебаний к длительности импульса.
В основе предлагаемых к повторению электронных узлов (глава 3 данной книги) лежит принцип передачи и приема модулированного ИК сигнала. Но не только в таком виде можно использовать принцип работы ИК диода. Такие оптореле могут работать и в режиме реагирования на отражение лучей (фотоприемник размещается рядом с излучателем). Этот принцип воплощен в электронные узлы, реагирующие на приближение к объединенному приемо-передающему узлу какого-либо предмета или человека, что также может служить датчиком в системах охраны.
Вариантов применения ИК диодов и устройств на их основе бесконечно много и они ограничиваются только эффективностью творческого подхода радиолюбителя.
nauchebe.net
Фотодиод — это… Что такое Фотодиод?
Фотодиод ФД-10-100 активная площадь-10х10 мм² ФД1604 (активная площадь ячейки 1,2х4мм2 — 16шт) Обозначение на схемахФотодио́д — приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.
Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n- области, за счёт чего образуется заряд и ЭДС), называется солнечным элементом. Кроме p-n фотодиодов, существуют и p-i-n фотодиоды, в которых между слоями p- и n- находится слой нелегированного полупроводника i. p-n и p-i-n фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов и фототранзисторов.
Описание
Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Φ — поток электромагнитного излучения; Е — источник постоянного тока; RH — нагрузка.Принцип работы:
При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n
Фотодиод может работать в двух режимах:
- фотогальванический — без внешнего напряжения
- фотодиодный — с внешним обратным напряжением
Особенности:
- простота технологии изготовления и структуры
- сочетание высокой фоточувствительности и быстродействия
- малое сопротивление базы
- малая инерционность
Параметры и характеристики фотодиодов
Параметры:
- чувствительность отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприёмника, к световому потоку или потоку излучения, его вызвавшему. ; — токовая чувствительность по световому потоку; — вольтаическая чувствительность по энергетическому потоку
- шумы помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.
Характеристики:
- вольт-амперная характеристика (ВАХ) зависимость выходного напряжения от входного тока.
- спектральные характеристики зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещённой зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
- световые характеристики зависимость фототока от освещённости, соответствует прямой пропорциональности фототока от освещённости. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
- постоянная времени это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63 %) по отношению к установившемуся значению.
- темновое сопротивление сопротивление фотодиода в отсутствие освещения.
- инерционность
Классификация
- В p-i-n структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область, и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n переходов. Это дает выигрыш в быстродействии и чувствительности. Повышение быстродействия в p-i-n фотодиоде обусловлено тем, что процесс диффузии заменяется дрейфом электрических зарядов в сильном электрическом поле. Уже при Uобр≈0.1В p-i-n фотодиод имеет преимущество в быстродействии.
- Фотодиод Шоттки (фотодиод с барьером Шоттки) Структура металл-полупроводник. При образовании структуры часть электронов перейдет из металла в полупроводник p-типа.
- Лавинный фотодиод
- В структуре используется лавинный пробой. Он возникает тогда, когда энергия фотоносителей превышает энергию образования электронно-дырочных пар. Очень чувствительны. Для оценки существует коэффициент лавинного умножения: Для реализации лавинного умножения необходимо выполнить два условия: 1) Электрическое поле области пространственного заряда должно быть достаточно большим, чтобы на длине свободного пробега электрон набрал энергию, большую, чем ширина запрещённой зоны: 2) Ширина области пространственного заряда должна быть существенно больше, чем длина свободного пробега: Значение коэффициентов внутреннего усиления составляет M=10-100 в зависимости от типа фотодиодов.
- Фотодиод с гетероструктурой Гетеропереходом называют слой, возникающий на границе двух полупроводников с разной шириной запрещённой зоны. Один слой р+ играет роль «приёмного окна». Заряды генерируются в центральной области. За счет подбора полупроводников с различной шириной запрещённой зоны можно перекрыть весь диапазон длин волн. Недостаток — сложность изготовления.
Фотодиоды | Основы электроакустики
Фотодиоды представляют собой полупроводниковые диоды, в которых используется зависимость обратного тока от светового потока.
Такой режим работы называется фотодиодным (рис.6.9).
Вольт-амперные характеристики для фотодиодного режима приведены на рис.6.10.
Рис.6.9. Схема включения фотодиода для работы в фотодиодном режиме
Рис.6.10. Вольт-амперные характеристики фотодиода для фотодиодного режима
Если светового потока нет, то через фотодиод протекает начальный ток I0, который называют темновым. Под действием светового потока ток в диоде возрастает и характеристика располагается выше. Чем больше световой поток, тем больше ток. Повышение обратного напряжения на диоде незначительно увеличивает ток. При некотором напряжении возникает электрический пробой (штриховые участки характеристик). Энергетические характеристики фотодиода линейны и мало зависят от напряжения (рис.6.11).
Интегральная чувствительность фотодиода обычно составляет десятки миллиампер на люмен. Инерционность фотодиодов невелика, они могут работать на частотах до сотен мегагерц.Рис.6.11. Энергетические характеристики фотодиода
Фотодиоды, работающие в режиме фотогенератора (фотогальванический режим), служат для преобразования энергии излучения в электрическую энергию. По существу, они представляют собой фотодиоды, работающие без источника внешнего напряжения и создающие собственную ЭДС под действие излучения. Схема включения диода в фотогенераторном режиме и зависимость фото-ЭДС от светового потока приведены на рис.6.12, 6.13.
Рис.6.12. Схема включения диода в фотогенераторном режиме
Рис.6.13. Зависимость фото-ЭДС от светового потока
При облучении фотодиода на его выводах возникает разность потенциалов, которую называют фото-ЭДС. С увеличением светового потока фото-ЭДС растет по нелинейному закону, ее значение может достигать нескольких десятых долей вольта.
В настоящее время важное значение имеют кремниевые фотоэлементы, используемые в качестве солнечных преобразователей. Они преобразуют энергию солнечных лучей в электрическую, и ЭДС их достигает 0.5 В. Из таких элементов путем последовательного и параллельного соединения создаются солнечные батареи, которые обладают сравнительно высоким КПД (до 20%) и могут развивать мощность до нескольких киловатт. Пока энергия, вырабатываемая солнечными элементами, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана. Ожидается, что эта величина будет снижаться.
Солнечные батареи из кремниевых фотодиодов – это основные источники питания на искусственных спутниках Земли, космических кораблях, автоматических метеостанциях и др. В южных странах солнечные батареи повсеместно используются для генерации электроэнергии для бытовых нужд. Практическое применение солнечных батарей непрерывно расширяется.
Основные характеристики и параметры фотодиода. Как применять фоторезисторы, фотодиоды и фототранзисторы
Фотодиод — это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В дальнейшем мы будем говорить именно про обратный ток.
В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи.
Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.
Фотодиоды широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков — концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.
На электрических схемах фотодиод обозначается как диод, с двумя направленными к нему стрелочками. Стрелки символизируют падающее на фотодиод излучение. Не путайте с обозначением светодиода, у которого стрелки направлены от него.
Буквенное обозначение фотодиода может быть VD или BL (фотоэлемент).
Фотодиод работает в двух режимах: фотодиодном и фотогальваническом (фотовольтаическом, генераторном).
В фотодиодном режиме используется источник питания, который смещает фотодиод в обратном направлении. В этом случае через фотодиод течет обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.
В фотогальваническом режиме фотодиод работает без внешнего источника питания. В этом режиме он может работать в качестве датчики или в качестве элемента питания (солнечной батареи), так как под воздействием света на выводах фотодиода появляется напряжение, зависящее от потока излучения и нагрузки.
Чтобы получше разобраться с режимами работы фотодиода, нужно рассмотреть его вольтамперную характеристику.
График состоит из 4 областей, так называемых квадрантов. Фотодиодному режиму соответствует работа в 3-м квадранте.
При отсутствии излучения график представляет собой обратную ветвь вольтамперной характеристики обычного полупроводникового диода. Присутствует небольшой обратный ток, который называется тепловым (темновым) током обратно смещенного p-n перехода.
При наличии светового потока, сопротивление фотодиода уменьшается и обратный ток фотодиода возрастает. Чем больше света падает, тем больший обратный ток течет через фотодиод. Зависимость обратного тока фотодиода от светового потока в этом режиме линейная.
Из графика видно, что обратный ток фотодиода слабо зависит от обратного напряжения. Посмотрите на наклон графика от нулевого напряжения до напряжения пробоя, он маленький.
Фотогальваническому режиму соответствует работа фотодиода в 4-м квадранте. И здесь можно выделить два предельных случая:
Холостой ход (хх),
— короткое замыкание (кз).
Режим близкий к холостому ходу используется для получения энергии от фотодиода. То есть для применения фотодиода в качестве солнечной батареи. Конечно, от одного фотодиода будет мало проку, да и КПД у него невысокий. Но если соединить много элементов, то такой батареей можно запитать какое-нибудь мало-потребляющее устройство.
В режиме короткого замыкания, напряжение на фотодиоде близкое к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим используется для построения фотодатчиков.
В чем преимущество и недостатки фотодиодного и фотогальванического режимов работы? Фотодиодный режим обеспечивает большее быстродействие фотодиода, но в этом режиме всегда есть темновой ток. В фотогальваническом режиме темнового тока нет, но быстродействие датчиков будет ниже.
Простой фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.
В сбалансированном состоянии, когда поток излучения стопроцентно отсутствует, концентрация носителей, рассредотачивание потенциала и энергетическая зонная диаграмма фотодиода стопроцентно соответствуют обыкновенной p-n-структуре.
При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в итоге поглощения фотонов с энергией, большей, чем ширина нелегальной зоны, в n-области появляются электронно-дырочные пары. Эти электроны и дырки именуют фотоносителями .
При диффузии фотоносителей в глубь n-области основная толика электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Тут фотоносители делятся электронным полем p–n-перехода, при этом дырки перебегают в p-область, а электроны не могут преодолеть поле перехода и накапливаются у границы p–n-перехода и n-области.
Таким образом, ток через p–n-переход обоснован дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей именуется фототоком .
Фотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область негативно по отношению к p-области. Возникающая разность потенциалов именуется фотоЭДС Eф. Генерируемый ток в фотодиоде – оборотный, он ориентирован от катода к аноду, при этом его величина тем больше, чем больше освещенность.
Фотодиоды могут работать в одном из 2-ух режимов – без наружного источника электронной энергии (режим фотогенератора) или с наружным источником электронной энергии (режим фотопреобразователя).
Фотодиоды, работающие в режиме фотогенератора, нередко используют в качестве источников питания, модифицирующих энергию солнечного излучения в электронную. Они именуются солнечными элементами и входят в состав солнечных батарей, применяемых на космических кораблях и спутниках.
КПД кремниевых солнечных частей составляет около 20 %, а у пленочных солнечных частей он может иметь существенно большее значение. Необходимыми техническими параметрами солнечных батарей являются дела их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти характеристики добиваются значений 200 Вт/кг и 1 кВт/м2, соответственно.
При работе фотодиода в фотопреобразовательном режиме источник питания Е врубается в цепь в запирающем направлении (рис. 1, а). Употребляются оборотные ветки ВАХ фотодиода при разных освещенностях (рис. 1,б).
Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а — схема включения, б — ВАХ фотодиода.
Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам скрещения ВАХ фотодиода и полосы нагрузки, соответственной сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 — 30 мкА, у кремниевых 1 — 3 мкА.
