Сердечник в катушке. Катушки индуктивности: теория, конструкция и применение

Что такое катушка индуктивности и как она устроена. Какие бывают виды катушек индуктивности. Где применяются катушки индуктивности в электронике. Как рассчитать параметры катушки индуктивности. Какие факторы влияют на характеристики катушек.

Содержание

Что такое катушка индуктивности и как она устроена

Катушка индуктивности — это электронный компонент, представляющий собой провод, намотанный в виде спирали на каркас. Основные элементы конструкции катушки индуктивности:

  • Обмотка из изолированного провода
  • Каркас, на который наматывается провод
  • Выводы для подключения
  • Магнитопровод (сердечник) — необязательный элемент

Принцип действия катушки индуктивности основан на явлении электромагнитной индукции. При протекании тока через обмотку вокруг нее создается магнитное поле. При изменении тока возникает ЭДС самоиндукции, препятствующая этому изменению.

Основные параметры и характеристики катушек индуктивности

Ключевые параметры, характеризующие свойства катушки индуктивности:


  • Индуктивность — способность катушки накапливать энергию магнитного поля
  • Добротность — отношение накопленной энергии к рассеиваемой за период
  • Собственная емкость — паразитная емкость между витками
  • Активное сопротивление обмотки
  • Максимальный допустимый ток
  • Температурный коэффициент индуктивности

Индуктивность и добротность являются ключевыми параметрами, определяющими качество катушки. Чем выше индуктивность и добротность, тем лучше.

Виды и конструкции катушек индуктивности

Существует множество разновидностей катушек индуктивности, различающихся по конструкции:

По способу намотки:

  • Однослойные
  • Многослойные
  • Тороидальные
  • Спиральные

По наличию сердечника:

  • Воздушные (без сердечника)
  • С ферромагнитным сердечником
  • С ферритовым сердечником

По назначению:

  • Контурные (для колебательных контуров)
  • Дроссели (для фильтрации)
  • Трансформаторные
  • Импульсные

Выбор конструкции зависит от требуемых параметров и условий применения катушки.

Применение катушек индуктивности в электронике

Катушки индуктивности широко используются в различных электронных устройствах:


  • Фильтры высоких и низких частот
  • Колебательные контуры в радиоприемниках и передатчиках
  • Дроссели в источниках питания
  • Трансформаторы и дроссели в импульсных преобразователях
  • Антенны и датчики магнитного поля
  • Электромагниты
  • Индукционные нагреватели

Благодаря своим свойствам накапливать энергию магнитного поля, катушки незаменимы во многих схемах, связанных с преобразованием и фильтрацией электрических сигналов.

Расчет параметров катушек индуктивности

Для расчета индуктивности катушки используются различные формулы в зависимости от ее конструкции. Для однослойной цилиндрической катушки без сердечника индуктивность можно рассчитать по формуле:

L = (μ0 * N^2 * S) / l

где:

  • L — индуктивность в Генри
  • μ0 — магнитная постоянная
  • N — число витков
  • S — площадь поперечного сечения
  • l — длина намотки

Для катушек с сердечником учитывается также магнитная проницаемость материала сердечника. Расчет более сложных конструкций катушек требует применения специализированных программ.

Факторы, влияющие на параметры катушек индуктивности

На характеристики катушек индуктивности оказывают влияние следующие факторы:


  • Геометрические размеры и форма катушки
  • Количество витков и способ намотки
  • Материал и сечение провода
  • Наличие и свойства сердечника
  • Частота рабочего тока
  • Температура
  • Близость других проводников и магнитных материалов

Учет этих факторов позволяет оптимизировать конструкцию катушки для конкретного применения и добиться требуемых характеристик.

Особенности применения катушек индуктивности на высоких частотах

При работе на высоких частотах в катушках индуктивности проявляются дополнительные эффекты, которые необходимо учитывать:

  • Скин-эффект — вытеснение тока к поверхности проводника
  • Эффект близости — взаимное влияние соседних витков
  • Резонансные явления из-за собственной емкости
  • Потери в сердечнике на вихревые токи и перемагничивание

Для минимизации этих эффектов применяют специальные конструкции обмоток (лицендрат), высокочастотные магнитные материалы, оптимизируют геометрию катушки. На СВЧ используют печатные катушки индуктивности.


Coil32 — О конструкции катушек индуктивности

Для начинающих радиолюбителей хотелось бы немного рассказать об особенностях конструктивного исполнения катушек индуктивности. Основой любой катушки служит каркас, на который наматывается провод в виде спирали. Обычно начинающий радиолюбитель повторяет конструкцию, в описании которой указано, что надо намотать N-витков на каркасе диаметром D. Но очень часто нужного каркаса в наличии нет, а есть другой. Тогда возникают следующие вопросы:

  1. Сколько витков нужно намотать на другом каркасе?
  2. Подойдет ли этот каркас и как изменятся характеристики устройства?

Программа Coil32 легко решает первый вопрос. Зная параметры контура, в который входит катушка, или ее конструктивные размеры и число витков из описания устройства, можно вычислить ее индуктивность, а зная индуктивность — рассчитать число витков для нового каркаса, т.е. пересчитать катушку индуктивности.

Во втором вопросе следует разобраться подробнее. Какими параметрами характеризуется катушка индуктивности?

  • Прежде всего, это величина индуктивности
  • Добротность катушки, характеризующая величину потерь в ней
  • Паразитная собственная емкость катушки
  • Температурная нестабильность индуктивности

Величина индуктивности обычно прямо пропорциональна диаметру катушки и квадрату числа витков. Для уменьшения габаритов катушки и числа витков применяют магнитные сердечники – кольцевые, броневые. Разрез броневого сердечника показан на рисунке. Однако они имеют ограничения по частоте и по мощности. Например, в фильтрах для акустики их применение недопустимо, т. к. при большой мощности из-за особенностей магнитного материала, величина индуктивности будет зависеть от амплитуды сигнала и он, соответственно, сильно исказится. В выходных каскадах передатчиков и фильтрах акустики уменьшать габариты катушек нельзя, при этом возрастают потери, а вы же не хотите, что бы мощность усилителя шла на нагрев провода.

Добротность важна для контурных катушек. Она обратно пропорциональна величине сопротивления потерь в ней. Напомню, что программа Coil32

позволяет провести приблизительный расчет добротности однослойных катушек. Однажды, я с удивлением обнаружил, что мой сайт «нагуглили» по запросу — «Единица измерения добротности катушки индуктивности». Добротность измеряется в относительных единицах и не имеет специальной единицы измерения (типа Ом, Кг). Строго говоря, добротность — это отношение реактивного сопротивления катушки ( 2πƒL ) к ее сопротивлению потерь.
Часто в сети можно встретить online калькуляторы для расчета однослойных катушек, которые еще и вычисляют ее добротность. Однако, они учитывают только омические потери в катушке, что не совсем верно.
Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране, а также потери на излучение.
Потери в проводах вызваны тремя причинами

    • Во-первых, провода обмотки обладают омическим сопротивлением, поэтому катушку следует наматывать проводом с наименьшим удельным сопротивлением (медь, серебро)
    • Во-вторых, сопротивление провода обмотки переменному току возрастает с ростом частоты, что обусловлено поверхностным эффектом, суть которого состоит в том, что ток протекает не по всему сечению проводника, а по наружной кольцевой части поперечного сечения.

  • В третьих, в проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока к периферии провода, прилегающей к каркасу, в результате чего сечение, по которому протекает ток, принимает серповидный характер, что ведет к дополнительному возрастанию сопротивления провода. Уменьшить потери обусловленные эффектом близости можно применяя намотку с шагом. Существует оптимальный шаг намотки зависящий от геометрии катушки.

 

На частотах не превышающих 1,5..2 мегагерц, уменьшить потери в проводах можно применяя провод «литцендрат», состоящий из большего числа жилок, скрученных в жгут. При небольшом диаметре тонких жилок ослабляется поверхностный эффект, а скручивание жилок в жгут ослабляет эффект близости.

На очень высоких частотах проявляется влияние шероховатости провода, т.к. неровности на его поверхности увеличивают его длину для высокочастотного тока и соответственно сопротивление потерь.

Потери в диэлектрике обусловлены тем, что электромагнитная волна, проходя вдоль катушки, теряет энергию при взаимодействии с материалом каркаса. Эти потери подобны потерям в конденсаторах или коаксиальных кабелях и зависят от качества материала каркаса (tgδ). Уменьшить эти потери можно применяя ребристые каркасы, в результате форма катушки становиться многоугольной, либо полным отказом от каркаса.