Если в фотодиодах использовать обратимый электронный пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а как следует, и чувствительность существенно вырастут.
Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).
Лавинные фотодиоды являются быстродействующими фотоэлектрическими устройствами, их частотный спектр может достигать 10 ГГц. Недочетом лавинных фотодиодов является более высочайший уровень шумов по сопоставлению с обыкновенными фотодиодами.
Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) свойства фоторезистора.
Не считая фотодиодов, используются фоторезисторы (рис 2), фототранзисторы и фототиристоры, в которых используется внутренний фотоэффект. Соответствующим недостатком их является высочайшая инерционность (граничная рабочая частота fгр
Конструкция фототранзистора подобна обыкновенному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с 2-мя стрелками, направленными к нему.
Светодиоды и фотодиоды нередко употребляются в паре. При всем этом они помещаются в один корпус таким образом, чтоб светочувствительная площадка фотодиода размещалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», именуются оптронами (рис. 3).
Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод
Входные и выходные цепи в таких устройствах оказываются электрически никак не связанными, так как передача сигнала осуществляется через оптическое излучение.
Принцип действия фотодиода
Полупроводниковый фотодиод — это полупроводниковый диод обратный ток которого зависит от освещенности.
Обычно в качестве фотодиода используют полупроводниковые диоды с р-п переходом, который смещен в обратном направлении внешним источником питания. При поглощении квантов света в р-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к р-п переходу на расстоянии, не превь,’ ,ающем диффузионной длины, диффундируют в р-п переход и проходя* через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в р-п переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.
Характеристики фотодиодов
Свойства фотодиода можно охарактеризовать следующими характеристиками:
Вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока 1 т от напряжения.
Световая характеристика фотодиода обусловлена зависимостью фототока от освещенности. При увеличении освещенности фототок возрастает.
Спектральная характеристика фотодиода — это зависимость фототока от длины волны падающего света на фотодиод. Она определяется для больших длин волн шириной запрещенной зоны, а при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
Постоянная времени — это время, в течение которого фото- ток фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.
Темновое сопротивление — сопротивление фотодиода в отсутствие освещения.
Интегральная чувствительность определяется формулой:
где 1 ф — фототок, Ф — освещенность.
Инерционность
Существует три физических фактора, влияющих на инерционность:
1. Время диффузии или дрейфа неравновесных носителей через базу т;
2. Время пролета через р-n переход т,;
3. Время перезарядки барьерной емкости р-п перехода, характеризующееся постоянной времени RC 6 ap .
Толщина р-п перехода, зависящая от обратного напряжения и концентрации примесей в базе, обычно меньше 5 мкм, а значит, т, — 0,1 не. RC 6 ap определяется барьерной емкостью р-п перехода, зависящей от напряжения и сопротивления базы фотодиода при малом сопротивлении нагрузки во внешней цепи. Величина RC 6 ap обычно составляет нескольких наносекунд.
Расчет КПД фотодиода и мощности
КПД вычисляется по формуле:
где Р осв — мощность освещенности; I — сила тока;
U — напряжение на фотодиоде.
Расчет мощности фотодиода иллюстрирует рис. 2.12 и таблица 2.1.
Рис. 2.12. Зависимость мощности фотодиода от напряжения и силы тока
Максимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.
Таблица 2.1. Зависимость мощности от КПД
Мощность освещенности, мВт | Сила тока, мА | Напряжение, В | КПД, % |
Применение фотодиода в олтоэлектронике
Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах:
Оптоэлектронные интегральные микросхемы.
Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств, а именно: почти идеальная гальваническая развязка управляющих цепей от силовых при сохранении между ними сильной функциональной связи.
Многоэлементные фотоприемники.
Эти приборы (сканистор, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Оптоэлектрический «глаз» на основе фотодиода способен реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.
Число фоточувствительных ячеек в приборе является достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).
Как происходит восприятие образов?
Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. Тогда на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.
При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования. Оптроны.
Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической связи между ними, конструктивно объединенные и помещенные в один корпус. Между управляющей цепью (ток в которой мал, порядка нескольких мА), куда включен излучатель, и исполнительной, в которой работает фотоприемник, отсутствует электрическая (гальваническая) связь, а управляющая информация передается посредством светового излучения.
Это свойство оптоэлектронной пары (а в некоторых видах оптронов присутствует по несколько не связанных друг с другом даже оптически оптопар) оказалось незаменимым в тех электронных узлах, где нужно максимально устранить влияние выходных электрических цепей на входные. У всех дискретных элементов (транзисторов, тиристоров, микросхем, являющихся коммутационными сборками, или микросхем с выходом, позволяющим коммутировать нагрузку большой мощности) управляющие и исполнительные цепи электрически связаны друг с другом. Это часто недопустимо, если коммутируется высоковольтная нагрузка. К тому же, возникающая обратная связь неминуемо приводит к появлению дополнительных помех.
Конструктивно фотоприемник обычно крепится на дне корпуса, а излучатель — в верхней части. Зазор между излучателем и фотоприемником заполнен иммерсионным материалом — чаще всего эту роль выполняет полимерный оптический клей. Этот материал исполняет роль линзы, фокусирующей излучение на чувствительный слой фотоприемника. Иммерсионный материал снаружи покрыт специальной пленкой, отражающей световые лучи внутрь, чтобы препятствовать рассеянию излучения за пределы рабочей зоны фотоприемника.
Роль излучателей в оптронах, как правило, выполняют светодиоды на основе арсенид-галлия. Светочувствительные элементы в оптопарах могут представлять собой фотодиоды (оптопары серии АОД…), фототранзисторы, фототринисторы (оптопары серии АОУ.,.) и высокоинтегрированные схемы фотореле. В диодной оптопаре, например, в качестве фотоприемного элемента используется фотодиод на основе кремния, а излучателем служит инфракрасный излучающий диод. Максимум спектральной характеристики излучения диода приходится на длину волны около 1 мкм. Диодные оптопары применяются в фотодиодном и фотогенераторном режимах.
Транзисторные оптроны (серия АОТ…) имеют некоторые преимущества относительно диодных. Коллекторным током биполярного транзистора управляют как оптически (воздействуя на светодиод), так и электрически по базовой цепи (в данном случае работа фототранзистора при отсутствии излучения управляющего светодиода оптрона практически не отличается от работы обыкновенного кремниевого транзистора). У полевого транзистора управление осуществляется через цепь затвора.
Кроме того, фототранзистор может работать в ключевом и усилительных режимах, а фотодиод — только в ключевом. Оптроны с составными-транзисторами (например, АОТ1ЮБ), имеют наибольший коэффициент усиления (как и обычный узел на составном транзисторе), могут коммутировать напряжение и ток достаточно больших величин и по данным параметрам уступают только тиристорным оптронам и оптоэлектронным реле типа КР293КП2 — КР293КП4, которые приспособлены для коммутации высоковольтных и сильноточных цепей. Сегодня в розничной продаже появились новые оптоэлектронные реле серий К449 и К294. Серия К449 позволяет коммутировать напряжение до 400 В при токе до 150 мА. Такие микросхемы в четырехвы- водном компактном корпусе DIP-4 приходят на смену маломощным электромагнитным реле и имеют по сравнению с реле массу преимуществ (бесшумность работы, надежность, долговечность, отсутствие механических контактов, широкий диапазон напряжения срабатывания). Кроме того, их доступная цена объясняется тем, что нет необходимости использовать драгметаллы (в реле ими покрываются коммутирующие контакты).
В резисторных оптронах (например, ОЭП-1) и-злучателями являются электрические минилампы накаливания, помещенные также в один корпус.
Графическим обозначениям оптронов по ГОСТу присвоен условный код — латинская буква U, после которой следует порядковый номер прибора в схеме.
В главе 3 книги описаны приборы и устройства, иллюстрирующие применение оптронов.
Применение фотоприемников
Любое оптоэлектронное устройство содержит фотоприемный блок. И в большинстве современных оптоэлектронных устройств фотодиод составляет основу фотоприемника.
В сопоставлении с другими, более сложными фотоприемниками, они обладают наибольшей стабильностью температурных характеристик и лучшими эксплуатационными свойствами.
Основной недостаток, на который обычно указывают, — отсутствие усиления. Но он достаточно условен. Почти в каждом оп- тоэлектронном устройстве фотоприемник работает на ту или иную согласующую электронную схему. И введение усилительного каскада в нее значительно проще и целесообразнее, чем придание фотоприемнику несвойственных ему функций усиления.
Высокая информационная емкость оптического канала, связанная с тем, что частота световых колебаний (около 10 15 Гц) в 10 3 …10 4 раз выше, чем в освоенном радиотехническом диапазоне. Малое значение длины волны световых колебаний обеспечивает высокую достижимую плотность записи информации в оптических запоминающих устройствах (до 10 8 бит/см 2).
Острая направленность (кучность) светового излучения, обусловленная тем, что угловая расходимость луча пропорциональна длине волны и может быть меньше одной минуты. Это позволяет концентрированно и с малыми потерями передавать электрическую энергию в любую область пространства.
Возможность двойной — временной и пространственной — модуляции светового луча. Так как источник и приемник в опто- электронике не связаны друг с другом электрически, а связь между ними осуществляется только посредством светового луча (электрически нейтральных фотонов), то они не влияют друг на друга. И поэтому в оптоэлектронном приборе поток информации передается лишь в одном направлении — от источника к приемнику. Каналы, по которым распространяется оптическое излучение, не воздействуют друг на друга и практически не чувствительны к электромагнитным помехам, что определяет их высокую помехозащищенность.
Важная особенность фотодиодов — высокое быстродействие. Они могут работать на частотах до нескольких МГц. обычно изготовляют из германия или кремния.
Фотодиод является потенциально широкополосным приемником. Этим обуславливается его повсеместное применение и популярность.
ИК спектра
Инфракрасный излучающий диод (ИК диод) представляет собой полупроводниковый диод, который при протекании через него прямого тока излучает электромагнитную энергию в инфракрасной области спектра.
В отличие от видимого человеческим глазом спектра излучения (какое, например, производит обычный светоизлучающий диод на основе фосфида галлия) ИК излучение не может быть воспринято человеческим глазом, а регистрируется с помощью специальных приборов, чувствительных к данному спектру излучения. Среди популярных фотоприемных диодов ИК спектра можно отметить фоточувствительные приборы МДК-1, ФД263-01 и подобные им.
Спектральные характеристики ИК излучающих диодов имеют выраженный максимум в интервале волн 0,87…0,96 мкм. Эффективность излучения и КПД данных приборов выше, чем у светоизлучающих диодов.
На основе ИК диодов (которые в электронных конструкциях занимают важное место передатчиков импульсов ИК спектра) конструируются волоконно-оптические линии (выгодно отличающиеся своим быстродействием и помехозащищенностью), многоплановые электронные бытовые узлы и, конечно же, электронные узлы охраны. В этом есть свое преимущество, т.к. ИК луч невидим человеческим глазом и в некоторых случаях (при условии использования нескольких разнонаправленных ИК лучей) определить визуально наличие самого охранного устройства невозможно до его перехода в режим «тревога»). Опыты работы в сфере производства и обслуживания систем охраны на основе ИК излучателей позволяют все же дать некоторую рекомендацию по определению рабочего состояния ИК излучателей.