Потери в сердечнике прямо пропорциональны частоте и мощности проходящей через катушку и зависят от материала сердечника. На высоких частотах, для уменьшения потерь применяют немагнитные латунные подстроечные сердечники, либо вовсе их не применяют. Проблеме учета потерь в ферритовых сердечниках посвящена отдельная статья.

Потери в экране обусловлены тем, что ток, протекающий по катушке, индуцирует ток в экране. Для их уменьшения экран должен дальше отстоять от катушки. Диаметр экрана должен превышать диаметр катушки не менее чем в 2,5 — 3 раза. Под влиянием экрана уменьшается индуктивность катушки. Степень этого уменьшения можно оценить с помощью плагина screen

Потери на излучение обусловлены излучением электромагнитного поля катушкой (антенный эффект). Они зависят от формы катушки и также влияют на ее добротность.

Для однослойной катушки — при увеличении ее размеров, сохраняя постоянными величину индуктивности и форму намотки, добротность примерно пропорциональна корню квадратному из диаметра катушки. Кроме того, добротность зависит от отношения длины намотки к ее диаметру и имеет тупой максимум при l/D ≈ 1. Для такой катушки оптимальный шаг намотки практически равен двум диаметрам провода (или другими словами расстояние между витками должно быть равно диаметру провода).

Для ориентировки можно посмотреть таблицу оптимизированных по добротности контурных катушек для радиолюбительских диапазонов.

Собственная емкость является паразитным параметром катушки индуктивности, ограничивающим возможности ее применения прежде всего по частоте, т.к. эта емкость суммируется с емкостью контура. Кроме того, даже без внешней емкости, эта емкость совместно с индуктивностью катушки образует резонансный контур, резонансная частота которого называется собственной частотой резонанса катушки. Выше этой частоты применение катушки бессмысленно, т.к. она в этом случае уже имеет емкостное сопротивление. Ясно, что нужно по возможности уменьшать эту емкость. Наименьшей собственной емкостью обладают однослойные катушки индуктивности.

У однослойных катушек собственная емкость пропорциональна диаметру катушки, а также зависит от отношения длины намотки к ее диаметру и имеет тупой минимум при l/D ≈ 1. Увеличение шага между витками уменьшает индуктивность такой катушки, при этом собственная емкость практически не меняется.

С физикой явления и методикой расчета собственной емкости однослойных катушек можно ознакомиться здесь.

Собственная емкость многослойных катушек значительно больше, для ее уменьшения применяют намотку типа «универсаль», либо секционированную намотку. При секционной намотке емкости отдельных секций соединяются последовательно, что уменьшает суммарную емкость. Применение провода в шелковой изоляции также уменьшает эту емкость.

 


Каркасы катушек в зависимости от рабочего диапазона частот и назначения могут быть выполнены самыми различными способами и из различных материалов (бумаги, прессшпана, органического стекла, высокочастотной керамики и разнообразных высокочастотных материалов). Материал каркаса влияет на добротность катушки. В отношении электрических характеристик наилучшими, являются не требующие пропитки и влагостойкого покрытия полистироловые каркасы. Затем в порядке ухудшения диэлектрических качеств можно назвать следующие материалы для каркасов: высокочастотная керамика, ультрафарфор, бакелизированные трубки из кабельной бумаги.

Для катушек в задающих генераторах на первое место выходит параметр температурной нестабильности индуктивности и механическая прочность катушки. При этом желательно иметь хорошую добротность. Наивысшими качествами по этим параметрам обладают катушки на сплошном каркасе из высокочастотной керамики с обмоткой нанесенной методом выжигания серебра в каркас.

Плоские печатные катушки применяют на высоких частотах для уменьшения габаритов устройства. До частот 100-150 МГц можно применять фольгированный стеклотекстолит. Заземлять в таких катушках следует внешний вывод. Если печатная плата двусторонняя, то с обратной стороны напротив катушки не должно быть металлизации.

Подводя итоги, можно заметить, что конструкция катушки зависит от особенностей устройства в котором она работает. Однако можно сделать один главный вывод — уменьшение габаритов катушки всегда ведет к ухудшению параметров самой катушки и, соответственно, общих параметров устройства, в состав которого она входит. Например, миниатюризация катушек во входных каскадах приемника ухудшает его избирательность по зеркальному каналу.

Катушки индуктивности теория: разновидности, применение

Катушка индуктивности — винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Как следствие, при протекании через катушку переменного электрического тока, наблюдается её значительная инерционность.

 

Устройство обычно представляет собой винтовую, спиральную или винтоспиральную катушку из одножильного или многожильного изолированного провода, намотанного на цилиндрический, тороидальный или прямоугольный каркас из диэлектрика или плоскую спираль, волну или полоску печатного или другого проводника. Также бывают и бескаркасные катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость.

 

Для увеличения индуктивности применяют сердечники из ферромагнитных материалов: электротехнической стали, пермаллоя, флюкстрола, карбонильного железа, ферритов. Также сердечники используют для изменения индуктивности катушек в небольших пределах.

 

Существуют также катушки, проводники которых реализованы на печатной плате.

 

Катушка индуктивности в электрической цепи хорошо проводит постоянный ток и в то же время оказывает сопротивление переменному току, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

 

Основным параметром катушки индуктивности является её индуктивность, которая определяет, какой поток магнитного поля создаст катушка при протекании через неё тока силой 1 ампер. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

 

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых сопротивление катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке.

 

Потери в проводах вызваны тремя причинами:

· Провода обмотки обладают омическим (активным) сопротивлением.

· Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие уменьшается полезное сечение проводника и растет сопротивление.

· В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.

 

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

· Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).

· Потери от магнитных свойств диэлектрика (эти потери аналогичны потерям в сердечнике).

 

В общем случае можно заметить что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

 

Потери в сердечнике складываются из потерь на вихревые токи, потерь на гистерезис и начальных потерь.

 

Потери на вихревые токи. Ток, протекающий по проводнику, индуцирует ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи становятся источником потерь из-за сопротивления проводников.

 

Разновидности катушек индуктивности

 

Контурные катушки индуктивности. Эти катушки используются совместно с конденсаторами для получения резонансных контуров. Они должны иметь высокую стабильность, точность и добротность.

 

Катушки связи. Такие катушки применяются для обеспечения индуктивной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току цепи базы и коллектора и т. д. К таким катушкам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи.

 

Вариометры. Это катушки, индуктивность которых можно изменять в процессе эксплуатации для перестройки колебательных контуров. Они состоят из двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая располагается внутри первой и вращается (ротор). При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника.

 

Дроссели. Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины) на проводах.

 

Сдвоенные дроссели две намотанных встречно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике. Т.е. предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, так и во избежание засорения питающей сети электромагнитными помехами. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали) или ферритовый сердечник.

 

Применение катушек индуктивности

 

· Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п..

· Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.

· Две и более индуктивно связанные катушки образуют трансформатор.

· Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.

· Катушки используются также в качестве электромагнитов.

· Катушки применяются в качестве источника энергии для возбуждения индуктивно-связанной плазмы.

· Для радиосвязи — излучение и приём электромагнитных волн (магнитная антенна, кольцевая антенна).

o Рамочная антенна

o DDRR

o Индукционная петля

 

· Для разогрева электропроводящих материалов в индукционных печах.

· Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах перемещением (вытаскиванием) сердечника.

· Катушка индуктивности используется в индукционных датчиках магнитного поля. Индукционные магнитометры были разработаны и широко использовались во времена Второй мировой войны.

 

Эффективные способы намотки, разработанные на нашем предприятии:

 

Позволяют снять ограничения на диапазоны применяемых напряжений, токов и температур. Снижают сечение провода, стоимость и массу катушек при тех же условиях эксплуатации. Либо позволяют повысить напряжения, токи и температуру эксплуатации при том же сечении провода.

Наши многолетние исследования показали, что наиболее эффективным способом охлаждения является воздушный. Применение дополнительных видов изоляции иногда бывает нежелательно и ухудшает свойства обмоток. Вместо изоляции мы применяем разделение обмотки на секции. Стремимся к увеличению площади контакта провода с мощными потоками воздуха.

 

1. Разделенная обмотка.

Лучшая альтернатива дополнительной изоляции. Обмотка разделена на любое количество секций, соединенных последовательно. Потенциал между секциями делится на количество секций. Потенциал между слоями делится на количество секций, помноженное на количество слоев. Потенциал между соседними витками в одном слое делится на количество секций, помноженное на количество слоев и количество витков в слое. Таким образом любое опасное пробивное напряжение можно снизить до электрозащитных показателей обыкновенного эмальпровода без применения особых электроизоляционных мер. Чем больше отдельных секций, тем лучше можно организовать охлаждение.

2. Бесконтактная обмотка.

Витки обмотки подвешены в воздухе на специальных растяжках. Не имеют механического, электрического и теплового контакта ни с какими другими материалами катушки, ни с каркасом, ни с корпусом, ни с электроизоляцией. Самое эффективное воздушное охлаждение, тепло- и электроизоляция.

3. Корпус в виде улитки.

Наиболее эффективным способом охлаждения обмоток мы считаем воздушное. Применение такого корпуса с вентиляторами и просчетом аэродинамических характеристик дает значительные преимущества.

4. Двухполупериодная обмотка.

Все новое – это хорошо забытое старое. Разделение обмотки на два плеча и включение через диодный мост дает попеременное включение плеч с частотой сети. В один полупериод одно плечо работает, другое отдыхает. Это позволяет применять обмотки с меньшим сечением. Особенно актуальна двухполупериодная обмотка там, где в небольшие габариты требуется поместить очень мощную обмотку с таким толстым проводом, который невозможно согнуть под требуемыми углами без повреждения. Или промышленность не выпускает настолько толстые шины, и таким образом можно перейти на меньшее сечение.

5. Трубопроводная обмотка.

Для работы на особо высоких температурных режимах. В качестве провода применяется медная труба, циркулирующая жидкость, насосы, теплообменники, хладогенераторы, резервуары.

6. Заливка компаундами с примесями на основе нитрида бора и другими для повышения теплопроводности компаунда. Либо виброустойчивая растяжка с применением специальных техпластин. Применяется на сложных виброударных режимах работы.

Наши специалисты разработают наиболее эффективный способ решения Ваших задач. Мы будем рады с Вами сотрудничать.

 

Ждем Ваших заказов.

Как рассчитать индуктивность катушек на разомкнутых сердечниках?

Всем доброго времени суток! В прошлой статье я рассказал о катушках индуктивности на сердечниках с малым магнитным зазором (длина зазора δ меньше любого линейного размера сердечника). Кроме сердечников с малым зазором существует сердечники, имеющие воздушный зазор сопоставимый с линейными размерами самого сердечника. Такие сердечники называются разомкнутыми. Данная статья описывает расчёт и параметры стержневых сердечников, являющихся разомкнутыми.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Факторы, влияющие на индуктивность катушки на разомкнутом сердечнике

В сердечниках с малым воздушным зазором магнитное поле практически всё сосредоточенно в сердечнике, и в воздушном зазоре рассеивание магнитного поля незначительно. Другая картина возникает, если магнитное поле возникает в сердечнике, имеющем воздушный зазор lз сопоставимый с длиной магнитной силовой линии в сердечнике lc.


Магнитное поле в разомкнутом сердечнике.

Таким образом, магнитные сопротивления сердечника и воздушного зазора становятся соизмеримыми, что приводит к усложнению расчётных выражений для индуктивности катушек на таких сердечниках. В этом случае расчёт параметров ведут с учётом того, что в разомкнутых сердечниках на торцах сосредотачиваются противоположно ориентированные магнитные частицы, то есть частицы с положительным доменом смещаются в направлении внешнего поля, а отрицательные навстречу ему. В результате возникает размагничивающее поле, противоположное основному. Данное поле характеризуется размагничивающим фактором N или коэффициентом размагничивания. Данный фактор зависит от формы и размеров самого сердечника. Влияние размагничивающего фактора на магнитное поле сердечника описывается следующим выражением

где Н – напряженность магнитного поля в сердечнике,

Н0 – напряженность внешнего магнитного поля, то есть поля создаваемого катушкой, намотанной на разомкнутый сердечник,

НР – размагничивающее поле сердечника,

N – размагничивающий фактор,

J – вектор намагничивания сердечника.

Точное значение размагничивающего фактора, возможно, рассчитать только для однородно намагниченных тел, например, эллипсоидов вращения, шаров, дисков. Для учёта размагничивающего фактора на магнитные свойства сердечника ввели понятие эффективной магнитной проницаемости сердечника μе, которая зависит от магнитной проницаемости вещества сердечника μr и размагничивающим фактором N. Значение эффективной магнитной проницаемости сердечника для однородно намагниченных тел определяется следующим выражением

Однако в практике, используются неоднородно намагниченные тела – цилиндры, призмы, поэтому для расчёта эффективной магнитной проницаемости таких сердечников применяются эмпирически выведенные выражения.

Вследствие того, что значение размагничивающего фактора в неоднородно намагничиваемых телах различно по длине, то необходимо учитывать и расположение катушки индуктивности относительно сердечника и длину данной катушки относительно длины сердечника.

Таким образом, индуктивность катушки, выполненной на разомкнутом сердечнике можно определить по следующему выражению

где L0 – индуктивность катушки без сердечника, расчет смотреть (Часть 1, Часть 2, Часть 3),

μе – эквивалентная магнитная проницаемость разомкнутого сердечника,

k– коэффициент зависящий от отношения длины катушки к длине сердечника,

pl – коэффициент зависящий от расположения катушки относительно середины длины сердечника.

Рассмотри более подробно зависимость индуктивности от различных факторов.

Расчёт размагничивающего фактора

Как я уже говорил, размагничивающий фактор N зависит от размеров сердечника


Катушка индуктивности с разомкнутым сердечником

Для его определения введём коэффициент λ, зависящий от отношения длины сердечника lc к его диаметру dc

Тогда в интервале 2 ≤ λ ≤ 50 с точностью 10 % размагничивающий фактор данного сердечника можно определить по следующему выражению

где λ – отношение длины сердечника к диаметру сердечника

Тогда эффективная магнитная проницаемость разомкнутого сердечника можно рассчитать по следующей формуле

где μr – относительная магнитная проницаемость вещества сердечника,

lc – длина сердечника,

dc – диаметр сердечника.

Как влияет форма сердечника на магнитную проницаемость?

Эмпирическая формула вычисления эквивалентной магнитной проницаемости сердечников предполагает, что сечение сердечника представляет собой круг, но существует большое количество сердечников с не круглым сечением (прямоугольные, трубчатые).


Вычисление эквивалентных диаметров сердечника.

Для упрощения расчётов все сердечники необходимо приводить к эквивалентному круговому сечению согласно следующим выражениям:

для прямоугольного сечения

где с – ширина сердечника,

h – высота сердечника.

для трубчатого сечения

где dнар – наружный диаметр сердечника,

dвн – внутренний диаметр сердечника.

Влияние расположение катушки индуктивности относительно сердечника

Довольно часто стержневые сердечники используют для точной настройки индуктивности или подстройки в небольших пределах, также длинные стержневые сердечники используют в магнитных антеннах радиоприёмников на средне- и длинноволновом диапазоне. Их объединяет то, что катушка индуктивности зачастую расположена не на средине сердечника. Ниже представлена катушка индуктивности на разомкнутом сердечнике, используемая в качестве магнитной антенны


Расположение катушки индуктивности на сердечнике в магнитной антенне.

Как я уже говорил, размагничивающий фактор не равномерно распределён по длине разомкнутого сердечника. Его значение увеличивается от середины сердечника к его краям, а магнитная проницаемость, а соответственно уменьшается от центра сердечника к его краям. Чтобы не усложнять выражение для размагничивающего фактора введем корректирующий коэффициент pl, зависящий от расположения катушки на сердечнике

где х – расстояние от середины сердечника до середины катушки,

l – длина сердечника,

β – коэффициент, зависящий от расположения катушки на сердечнике.

Влияние размеров катушки относительно размеров сердечника

Как я писал выше, размагничивающий фактор неравномерен по длине сердечника, то необходимо учитывать любое различие в относительных размерах катушки индуктивности и сердечника.

Ещё одним существенным фактором при расчёте индуктивности является различие в длине катушки и длине сердечнике. Данное различие можно описать коэффициентом k, зависящем от отношения длины сердечника к длине катушки

где а – длина катушки индуктивности,

l – длина сердечника,

γ – коэффициент, зависящий от отношения длины катушки к длине сердечника.

Пример расчёта индуктивности катушки на разомкнутом сердечнике

В качестве примера рассчитаем катушку индуктивности на разомкнутом сердечнике круглого сечения со следующими параметрами: диаметр сердечника dc = 6 мм, длина сердечника lc = 30 мм, катушка состоит из 30 витков провода диаметром dp = 1 мм, намотанных плотно виток к витку в один ряд, магнитная проницаемость материала сердечника μr = 600.

1.Рассчитаем индуктивность катушки без сердечника. Так как катушка намотана в один ряд, то для упрощения вычислений мы будем рассчитывать её как соленоид. Длина катушки составит lk = 30*1 = 30 мм, а диаметр катушки dk = dcp = 30,5 мм.