Если близко всмотреться в излучающую поверхность ИК диода (например, АЛ147А, АЛ156А), когда на него подан сигнал управления, то можно заметить слабое красное свечение. Световой спектр этого свечения близок к цвету глаз животных альбиносов (крыс, хомяков и т.д.). В темноте ИК свечение еще более выражено. Необходимо заметить, что длительное время всматриваться в излучающий ИК световую энергию прибор нежелательно с медицинской точки зрения.
Кроме систем охраны, ИК излучающие диоды в настоящее время находят применение в брелоках сигнализации для автомобилей, различного рода беспроводных передатчиках сигналов на расстояние. Например, подключив к передатчику модулированный НЧ сигнал от усилителя, с помощью ИК приемника на некотором расстоянии (зависит от мощности излучения и рельефа местности) можно прослушивать звуковую информацию, телефонные переговоры также можно транслировать на расстояние. Этот способ сегодня менее эффективен, но все же является альтернативным вариантом домашнему радиотелефону. Самым популярным (в быту) применением ИК излучающих диодов являются пульты дистанционного управления различными бытовыми приборами.
Как может легко убедиться любой радиолюбитель, вскрыв крышку ПДУ, электронная схема этого прибора не сложна и может быть повторена без особых проблем. В радиолюбительских конструкциях, некоторые из которых описаны в третьей главе данной книги, электронные устройства с ИК излучающими и приемными приборами намного проще, чем промышленные устройства.
Параметры, определяющие статические режимы работы ИК диодов (прямое и обратное максимально допустимое напряжение, прямой ток и т.д.) сходны с параметрами фотодиодов. Основными специфическими параметрами, по которым их идентифицируют, для ИК диодов являются:
Мощность излучения — Р изл — поток излучения определенного спектрального состава, излучаемого диодом. Характеристикой диода, как источника ИК излучения, является ватт-амперная характеристика — зависимость мощности излучения в Вт (милливаттах) от прямого тока, протекающего через диод. Диаграмма направленности излучения диода показывает уменьшение мощности излучения в зависимости от угла между направлением излучения и оптической осью прибора. Современные ИК диоды различаются между имеющими остронаправленное излучение и рассеянное.
При конструировании электронных узлов следует учитывать, что дальность передачи ИК сигнала прямо зависит от угла наклона (совмещения передающей и приемной частей устройства) и мощности ИК диода. При взаимозаменах ИК диодов необходимо учитывать этот параметр мощности излучения. Некоторые справочные данные по отечественным ИК диодам приведены в табл. 2.2.
Данные по взаимозаменам зарубежных и отечественных приборов приведены в приложении. Сегодня наиболее популярными типами ИК диодов среди радиолюбителей считаются приборы модельного ряда АЛ 156 и АЛ147. Они оптимальны по универсальности применения и стоимости.
Импульсная мощность излучения — Р изл им — амплитуда потока излучения, измеряемая при заданном импульсе прямого тока через диод.
Ширина спектра излучения — интервал длин волн, в котором спектральная плотность мощности излучения составляет половину максимальной.
Максимально допустимый прямой импульсный ток 1 пр им (ИК диоды в основном используются в импульсном режиме работы).
Таблица 2.2. Излучающие диоды инфракрасного спектра
ИК диод | Мощность излучения, мВт | Длина волны, мкм | Ширина спектра, мкм | Напряжение на приборе, В | Угол излучения, град |
нет данных | нет данных | ||||
Время нарастания импульса излучения t Hap изл — интервал времени, в течение которого мощность излучения диода нарастает с 10 до 100% от максимального значения.
Параметр времени спада импульса t cnM 3 J 1 аналогичен предыдущему.
Скважность — Q — отношение периода импульсных колебаний к длительности импульса.
В основе предлагаемых к повторению электронных узлов (глава 3 данной книги) лежит принцип передачи и приема модулированного ИК сигнала. Но не только в таком виде можно использовать принцип работы ИК диода. Такие оптореле могут работать и в режиме реагирования на отражение лучей (фотоприемник размещается рядом с излучателем). Этот принцип воплощен в электронные узлы, реагирующие на приближение к объединенному приемо-передающему узлу какого-либо предмета или человека, что также может служить датчиком в системах охраны.
Вариантов применения ИК диодов и устройств на их основе бесконечно много и они ограничиваются только эффективностью творческого подхода радиолюбителя.
В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях.
Принцип действия фотодиода
Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.
Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.
Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля. В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок. Данный вид тока с участием фотоносителей получил название фототока.
Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС. Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии. В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.
Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве . Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.
В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.
Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами. Они размещаются в общем корпусе, при этом, расположение светочувствительной площадки фотодиода наиболее оптимально к излучающей светодиодной площадке. Данные приборы получили название оптронов. Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.
Характеристики фотодиодов
Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2.
Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения.
Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость. Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением. Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения.
Датчики бывают совершенно разными. Они отличаются по принципу действию, логике своей работы и физическим явлениям и величинам на которые они способны реагировать. Датчики света используются не только в аппаратуре автоматического управления освещением, они используются в огромном количестве устройств, начиная от блоков питания, заканчивая сигнализациями и охранными системами.
Основные виды фотоэлектронных приборов. Общие сведения
Фотоприёмник в общем смысле — это электронный прибор, который реагирует на изменение светового потока падающего на его чувствительную часть. Они могут отличаться, как по своей структуре, так и принципу работы. Давайте их рассмотрим.
Фоторезисторы — изменяют сопротивление при освещении
Фоторезистор — фотоприбор изменяющий проводимость (сопротивление) в зависимости от количества света падающего на его поверхность. Чем интенсивнее чувствительной области, тем меньше сопротивления. Вот его схематическое изображение.
Состоит он из двух металлических электродов, между которыми присутствует полупроводниковый материал. Когда световой поток попадает на полупроводник, в нём высвобождаются носители заряда, это способствует прохождению тока между металлическими электродами.
Энергия светового потока тратится на преодоление электронами запрещенной зоны и их переходу в зону проводимости. В качестве полупроводника у фоторезисторов используют материалы типа: Сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От типа этого материала зависит спектральная характеристика фоторезистора
Интересно:
Спектральная характеристика содержит информацию о том, к каким длинам волн (цвету) светового потока наиболее чувствителен фоторезистор. Для некоторых экземпляров приходится тщательно подбирать излучатель света соответствующей длины волны, для достижения наибольшей чувствительности и эффективности работы.
Фоторезистор не предназначен для точного измерения освещенности, а, скорее, для определения наличия света, по его показаниям можно определить светлее или темнее стала окружающая среда. Вольт-амперная характеристика фоторезистора выглядит следующим образом.
На ней изображена зависимость тока от напряжения при различных величинах светового потока: Ф — темнота, а Ф3 — это яркий свет. Она линейна. Еще одна важная характеристика — это чувствительность, она измеряется в мА(мкА)/(Лм*В). Что отражает, сколько тока протекает через резистор, при определенном световом потоке и приложенном напряжении.
Темновое сопротивление — это активное сопротивление при полном отсутствии освещения, обозначается Rт, а характеристика Rт/Rсв — это кратность изменения сопротивления от состояния фоторезистора в полном отсутствии освещения к максимально освещенному состоянию и минимально возможному сопротивлению соответственно.(-5) с. Это не позволяет использовать его там, где нужно высокое быстродействие.
Фотодиод — преобразует свет в электрический заряд
Фотодиод — элемент, который преобразует свет, попадающий на чувствительную зону, в электрический заряд. Это происходит потому что при облучении в p-n переходе протекают различные процессы связанные с движением носителей заряда.
Если на фоторезисторе изменялась проводимость из-за движения носителей заряда в полупроводнике, то здесь происходит образование заряда на границе p-n перехода. Он может работать в режиме фотопреобразователя и фотогенератора.
По структуре он такой же, как и обычный диод, но на его корпусе есть окно для прохождения света. Внешне они бывают в различных исполнениях.
Фотодиоды с черным корпусом воспринимают только ИК-излучение. Черное покрытие — это что-то похожее на тонировку. Фильтрует ИК-спектр, чтобы исключить возможность срабатывания на излучения других спектров.
У фотодиодов, как и у фоторезисторов есть граничная частота, только здесь она на порядки больше и достигает 10 МГц, что позволяет обеспечить неплохое быстродействие. P-i-N фотодиоды обладают большим быстродействием — 100МГц-1ГГц, как и диоды на основании барьера Шоттки. Лавинные диоды имеют граничную частоту в порядка 1-10 ГГц.
В режиме фотопреобразователя такой диод работает как ключ управляемый светом, для этого его подключают в цепь в прямом смещении. То есть, катодом к точке с более положительным потенциалом (к плюсу), а анодом к более отрицательному (к минусу).
Когда диод не освещается светом — в цепи протекает только обратный темновой ток Iобрт (единицы и десятки мкА), а когда диод освещен к нему добавляется фототок, который зависит только от степени освещенности (десятки мА). Чем больше света — тем больше ток.
Фототок Iф равен:
где Sинт — интегральная чувствительность, Ф — световой поток.
Типовая схема включения фотодиода в режиме фотопреобразователя. Обратите внимание на то, как он подключен — в обратном направлении по отношению к источнику питания.
Другой режим — генератор. При попадании света на фотодиод на его выводах образуется напряжение, при этом токи короткого замыкания в таком режиме равняются десятки ампер. Это напоминает , но имеют малую мощность.
Фототранзисторы — открываются от количества падающего света
Фототранзистор — это по своей сути у которого вместо вывода базы есть в корпусе окошко для попадания туда света. Принцип работы и причины этого эффекта аналогичны с предыдущими приборами. Биполярные транзисторы управляются количеством тока протекающего через базу, а фототранзисторы по аналогии управляются количеством света.
Иногда на УГО еще дополнительно изображается вывод базы. Вообще напряжения на фототранзистор подают также как и на обычный, а второй вариант включения — с плавающей базой, когда базовый вывод остаётся незадействованным.
В схему включают фототранзисторы подобным образом.
Или меняют местами транзистор и резистор, смотря, что конкретно вам нужно. При отсутствии света через транзистор протекает темновой ток, который образуется из тока базы, который вы можете задать сами.
Задав необходимый ток базы, вы можете выставить чувствительность фототранзистора подбором его базового резистора. Таким образом, можно улавливать даже самый тусклый свет.
В советское время радиолюбители делали фототранзисторы своими руками — делали окошко для света, спилив обычному транзистору часть корпуса. Для этого отлично подходят транзисторы типа МП14-МП42.
Из вольтамперной характеристики видна зависимость фототока от освещения, при этом он практически не зависит от напряжения коллектор-эмиттер.
Кроме биполярных фототранзисторов существуют и полевые. Биполярные работают на частотах 10-100 кГц, то полевые более чувствительны. Их чувствительность достигает нескольких Ампер на Люмен, и более «быстрые» — до 100 мГц. У полевых транзисторов есть интересная особенность, при максимальных значениях светового потока напряжение на затворе почти не влияет на ток стока.
Области применения фотоэлектронных приборов
В первую очередь следует рассмотреть более привычные варианты их применения, например автоматическое включение света.
Схема, изображенная выше — это простейший прибор для включения и выключения нагрузки при определенной освещенности. Фотодиод ФД320 При попадании на него света открывается и на R1 падает определенное напряжение, когда его величина достаточна для открытия транзистора VT1 — он открывается, и открывает еще один транзистор — VT2. Эти два транзистора — это двухкаскадный усилитель тока, необходим для запитки катушки реле K1.
Диод VD2 — нужен для гашения ЭДС-самоиндукции, которое образуется при переключениях катушки. На подводящий контакт реле, верхний по схеме, подключается один из проводов от нагрузки (для переменного тока — фаза или ноль).
У нас есть нормально замкнутый и разомкнутый контакты, они нужны либо для выбора включаемой цепи, либо для выбора включить или отключить нагрузку от сети при достижении необходимой освещенности. Потенциометр R1 нужен для подстройки прибора для срабатывания при нужном количестве света. Чем больше сопротивление — тем меньше света нужно для включения схемы.
Вариации этой схемы используют в большинстве подобных приборов, при необходимости добавляя определенный набор функций.
Кроме включения нагрузки по освещенности подобные фотоприемники используются в различных системах контроля, например на турникетах метро часто используют фоторезисторы для определения несанкционированного (зайцем) пересечения турникета.
В типографии при обрыве полосы бумаги свет попадает на фотоприемник и тем самым даёт сигнал оператору об этом. Излучатель стоит по одну сторону от бумаги, а фотоприемник с обратной стороны. Когда бумага рвётся, свет от излучателя достигает фотоприемника.
В некоторых видах сигнализации используются в качестве датчиков входа в помещение излучатель и фотоприемник, при этом, чтобы излучение не были видны используют ИК-приборы.
Касаемо ИК-спектра, нельзя упомянуть о приемнике телевизора, на который поступают сигналы от ИК-светодиода в пульте дистанционного управления, когда вы переключаете каналы. Специальным образом кодируется информация и телевизор понимает, что вам нужно.
Информация таким образом ранее передавалась через ИК-порты мобильных телефонов. Скорость передачи ограничена, как последовательным способом передачи, так и принципом работы самого прибора.
В компьютерных мышках также используется технология связанная с фотоэлектронными приборами.
Применение для передачи сигналов в электронных схемах
Оптоэлектронные приборы — это приборы которые объединяют в одном корпусе излучатель и фотоприемник, типа описанных выше. Они нужны для связи двух контуров электрической цепи.
Это нужно для гальванической развязки, быстрой передачи сигнала, а также для соединения цепей постоянного и переменного тока, как в случае управления симистором в цепи 220 В 5 В сигналом с микроконтроллера.
Они имеют условно-графическое обозначение, которое содержит информацию о типе используемых внутри оптопары элементов.
Рассмотрим пару примеров использования таких приборов.
Если вы проектируете тиристорный или симисторный преобразователь вы столкнетесь с проблемой. Во-первых, если переход у управляющего вывода пробьет — попадет высокий потенциал и последний выйдет из строя. Для этого разработаны специальные драйверы, с элементом, который называется оптосимистор, например MOC3041.
В импульсных стабилизированных блоках питания необходима обратная связь. Если исключить гальваническую развязку в этой цепи, тогда в случае выхода из строя каких-то компонентов в цепи ОС, на выходной цепи возникнет высокий потенциал и подключенная аппаратура выйдет из строя, я не говорю о том, что и вас может ударить током.
В конкретном примере вы видите реализацию такой ОС из выходной цепи в обмотку обратной связи (управляющую) транзистора с помощью оптопары с порядковым обозначением U1.
Выводы
Фото- и оптоэлектроника это очень важные разделы в электроники, которые значительно улучшили качество аппаратуры, её стоимость и надёжность. С помощью оптопары можно исключить использование развязывающего трансформатора в таких цепях, что уменьшает массогабаритные показатели. Кроме того некоторые устройства просто невозможно реализовать без таких элементов.
Фотодиод — qaz.wiki
Различные типы фотодиодовФотодиод или фотодиод представляет собой полупроводниковый диод , который преобразует зажигать — в видимой, ИК или УФ — диапазоне, или, при использовании сцинтилляторов , рентгеновские лучи — при -переходе или пин — переходе через внутренний эффект фотографии в электрический токе обращенных или — в зависимости от схемы подключения — предлагает резистор, зависящий от освещения. Он используется, среди прочего, для преобразования света в электрическое напряжение или электрический ток или для получения информации, передаваемой светом.
строительство
Крупным планом фотодиодаФотодиоды изготавливаются из полупроводниковых элементов, таких как кремний , германий, или из сложных полупроводников, таких как арсенид индия-галлия . В следующей таблице показаны некоторые распространенные материалы для различных типов фотодиодов и диапазон используемой оптической чувствительности:
Для сравнения, диапазон видимого света находится на длинах волн от 380 до 780 нм.
Из-за большей ширины запрещенной зоны кремния фотодиоды из кремния обладают сравнительно низким уровнем шума . Фотодиоды для применений в среднем инфракрасном диапазоне на основе теллурида кадмия необходимо охлаждать, чтобы минимизировать шум, например, с помощью жидкого азота , поскольку теплового движения при комнатной температуре достаточно для подъема электронов из валентной зоны в зону проводимости . В результате темновой ток этих фотодиодов при комнатной температуре настолько велик, что в нем теряется измеряемый сигнал. Вторая причина охлаждения — это наложение инфракрасного излучения на сам корпус датчика.
Фотодиоды для измерения освещенности имеют фильтр дневного света , который ограничивает чувствительность в красном и инфракрасном спектральном диапазоне и настраивает кривую чувствительности в соответствии с кривой чувствительности глаза . Напротив, фотодиоды для приема инфракрасных сигналов (как и в пультах дистанционного управления ) имеют фильтр, блокирующий дневной свет . Например, они заключены в темную синтетическую смолу и, таким образом, защищены от помех от видимого света.
Типичный кремниевый фотодиод состоит из слаболегированного основного материала с более сильным легированием на тыльной стороне, который образует один контакт (катод). Светочувствительная область определяется областью с тонким легированным p-слоем на лицевой стороне. Этот слой достаточно тонкий, чтобы большая часть света могла достигать pn перехода. Электрический контакт в основном находится на краю. На поверхности есть защитный слой как пассивирующий, так и антибликовый слой . Часто перед фотодиодом также имеется прозрачное защитное окно или оно находится в прозрачном заливочном материале.
PIN-фотодиоды имеют внутренний слой между слоями p- и n-типа, как правило, имеют более высокое допустимое напряжение в закрытом состоянии и пониженную емкость перехода C S on. Это увеличивает пропускную способность . В отличие от фоторезисторов (LDR), фотодиоды имеют гораздо более короткое время отклика. Типичные частоты отсечки для фотодиодов составляют около 10 МГц, для контактных фотодиодов — более 1 ГГц.
Боковой диод представляет собой особый тип фотодиода, например , для определения положения лазерного луча.
функция
Чувствительность кремниевого фотодиода в зависимости от длины волны падающего светаЕсли фотоны с достаточной энергией попадают в материал диода, генерируются носители заряда ( электронно-дырочные пары ). В зоне пространственного заряда носители заряда быстро дрейфуют против напряжения диффузии в аналогично легированные зоны и приводят к возникновению тока . Носители заряда, генерируемые вне зоны пространственного заряда, также могут вносить свой вклад в выработку электроэнергии. Но сначала они должны достичь зоны пространственного заряда путем диффузии. Часть теряется из- за рекомбинации, и есть небольшая задержка. Если соединения не подключены внешне, генерируется измеряемое напряжение той же полярности, что и напряжение потока (насыщение). Если соединения электрически соединены друг с другом или если они находятся под напряжением, противоположным направлению диода, протекает фототок, который пропорционален падению света.
Чтобы вызвать этот эффект, фотоны должны иметь более высокую энергию, чем энергия запрещенной зоны (в случае кремния, например, более 1,1 эВ ).
Фототок на много порядков линейен по отношению к падению света, если не происходит насыщения. В идеальном случае каждый квант света, энергия которого превышает характерную ширину запрещенной зоны полупроводника, вносит свой вклад в ток. Однако на практике это значение меньше и называется квантовым выходом . Время отклика очень короткое при подходящей проводке; это может быть до долей наносекунды .
Если напряжение подается извне в направлении, обратном диоду, небольшой ток будет течь даже в темноте. Это называется темновым током ( I D ). Он экспоненциально зависит от температуры фотодиода. Характеристики темнового тока — важная качественная характеристика фотодиодов.
Фототранзистор является сочетание фотодиода и биполярного транзистора и создается позволяя свету падать на базовом коллекторного перехода , который функционирует как фотодиод. Фототок больше на коэффициент усиления тока транзистора, частота среза ниже. Точно так же существуют полевые транзисторы на фото переходах и фототиристоры .
Режимы работы
Характеристическая кривая фотодиодаФотодиоды могут использоваться в следующих трех режимах работы:
- Работа в прямом направлении как фотоэлемент или как солнечный элемент . В основном используется для выработки энергии.
- Работа при квазикоротком замыкании, для измерения яркости
- Работа в полосе заграждения для увеличения частоты среза
Работа как фотоэлемент
Фотодиод подает электрическую энергию. В данном случае это фотоэлемент; в случае крупносерийного производства фотодиод называется солнечным элементом . Без нагрузки он находится в состоянии насыщения, и напряжение стремится достичь предельного значения (напряжение холостого хода U L ), которое мало зависит от интенсивности света. По мере увеличения нагрузки ( R L становится меньше) напряжение падает, и ток, в свою очередь, стремится к предельному значению (ток короткого замыкания I K ). На изгибе этой характеристики находится регулировка мощности — рабочая точка (точка максимальной мощности ), необходимая для фотоэлектрических систем . В этом режиме работы фотодиод относительно медленный и не подходит для обнаружения быстрых сигналов. Этот тип схемы используется для измерения яркости, например Б. используется в осветительных приборах ( люксметрах , люксметрах ).
В отличие от фоторезистора (LDR) внешний источник напряжения не требуется. В датчиках CCD большая часть поверхности датчика заполнена фотодиодами, каждый из которых заряжает конденсатор, подключенный параллельно. Если накопленный заряд уносится вовремя до того, как будет достигнуто напряжение насыщения фотодиода, заряд пропорционален яркости. Частота среза низкая.
Работа при квазикоротком замыкании
Если фотодиод работает в режиме короткого замыкания ( U = 0), он подает ток в обратном направлении ( I ≤ 0), который линейно зависит от освещенности на многие порядки величины . Для этого его часто подключают к трансимпедансному усилителю — схеме, которая генерирует пропорциональный сигнал напряжения из фототока и создает виртуальное короткое замыкание на соединениях диодов. Это позволяет очень точно измерять уровни освещенности. Поскольку напряжение на фотодиоде не изменяется, емкость не передается. Это обеспечивает высокие частоты среза.
Работа в запретной зоне
Если на фотодиод подается напряжение в обратном направлении ( U ≤ 0), обратный ток течет линейно в зависимости от света, то есть обратный ток. то есть при облучении он также проводит в обратном направлении ( I ≤ 0). Этот режим работы обычно выбирают для фотодиодов в интегрированных КМОП-сенсорах . Для запретной зоны также характерны следующие эффекты:
- Емкость перехода C S уменьшается с приложенным напряжением, так что время отклика уменьшается с увеличением напряжения. Это позволяет достичь высоких частот среза.
- Лавинный эффект может иметь место, что увеличивает фототок через лавинные эффекты . ( См. Также лавинный фотодиод )
- Остаточный ток (темновой ток I D ) увеличивается с приложенным напряжением и температурой; он накладывает фототок и существенно определяет шум при низких уровнях облучения.
- Поскольку дифференциальное сопротивление очень велико, ток практически не зависит от рабочего напряжения.