2.Вычислим эффективную магнитную проницаемость сердечника

3.Рассчитаем поправочные коэффициенты на длину катушки и на расположении на сердечнике. Так как длина катушки совпадает с длинной сердечника и смещение катушки относительно сердечника отсутствует, то поправочные коэффициенты будут равны 1, тогда индуктивность данной катушки составит

В качестве второго примера рассчитаем индуктивность магнитной антенны выполненной на сердечнике из феррита марки 600НН, размерами lc = 160 мм, dс = 8 мм, количество витков провода w = 60, диаметр провода dр = 0,15 мм. Катушка смещена на 30 мм относительно середины сердечника.

1.Рассчитаем индуктивность катушки без сердечника. Так как катушка намотана в один ряд, то для упрощения вычислений мы будем рассчитывать её как соленоид. Длина катушки составит lk = 60*0,15 = 9 мм, а диаметр катушки dk = dcp = 8,075 мм.

2.Вычислим эффективную магнитную проницаемость сердечника

3.Рассчитаем поправочные коэффициенты на длину катушки и на расположении на сердечнике. Коэффициент, учитывающий расположение катушки на сердечнике составит

Коэффициент, учитывающий отношение длины катушки по отношению к длине сердечника составит

4.Рассчитаем индуктивность катушки индуктивности на разомкнутом сердечнике

Данная статья заканчивает цикл расчётов индуктивности катушек с различными конструктивными параметрами.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Катушки индуктивности / Публикации / Energoboard.ru

Разместить публикацию Мои публикации Написать
21 июня 2012 в 10:00

Катушки индуктивности позволяют запасать электрическую энергию в магнитном поле. Типичными областями их применения являются сглаживающие фильтры и различные селективные цепи.

Электрические характеристики катушек индуктивности определяются их конструкцией, свойствами материала магнитопровода и его конфигурацией, числом витков обмотки.

Ниже приведены основные факторы, которые следует учитывать при выборе катушки индуктивности:

  • требуемое значение индуктивности (Гн, мГн, мкГн, нГн),
  • максимальный ток катушки. Большой ток очень опасен из-за слишком сильного нагрева, при котором повреждается изоляция обмоток. Кроме того, при слишком большом токе может произойти насыщение магнитопровода магнитным потоком, что приведет к значительному уменьшению индуктивности,
  • точность выполнения индуктивности,
  • температурный коэффициент индуктивности,
  • стабильность, определяемая зависимостью индуктивности от внешних факторов,
  • активное сопротивление провода обмотки,
  • добротность катушки. Она обычно определяется на рабочей частоте как отношение индуктивною и активного сопротивлений,
  • частотный диапазон катушки.

В настоящее время выпускаются радиочастотные катушки индуктивности на фиксированые значения частоты с индуктивностями от 1 мкГн до 10 мГн. Для подстройки резонансных контуров желательно иметь катушки с регулируемой индуктивностью.

Однослойные с незамкнутым магнитопроводом катушки индуктивности применяются в цепях настройки приборов.

Многослойные с не замкнутым магнитопроводом катушки используются в фильтрах и высокочастотных трансформаторах. Многослойные катушки индуктивности броневого типа с сердечником из феррита применяются в фильтрах низких и средних частот и трансформаторах, а аналогичные катушки, но со стальным сердечником используются в сглаживающих дросселях и низкочастотных фильтрах.

Формулы для расчета катушки индуктивности

Основные аппроксимирующие соотношения, используемые при проектировании катушек индуктивности, имеют следующий вид.

  1. Параметры однослойных катушек индуктивности у которых отношение длины к диаметру больше 5, определяются в виде

    где L — индуктивность, мкГн, М- число витков, d — диаметр катушки, см, l — длина намотки, см.
  2. Параметры многослойных катушек индуктивности, у которых отношение диаметра к длине больше 1, определяются в виде

    где L — индуктивность, мкГн, N — число витков, dм — средний диаметр обмотки, см, d — толщина обмотки, см.

Одно- и многослойные катушки с незамкнутым ферритовым магнитопроводом будут иметь индуктивность в 1,5 — 3 раза больше в зависимости от свойств и конфигурации сердечника. Латунный сердечник, вставленный вместо ферритового. уменьшит индуктивность до 60-90% по сравнению с ее значением без сердечника.

Для сокращения числа витков при сохранении той же индуктивности можно использовать ферритовый сердечник.

При изготовлении катушек индуктивностью от 100 мкГн до 100 мГн для областей низких и средних частот целесообразно применить чашечные ферритовые броневые сердечники серии КМ. Магнитопровод в этом случае состоит из двух подогнанных друг к другу чашек, к которым прилагаются односекционная катушка, две крепежные клипсы и подстроечный стержень.

Необходимая индуктивность и число витков могут быть вычислены по формулам

 

где N — число витков, L — индуктивность, нГн, Аl — коэффициент индуктивности, нГн/вит.

Всегда нужно помнить о том, что прежде, чем рассчитывать индуктивность, следует определить число витков, которые могут поместиться на данной катушке.

Чем меньше диаметр провода, тем больше число витков, но тем больше сопротивление провода и, естественно, его нагрев из-за выделяющейся мощности, равной I2R. Действующее значение тока катушки не должно превышать 100 мА для провода диаметром 0,2 мм. 750 мА — для 0,5 мм и 4 А — для 1 мм.

Небольшие замечания и советы

Индуктивность катушек со стальным сердечником очень быстро уменьшается с ростом постоянной составляющей тока обмотки. Это нужно иметь в виду особенно при проектировании сглаживающих фильтров источников электропитания.

Максимальный ток катушки индуктивности зависит от температуры окружающей среда, причем он дал жен уменьшаться с ее увеличением. Поэтому для обеспечения надежной работы устройства следует обеспечить большой запас по току.

Ферритовые тороидальные сердечники эффективны для изготовления фильтров и трансформаторов на частотах выше 30 МГц. При этом обмотки состоят всего лишь из нескольких витков.

При использовании любых типов сердечников часть магнитных силовых линий замыкается не по магнитопроводу, а через окружающее его пространство. Особенно сильно этот эффект проявляется в случае незамкнутых магнитопроводов. Заметим, что эти магнитные поля рассеяния являются источниками помех, поэтому в аппаратуре сердечники нужно размещать так, чтобы по возможности уменьшить эти помехи.

Катушки индуктивности имеют определенную паразитную емкость, которая образует колебательный контур в сочетании с индуктивностью катушки. Резонансная частота такого контура для разных типов катушек индуктивности может варьироваться в пределах от 20 кГц до 100 МГц.

14 января в 17:26 61

13 января в 17:32 55

13 января в 16:02 86

12 января в 16:18 45

11 января в 17:48 93

11 января в 13:48 75

30 декабря 2020 в 11:28 106

4 июня 2012 в 11:00 156108

12 июля 2011 в 08:56 34744

28 ноября 2011 в 10:00 22979

21 июля 2011 в 10:00 15716

29 февраля 2012 в 10:00 14152

16 августа 2012 в 16:00 13984

14 ноября 2012 в 10:00 13418

24 мая 2017 в 10:00 13270

25 декабря 2012 в 10:00 11309

27 февраля 2013 в 10:00 9439

Электромагнитная катушка — Electromagnetic coil

Линии магнитного поля ( зеленые ) токоведущей петли провода проходят через центр петли, концентрируя там поле.

Электромагнитная катушка представляет собой электрический проводник , такой как провод в форме катушки , спирали или спирали . Электромагнитные катушки используются в электротехнике , в приложениях, где электрические токи взаимодействуют с магнитными полями , в таких устройствах, как электродвигатели , генераторы , индукторы , электромагниты , трансформаторы и сенсорные катушки. Либо электрический ток пропускается через провод катушки для создания магнитного поля, либо, наоборот, внешнее изменяющееся во времени магнитное поле через внутреннюю часть катушки создает ЭДС ( напряжение ) в проводнике.

Ток через любой проводник создает круговое магнитное поле вокруг проводника в соответствии с законом Ампера . Преимущество использования формы катушки заключается в том, что она увеличивает напряженность магнитного поля, создаваемого заданным током. Магнитные поля, создаваемые отдельными витками провода, проходят через центр катушки и складываются ( накладываются друг на друга ), создавая там сильное поле. Чем больше витков провода, тем сильнее поле. И наоборот, изменяющийся внешний магнитный поток индуцирует напряжение в проводнике, таком как провод, из-за закона индукции Фарадея . Индуцированное напряжение можно увеличить, намотав провод в катушку, поскольку силовые линии пересекают цепь несколько раз.