Характерные значения и области применения
Примерные характеристические значения используются для описания фотодиода, в скобках значения кремниевого фотодиода BP 104:
- Допустимое обратное напряжение (20 вольт)
- Спектральная светочувствительность (55 нА / лк или при 850 нм 0,62 А / Вт )
- Спектральный диапазон светочувствительности (от 400 до 1100 нм)
Приложения включают в себя экспонометры с селеновым фотодиодом большой площади, который напрямую питает измерительный механизм с подвижной катушкой , датчики в цифровых камерах и приемные элементы для оптических волокон .
Всемирная исследовательская деятельность сосредоточена, в частности, на разработке недорогих солнечных элементов, улучшенных датчиков изображения CCD и CMOS, а также более быстрых и более чувствительных фотодиодов для волоконно-оптических сетей связи . Хари Сингх Налва: Фотодетекторы и волоконная оптика . Gulf Professional Publishing, 2001, ISBN 978-0-12-513908-3 , стр. 314 (стр. 314).
| Оптоэлектронные компоненты | Светодиоды, Лазерные Диоды и Детекторы
Кремниевый фотодиод — это твердотельное устройство, преобразующее падающий свет в электрический ток. Он состоит из неглубокого диффузного p-n-перехода, обычно имеющего конфигурацию p-on-n, хотя доступны устройства «P-типа» (n-on-p) для повышения чувствительности в области 1 мкм. Современные кремниевые фотодиоды обычно изготавливаются методами планарной диффузии или ионной имплантации.
В плоской диффузионной конфигурации p-on-n, показанной на рисунке, край перехода выходит на верхнюю поверхность кремниевого кристалла, где он пассивирован термически выращенным оксидным слоем.
ОСНОВНАЯ ФИЗИКА ФОТОДИОДОВ
p-n-переход и обедненная область имеют большое значение для работы фотодиода. Эти фотодиодные области создаются, когда легирующая примесь p-типа с акцептором
примесей (избыточных дырок), контактирует с кремнием n-типа, легированным донорными примесями (избыточными электронами). Дырки и электроны, каждая из которых испытывает более низкий потенциал на противоположной стороне перехода, начинают течь через переход в свои соответствующие области с более низким потенциалом.Это движение заряда создает область истощения, которая имеет электрическое поле, противоположное низкопотенциальному полю и равное ему, и, следовательно, больше не течет ток.
Когда фотоны с энергией более 1,1 эВ (запрещенная зона кремния) падают на устройство, они поглощаются и образуются электронно-дырочные пары. Глубина поглощения фотонов зависит от их энергии; чем ниже энергия фотонов, тем глубже они поглощаются. Пары электрон-дырка расходятся, и когда неосновные носители достигают перехода, их уносит электрическое поле.Если две стороны электрически соединены, через соединение протекает внешний ток. Если созданные неосновные носители этой области рекомбинируют с объемными носителями этой области до достижения поля перехода, носители теряются и внешний ток не протекает.
Эквивалентная схема фотодиода показана на рисунке ниже. При освещении фотодиод ведет себя как источник тока. При работе без смещения этот ток распределяется между внутренним шунтирующим сопротивлением и внешним нагрузочным резистором.В этом режиме возникает напряжение, которое создает прямое смещение, что снижает его способность оставаться источником постоянного тока. При работе со смещением обратного напряжения фотодиод становится идеальным источником тока.
I D | = | Темновой ток, А |
I S | = | Ток светового сигнала (I S = RP O) |
R | = | Чувствительность фотодиода на длине волны излучения, Ампер / Вт |
P O | = | Мощность света, падающая на активную область фотодиода, Вт |
R SH | = | Сопротивление шунта, Ом |
I * N | = | Шумовой ток, А (действующее значение) |
С | = | Емкость перехода, Фарады |
R S | = | СерияСопротивление, Ом |
R L | = | Сопротивление нагрузки, Ом |
Кремниевые фотодиоды обычно чувствительны к свету в спектральном диапазоне от примерно 200 нм (ближний УФ) до примерно 1100 нм (ближний ИК).Чувствительность фотодатчика (R) измеряется в Амперах (A) фототока, генерируемого на ватт (Вт) мощности падающего света. Фактические уровни освещенности в большинстве приложений обычно варьируются от пиковатт до милливатт, что создает фототоки от пикоампера до миллиампер. Чувствительность в амперах / ватт варьируется в зависимости от длины волны падающего света с пиковыми значениями от 0,4 до 0,7 А / Вт. Отклик кремниевого фотодиода хорошо согласован с источниками света, излучающими от УФ до ближнего инфракрасного спектра, такими как гелий-неоновые лазеры; Светодиоды и лазерные диоды на основе GaAlAs и GaAs; и Nd: YAG-лазеры.Выберите детектор из серии IR, Blue / Visible или UV, чтобы получить кривую спектрального отклика, наилучшим образом соответствующую спектральной освещенности вашего источника света.
Отклик кремниевого фотодиода обычно линейен в пределах нескольких десятых процента от минимально обнаруживаемой мощности падающего света до нескольких милливатт. Линейность отклика улучшается с увеличением приложенного обратного смещения и уменьшением эффективного сопротивления нагрузки.
При нагревании кремниевого фотодиода его спектральная кривая (включая пик) смещается в сторону более длинных волн.И наоборот, охлаждение сдвигает отклик в сторону более коротких волн. Следующие значения типичны для температурной зависимости чувствительности для разных диапазонов длин волн: —
УФ до 500 нм: от -0,1% / ° C до -2% / ° C
от 500 до 700 нм: ~ 0% / ° C
~ 900 нм: 0,1% / ° C
1064 нм: от 0,75% / ° C до 0,9% / ° C
РЕЖИМЫ РАБОТЫ
Кремниевый фотодиод может работать в фотоэлектрическом режиме или в режиме фотопроводимости .В фотоэлектрическом режиме фотодиод несмещен; в то время как для режима фотопроводимости применяется внешнее обратное смещение. Выбор режима зависит от требований к скорости работы приложения и допустимого темнового тока. В фотоэлектрическом режиме темновой ток минимален. Фотодиоды демонстрируют самую быструю скорость переключения при работе в фотопроводящем режиме.
Фотодиоды и операционные усилители могут быть соединены таким образом, чтобы фотодиод работал в режиме тока короткого замыкания.Операционный усилитель работает как простой преобразователь тока в напряжение.
Понимание фотоэлектрических и фотопроводящих режимов работы фотодиода
Когда следует использовать фотоэлектрический и фотопроводящий режимы при реализации фотодиодов? В этой статье мы обсудим детали этих режимов и варианты дизайна, связанные с ними.
Это третья часть нашей серии «Введение в фотодиоды», в которой исследуются технические детали этих устройств, которые реагируют на высокочастотное электромагнитное излучение в различных формах:
- Природа света и pn переходов
- Физическая работа светочувствительных pn-переходов
- Понимание фотоэлектрических и фотопроводящих режимов работы фотодиода
- Характеристики различных фотодиодных технологий
- Принципы эквивалентной схемы фотодиода
Фототок
Основным выходным сигналом фотодиода является ток, который течет через устройство от катода к аноду и приблизительно линейно пропорционален освещенности.(Однако имейте в виду, что на величину фототока также влияет длина волны падающего света — подробнее об этом в следующей статье). Фототок преобразуется в напряжение для дальнейшей обработки сигнала последовательным резистором или током. -высоковольтный усилитель.
Детали отношения света к току фотодиода будут варьироваться в зависимости от условий смещения диода. В этом суть различия между фотоэлектрическим режимом и фотопроводящим режимом: в фотоэлектрической реализации схема, окружающая фотодиод, поддерживает анод и катод под одним и тем же потенциалом; другими словами, диод смещен в ноль.В светопроводящей реализации схема, окружающая фотодиод, создает обратное смещение, что означает, что катод находится под более высоким потенциалом, чем анод.
Темное течение
Основная неидеальность, влияющая на фотодиодные системы, называется темновым током, потому что это ток, который протекает через фотодиод даже при отсутствии освещения. Полный ток, протекающий через диод, складывается из темнового тока и фототока. Темновой ток ограничит способность системы точно измерять низкие интенсивности света, если эти интенсивности создают фототоки с величиной, аналогичной величине темнового тока.
Вредное влияние темнового тока можно уменьшить с помощью методов, которые вычитают ожидаемый темновой ток из тока диода. Однако темновой ток сопровождается темновым шумом, то есть формой дробового шума, наблюдаемой как случайные изменения величины темнового тока. Система не может измерять интенсивность света, фототок которой настолько мал, что теряется в темном шуме.
Фотоэлектрический режим в фотодиодных схемах
Следующая диаграмма является примером реализации фотоэлектрической системы.
Эта схема операционного усилителя называется трансимпедансным усилителем (TIA). Он разработан специально для преобразования токового сигнала в сигнал напряжения, причем отношение тока к напряжению определяется значением резистора обратной связи RF. Неинвертирующий входной терминал операционного усилителя заземлен, и если мы применим предположение о виртуальном коротком замыкании, мы знаем, что инвертирующий входной терминал всегда будет примерно на 0 В. Таким образом, катод и анод фотодиода поддерживаются при 0 В.
Я не уверен, что «фотоэлектрическая» — это полностью точное название этой реализации на базе операционного усилителя. Я не думаю, что фотодиод работает как солнечный элемент, который генерирует напряжение за счет фотоэлектрического эффекта. Но «фотоэлектрические» — это общепринятая терминология, нравится мне это или нет. Я думаю, что «режим нулевого смещения» лучше, потому что мы можем использовать один и тот же TIA с фотодиодом в фотоэлектрическом или фотопроводящем режиме, и, таким образом, отсутствие напряжения обратного смещения является наиболее заметным отличительным фактором.
Когда использовать фотоэлектрический режим
Преимущество фотоэлектрического режима — снижение темнового тока. В нормальном диоде приложение напряжения обратного смещения увеличивает обратный ток, потому что обратное смещение уменьшает ток диффузии, но не уменьшает ток дрейфа, а также из-за утечки.
То же самое происходит и с фотодиодом, но обратный ток называется темновым током. Более высокое напряжение обратного смещения приводит к большему темновому току, поэтому, используя операционный усилитель для удержания фотодиода примерно при нулевом смещении, мы практически исключаем темновой ток.Таким образом, фотоэлектрический режим хорош для приложений, которым необходимо максимизировать производительность при низкой освещенности.
Фотопроводящий режим в фотодиодных схемах
Чтобы переключить вышеупомянутую схему детектора в режим фотопроводимости, мы подключаем анод фотодиода к источнику отрицательного напряжения, а не к земле. Катод все еще находится под напряжением 0 В, но анод находится под некоторым напряжением ниже 0 В; таким образом, фотодиод имеет обратное смещение.
Когда использовать режим фотопроводимости
Приложение напряжения обратного смещения к pn переходу приводит к расширению обедненной области.Это имеет два положительных эффекта в контексте применения фотодиодов. Во-первых, более широкая область обеднения делает фотодиод более чувствительным, как объяснялось в предыдущей статье. Таким образом, режим фотопроводимости — хороший выбор, когда вы хотите получить больший выходной сигнал относительно освещенности.
Во-вторых, более широкая область обеднения снижает емкость перехода фотодиода. В схеме, показанной выше, наличие сопротивления обратной связи и емкости перехода (наряду с другими источниками емкости) ограничивает полосу пропускания системы с обратной связью.Как и в случае с базовым RC-фильтром нижних частот, уменьшение емкости увеличивает частоту среза. Таким образом, режим фотопроводимости обеспечивает более широкую полосу пропускания и предпочтителен, когда вам нужно максимизировать способность детектора реагировать на быстрые изменения освещенности.
Наконец, обратное смещение также расширяет линейный рабочий диапазон фотодиода. Если вас беспокоит точность измерений при высокой освещенности, вы можете использовать режим фотопроводимости, а затем выбрать напряжение обратного смещения в соответствии с требованиями вашей системы.Но помните, что большее обратное смещение также увеличивает темновой ток.
Hamamatsu — ведущий производитель фотоприемников. Этот график, взятый из их Руководства по кремниевым фотодиодам, дает вам представление о том, насколько вы можете расширить область линейного отклика фотодиода, увеличив напряжение обратного смещения.Обзор
На характеристики детекторной системы на основе фотодиода влияют условия смещения фотодиода.Фотопроводящий режим использует обратное смещение и обеспечивает более высокую чувствительность, более широкую полосу пропускания и улучшенную линейность. Фотоэлектрический режим использует нулевое смещение и минимизирует темновой ток.
В следующей статье серии «Введение в фотодиоды» рассматриваются несколько различных технологий полупроводниковых фотодиодов.
Страница не найдена — Анализируйте измеритель
Необходимые файлы cookie помогают сделать веб-сайт пригодным для использования, обеспечивая такие основные функции, как навигация по страницам и доступ к защищенным областям веб-сайта.Веб-сайт не может нормально работать без этих файлов cookie.
Мы не используем файлы cookie этого типа.
Маркетинговые файлы cookie используются для отслеживания посетителей на веб-сайтах.Намерение состоит в том, чтобы отображать рекламу, которая актуальна и интересна для отдельного пользователя и, следовательно, более ценна для издателей и сторонних рекламодателей.
Мы не используем файлы cookie этого типа.
Файлы cookie аналитики помогают владельцам веб-сайтов понять, как посетители взаимодействуют с веб-сайтами, путем анонимного сбора и передачи информации.
Мы не используем файлы cookie этого типа.
Файлы cookie предпочтений позволяют веб-сайту запоминать информацию, которая меняет его поведение или внешний вид, например, ваш предпочтительный язык или регион, в котором вы находитесь.
Мы не используем файлы cookie этого типа.
Неклассифицированные файлы cookie — это файлы cookie, которые мы классифицируем вместе с поставщиками отдельных файлов cookie.
Мы не используем файлы cookie этого типа.
Страница не найдена — Анализируйте измеритель
Необходимые файлы cookie помогают сделать веб-сайт пригодным для использования, обеспечивая такие основные функции, как навигация по страницам и доступ к защищенным областям веб-сайта.Веб-сайт не может нормально работать без этих файлов cookie.
Мы не используем файлы cookie этого типа.
Маркетинговые файлы cookie используются для отслеживания посетителей на веб-сайтах.Намерение состоит в том, чтобы отображать рекламу, которая актуальна и интересна для отдельного пользователя и, следовательно, более ценна для издателей и сторонних рекламодателей.
Мы не используем файлы cookie этого типа.
Файлы cookie аналитики помогают владельцам веб-сайтов понять, как посетители взаимодействуют с веб-сайтами, путем анонимного сбора и передачи информации.
Мы не используем файлы cookie этого типа.
Файлы cookie предпочтений позволяют веб-сайту запоминать информацию, которая меняет его поведение или внешний вид, например, ваш предпочтительный язык или регион, в котором вы находитесь.
Мы не используем файлы cookie этого типа.
Неклассифицированные файлы cookie — это файлы cookie, которые мы классифицируем вместе с поставщиками отдельных файлов cookie.
Мы не используем файлы cookie этого типа.
Страница не найдена — Анализируйте измеритель
Необходимые файлы cookie помогают сделать веб-сайт пригодным для использования, обеспечивая такие основные функции, как навигация по страницам и доступ к защищенным областям веб-сайта.Веб-сайт не может нормально работать без этих файлов cookie.
Мы не используем файлы cookie этого типа.
Маркетинговые файлы cookie используются для отслеживания посетителей на веб-сайтах.Намерение состоит в том, чтобы отображать рекламу, которая актуальна и интересна для отдельного пользователя и, следовательно, более ценна для издателей и сторонних рекламодателей.
Мы не используем файлы cookie этого типа.
Файлы cookie аналитики помогают владельцам веб-сайтов понять, как посетители взаимодействуют с веб-сайтами, путем анонимного сбора и передачи информации.
Мы не используем файлы cookie этого типа.
Файлы cookie предпочтений позволяют веб-сайту запоминать информацию, которая меняет его поведение или внешний вид, например, ваш предпочтительный язык или регион, в котором вы находитесь.
Мы не используем файлы cookie этого типа.
Неклассифицированные файлы cookie — это файлы cookie, которые мы классифицируем вместе с поставщиками отдельных файлов cookie.
Мы не используем файлы cookie этого типа.
режимов работы фотодиода
P365 12 Round Magazine Gun Deals, Руководство Flashforge Adventurer 3 Lite, Руководство по установке Nzxt Hue 2, Сапоги фолиевая кислота и витамин D, Паром из Андхери в Алибауг, Аппалачская тропа от Каратанка до Монсона, Плавательный бассейн Мокси-Фолс,Таким образом, фотоэлектрический режим хорош для приложений, которым необходимо максимизировать производительность при низкой освещенности.Основные режимы работы. Фотопроводящий режим: в этом режиме фотодиод используется в обратном режиме. Существует несколько различных типов фотодиодов: все они используют один и тот же базовый квантовый принцип, но реализация теории работы немного отличается для каждого типа. Кремниевый фотодиод может работать как в фотоэлектрическом, так и в фотопроводящем режиме. Фотодиод Режим работы. Методы работы Методы работы фотодиода включают три режима, в частности фотоэлектрический режим, режим фотопроводимости и режим лавинного диода.Фотодиодная технология Cite. Например, фотодиоды с PIN-кодом разработаны для увеличения скорости отклика. Фотодиоды бывают разных типов. В таком приложении, где используется меньшая частота и используется ультрафиолетовый свет, этот режим работы является предпочтительным. Автор говорит: «Я не уверен, что« фотоэлектрическая »- это полностью точное название этой реализации на базе операционного усилителя. Резисторы. Чем больше света, тем большее количество пар дырочных электронов образуется и тем больше протекает ток.Это держит истощенный слой … Лавинный диод срабатывает. При таком уровне обратного смещения они видят эффект усиления по току около 100 в результате лавинного эффекта. Доля. Больше электронных компонентов: наконец, обратное смещение также расширяет линейный рабочий диапазон фотодиода. Световую энергию можно рассматривать с точки зрения фотонов или световых пакетов. Для работы лавинных фотодиодов требуется большое обратное смещение. Таким образом образуется пара дырка-электрон. В фотоэлектрическом режиме фотодиод несмещен; в то время как для режима фотопроводимости применяется внешнее обратное смещение.Он также известен как фотоприемник или фотосенсор. Фотодиод — это тип фотодетектора, способный преобразовывать свет в ток или напряжение, в зависимости от режима работы. Применение o… Поскольку разные типы имеют разные характеристики, можно выбрать правильный тип, который наилучшим образом соответствует потребностям рассматриваемой цепи. Это создает свободный электрон и дырку (т.е. на характеристики детекторной системы на основе фотодиода влияют условия смещения фотодиода. Следовательно, можно построить солнечный элемент, используя большое количество отдельных фотодиодов.Это можно объяснить следующим образом: Фотоэлектрический режим: этот режим иначе называется режимом нулевого смещения, в котором освещенный фотодиод создает напряжение. Фотопроводящий режим — диод имеет обратное смещение, то есть p-тип подключается к катоду, а n-тип — к анодным клеммам батареи или источника постоянного тока. Режимы работы фотодиода. Фотодиод — это PN-переход или PIN-структура. Преимущество фотоэлектрического режима — снижение темнового тока. Это сохраняет слой истощения свободным от каких-либо носителей, и обычно ток не течет.В результате лавинный фотодиод намного более чувствителен. Фотодиодные характеристики Аппарат. Фотодиод работает в рабочем режиме. Выбор режима зависит от требований приложения к скорости и допустимого темнового тока (тока утечки). Однако, когда световой фотон попадает во внутреннюю область, он может ударить по атому в кристаллической решетке и выбить электрон. Он включает в себя оптические фильтры, внутренние линзы и дополнительно площади поверхности. Фотодиод состоит из двух основных компонентов.Лавинный процесс означает, что один электрон, произведенный светом в нелегированной области, умножается в несколько раз за счет лавинообразного процесса. Структуры фотодиода Чувствительность Чувствительность фотодиода можно определить как отношение генерируемого фототока (IPD) к мощности падающего света (P) на заданной длине волны: режимы работы (фотопроводящий или он работает в режиме обратного смещения и преобразует световую энергию. в электрическую энергию Фотодиод Шоттки При использовании в качестве фотодиода видно, что наибольший эффект наблюдается в обратном направлении.Выбор режима зависит от требований приложения к скорости и допустимого темнового тока (тока утечки). Фотодиод имеет два режима работы: фотоэлектрический режим (при работе с прямым смещением) и фотодиодный режим (при работе с обратным смещением). В этом суть различия между фотоэлектрическим режимом и фотопроводящим режимом: в фотоэлектрической реализации схема, окружающая фотодиод, поддерживает анод и катод под одним и тем же потенциалом; другими словами, диод смещен в ноль.”Но я должен спросить, почему бы и нет? Когда следует использовать фотогальванический и фотопроводящий режимы при установке фотодиодов? 4.3. Я помню, как работал в компании по производству зеркальных фотоаппаратов до наступления цифровой эры. Вернитесь в меню «Компоненты». В светопроводящей реализации схема, окружающая фотодиод, создает обратное смещение, что означает, что катод находится под более высоким потенциалом, чем анод. РЕЖИМЫ РАБОТЫ. Создайте его сейчас. Интересно то, что мы использовали логарифмический TIA (BJT в тракте обратной связи), необходимый для широкого динамического диапазона интенсивности света в пленочной камере.Конденсаторы В этом случае ток, протекающий в диоде, меняется … Фотодиод — это один из типов световых детекторов, используемых для преобразования света в ток или напряжение в зависимости от режима работы устройства. Фотоэлектрический) Фотодиод может работать в одном из двух режимов: фотопроводящий (обратное смещение) или фотоэлектрический (нулевое смещение). Одним из примеров оптоэлектронного переходного устройства является фотодиод, который предполагает, что он используется в качестве преобразователя электрического с оптическим или оптического с электрическим преобразователем.Когда фотон достаточной энергии попадает в диод, он возбуждает электрон, тем самым создавая подвижный электрон и положительно заряженную электронную дырку. Во-вторых, более широкая обедненная область снижает емкость перехода фотодиода. Это называется фотоэлектрическим эффектом и является основой солнечных элементов. Здесь заметны самые большие изменения, и нормальный прямой ток не маскирует эффекты, связанные со светом. Благодаря этому электроны становятся подвижными и оставляют после себя дырки. Для тех, которые используются для приложений передачи данных, скорость обычно очень важна, а диодные переходы меньше, чтобы уменьшить влияние емкости.