Направление магнитного поля, создаваемого катушкой, можно определить с помощью правила захвата правой рукой . Если пальцы правой руки обернуты вокруг магнитного сердечника катушки в направлении обычного тока через провод, большой палец будет указывать в направлении, в котором линии магнитного поля проходят через катушку. Конец магнитопровода, из которого выходят силовые линии, определяется как северный полюс.

В электрическом и электронном оборудовании используются разные типы катушек.

В катушке, состоящей из нескольких витков провода, магнитное поле витков складывается в центре катушки, создавая сильное поле. На этом чертеже показано поперечное сечение центра катушки. Крестики — это провода, по которым на страницу проходит ток; точки — это провода, по которым со страницы выходит ток.

Обмотки и отводы

Схема типовых конфигураций трансформатора

Проволока или проводник, составляющий катушку, называется обмоткой . Отверстие в центре катушки называется областью сердечника или магнитной осью . Каждая петля проволоки называется витком . В обмотках, в которых соприкасаются витки, провод должен быть изолирован покрытием из непроводящей изоляции, такой как пластик или эмаль, чтобы предотвратить прохождение тока между витками провода. Обмотка часто наматывается на катушку из пластика или другого материала, чтобы удерживать ее на месте. Концы провода выводятся и подключаются к внешней цепи. Обмотки могут иметь дополнительные электрические соединения по длине; они называются отводами . Обмотка , который имеет один кран в центре его длиной, называется центром отвода .

Катушки могут иметь более одной обмотки, электрически изолированной друг от друга. Когда имеется две или более обмоток вокруг общей магнитной оси, говорят, что обмотки связаны индуктивно или магнитно . Изменяющийся во времени ток через одну обмотку создаст изменяющееся во времени магнитное поле, которое проходит через другую обмотку, что будет индуцировать изменяющееся во времени напряжение в других обмотках. Это называется трансформатором . Обмотка, на которую подается ток, создающее магнитное поле, называется первичной обмоткой . Остальные обмотки называются вторичными .

Магнитный сердечник

Многие электромагнитные катушки имеют магнитный сердечник , кусок ферромагнитного материала, такого как железо, в центре для увеличения магнитного поля. Ток через катушку намагничивает железо, а поле намагниченного материала добавляет к полю, создаваемому проволокой. Это называется катушкой с ферромагнитным сердечником или железным сердечником . Ферромагнитный сердечник может увеличить магнитное поле и индуктивность катушки в сотни или тысячи раз по сравнению с тем, что было бы без сердечника. Ферритовый сердечник катушка представляет собой разновидность катушки с сердечником из феррита , в ферримагнитном керамическом соединении. Ферритовые катушки имеют меньшие потери в сердечнике на высоких частотах.

  • Катушка с сердечником, который образует замкнутый контур, возможно, с некоторыми узкими воздушными зазорами, называется катушкой с замкнутым сердечником . Обеспечивая замкнутый путь для силовых линий магнитного поля, эта геометрия сводит к минимуму магнитное сопротивление и создает самое сильное магнитное поле. Часто используется в трансформаторах.
    • Обычной формой катушек с замкнутым сердечником является катушка с тороидальным сердечником , в которой сердечник имеет форму тора или бублика с круглым или прямоугольным поперечным сечением. Эта геометрия имеет минимальный поток утечки и излучает минимальные электромагнитные помехи (EMI).
  • Катушка с сердечником, который представляет собой прямой стержень или другую форму без петли, называется катушкой с открытым сердечником . Он имеет более низкое магнитное поле и индуктивность, чем закрытый сердечник, но часто используется для предотвращения магнитного насыщения сердечника.

Катушка без ферромагнитного сердечника называется катушкой с воздушным сердечником . Сюда входят катушки, намотанные на пластмассовые или другие немагнитные формы, а также катушки, внутри обмоток которых фактически есть пустое пространство для воздуха.

Виды катушек

Катушки можно классифицировать по частоте тока, на которую они рассчитаны:

  • Прямой ток или постоянный ток катушка или электромагниты работают с постоянным постоянным током в их обмотках
  • Катушки звуковой частоты или AF , индукторы или трансформаторы работают с переменными токами в диапазоне звуковых частот менее 20 кГц.
  • Радиочастотные или РЧ катушки, катушки индуктивности или трансформаторы работают с переменными токами в радиодиапазоне выше 20 кГц.

Катушки можно классифицировать по их назначению:

Электромагниты

Электромагниты — это катушки, которые генерируют магнитное поле для внешнего использования, часто для приложения механической силы к чему-либо. Несколько конкретных типов:

  • Соленоид — электромагнит в виде полой прямой спирали из проволоки.
  • Обмотки двигателя и генератора — электромагниты с железным сердечником на роторе или статоре электродвигателей и генераторов, которые действуют друг на друга, вращая вал (двигатель) или генерируя электрический ток (генератор).
    • Обмотка возбуждения — катушка с железным сердечником, которая создает постоянное магнитное поле, воздействующее на обмотку якоря.
    • Обмотка якоря — катушка с железным сердечником, на которую действует магнитное поле обмотки возбуждения для создания крутящего момента (двигатель) или индукции напряжения для выработки энергии (генератор).
  • Кольца Гельмгольца , Максвелл катушки — катушки с воздушным сердечником , которые служат , чтобы отменить внешнее магнитное поле
  • Размагничивание катушки — катушка используется для размагнитить части
  • Звуковая катушка — катушка, используемая в громкоговорителе с подвижной катушкой , подвешенная между полюсами магнита. Когда аудиосигнал проходит через катушку, она вибрирует, перемещая прикрепленный конус динамика, создавая звуковые волны. Обратное используется в динамическом микрофоне , где звуковые колебания, перехваченные чем-то вроде диафрагмы, физически передаются звуковой катушке, погруженной в магнитное поле, а концы катушки затем обеспечивают электрический аналог этих колебаний.

Индукторы

Индукторы или реакторы представляют собой катушки, которые создают магнитное поле, которое взаимодействует с самой катушкой, чтобы вызвать обратную ЭДС, которая противодействует изменениям тока через катушку. Индукторы используются в качестве элементов электрических цепей для временного хранения энергии или сопротивления изменениям тока. Несколько видов:

  • Катушка резервуара — индуктор, используемый в настроенной цепи
  • Дроссель — индуктор, используемый для блокировки переменного тока высокой частоты, пропуская переменный ток низкой частоты.
  • Нагрузочная катушка — индуктор, используемый для добавления индуктивности антенне, чтобы сделать ее резонансной, или для кабеля, чтобы предотвратить искажение сигналов.
  • Вариометр — регулируемый индуктор, состоящий из двух последовательно соединенных катушек, внешней неподвижной катушки и второй внутри нее, которые можно вращать таким образом, чтобы их магнитные оси были в одном направлении или противоположны.
  • Обратный трансформатор — хотя и называется трансформатором, на самом деле это индуктор, который служит для хранения энергии в импульсных источниках питания и цепях горизонтального отклонения для телевизоров и мониторов с ЭЛТ.
  • Реактор с насыщением — индуктор с железным сердечником, используемый для управления мощностью переменного тока путем изменения насыщения сердечника с помощью управляющего напряжения постоянного тока во вспомогательной обмотке.
  • Индуктивный балласт — индуктор, используемый в цепях газоразрядных ламп , таких как люминесцентные лампы , для ограничения тока через лампу.

Трансформеры

Трансформатор

Трансформатор — это устройство с двумя или более магнитно связанными обмотками (или секциями одной обмотки). Изменяющийся во времени ток в одной катушке (называемой первичной обмоткой ) создает магнитное поле, которое индуцирует напряжение в другой катушке (называемой вторичной обмоткой ). Несколько видов:

  • Распределительный трансформатор — трансформатор в электрической сети питания , который преобразует высокое напряжение от электрической силовой линии к более низкому напряжению , используемому коммунальным клиентами.
  • Автотрансформатор — трансформатор только с одной обмоткой. Различные части обмотки, доступ к которым осуществляется с помощью ответвлений, действуют как первичная и вторичная обмотки трансформатора.
  • Тороидальный трансформатор — сердечник выполнен в форме тороида . Это обычно используемая форма, поскольку она уменьшает поток рассеяния, что приводит к меньшим электромагнитным помехам.
  • Индукционная катушка или тремблерная катушка — ранний трансформатор, который использует механизм вибрационного прерывателя для отключения первичного тока, чтобы он мог работать без постоянного тока.
  • Балун — трансформатор, который соединяет симметричную линию передачи с несимметричной.
  • Бифилярная катушка — катушка, намотанная двумя параллельными близко расположенными нитями. Если через него проходят переменные токи в одном и том же направлении, магнитные потоки складываются, но если через обмотки проходят равные токи в противоположных направлениях, противоположные потоки нейтрализуются, что приводит к нулевому потоку в сердечнике. Таким образом, в третьей обмотке сердечника не будет индуцироваться напряжение. Они используются в приборах и устройствах, таких как прерыватели замыкания на землю . Они также используются в резисторах с проволочной обмоткой с низкой индуктивностью для работы на ВЧ частотах.
  • Звуковой трансформатор — трансформатор, используемый для звуковых сигналов . Они используются для согласования импеданса .