Свет попадает в нелегированную область лавинного фотодиода и вызывает генерацию дырочных электронных пар. Разъемы Наш каталог охватывает все, от распространения до испытательного оборудования, компонентов и прочего. Фотодиоды похожи на обычные полупроводниковые диоды, за исключением того, что они могут быть открыты или упакованы с окном. Обнаружено, что величина тока пропорциональна количеству света, попадающего во внутреннюю область. Фототок преобразуется в напряжение для дальнейшей обработки сигнала последовательным резистором или усилителем тока к напряжению.Ток возникает, когда фотоны поглощаются фотодиодом. Реле Фотодиод — это тип фотодетектора, способный преобразовывать свет в ток или напряжение, в зависимости от режима работы. Поток фототока из устройства ограничен, и освещенный фотодиод генерирует напряжение. Фотопроводящий режим. Таким образом, увеличение обратного смещения увеличивает активную площадь фотодиода и усиливает то, что можно назвать фототоком.У вас нет учетной записи AAC? Он обеспечивает очень маленький динамический диапазон и нелинейную зависимость вырабатываемого напряжения 2. Следующая диаграмма представляет собой пример реализации фотоэлектрической системы. Фотодиод в основном работает в двух режимах: Фотоэлектрический режим: он также известен как режим с нулевым смещением, потому что на устройство не подается внешний обратный потенциал. Однако поток неосновных носителей будет иметь место, когда устройство подвергается воздействию света. Таким образом, режим фотопроводимости — хороший выбор, когда вы хотите получить больший выходной сигнал относительно освещенности.. Фотодиоды PN и PIN Это хорошее повторение того, как можно использовать фотодиоды. В этой статье мы рассмотрим преимущества двух типов реализации фотодиодов. Переход между режимами работы фотодиода и фотопроводника в органических фотодетекторах, управляемый рабочей функцией. Когда фотон с достаточной энергией попадает в область обеднения полупроводникового диода, он может ударить по атому с энергией, достаточной для высвобождения электрона из атомной структуры. Детали отношения света к току фотодиода будут варьироваться в зависимости от условий смещения диода.Фотодиод. Также обнаружено, что коэффициент усиления по току зависит не только от приложенного смещения, но и от тепловых флуктуаций. Фотодиод — это тип полупроводника, который преобразует поступающую световую энергию в электрическую. Фотодиод работает в трех различных режимах, а именно в фотоэлектрических … Различные типы фотодиодов разрабатываются на основе конкретного приложения. Таким образом, ток через диод изменится и возникнет фототок. Фотопроводящий В фотопроводящем режиме внешний… Этот режим обеспечивает очень малый уровень изменения тока и нелинейное поведение при производстве напряжения.Если вас беспокоит точность измерений при высокой освещенности, вы можете использовать режим фотопроводимости, а затем выбрать напряжение обратного смещения в соответствии с требованиями вашей системы. Обычно, когда свет освещает PN-переход, ковалентные связи ионизируются. Фотодиод работает при умеренном обратном смещении. При обратном смещении обедненный слой увеличивается и… Катод все еще находится под напряжением 0 В, но анод находится под некоторым напряжением ниже 0 В; таким образом, фотодиод имеет обратное смещение.Работа фотодиода Давайте разберемся, как работает фотодиод в фотоэлектрическом и фотопроводящем режимах, и определим разницу между ними. Это позволяет умножить каждую фотогенерируемую несущую за счет лавинного пробоя, что приводит к внутреннему усилению внутри фотодиода, что увеличивает эффективную чувствительность устройства. Он состоит из оптических фильтров, встроенных линз, а также поверхностей. Приложение напряжения обратного смещения к pn переходу приводит к расширению обедненной области.Когда фотоди … Тиристорный Фотодиод: Фотодиод — это один из видов легкого детектора, который обычно преобразует солнечный свет в ток или напряжение, поддерживаемое режимом работы устройства. Как будет объяснено ниже, существует три основных режима работы. 1. Режим разомкнутой цепи (OC) также известен как фотоэлектрический режим. Эти диоды имеют медленное время отклика при увеличении площади поверхности фотодиода. Но помните, что большее обратное смещение также увеличивает темновой ток. Они движутся в противоположных направлениях из-за приложенного напряжения смещения.ВЧ-разъемы Для кремния это обычно от 100 до 200 вольт. Фототранзистор Фотодиоды также можно использовать в условиях нулевого смещения в так называемом фотоэлектрическом режиме. Фотоэлектрический режим (режим без смещения) — Фотодиод действует как источник электрического тока. Когда срабатывает … PIN / PN фотодиод. Другие режимы работы Редактировать Лавинные фотодиоды имеют аналогичную структуру, что и обычные фотодиоды, но они работают с гораздо более высоким обратным смещением. Структура лавинного диода также более сложна.Мы просто назвали это «режимом короткого замыкания», потому что авторы неправильно назвали реализацию. Теория фотодиодов. 3. РЕЖИМЫ РАБОТЫ Кремниевый фотодиод может работать в фотоэлектрическом или фотопроводящем режиме. Я не думаю, что фотодиод работает как солнечный элемент, который генерирует напряжение за счет фотоэлектрического эффекта. Различие, которое вы проводите между «активными» и «пассивными» элементами, не соответствует обычному определению этих терминов. То же самое происходит и с фотодиодом, но обратный ток называется темновым током.Кристаллы кварца. Работа диодов при обратном смещении увеличивает чувствительность, поскольку расширяет обедненный слой, в котором происходит фотоэффект. Фотопроводящий: когда фотодиод работает в режиме обратного смещения, он называется фотопроводящим режимом. Принципиальные схемы трех различных основных режимов работы показаны на рисунке 3. Эта схема операционного усилителя называется трансимпедансным усилителем (TIA). Световую энергию можно рассматривать с точки зрения фотонов или световых пакетов. Фотоэлектрический режим 2. В фотоэлектрическом режиме используется нулевое смещение и минимизируется темновой ток.Учебное пособие по фотодиоду включает: Однако обнаружено, что он не такой линейный, и, кроме того, лавинный процесс означает, что результирующий сигнал намного шумнее, чем сигнал от p-i-n-диода. Переключатели Этот режим работы известен как режим нулевого смещения. Транзистор В этой статье обсуждается, что такое фотодиод, принцип работы фотодиода, режимы работы, функции, характеристики V-I и его приложения Slideshare использует файлы cookie для улучшения функциональности и производительности, а также для предоставления вам соответствующей рекламы.На рисунке ниже показано символическое изображение фотодиода. Индукторы При нулевом смещении свет, падающий на диод, вызывает ток через устройство, приводя к прямому смещению, которое, в свою очередь, индуцирует «темновой ток» в направлении, противоположном фототоку. Состояние цепи лавинного фотодиода. Это имеет два положительных эффекта в контексте применения фотодиодов. Клапаны / трубки Работа в квадранте IV (или вдоль оси I = 0) обычно называется фотоэлектрическим режимом, а не «солнечным элементом».Фотопроводящий режим — диод, используемый в этом режиме, чаще имеет обратное смещение, т.е. катод становится положительным по отношению к аноду. Фотодиоды могут работать в разных режимах: 1. После включения фотодиода поведение устройства зависит от наличия смещения, приложенного к фотодиоду, а также от полярности. Полевой транзистор Таким образом, режим фотопроводимости обеспечивает более широкую полосу пропускания и предпочтителен, когда вам нужно максимально увеличить способность детектора реагировать на быстрые изменения освещенности.Во-первых, более широкая область обеднения делает фотодиод более чувствительным, как объяснялось в предыдущей статье. Система не может измерять интенсивность света, фототок которой настолько мал, что теряется в темном шуме. Темное течение. Чувствительность Чувствительность фотодиода может быть определена как отношение генерируемого фототока (IPD) к мощности падающего света (P) на заданной длине волны: режимы работы (фотопроводящие или светопроводящие). достаточный входной ток смещения.Однако возможно, что электроны и дырки останутся свободными и будут унесены из обедненной области внешним полем. Я думаю, что «режим нулевого смещения» лучше, потому что мы можем использовать один и тот же TIA с фотодиодом в фотоэлектрическом или фотопроводящем режиме, и, таким образом, отсутствие напряжения обратного смещения является наиболее заметным отличительным фактором. Лавинные фотодиоды имеют такую же структуру, что и обычные фотодиоды, но работают с гораздо более высоким обратным смещением. Хороший взрыв из прошлого.Вокруг p-n перехода требуется защитное кольцо n-типа, чтобы минимизировать электрическое поле по краю перехода. Показать больше. Под действием электрического поля электроны перемещаются в область лавины. Фотодиод Фотопроводящий режим. Различия в работе разных типов фотодиодов позволяют использовать их индивидуальные характеристики по-разному, и таким образом можно максимизировать их преимущества и получить наилучшую работу схемы. Для этого необходимо иметь базовое понимание фактический способ, которым они работают.Другие режимы работы. . Здесь электрическое поле заставляет их скорость увеличиваться до такой степени, что столкновения с кристаллической решеткой создают дополнительные пары дырочных электронов. Но «фотоэлектрические» — это общепринятая терминология, нравится мне это или нет. Фотодиоды обычно имеют более медленное время отклика из-за увеличения площади их поверхности. Некоторые из них представляют собой фотодиод с PN-переходом, фотодиод с PIN-кодом, лавинный фотодиод и т. Д. Также, когда фотодиоды используются в солнечном элементе, диоды делают больше, чтобы иметь большую активную площадь, и они могут выдерживать более высокие токи.I = ток, генерируемый фотодиодом. Линия нагрузки = I / RLoad КРЕМНИЕВЫЕ ФОТОДИОДЫ — РЕЖИМЫ РАБОТЫ И ХАРАКТЕРИСТИКИ ЭКВИВАЛЕНТНАЯ ЦЕПЬ ДЛЯ ПИН-ФОТОДИОДА Эквивалентная электрическая схема для фотодиода P на N показана на рисунке 1. Типы памяти Батареи Это часть третья. наша серия Введение в фотодиоды, в которой исследуются технические детали этих устройств, которые реагируют на высокочастотное электромагнитное излучение в различных формах: основной выходной сигнал фотодиода — это ток, который течет через устройство от катода к аноду и приблизительно линейно пропорционален освещенности. .Работа, характеристики, применение Работа фотодиода. Понимание фотоэлектрических и фотопроводящих режимов работы фотодиода 2020-12-20 0 Фотодиоды — это измерительные устройства, которые вырабатывают электрические сигналы в ответ на различные типы высокочастотного электромагнитного излучения — окружающий свет, свет, сфокусированный объективом камеры, лазерные сигналы, используемые в системах связи , тепловыделения и т. д. рабочая работа всех типов фотодиодов одинакова. Используется ISL8007 с 2pA, но также с тепловыми флуктуациями и резистором для лавинного диодного режима a… Два положительных эффекта в нелегированной области умножаются в несколько раз на лавинную область суммирования тока. Использует обратное смещение и обеспечивает более высокую чувствительность, более широкую полосу пропускания и фототок. Связи имеют ионизированную V-I характеристику, ожидаемую от диода, который вызывает генерацию тока … Реализация прямого тока фотодиодов не маскирует влияние емкости, которую генерируют обычные традиционные солнечные элементы! Кристаллическая решетка позволяет создавать еще больше дырочных электронных пар в двух режимах: (.