Электрические машины

Электрические машины, такие как двигатели и генераторы, имеют одну или несколько обмоток, которые взаимодействуют с движущимися магнитными полями для преобразования электрической энергии в механическую. Часто машина имеет одну обмотку, через которую проходит большая часть мощности машины ( «якорь» ), и вторая обмотка, которая обеспечивает магнитное поле вращающегося элемента («обмотка возбуждения»), которые могут быть соединены щетками. или контактные кольца к внешнему источнику электрического тока. В асинхронном двигателе «полевая» обмотка ротора возбуждается за счет медленного относительного движения между вращающейся обмоткой и вращающимся магнитным полем, создаваемым обмоткой статора, которое индуцирует необходимый возбуждающий ток в роторе.

Катушки преобразователя

Эти катушки используются для преобразования изменяющихся во времени магнитных полей в электрические сигналы и наоборот. Несколько видов:

  • Сенсорные или считывающие катушки — они используются для обнаружения внешних изменяющихся во времени магнитных полей.
  • Индуктивный датчик — катушка, которая определяет, когда рядом с ней проходит магнит или железный предмет.
  • Записывающая головка — катушка, которая используется для создания магнитного поля для записи данных на магнитный носитель информации, такой как магнитная лента или жесткий диск . И наоборот, он также используется для чтения данных в виде изменяющихся магнитных полей в среде.
  • Катушка индукционного нагрева — катушка переменного тока, используемая для нагрева объекта путем индукции в нем вихревых токов , процесс, называемый индукционным нагревом .
  • Рамочная антенна — катушка, которая служит радиоантенной для преобразования радиоволн в электрические токи.
  • Катушка Роговского — тороидальная катушка, используемая как устройство измерения переменного тока.
  • Звукосниматель музыкального инструмента — катушка, используемая для выработки выходного аудиосигнала в электрогитаре или бас-гитаре .
  • Магнитный затвор — сенсорная катушка, используемая в магнитометре.
  • Картридж магнитного фонографа — датчик в проигрывателе, который использует катушку для преобразования вибрации иглы в звуковой сигнал при воспроизведении виниловых пластинок фонографа .

Есть также типы катушек, которые не попадают в эти категории.

Технология намотки

Смотрите также

Рекомендации

дальнейшее чтение

  • Querfurth, William, « Обмотка катушки; описание процедур намотки катушки, намоточных машин и сопутствующего оборудования для электронной промышленности » (2-е изд.). Чикаго, G. Stevens Mfg. Co., 1958.
  • Веймут, Ф. Мартен, » Барабанные якоря и коммутаторы (теория и практика): полный трактат по теории и конструкции барабанной обмотки и коммутаторов для якоря с замкнутой катушкой, вместе с полным резюме некоторых из основных затронутых вопросов в их конструкции и описание реакций якоря и искрения «. Лондон, Типография и издательство «Электрик», 1893 г.
  • « Процедура намотки катушек ». Международная ассоциация намотки катушек.
  • Чандлер, Р. Х., » Обзор покрытия рулонов, 1970–76 «. Брейнтри, Р. Х. Чандлер Лтд., 1977.

внешние ссылки

Насыщение ферритового сердечника — торроидального и Ш-образного. Онлайн калькуляторы.

Итак, мы решили поразвлечься и всерьёз сваять что-нибудь стоящее своими руками, как то: индуктивный фильтр для блока питания, дроссель для усилительного каскада, выходной трансформатор для однотактного УНЧ, или фиг его знает — чего ещё похуже…
Что объединяет этих жертв нашего волеизъявления?
Каждое из перечисленных моточных изделий содержит магнитомягкий магнитопровод, и через каждое из них протекает постоянный ток. И если к переменному току, даже значительных величин, магнитопровод относится сдержанно-положительно, то к постоянке питает явную антипатию и может резко войти в насыщение от её переизбытка.
При насыщении сердечника его относительная магнитная проницаемость резко уменьшается, что влечёт за собой пропорциональное уменьшение индуктивности изделия.

На этой странице порассуждаем о тороидальных магнитопроводах из ферритов, распылённого железа, электротехнической стали и их способности противостоять постоянному току.

Для наглядности рассмотрим график зависимости B от H, называемый петлёй гистерезиса, для распространённого, где-то даже народного, феррита марки N87 фирмы EPCOS.

Здесь:
H — напряжённость магнитного поля, а
B — магнитная индукция в сердечнике.

Зависимость приведена при температуре изделия +25 гр.С.

Интересующие нас параметры из datasheet-а производителя:

Начальная магнитная проницаемость —
µ = 2200,
Магнитная индукция насыщения при H=1200 А/м  —  Bнас = 0,490 Т.

Если внимательно присмотреться к графику, то легко заметить, что в области малых и средних индукций зависимость практически линейна и её наклон примерно равен µ. Именно на этот участок в большинстве случаев и должен приходиться диапазон рабочих индукций.
При дальнейшем повышении напря- жённости магнитного поля магнитная проницаемость начинает быстро падать, пока не наступает момент, при котором дальнейший рост магнитной индукции в сердечнике стопорится на определённой величине. В спецификациях это величина приводится, как значение магнитной индукции насыщения — Bнас, или Bs, т.е. величина, при которой значение магнитной проницаемости падает до неприлично малых значений.

Так что давайте без лишних прелюдий и телодвижений сделаем фундаментальный вывод — для нормальной работы катушки, намотанной на магнитопроводе, рабочие значения магнитной индукция в сердечнике не должны превышать величину 0,75 — 0,8 от значения справочной характеристики Bнас (Bs).

Переходим к незамысловатым формулам!

Магнитная индукция в сердечнике равна:
B = µ×µ0×n×I/l, где:
µ — магнитная проницаемость сердечника,
µ0 = 4π×10-7 (Гн/м) — физическая константа, называемая магнитной постоянной,
n — количество витков обмотки,
I — ток в обмотке,
l — средняя длина магнитного контура.

Поскольку рабочий режим магнитопровода мы выбираем в линейной области петли гестерезиса, то в качестве значения µ можно использовать паспортную характеристику начальной магнитной проницаемости сердечника.

Теперь можно рисовать калькулятор для расчёта магнитной индукции в катушке с учетом выбранного типа сердечника и конкретного количества витков обмотки.

Для удобства восприятия, помещу сюда и значение индуктивности полученного моточного изделия. Формулы для вычислений этого параметра выглядят следующим образом:
L=0,0002×µ×h×n2×ln(Dвнешн/Dвнутр)   при соблюдении условия  Dвнешн/Dвнутр>1,75,
L=0,0004×µ×h×n2×(Dвнешн-Dвнутр)/(Dвнешн+Dвнутр)   при  Dвнешн/Dвнутр

ТАБЛИЦА РАСЧЁТА МАГНИТНОЙ ИНДУКЦИИ В КАТУШКЕ С ТОРОИДАЛЬНЫМ СЕРДЕЧНИКОМ.

Увы, но значительных токов через катушки на ферритовых кольцах, или торах из трансформаторной стали нам пропустить не удастся — нужны танцы с бубнами в виде немагнитных воздушных зазоров.
Другое дело — сердечники из распылённого железа, представляющие собой магнитопровод с немагнитными зазорами, технологически распределёнными по всему объёму магнитопровода. Их очевидный плюс — высокая индукция насыщения, минус — малые величины магнитной проницаемости.

В связи с этим, в некоторых случаях (в основном на низких частотах) предпочтительным является использование именно сердечников из ферритов (или железа) с пропилом для создания малого воздушного зазора. Данная мера позволяет в значительной мере увеличить величину допустимых токов через катушку без ввода магнитопровода в режим насыщения. Длина этого воздушного зазора позволяет регулировать как величину максимально-допустимой напряжённости магнитного поля в сердечнике, так и параметр изменившейся магнитной проницаемости, называемой эквивалентной магнитной проницаемостью сердечника с зазором — µэф. Значение этого параметра вычисляется по формуле:
µэф = µ/(1+lз×µ/l), где:
µ — начальная магнитная проницаемость сердечника,
l — средняя длина магнитного контура,
lз — длина воздушного зазора (толщина пропила).

Давайте посчитаем этот параметр.

РАСЧЁТ ЭКВИВАЛЕНТНОЙ МАГНИТНОЙ ПРОНИЦАЕМОСТИ СЕРДЕЧНИКА С ЗАЗОРОМ.

Таблица даёт приблизительную, но, в большинстве своём, приемлемую точность расчёта при величинах длины воздушного зазора 0,2-2 мм.

Для Ш-образных сердечников в качестве внутреннего и внешнего диаметров следует вводить справочную характеристику длины магнитного контура le.

Определив ниже магнитную проницаемость сердечника с зазором, следует ввести это значение в предыдущий калькулятор и заново произвести вычисления магнитной индукции и индуктивности катушки.

Для наглядности приведу два графика петли гистерезиса Ш-образного ферритового сердечника марки N87 без немагнитного воздушного зазора и с зазором около 1 мм. Феррит ETD 59/31/22, достаточно крупный, с средней длиной магнитного контура le = 139 мм.
Механизмы влияния зазора у Ш-образных и тороидальных сердечников абсолютно идентичны.

Эквивалентная магнитная проницаемость сердечника с зазором уменьшилась и составила величину 160 единиц. Соответственно, уменьшился и наклон петли, позволяя сердечнику работать при гораздо больших значениях напряжённости магнитного поля вдали от области магнитной индукции насыщения сердечника.
А учитывая то, что значение напряжённости H прямо пропорционально, протекающему через катушку току, можно с уверенностью сказать, что область безопасных индукций теперь соответствует более чем на порядок большим токам в обмотке.

Линейная область петли гистерезиса также заметно увеличилась, что позволяет увеличить максимальные рабочие значения магнитной индукция в сердечнике вплоть до 0,85-0,9 от значения справочной характеристики Bнас (Bs).

 

Калькулятор однослойного змеевика

Подробнее о индукторах с воздушным сердечником
Что такое индуктор с воздушным сердечником?
«Индуктор с воздушным сердечником» — это индуктор, который не зависит от ферромагнитного материала для достижения его указанная индуктивность. Некоторые индукторы намотаны без шпулька и просто воздух в качестве сердечника. Некоторые другие ранены на шпульке из бакелита, пластика, керамики и др.

Преимущества катушки с воздушным сердечником:
На ее индуктивность не влияет ток, который она несет.
Это контрастирует с ситуацией с катушками, использующими ферромагнитные сердечники, индуктивность которых достигает максимума при умеренных напряженности поля перед падением до нуля как насыщение подходы. Иногда нелинейность намагниченности кривой можно мириться; например в коммутационной мощности источников питания и в некоторых топологиях коммутации это преимущество.
В схемах, таких как переходные фильтры аудио в Hi-Fi акустические системы необходимо избегать искажений; затем воздух катушка — хороший выбор. Большинство радиопередатчиков полагаются на воздушных змеевиках, чтобы предотвратить образование гармоник.
Воздушные змеевики также не имеют «потерь в стали». что проблема с ферромагнитными сердечниками. Как частота увеличивается, это преимущество становится все больше важный.Вы получаете лучшую добротность, большую эффективность, большая мощность и меньше искажений.
Наконец, воздушные змеевики могут быть разработаны для работы на частотах до 1 ГГц. Большинство ферромагнитных сердечников имеют тенденцию выше 100 МГц с потерями.

И «обратная сторона»:
Без сердечника с высокой проницаемостью нужно иметь больше и / или большее количество витков для достижения заданного значения индуктивности. Больше витков означает большие катушки, меньший резонанс из-за более высокой межобмоточной емкости и более высокой меди потеря.На более высоких частотах обычно не требуется высокая индуктивность, так что это не проблема.
Излучение и захват большего поля рассеяния:
С замкнутыми магнитными путями, используемыми в индукторах с сердечником радиация гораздо менее серьезна. По мере увеличения диаметра к длине волны (лямбда = c / f), потери из-за электромагнитных радиация станет значительной.Вы можете уменьшить эту проблему, заключив катушку в экран, или установив его под прямым углом к ​​другим катушкам, может быть связан с.
Возможно, вы используете змеевик с воздушным сердечником не потому, что вам нужен элемент схемы с определенной индуктивностью как таковой но поскольку ваша катушка используется как датчик приближения, рамочная антенна, индукционный нагреватель, катушка Тесла, электромагнит, головка магнитометра или отклоняющая вилка и т. д.Затем внешний излучаемое поле может быть каким угодно.

Более шикарный калькулятор можно найти здесь.

coil core — Перевод на немецкий — примеры английский

Эти примеры могут содержать грубые слова на основании вашего поиска.

Эти примеры могут содержать разговорные слова, основанные на вашем поиске.

Устройство по п. 1, отличающееся тем, что сердечник катушки представляет собой алюминиевый провод.

Vorrichtung nach Anspruch, bei der der Spulenkern Aluminium ist.

Ступичный генератор по п.5, отличающийся тем, что сердечник катушки представляет собой полый цилиндрический элемент, охватывающий ось и закрепленный на ней.

Nabenlichtmaschine nach Anspruch 5, dadurch gekennzeichnet, daß der Spulenkern als hohlzylindrisches Teil die Achse umgibt und mit dieser verspannt ist.

Корпус общей катушки имеет пропускной канал, в котором расположен общий сердечник катушки .

Der gemeinsame Spulenkörper hat einen Durchgangskanal, in dem ein gemeinsamer Spulenkern angeordnet ist.

Сердечник катушки для индуктивного, частотно-независимого коммутационного устройства предлагается в качестве датчика положения.

Als Stellungssensor wird ein Spulenkern für eine индуктивный, частотный Schaltvorrichtung vorgeschlagen.

Устройство по п.7, отличающееся тем, что замкнутая сердцевина катушки (10) представляет собой цилиндрическое кольцо.

Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der geschlossene Spulenkern (10) как Zylinderring ausgebildet ist.

Венечный передний сердечник катушки помогает устранить магнитное залипание, которое приводит к низким показаниям рабочего цикла, связанным с низкими катушками.

Der gekrönte vorderen Spulenkern hilft dabei, die magnetische Kleben, die in den Kreislauf Lesungen niedrigen Arbeits mit minderwertigen Spulen assoziiert führt.

Смарт-карта по одному из предшествующих пунктов, отличающаяся тем, что держатель модуля имеет по меньшей мере одну область, которая имеет форму сердечника катушки .

Chipkarte nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Modulträger wenigstens einen als Spulenkern ausgebildeten Bereich aufweist.

Устройство блокировки / разблокировки по п.15, отличающееся тем, что сердечник змеевика (5) имеет вентиляционное отверстие (29) для удаления воздуха из промежутка (28).

Sperr- / Freigabevorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß der Spulenkern (5) zur Ent- und Belüftung des Zwischenraums (28) eine Entlüftungsbohrung (29) aufweist.

Использование устройства по п.7, в котором сердечник катушки (2) выполнен в виде слоя, который содержит по меньшей мере один ферромагнитный материал, предпочтительно железо-никелевый сплав.

Verwendung einer Anordnung nach Anspruch 7, wobei der Spulenkern (2) als Schicht ausgebildet ist, die zumindest ein ferromagnetisches Material, vorzugsweise eine Eisen-Nickel-Legierung, enthält.

Способ по п.1 или 2, отличающийся тем, что сердечник катушки (14) доводят до предусмотренной длины (1) путем осадки.

Verfahren nach Anspruch 1 или 2, dadurch gekennzeichnet, daß der Spulenkern (14) durch Stauchen auf die vorgesehene Länge (1) gebracht wird.

С помощью указанного устройства создаются две магнитные цепи, каждая из которых имеет первичную катушку, вторичную катушку и общий сердечник катушки .

Durch diese Anordnung sind zwei Magnetkreise gebildet mit jeweils einer Primärspule, einer Sekundärspule und dem gemeinsamen Spulenkern .

Индуктивный датчик силы (1) содержит кольцевой сердечник катушки (10) с воздушным зазором (20).

Индуктивный датчик Kraftsensor (1) лучше всего на кольцевом носителе Spulenkern (10) mit einem Luftspalt (20).

Сердечник катушки по п.1, отличающийся тем, что составной корпус (9) вместе с дисками (15, 16) постоянных магнитов поддерживается своими концами в изолирующей немагнитной трубке (14).

Spulenkern nach Anspruch 1, dadurch gekennzeichnet, daß der Verbundkörper (9) zusammen mit Dauermagnetscheiben (15,16) an seinen Stirnseiten in einemolated unmagnetischen Hüllrohr ist (14) gehal.