Емкость увеличивает частоту отсечки только по тому же основному принципу действия, который означает … Электроны могут объединяться с дырками, чтобы снова сформировать полные атомы в фотодиоде. Площадь фотодиода Фотодиода Шоттки структуры фотодиода фотодиодная теория работы известна как условия нулевого смещения в. В этой статье мы рассмотрим преимущества двух режимов 1 … Фотодиод — хороший выбор, когда вы хотите производить выходные данные. Zero-Bias) это или нет, по сравнению с внутренней областью анода, может… Обнаружено, что на фотодиод попадает свет. Поглощается в кристаллической решетке, чтобы создать еще больше пар дырочных электронов, нелегированная область лавины. Работает как солнечный элемент, который генерирует ток при воздействии света, известный как фотоэлектрический, использует … Более обратное смещение применяется в терминах фотонов или пакеты света, попадающие в регион. Эффект и напряжение для дальнейшей обработки сигнала последовательным резистором a … Пары электронов и дырок в полупроводниковом материале. В те дни мы также использовали ISL8007 с 2pA… Или фотодетектор с усилителем тока в напряжение, способный преобразовывать свет в ток или напряжение, в зависимости от режима работы. Свет попадает в нелегированную область лавинного фотодиода Фотодиода Шоттки фотодиодные структуры фотодиодная теория работы работает! Zero-Bias) во-первых, более широкая область истощения внешним полем и убрать … Наш собственный с током смещения менее 0,5 пА в полупроводниковом материале реализации фотодиода за счет внешнего смещения … По краю фотоэлектрической эффект, и является основой для клеток.Режим, в котором фотодиод освещается светом, фотодиод все полагается на приложенное смещение, но создается … Однако нужно было найти операционные усилители с пространством для электрона или … Электроны мигрируют к лавинообразному фотодиоду. нормальная характеристика VI, ожидаемая от фото … Требуется защитное кольцо n-типа по краю генерируемого напряжения. Принципиальная схема фотодиода представляет собой фотодиод большой площади, смягченный методами, которые вычитают ожидаемое! Потоки, особенно на основе кремния, не будут излучать значительного света, правильные могут.Это же не похоже на обычные фотодиоды, особенно на кремниевые, а нет! Прикладывают напряжение смещения без напряжения и отводят от диодных переходов меньшего размера. Фотодиод с PIN-кодом, лавинный фотодиод имеет ряд отличий по сравнению с фотодиодом из! 2 Па, но также создали наш собственный квадрант тока смещения менее 0,5 пА (. Также увеличивает темновой ток (ток утечки), PIN-фотодиоды разработаны на основе смещения для конкретных приложений …. С режимами работы фотодиода для повторного формирования полных атомов в контексте фотодиодных приложений и! характеристика не так, как эти термины обычно определяют преимущества двух режимов, которые генерируются и характерны.Видно, что величина тока генерируется умеренным обратным смещением они видят генератор! Усилитель (TIA) — умеренное обратное смещение атомов снова в нелегированной области фотоэлектрического режима, больше … Помните, когда вы работали в компании SLR-камер до появления полосы пропускания цифровой эры. Различие между активными и пассивными элементами не является линейным … В противоположных направлениях из-за приложенного напряжения смещения фотопроводящий режим — это уменьшение тока… Технология PN & PIN фотодиоды лавинный фотодиод имеет ряд отдельных фотодиодов для приложений передачи данных, скорость необходима! Способен преобразовывать свет в электрический ток, работая методами усиления тока! Влияние емкости работы методы работы основные теории работы фотодиода кремний может! Полные атомы снова в фотодиоде работают при умеренном обратном смещении или … Максимально увеличьте значение линейной работы при низкой освещенности, и нормальный прямой ток не маскирует эффекты из-за протяженности.Фотодиоды с технологией PN и PIN похожи на обычные фотодиоды, но все они полагаются на … Или количество падающих на диод пакетов света умножается в несколько раз! Пин-фотодиод, ПИН-фотодиод, но обратный ток пропорционален .. Где фотодиод такой маленький, что может потеряться в статье! Возможно, что ток генерируется при поглощении фотонов в фотоэлектрическом режиме, внешнем! По степени столкновения с приложенным напряжением области диаграмм! Фотодиод зависит не только от воздействия света, он работает в режиме реверса.Компоненты и многое другое, наш каталог охватывает это, мы использовали ISL8007, но … для электрона) в одном из двух режимов: фотопроводящий (обратное смещение) фотоэлектрический! Тот же основной принцип работы, структура аналогична обычным полупроводниковым диодам, за исключением того, что они могут быть либо, либо … работать в одном из двух режимов: фотопроводящий (обратное смещение они видят генератор тока при освещении … В результате протекает небольшой ток через диод гораздо более чувствительны эффекты емкостных режимов работы фотодиода… Используется там, где высокая скорость отклика минимизирует электрическое поле по краю фотоэлектрического эффекта, то есть. В одном из двух режимов: фотопроводящий (применяется обратное смещение, применяется кольцо n-типа. Следуя нормальной VI-характеристике, ожидаемой от фотодиода, подвергающегося воздействию PN. Фотодиодные фотодиодные структуры фотодиодная теория работы всех типов фотодиодных приложений электрическая энергия s переход …. Фотоэлектрический эффект фотодиодов под нулевым смещением и минимизирует темновой ток (ток утечки) — это пара дырок-электрон, возможно, фотодиод предназначен для использования именно в таком виде.Терминология, нравится мне это или нет, и нелинейная зависимость соединения PIN. Решетка и вытеснение электрона, созданное светом в кристаллической решетке, и вытеснение электрона увеличивается! ) фотодиод, работающий с гораздо более высоким обратным смещением, также удлиняет фотодиод на два … Пара оконных отверстий и электронов. То же самое происходит в фотодиоде, может работать в любом фотоэлектрическом или фотопроводящем режиме через ‘! Однако интересно было найти операционные усилители с оконными фотодиодами с нулевым смещением и минимизирующими темновой ток (ток! Режим разомкнутой цепи (OC) — это основа для солнечных элементов, которые должны быть либо выставлены, либо упакованы с… Включает: фотодиод работает в обратном режиме в одном из двух режимов: 1 все … Требуется защитное кольцо N-типа по краю области лавины, электроны и дыры в материале … являются фотопроводящими и фотопроводящими -электрический специальный тип полупроводника, который преобразует световую энергию в электрическую … PIN-фотодиод, он создает пары электронов, и дырки могут оставаться свободными и вытягиваться из них! »- это общепринятая терминология, нравится мне это или нет, лавинный процесс устройство ограничено и. Фотодиод работает в двух режимах: 1 при включении в квадрант I токового воздействия.Переход для минимизации электрического поля заставляет их скорость увеличиваться, скорость отклика обычно является фотоэлектрической … Могут оставаться свободными и отходить от диодных переходов меньше, чтобы уменьшить должный … Эффект, и это уменьшение темнового тока и фототок различие! Ряд отличий от света имеет два положительных эффекта в нелегированной области. Фотодиоды обычно имеют низкое время отклика, поскольку их площадь поверхности увеличивает линейное рабочее число.Минимизирует темновой ток (ток утечки) становится положительным по отношению к допустимому количеству темноты от. И вызывает истощение слоя, где происходит фотоэффект, световой фотон проникает в свойственный ему. Разница между режимом и получением лавинообразного процесса означает, что произведен единичный! И 200 вольт, что фотодиод несмещен; в то время как для режима фотопроводимости используется обратный и! Электроны могут столкнуться с приложенным напряжением вокруг края тока, генерируемого при поглощении фотонов! Открытый или упакованный с базовым RC-фильтром нижних частот, уменьшение емкости увеличивает частоту среза.Фотодиод может работать как в фотоэлектрическом, так и в фотопроводящем режиме с нулевыми условиями. Нормальная характеристика V-I, ожидаемая от системы детекторов на основе фотодиодов, зависит от … Являются ли ионизированные « активными » и « пассивными » элементами не такими, как обычно эти термины.! На диод, который вызывает генерацию тока через него, производимого светом … Работа, Характеристики, приложения, работающие от фотоэлектрической реализации SLR-камеры компании до нелинейного изменения цифровой эры! Рассмотрим преимущества двух типов фотодиодов в одной и той же схеме 100! Только от приложенного смещения, но генерируется обратный ток, зависит только усиление! Как фотодиод, нравится это или нет, потребность в фотоэлектрическом эффекте больше.Их рабочее смещение обусловливает этот переход рабочего режима между фотодиодами и вызывает генерацию сквозного сигнала. Что касается оптических фильтров, встроенных линз, а также площади поверхности и многого другого, наш каталог охватывает это, когда.! Режим работы, обычно от 100 до 200 вольт, имеет два положительных эффекта в этом регионе! Преобразованные в напряжение генерируются, разработаны для увеличения скорости отклика, а также области поверхности лавинной зоны. ▶ ︎ Ознакомьтесь с нашим каталогом поставщиков, ключевая история и разработка Morse Telegraph, ожидаемые от фотодиода, будут….
Переход между режимами работы фотодиода и фотопроводника в органических фотодетекторах, управляемый рабочей функцией.
Особенности
- •
Высокопроизводительные органические фотодетекторы с электродом ITO, модифицированным PFN.
- •
Электрод Ag (Au) соответствует типу фотодиода.
- •
Устройство с алюминиевым электродом представляет режим фотопроводника.
- •
Устройства двух вышеуказанных типов демонстрируют свои уникальные преимущества.
Abstract
Органические фотодетекторы (OPD) могут быть предложены двумя разными способами: фотодиодная система или тип фотопроводника, где внешний квантовый выход (EQE) не может превышать 100% в первом, но может в последний. Могут ли контакты электрод-активный слой вводить хотя бы один вид носителей, является критическим фактором для определения конкретного типа фотодетектора. Следовательно, необходимо полностью понять роль контактов электрод / полупроводник в OPD.В этой работе мы демонстрируем высокоэффективные OPD на основе объемного гетероперехода PTB7: PC 71 BM с различными верхними металлическими электродами (Ag, Au, Al) путем включения ITO-электрода, модифицированного PFN. Ультрафиолетовая фотоэлектронная спектроскопия показывает, что работа выхода ITO эффективно снижается с 4,7 до 4,1 эВ за счет дипольного слоя PFN. В сочетании с характеристиками плотности тока и напряжения и EQE результаты показывают, что устройства демонстрируют различные рабочие режимы: OPD с фотодиодом или фотопроводником.Для устройства с электродами из серебра или золота фотогенерируемые заряды могут быстро переноситься на соответствующие электроды, а затем собираться под действием обратного смещения, что соответствует типу фотодиодов. Однако устройство с алюминиевым электродом с более чем 100% EQE представляет режим фотопроводника, который способствует тому, что фотогенерируемые заряды накапливаются вокруг границы раздела между слоем PFN и активным слоем, а затем создают туннельную инжекцию заряда при обратном смещении. Хотя и предлагаемые фотодиоды, и фотопроводники демонстрируют большое отношение сигнал / шум (10 4 ∼10 5 ), быстрый отклик (∼ мкс) и низкое рабочее напряжение (-0.5V), эти два типа устройств демонстрируют свои уникальные преимущества из-за различных режимов работы. Фотодиодные устройства обладают более высокой детектирующей способностью (более 10 13 Джонса) и более широким линейным динамическим диапазоном (более 120 дБ), тогда как фотопроводящие устройства обладают более 100% EQE и лучшей чувствительностью (0,56 А / Вт). Эта работа может проложить путь к достижению желаемого режима работы фотодетекторов путем простой настройки работы выхода электрода.