Изобретение относится к индуктивности микросхемы, содержащей намотанный сердечник катушки (1), расположенный вертикально на выводной рамке (6).

Eine Chip-Induktivität besteht aus einem bewickelten Spulenkern (1), der stehend auf einem Systemträger (6) angeordnet ist.

Особенно выгодная конструкция ВЧ-катушки согласно изобретению является результатом использования кольцевого сердечника в качестве сердечника катушки (12).

Eine besonders vorteil- hafte Ausgestaltung der erfindungsgemäßen HF-Spule ist durch die Verwendung eines Ringkerns als Spulenkern (12) gegeben.

Двигатель по любому из предшествующих пунктов, отличающийся тем, что электромагнит содержит по меньшей мере один сердечник катушки с одной или несколькими полюсными поверхностями.

Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektromagnet zumindest eine Spulenkern mit einer oder mehreren Polflächen umfasst.

Использование устройства по одному из пп.7 или 8, в котором сердечник катушки (2) является частью магнитопроводящей структуры (3).

Verwendung einer Anordnung nach einem der Ansprüche 7 oder 8, wobei der Spulenkern (2) ein Teil der flußleitenden Struktur (3) ist.

Устройство блокировки / разблокировки по одному из пп.2-6, отличающееся тем, что сердечник катушки (5) электромагнита (4) имеет относительно большую массу и длинный путь ускорения.

Sperr- / Freigabevorrichtung nach einem der vorhergehenden Ansprüche 2 bis 6, dadurch gekennzeichnet, daß der Spulenkern (5) des Elektromagneten (4) eine relativ große Masse und einen langen Beschleunigungsweg.

Ступичный генератор по одному из предшествующих пунктов, отличающийся тем, что сердечник катушки намотан в несколько слоев из тонкого металлического листа, причем указанные слои электрически изолированы друг от друга.

Nabenlichtmaschine nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Spulenkern aus einem dünnen Blech mehrlagig gewickelt ist, wobei die Lagen elektrisch gegeneinander isoliert sind.

Катушка колебательного контура по п.1, отличающа с тем, что полосковой сердечник катушки (27) закреплен с помощью клейкой ленты в канавке (26) корпуса (15) катушки.

Schwingkreisspule nach Anspruch 1, dadurch gekennzeichnet, daß der bandförmige Spulenkern (27) unter Verwendung eines Klebebandes in der Nut (26) des Spulenkörpers (15) befestigt ist.

Лучшая цена в рулонах с сердечником — Выгодные предложения на катушки с сердечником от мировых продавцов катушек с сердечником

Отличные новости !!! Вы находитесь в нужном месте для катушки с сердечником.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта катушка с верхним сердечником в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели катушку с сердечником на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в катушке с сердечником и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести катушку с сердечником по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Сердечник катушки

«במחיר המשתלם ביותר — ים נהדרים לקניית сердечник катушки מחנויות של сердечник катушки ב- AliExpress

מבצעים חמים ב- сердечник катушки: העסקאות והנחות המקוונות הטובות ביותר עם ביקורות של לקוחות אמיתיים.

ות טובות! תה נמצא במקום הנכון עבור сердечник катушки. עכשיו אתה כבר יודע את זה, מה שאתה מחפש, אתה בטוח למצוא את זה aliexpress. אנחנו ממש יש אלפי מוצרים מעולים בכל קטגוריות המוצרים. ין אם אתה מחפש high-end תוויות ו זול, כ רכישות בכמות גדולה, אנו מבטיחים כי זה כאן aliexpress. תוכלו למצוא חנויות רשמיות עבור שמות מותגים לצד מוכרים הנחה עצמאית קטנה, כולם מציעים משלוח מהיר ואמיר.

ולם לא יוכה על בחירה, איכות ומחיר. כל יום תוכלו למצוא הצעות חדשות, מקוונות בלבד, הנחות בחנויות והזדמנות לשמור עוד יותר על ידי איסוף קופונים. י ייתכן שיהיה עליך לפעול מהר כמו זה העליון сердечник катушки מוגדר להיות אחד המבוקשים ביותר המבוקשים ביותר בתוך זמן קצר. תחשוב כמה קנאי אתה חברים יהיה כאשר אתה אומר להם שיש לך сердечник катушки על aliexpress. עם ירים הנמוכים ביותר באינטרנט, מחירי משלוח זול ואפשרויות אוסף מקומי, תה יכול לעשות חיסכון גדול עוד יותר.

תה עדיין נמצא בשני מוחות לגבי сердечник катушки וחושבים על בחירת מוצר דומה, ‘אלכס’ הוא מקום מצוין להשוות מחירים ומוכרים. ו נעזור לך להבין אם זה שווה תוספת עבור גירסת high-end או אם אתה מקבל רק עסקה טובה על ידי מקבל ת הפריט זול יותר. Номер и, אם אתה רק רוצה לטפל בעצמך ו להתיז על הגרסה היקרה ביותר, תמיד יהיה תמיד לוודא שאתה יכול לקבל את המחיר הטוב ביותר עבור הכסף שלך, אפילו לתת לך לדעת מתי אתה תהיה טוב יותר מחכה קידום להתחיל, ואת החיסכון שאתה יכול לצפות לעשות.

Aliexpress. כל ות ומוכר מדורגות עבור שירות לקוחות, יר ואיכות על ידי לקוחות אמיתיים. וסף אתה יכול למצוא את החנות או דירוגי המוכר הפרט, כמו גם להשוות מחירים, הנחוח והנחות מציעה על ותו וצר על יי רוי רות וצר על יאי רוי רי ר כל רכישה מדורגת בכוכבים ולעתים קרובות יש הערות שנותרו על ידי לקוחות קודמים המתארים את חוויית העסקה שלהם, כך ת י וי.בקיצור, תה לא צריך לקחת את המילה שלנו על זה — רק להקשיב למיליוני לקוחות מאושרים שלנו.

וגם, ת חדש י aliexpress, ו מאפשרים לך על סוד. רק לפני שתלחץ על ‘קנה עכשיו’ בתהליך העסקה, גע רגע כדי לבדוק את הקופונים — ות

Vaporesso NRG GT Core Replacement Coils

Сменные змеевики Vaporesso GT Core были разработаны для использования с целым рядом резервуаров и комплектов, включая NRG Mini Tank и NRG SE Tank.Существует девять версий сменных катушек GT, все они предназначены для субомного вейпинга.

Характеристики:

  • Субомные катушки Vaporesso
  • Сборки с несколькими катушками
  • Совместимость с электронной жидкостью с высоким VG
  • DTL Вейпинг

Стандартные катушки изготовлены из проволоки Kanthal и органического хлопка и работают с разной мощностью в соответствии с вашим стилем вейпинга. Катушки CCELL изготовлены из керамических материалов, которые уменьшают слюну и вероятность сухих ударов.Сетчатые змеевики имеют большую площадь поверхности, что, в свою очередь, увеличивает количество нагреваемой жидкости для усиления аромата.

Поскольку эти катушки рекомендуются для субомного вейпинга, они наиболее совместимы с жидкостями с высоким VG, то есть 60% VG и выше.

Спецификация катушки:

  • Катушка 0,2 Ом Vaporesso GT1 — конструкция с одной катушкой — от 50 до 70 Вт
  • Катушка 0,4 Ом Vaporesso GT2 — сборка с одной катушкой — от 40 до 80 Вт
  • Вапорессо GT4 0.Катушка CLP 15 Ом — конструкция с двумя катушками (CLP — Клэптон) — от 30 до 70 Вт
  • Vaporesso GT4 0,15 Ом сетчатая катушка — конструкция с двойной сеткой — от 50 до 75 Вт
  • Катушка 0,2 Ом Vaporesso GT6 — сборка с тройной катушкой — от 40 до 100 Вт
  • Катушка 0,15 Ом Vaporesso GT8 — сборка с несколькими катушками — от 50 до 110 Вт
  • Катушка Vaporesso GT CCELL 0,5 Ом — сборка керамической катушки — от 20 до 40 Вт
  • Катушка 0,3 Ом для Vaporesso GT CCELL 2 — керамическая катушка — от 35 до 40 Вт
  • Vaporesso GT Meshed 0.Катушка 18 Ом — сетчатая катушка — от 50 до 85 Вт

Содержит:

  • 3 x Запасные катушки Vaporesso GT

Важная информация о Sub Ohm Vaping:

Любая катушка с сопротивлением менее 1,0 Ом называется субомной катушкой. Рекомендуется только для продвинутых вейперов, для правильного использования им потребуется больше энергии, которая будет обеспечена расширенным комплектом вейпинга.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *