Сети компьютерные. Компьютерные сети: классификация, стандарты и уровни модели OSI

Что такое компьютерная сеть. Как классифицируются компьютерные сети. Какие существуют стандарты и протоколы компьютерных сетей. Что представляет собой модель OSI и какие уровни она включает. Как работает передача данных в компьютерных сетях.

Содержание

Что такое компьютерная сеть и зачем она нужна

Компьютерная сеть — это система связи компьютеров или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование), которая позволяет пользователям сети передавать и получать информацию.

Основные задачи, которые решают компьютерные сети:

  • Обмен данными между компьютерами
  • Совместное использование ресурсов (файлов, принтеров и т.д.)
  • Обеспечение доступа к общей информации
  • Обмен сообщениями между пользователями
  • Организация распределенных вычислений

Таким образом, компьютерные сети значительно расширяют возможности отдельных компьютеров, позволяя им взаимодействовать и обмениваться информацией.

Классификация компьютерных сетей

Существует несколько основных признаков, по которым классифицируют компьютерные сети:


По территориальному признаку:

  • Локальные (LAN) — объединяют компьютеры в пределах одного здания или небольшой территории
  • Глобальные (WAN) — охватывают большие территории, вплоть до целых континентов
  • Городские (MAN) — промежуточный вариант между LAN и WAN, охватывают территорию города

По типу среды передачи:

  • Проводные — используют кабели (коаксиальный, витая пара, оптоволокно)
  • Беспроводные — передача данных по радиоканалам (Wi-Fi, Bluetooth и др.)

По скорости передачи данных:

  • Низкоскоростные — до 10 Мбит/с
  • Среднескоростные — 10-100 Мбит/с
  • Высокоскоростные — свыше 100 Мбит/с

По топологии:

  • Шина
  • Звезда
  • Кольцо
  • Смешанная

Такая классификация позволяет систематизировать разнообразие существующих компьютерных сетей.

Стандарты и протоколы компьютерных сетей

Для организации взаимодействия в компьютерных сетях используются различные стандарты и протоколы. Основными являются:

  • Ethernet — самый распространенный стандарт для локальных сетей
  • Wi-Fi — стандарт беспроводных локальных сетей
  • TCP/IP — набор протоколов передачи данных, на котором основана работа интернета
  • HTTP — протокол передачи гипертекста, используемый в веб
  • FTP — протокол передачи файлов
  • SMTP — протокол отправки электронной почты

Использование стандартизированных протоколов обеспечивает совместимость оборудования и программного обеспечения разных производителей в рамках единой сети.


Модель OSI и ее уровни

Модель OSI (Open Systems Interconnection) — это концептуальная модель, описывающая взаимодействие открытых систем связи. Она включает 7 уровней:

  1. Физический — передача битов по физическим каналам связи
  2. Канальный — формирование кадров, управление доступом к среде
  3. Сетевой — маршрутизация пакетов между разными сетями
  4. Транспортный — обеспечение надежной передачи данных
  5. Сеансовый — управление сеансами связи между приложениями
  6. Представительский — преобразование форматов данных
  7. Прикладной — обеспечение сетевых сервисов для приложений

Модель OSI позволяет разделить сетевое взаимодействие на уровни и стандартизировать протоколы. Это упрощает разработку сетевых протоколов и обеспечивает их совместимость.

Как происходит передача данных в компьютерных сетях

Передача данных в компьютерных сетях происходит следующим образом:

  1. Данные разбиваются на небольшие пакеты
  2. К пакетам добавляется служебная информация (адреса отправителя и получателя, контрольные суммы и т.д.)
  3. Пакеты передаются по сети, проходя через маршрутизаторы
  4. На стороне получателя пакеты собираются в исходное сообщение
  5. Проверяется целостность данных, при необходимости запрашивается повторная передача

Такой подход обеспечивает надежную передачу данных даже при сбоях на отдельных участках сети. Маршрутизация позволяет находить оптимальные пути доставки пакетов.


Основные сетевые устройства и их назначение

Для построения компьютерных сетей используются различные сетевые устройства:

  • Концентратор (хаб) — объединяет компьютеры в сеть, передает данные всем подключенным устройствам
  • Коммутатор — анализирует адреса и передает данные только нужному получателю
  • Маршрутизатор — обеспечивает связь между разными сетями, определяет оптимальные маршруты
  • Модем — преобразует цифровой сигнал в аналоговый и обратно для передачи по телефонным линиям
  • Сетевая карта — обеспечивает подключение компьютера к сети

Правильный выбор и настройка сетевого оборудования позволяет создать эффективную и надежную компьютерную сеть.

Проблемы безопасности в компьютерных сетях

Использование компьютерных сетей связано с рядом проблем безопасности:

  • Вирусы и вредоносные программы
  • Несанкционированный доступ к данным
  • Перехват передаваемой информации
  • DDoS-атаки
  • Фишинг и социальная инженерия

Для защиты от этих угроз используются различные средства:

  • Антивирусное ПО
  • Межсетевые экраны (файрволы)
  • Шифрование данных
  • Системы обнаружения вторжений
  • Регулярное обновление ПО

Комплексный подход к безопасности позволяет значительно снизить риски при работе в компьютерных сетях.



Основы компьютерных сетей: подробное руководство


Краткий курс — основы компьютерных сетей. В этом материале я расскажу (сжато) об основах компьютерных сетей. Статья предназначена для начинающих, а так же будет полезна школьникам старших классов и студентам. Начнем с базовых определений.

Сеть – совокупность систем связи и систем обработки информации, которая может использоваться несколькими пользователями.

Компьютерная сеть – сеть, в узлах которой содержатся компьютеры и оборудование коммуникации данных.

Вычислительная сеть – соединенная каналами связи система обработки данных, ориентированная на конкретного пользователя.

Компьютерная сеть — представляет собой систему распределенной обработки информации. Что тут важно. Важно то, что в распределенной системе не важно откуда и с какого устройства вы заходите. Вы можете войти в сеть с любого устройства (персональный компьютер, ноутбук, планшетный компьютер, телефон) из любой точки мира где есть интернет.

Краткая история развития компьютерных сетей

Компьютерные сети появились в результате развития телекоммуникационных технологий и компьютерной техники. То есть появились компьютеры. Они развивались. Были телекоммуникационные системы, телеграф, телефон, то есть связь. И вот люди думали, хорошо было бы если бы компьютеры могли обмениваться информацией между собой. Эта идея стала основополагающей идеей благодаря которой появились компьютерные сети.

50-е годы: мейнфреймы

В 50-х года 20-го века появились первые «компьютеры» — мейнфреймы. Это были большие вычислительные машины которые могли занимать по площади современный спортивный зал.  Вычислительные мощности были не большие, но факт в том что вычисления уже производила машина.

Начало 60-х годов: многотерминальные системы

В дальнейшем к одному мейнфрейму стали подключать несколько устройств ввода-вывода, появился прообраз нынешних терминальных систем да и сетей в целом.

 

70-е годы: первые компьютерные сети

?0-е годы, время холодной войны. СССР и США сидели возле своих ракет и думали кто же атакует (или не атакует) первым. Центры управления ракетами США располагались в разных местах удаленных друг от друга. Если в одном центре производится запуск ракет, после которого в центр попадает ракета врага, то вся информация в этом центре — утеряна. Управление перспективных исследовательских проектов Министерства обороны США (Defense Advanced Research Projects Agency (DARPA)) ставит перед учеными задачу — разработать технологию которая позволяла бы передавать информацию из одного стратегического центра в другой на случай его уничтожения.

В 1969 году появляется ARPANET  (от англ. Advanced Research Projects Agency Network) — первая компьютерная сеть созданная на основе протокола IP который используется и по сей день. За 11 лет ARPANET развивается до сети способной обеспечить связь между стратегическими объектами вооруженных сил США.

Середина 70-х годов: большие интегральные схемы

На основе интегральных схем появляются «мини компьютеры».

Они  начинают выходить за пределы министерства обороны и постепенно внедряются в повседневную жизнь. За компьютерами начинают работать бухгалтера, менеджеры, компьютеры начинают управлять производством. Появляются первые локальные сети.

Локальная сеть (Local Area Network, LAN) – объединение компьютеров, сосредоточенных на небольшой территории. В общем случае локальная сеть представляет собой коммуникационную систему, принадлежащую
одной организации.

Сетевая технология – согласованный набор программных и аппаратных средств (драйверов, сетевых адаптеров, кабелей и разъемов), а также механизмов передачи данных по линиям связи, достаточный для построения вычислительной сети.

В период с 80-х до начала 90-х годов появились и прочно вошли в нашу жизнь:

  1. Ethernet.
  2. Token Ring.
  3. Arcnet.
  4. FDDI (Fiber Distributed Data Interface) — волоконнооптический интерфейс передачи данных.
  5. TCP/IP используется в ARPANET.
  6. Ethernet становится лидером среди сетевых технологий.
  7. В 1991 году появился интернет World Wide Web.

Общие принципы построения сетей

Со временем основной целью компьютерных развития сетей (помимо передачи информации) стала цель распределенного использования информационных ресурсов:

  1. Периферийных устройств: принтеры, сканеры и т. д.
  2. Данных хранящихся в оперативной памяти устройств.
  3. Вычислительных мощностей.

Достичь эту цель помогали сетевые интерфейсы. Сетевые интерфейсы это определенная логическая и/или физическая граница между взаимодействующими независимыми объектами.

Сетевые интерфейсы разделяются на:

  • Физические интерфейсы (порты).
  • Логические интерфейсы (протоколы).

Порт

Из определения обычно ничего не ясно. Порт и порт, а что порт?

Начнем с того что порт это цифра. Например 21, 25, 80.

Это число записывается в заголовках протоколов транспортного уровня (об этом ниже). Порт указывает для какой программы предназначен тот или иной пакет (грубо говоря та или иная информация). Например, http-сервер работает через порт 80. Когда вы открываете браузер, вы отправляете запрос на веб-сервер через 80 порт и сервер понимает что это http запрос и вам нужен сервер который передаст вам страницу в формате html (ответ сервера).

Протокол

Протокол, например TCP/IP это адрес узла (компьютера) с указанием порта и передаваемых данных. Например что бы передать информацию по протоколу TCP/IP нужно указать следующие данные:

Адрес отправителя (Source address):
IP: 82.146.49.11
Port: 2049
Адрес получателя (Destination address):
IP: 195.34.32.111
Port: 53
Данные пакета:

Благодаря этим данным информация будет передана на нужный узел.

Пара клиент—сервер

Начнем с определений.

Клиент — это модуль, предназначенный для формирования и передачи сообщений-запросов к ресурсам удаленного компьютера от разных приложений с последующим приемом результатов из сети и передачей их соответствующим приложениям.

Сервер — это модуль, который постоянно, ожидает прихода из сети запросов от клиентов и, приняв запрос, пытается его обслужить, как правило, с участием
локальной ОС; один сервер может обслуживать запросы сразу нескольких клиентов (поочередно или одновременно)/

Проще говоря Сервер — это компьютер на котором установлена программа, или принтер. Клиент — это компьютер который подключается к программе, работает с ней и распечатывает какие-либо результаты, например.

При этом программа может быть установлена на Клиенте, а база данных программы на Сервере.

Топология физических сетей

Под топологией сети

понимается конфигурация графа, вершинам которого соответствуют конечные узлы сети (например, компьютеры) и коммуникационной оборудование (например, маршрутизаторы), а ребрам – физические или информационные связи между вершинами.

  • Полносвязная (а).
  • Ячеистая (б).
  • Кольцо (в).
  • Звезда (г).
  • Дерево (д).
  • Шина (е).

Основных топологий сети 6. В целом тут все просто. На сегодняшний день наиболее распространенная топология — Дерево.

Адресация узлов сети

Множество всех адресов, которые являются допустимыми в рамках некоторой схемы адресации, называется адресным пространством. Адресное пространство может
иметь плоскую (линейную) организацию или иерархическую организацию.

Для преобразования адресов из одного вида в другой используются специальные вспомогательные протоколы, которые называют протоколами разрешения адресов.

Коммутация

Соединение конечных узлов через сеть транзитных узлов называют коммутацией. Последовательность узлов, лежащих на пути от отправителя к получателю, образует маршрут.

Обобщенные задачи коммутации
  1. Определение информационных потоков, для которых требуется прокладывать маршруты.
  2. Маршрутизация потоков.
  3. Продвижение потоков, то есть распознавание потоков и их локальная коммутация на каждом транзитном узле.
  4. Мультиплексирование и демультиплексирование потоков.

Уровни сетевой модели OSI и уровни TCP/IP

(OSI) Open System Interconnection — многоуровневая модель взаимодействия открытых систем, состоящая из семи уровней. Каждый из семи уровней предназначен для выполнения одного из этапов связи.

Для упрощения структуры большинство сетей организуются в наборы уровней, каждый последующий возводится над предыдущим.

Целью каждого уровня является предоставление неких сервисов для вышестоящих уровней. При этом от них скрываются детали реализации предоставляемого сервиса.

Протокол – формализованное правило, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах.

Протоколы, реализующие модель OSI никогда не применялись на практике, но имена и номера уровней используются по сей день.

  1. Физический.
  2. Канальный.
  3. Сетевой.
  4. Транспортный.
  5. Сеансовый.
  6. Представления.
  7. Прикладной.

Для лучшего понимания приведу пример. Вы открываете страницу сайта в интернете. Что происходит?

Браузер (прикладной уровень) формирует запрос по протоколу HTTP (уровень представлений и сеансовый уровень), формируются пакеты, передаваемые на порт 80 (транспортный уровень), на IP  адрес сервера (сетевой уровень). Эти пакеты передаются по сетевой карте компьютера в сеть (канальный и физический уровень).

Уровни OSI — краткий обзор

Физический уровень. Если коротко и просто, то на физическом уровне данные передаются в виде сигналов. Если передается число 1, то задача уровня передать число 1, если 0, то передать 0. Простейшее сравнение — связать два пластиковых стаканчика ниткой и говорить в них. Нитка передает вибрацию физически.

Канальный уровень. Канальный уровень это технология каким образом будут связаны узлы (передающий и принимающий), тут вспоминает топологию сетей: кольцо, шина, дерево. Данный уровень определяет порядок взаимодействия между большим количеством узлов.

Сетевой уровень. Объединяет несколько сетей канального уровня в одну сеть. Есть, например, у нас кольцо, дерево и шина, задача сетевого уровня объединить их в одну сеть, а именно — ввести общую адресацию. На этом уровне определяются правила передачи информации:

  1. Сетевые протоколы (IPv4 и IPv6).
  2. Протоколы маршрутизации и построения маршрутов.

Транспортный уровень обеспечивает надежность при передачи информации. Он контролирует отправку пакетов. Если пакет отправлен, то должно придти (на компьютер который отправлял пакет) уведомление об успешной доставке пакета. Если уведомление об успешной доставке не поступило то нужно отправить пакет еще раз. Например TCP и UDP.

Сеансовый уровень. Отвечает за управление сеансами связи. Производит отслеживание: кто, в какой момент и куда передает информацию. На этом уровне происходит синхронизация передачи данных.

Уровень представления. Уровень обеспечивает «общий язык» между узлами. Благодаря ему если мы передаем файл с расширением .doc, то все узлы понимают что это документ Word, а не музыка. На этом уровне к передаваемым пакетам данных добавляется потоковое шифрование.

Прикладной уровень. Осуществляет взаимодействие приложения (например браузера) с сетью.

Уровни TCP/IP

Набор протоколов TSP/IP основан на собственной модели, которая базируется на модели OSI.

  • Прикладной, представления, сеансовый = Прикладной.
  • Транспортный =  Транспортный.
  • Сетевой = Интернет.
  • Канальный, физический = Сетевой интерфейс.

Уровень сетевого интерфейса

Уровень сетевого интерфейса (называют уровнем 2 или канальным уровнем) описывает стандартный метод связи между устройствами которые находятся в одном сегменте сети.

Сегмент сети — часть сети состоящая из сетевых интерфейсов, отделенных только кабелями, коммутаторами, концентраторами и беспроводными точками доступа.

Этот уровень предназначен для связи расположенных недалеко сетевых интерфейсов, которые определяются по фиксированным аппаратным адресам (например MAC-адресам).

Уровень сетевого интерфейса так же определяет физические требования для обмена сигналами интерфейсов, кабелей, концентраторов, коммутаторов и точек доступа. Это подмножество называют физическим уровнем (OSI), или уровнем 1.

Например, интерфейсы первого уровня это Ethernet, Token Ring, Point-to-Point Protocol (PPP) и Fiber Distributed Data Interface (FDDI).

Немного о Ethernet на примере кадра web-страницы

Пакеты Ethernet называют кадрами. Первая строка кадра состоит из слова Frame. Эта строка содержит общую информацию о кадре.

Далее в кадре располагается заголовок — Ethernet.

После заголовка кадра идет заголовок протокола IPv4, TCP и HTTP.

В конце идет заголовок HTTP с запросом GET (GET — один из вариантов запроса к веб-серверу).

Таким образом цель кадра — запрос содержимого веб-страницы которая находится на удаленном сервере.

В полном заголовке Ethernet есть такие значения как DestinationAddress и SourceAddress которые содержат MAC-адреса сетевых интерфейсов.

DestinationAddress показывает MAC шлюза в локальной сети, а не веб-сервера, так как протоколы 2-го уровня «не видят» дальше локальной сети.

Поле EthernetType указывает на следующий протокол более высокого уровня в кадре (IPv4).

Коммутаторы считывают адреса устройств локальной сети и ограничивают распространение сетевого трафика только этими адресами. Поэтому коммутаторы работают на уровне 2.

Уровень Интернета

Уровень интернета называют сетевым уровнем или уровнем 3. Он описывает схему адресации которая позволяет взаимодействовать устройствам в разных сетевых сегментах.

На уровне интернета преимущественно работает протокол IP, работающие на уровне 3 устройства — маршрутизаторы. Маршрутизатор читает адрес назначения пакета, а затем перенаправляет сообщение по соответствующему пути в пункт назначения. Подробнее о маршрутизации вы можете почитать в статье маршрутизация в windows.

Если адрес в пакете относится к локальной сети или является широковещательным адресом в локальной сети, то по умолчанию такой пакет просто отбрасывается. Поэтому говорят, что маршрутизаторы блокируют широковещание.

Стек TCP/IP реализован корпорацией Microsoft ну уровне интернета (3). Изначально на этом уровне использовался только один протокол IPv4, позже появился протокол IPv6.

IPv4

Протокол версии 4 отвечает за адресацию и маршрутизацию пакетов между узлами в десятках сегментах сети. IPv4 использует 32 разрядные адреса. 32 разрядные адреса имеют довольно ограниченное пространство, в связи с этим возникает дефицит адресов.

IPv6

Протокол версии 6 использует 128 разрядные адреса. Поэтому он может определить намного больше адресов. В интернете не все маршрутизаторы поддерживают IPv6. Для поддержки IPv6 в интернете используются туннельные протоколы.

В Windows по умолчанию включены обе версии протоколов.

Транспортный уровень

Транспортный уровень модели TCP/IP представляет метод отправки и получения данных устройствами. Так же он создает отметку о предназначении данных для определенного приложения. В TCP/IP входят два протокола транспортного уровня:

  1. Протокол TCP. Протокол принимает данные у приложения и обрабатывает их как поток байт.Байты группируются, нумеруются и доставляются на сетевой хост. Получатель подтверждает получение этих данных. Если подтверждение не получено, то отправитель отправляет данные заново.
  2. Протокол UDP.Этот протокол не предусматривает гарантию и подтверждение доставки данных. Если вам необходимо надежное подключение, то стоит использовать протокол TCP.
Прикладной уровень

Прикладной уровень — это этап связи на котором сетевые сервисы стандартизированы. Многие знают протоколы прикладного уровня: POP3, HTTP, Telnet, FTP и другие. Как правило программы работающие с этими протоколами имеют дружественный, интуитивно-понятный интерфейс.
Изучив этот материал вы изучили основы компьютерных сетей.

Основы компьютерных сетей. Тема №1. Основные сетевые термины и сетевые модели — asp24.ru

Всем привет. На днях возникла идея написать статьи про основы компьютерных сетей, разобрать работу самых важных протоколов и как строятся сети простым языком. Заинтересовавшихся приглашаю под кат.

Немного оффтопа: Приблизительно месяц назад сдал экзамен CCNA (на 980/1000 баллов) и осталось много материала за год моей подготовки и обучения. Учился я сначала в академии Cisco около 7 месяцев, а оставшееся время вел конспекты по всем темам, которые были мною изучены. Также консультировал многих ребят в области сетевых технологий и заметил, что многие наступают на одни и те же грабли, в виде пробелов по каким-то ключевым темам. На днях пару ребят попросили меня объяснить, что такое сети и как с ними работать. В связи с этим решил максимально подробно и простым языком описать самые ключевые и важные вещи. Статьи будут полезны новичкам, которые только встали на путь изучения. Но, возможно, и бывалые сисадмины подчеркнут из этого что-то полезное. Так как я буду идти по программе CCNA, это будет очень полезно тем людям, которые готовятся к сдаче. Можете держать статьи в виде шпаргалок и периодически их просматривать. Я во время обучения делал конспекты по книгам и периодически читал их, чтобы освежать знания.

Вообще хочу дать всем начинающим совет. Моей первой серьезной книгой, была книга Олиферов «Компьютерные сети». И мне было очень тяжело читать ее. Не скажу, что все было тяжело. Но моменты, где детально разбиралось, как работает MPLS или Ethernet операторского класса, вводило в ступор. Я читал одну главу по несколько часов и все равно многое оставалось загадкой. Если вы понимаете, что какие то термины никак не хотят лезть в голову, пропустите их и читайте дальше, но ни в коем случае не отбрасывайте книгу полностью. Это не роман или эпос, где важно читать по главам, чтобы понять сюжет. Пройдет время и то, что раньше было непонятным, в итоге станет ясно. Здесь прокачивается «книжный скилл». Каждая следующая книга, читается легче предыдущей книги. К примеру, после прочтения Олиферов «Компьютерные сети», читать Таненбаума «Компьютерные сети» легче в несколько раз и наоборот. Потому что новых понятий встречается меньше. Поэтому мой совет: не бойтесь читать книги. Ваши усилия в будущем принесут плоды. Заканчиваю разглагольствование и приступаю к написанию статьи.

Итак, начнем с основных сетевых терминов.

Что такое сеть? Это совокупность устройств и систем, которые подключены друг к другу (логически или физически) и общающихся между собой. Сюда можно отнести сервера, компьютеры, телефоны, маршрутизаторы и так далее. Размер этой сети может достигать размера Интернета, а может состоять всего из двух устройств, соединенных между собой кабелем. Чтобы не было каши, разделим компоненты сети на группы:

  • Оконечные узлы: Устройства, которые передают и/или принимают какие-либо данные. Это могут быть компьютеры, телефоны, сервера, какие-то терминалы или тонкие клиенты, телевизоры.
  • Промежуточные устройства: Это устройства, которые соединяют оконечные узлы между собой. Сюда можно отнести коммутаторы, концентраторы, модемы, маршрутизаторы, точки доступа Wi-Fi.
  • Сетевые среды: Это те среды, в которых происходит непосредственная передача данных. Сюда относятся кабели, сетевые карточки, различного рода коннекторы, воздушная среда передачи. Если это медный кабель, то передача данных осуществляется при помощи электрических сигналов. У оптоволоконных кабелей, при помощи световых импульсов. Ну и у беспроводных устройств, при помощи радиоволн.

Посмотрим все это на картинке:

На данный момент надо просто понимать отличие. Детальные отличия будут разобраны позже.

Теперь, на мой взгляд, главный вопрос: Для чего мы используем сети? Ответов на этот вопрос много, но я освещу самые популярные, которые используются в повседневной жизни:

  • Приложения: При помощи приложений отправляем разные данные между устройствами, открываем доступ к общим ресурсам. Это могут быть как консольные приложения, так и приложения с графическим интерфейсом.
  • Сетевые ресурсы: Это сетевые принтеры, которыми, к примеру, пользуются в офисе или сетевые камеры, которые просматривает охрана, находясь в удаленной местности.
  • Хранилище: Используя сервер или рабочую станцию, подключенную к сети, создается хранилище доступное для других. Многие люди выкладывают туда свои файлы, видео, картинки и открывают общий доступ к ним для других пользователей. Пример, который на ходу приходит в голову, — это google диск, яндекс диск и тому подобные сервисы.
  • Резервное копирование: Часто, в крупных компаниях, используют центральный сервер, куда все компьютеры копируют важные файлы для резервной копии. Это нужно для последующего восстановления данных, если оригинал удалился или повредился. Методов копирования огромное количество: с предварительным сжатием, кодированием и так далее.
  • VoIP: Телефония, работающая по протоколу IP. Применяется она сейчас повсеместно, так как проще, дешевле традиционной телефонии и с каждым годом вытесняет ее.

Из всего списка, чаще всего многие работали именно с приложениями. Поэтому разберем их более подробно. Я старательно буду выбирать только те приложения, которые как-то связаны с сетью. Поэтому приложения типа калькулятора или блокнота, во внимание не беру.

Загрузчики. Это файловые менеджеры, работающие по протоколу FTP, TFTP. Банальный пример — это скачивание фильма, музыки, картинок с файлообменников или иных источников. К этой категории еще можно отнести резервное копирование, которое автоматически делает сервер каждую ночь. То есть это встроенные или сторонние программы и утилиты, которые выполняют копирование и скачивание. Данный вид приложений не требует прямого человеческого вмешательства. Достаточно указать место, куда сохранить и скачивание само начнется и закончится.

Скорость скачивания зависит от пропускной способности. Для данного типа приложений это не совсем критично. Если, например, файл будет скачиваться не минуту, а 10, то тут только вопрос времени, и на целостности файла это никак не скажется. Сложности могут возникнуть только когда нам надо за пару часов сделать резервную копию системы, а из-за плохого канала и, соответственно, низкой пропускной способности, это занимает несколько дней. Ниже приведены описания самых популярных протоколов данной группы:

FTP— это стандартный протокол передачи данных с установлением соединения. Работает по протоколу TCP (этот протокол в дальнейшем будет подробно рассмотрен). Стандартный номер порта 21. Чаще всего используется для загрузки сайта на веб-хостинг и выгрузки его. Самым популярным приложением, работающим по этому протоколу — это Filezilla.

Вот так выглядит само приложение:

TFTP— это упрощенная версия протокола FTP, которая работает без установления соединения, по протоколу UDP. Применяется для загрузки образа бездисковыми рабочими станциями. Особенно широко используется устройствами Cisco для той же загрузки образа и резервных копий.

Интерактивные приложения. Приложения, позволяющие осуществить интерактивный обмен. Например, модель «человек-человек». Когда два человека, при помощи интерактивных приложений, общаются между собой или ведут общую работу. Сюда относится: ICQ, электронная почта, форум, на котором несколько экспертов помогают людям в решении вопросов. Или модель «человек-машина». Когда человек общается непосредственно с компьютером. Это может быть удаленная настройка базы, конфигурация сетевого устройства. Здесь, в отличие от загрузчиков, важно постоянное вмешательство человека. То есть, как минимум, один человек выступает инициатором. Пропускная способность уже более чувствительна к задержкам, чем приложения-загрузчики. Например, при удаленной конфигурации сетевого устройства, будет тяжело его настраивать, если отклик от команды будет в 30 секунд.

Приложения в реальном времени. Приложения, позволяющие передавать информацию в реальном времени. Как раз к этой группе относится IP-телефония, системы потокового вещания, видеоконференции. Самые чувствительные к задержкам и пропускной способности приложения. Представьте, что вы разговариваете по телефону и то, что вы говорите, собеседник услышит через 2 секунды и наоборот, вы от собеседника с таким же интервалом. Такое общение еще и приведет к тому, что голоса будут пропадать и разговор будет трудноразличимым, а в видеоконференция превратится в кашу. В среднем, задержка не должна превышать 300 мс. К данной категории можно отнести Skype, Lync, Viber (когда совершаем звонок).

Теперь поговорим о такой важной вещи, как топология. Она делится на 2 большие категории: физическая и логическая. Очень важно понимать их разницу. Итак, физическая топология — это как наша сеть выглядит. Где находятся узлы, какие сетевые промежуточные устройства используются и где они стоят, какие сетевые кабели используются, как они протянуты и в какой порт воткнуты. Логическая топология — это каким путем будут идти пакеты в нашей физической топологии. То есть физическая — это как мы расположили устройства, а логическая — это через какие устройства будут проходить пакеты.

Теперь посмотрим и разберем виды топологии:

1. Топология с общей шиной (англ. Bus Topology)

Одна из первых физических топологий. Суть состояла в том, что к одному длинному кабелю подсоединяли все устройства и организовывали локальную сеть. На концах кабеля требовались терминаторы. Как правило — это было сопротивление на 50 Ом, которое использовалось для того, чтобы сигнал не отражался в кабеле. Преимущество ее было только в простоте установки. С точки зрения работоспособности была крайне не устойчивой. Если где-то в кабеле происходил разрыв, то вся сеть оставалась парализованной, до замены кабеля.

2. Кольцевая топология (англ. Ring Topology)

В данной топологии каждое устройство подключается к 2-ум соседним. Создавая, таким образом, кольцо. Здесь логика такова, что с одного конца компьютер только принимает, а с другого только отправляет. То есть, получается передача по кольцу и следующий компьютер играет роль ретранслятора сигнала. За счет этого нужда в терминаторах отпала. Соответственно, если где-то кабель повреждался, кольцо размыкалось и сеть становилась не работоспособной. Для повышения отказоустойчивости, применяют двойное кольцо, то есть в каждое устройство приходит два кабеля, а не один. Соответственно, при отказе одного кабеля, остается работать резервный.

3.Топология звезда (англ. Star Topology)

Все устройства подключаются к центральному узлу, который уже является ретранслятором. В наше время данная модель используется в локальных сетях, когда к одному коммутатору подключаются несколько устройств, и он является посредником в передаче. Здесь отказоустойчивость значительно выше, чем в предыдущих двух. При обрыве, какого либо кабеля, выпадает из сети только одно устройство. Все остальные продолжают спокойно работать. Однако если откажет центральное звено, сеть станет неработоспособной.

4. Полносвязная топология (англ. Full-Mesh Topology)

Все устройства связаны напрямую друг с другом. То есть с каждого на каждый. Данная модель является, пожалуй, самой отказоустойчивой, так как не зависит от других. Но строить сети на такой модели сложно и дорого. Так как в сети, в которой минимум 1000 компьютеров, придется подключать 1000 кабелей на каждый компьютер.

5. Неполносвязная топология (англ. Partial-Mesh Topology)

Как правило, вариантов ее несколько. Она похожа по строению на полносвязную топологию. Однако соединение построено не с каждого на каждый, а через дополнительные узлы. То есть узел A, связан напрямую только с узлом B, а узел B связан и с узлом A, и с узлом C. Так вот, чтобы узлу A отправить сообщение узлу C, ему надо отправить сначала узлу B, а узел B в свою очередь отправит это сообщение узлу C. В принципе по этой топологии работают маршрутизаторы. Приведу пример из домашней сети. Когда вы из дома выходите в Интернет, у вас нет прямого кабеля до всех узлов, и вы отправляете данные своему провайдеру, а он уже знает куда эти данные нужно отправить.

6. Смешанная топология (англ. Hybrid Topology)

Самая популярная топология, которая объединила все топологии выше в себя. Представляет собой древовидную структуру, которая объединяет все топологии. Одна из самых отказоустойчивых топологий, так как если у двух площадок произойдет обрыв, то парализована будет связь только между ними, а все остальные объединенные площадки будут работать безотказно. На сегодняшний день, данная топология используется во всех средних и крупных компаниях.

И последнее, что осталось разобрать — это сетевые модели. На этапе зарождения компьютеров, у сетей не было единых стандартов. Каждый вендор использовал свои проприетарные решения, которые не работали с технологиями других вендоров. Конечно, оставлять так было нельзя и нужно было придумывать общее решение. Эту задачу взвалила на себя международная организация по стандартизации (ISO — International Organization for Standartization). Они изучали многие, применяемые на то время, модели и в результате придумали модель OSI, релиз которой состоялся в 1984 году. Проблема ее была только в том, что ее разрабатывали около 7 лет. Пока специалисты спорили, как ее лучше сделать, другие модели модернизировались и набирали обороты. В настоящее время модель OSI не используют. Она применяется только в качестве обучения сетям. Мое личное мнение, что модель OSI должен знать каждый уважающий себя админ как таблицу умножения. Хоть ее и не применяют в том виде, в каком она есть, принципы работы у всех моделей схожи с ней.

Состоит она из 7 уровней и каждый уровень выполняет определенную ему роль и задачи. Разберем, что делает каждый уровень снизу вверх:

  • Физический уровень (Physical Layer): определяет метод передачи данных, какая среда используется (передача электрических сигналов, световых импульсов или радиоэфир), уровень напряжения, метод кодирования двоичных сигналов.
  • Канальный уровень (Data Link Layer): он берет на себя задачу адресации в пределах локальной сети, обнаруживает ошибки, проверяет целостность данных. Если слышали про MAC-адреса и протокол «Ethernet», то они располагаются на этом уровне.
  • Сетевой уровень (Network Layer): этот уровень берет на себя объединения участков сети и выбор оптимального пути (т.е. маршрутизация). Каждое сетевое устройство должно иметь уникальный сетевой адрес в сети. Думаю, многие слышали про протоколы IPv4 и IPv6. Эти протоколы работают на данном уровне.
  • Транспортный уровень (Transport Layer): Этот уровень берет на себя функцию транспорта. К примеру, когда вы скачиваете файл с Интернета, файл в виде сегментов отправляется на Ваш компьютер. Также здесь вводятся понятия портов, которые нужны для указания назначения к конкретной службе. На этом уровне работают протоколы TCP (с установлением соединения) и UDP (без установления соединения).
  • Сеансовый уровень (Session Layer): Роль этого уровня в установлении, управлении и разрыве соединения между двумя хостами. К примеру, когда открываете страницу на веб-сервере, то Вы не единственный посетитель на нем. И вот для того, чтобы поддерживать сеансы со всеми пользователями, нужен сеансовый уровень.
  • Уровень представления (Presentation Layer): Он структурирует информацию в читабельный вид для прикладного уровня. Например, многие компьютеры используют таблицу кодировки ASCII для вывода текстовой информации или формат jpeg для вывода графического изображения.
  • Прикладной уровень (Application Layer): Наверное, это самый понятный для всех уровень. Как раз на этом уроне работают привычные для нас приложения — e-mail, браузеры по протоколу HTTP, FTP и остальное.

Самое главное помнить, что нельзя перескакивать с уровня на уровень (Например, с прикладного на канальный, или с физического на транспортный). Весь путь должен проходить строго с верхнего на нижний и с нижнего на верхний. Такие процессы получили название инкапсуляция (с верхнего на нижний) и деинкапсуляция (с нижнего на верхний). Также стоит упомянуть, что на каждом уровне передаваемая информация называется по-разному.

На прикладном, представления и сеансовым уровнях, передаваемая информация обозначается как PDU (Protocol Data Units). На русском еще называют блоки данных, хотя в моем круге их называют просто данные).

Информацию транспортного уровня называют сегментами. Хотя понятие сегменты, применимо только для протокола TCP. Для протокола UDP используется понятие — датаграмма. Но, как правило, на это различие закрывают глаза.

На сетевом уровне называют IP пакеты или просто пакеты.

И на канальном уровне — кадры. С одной стороны это все терминология и она не играет важной роли в том, как вы будете называть передаваемые данные, но для экзамена эти понятия лучше знать. Итак, приведу свой любимый пример, который помог мне, в мое время, разобраться с процессом инкапсуляции и деинкапусуляции:

  • Представим ситуацию, что вы сидите у себя дома за компьютером, а в соседней комнате у вас свой локальный веб-сервер. И вот вам понадобилось скачать файл с него. Вы набираете адрес страницы вашего сайта. Сейчас вы используете протокол HTTP, которые работает на прикладном уровне. Данные упаковываются и спускаются на уровень ниже.
  • Полученные данные прибегают на уровень представления. Здесь эти данные структурируются и приводятся в формат, который сможет быть прочитан на сервере. Запаковывается и спускается ниже.
  • На этом уровне создается сессия между компьютером и сервером.
  • Так как это веб сервер и требуется надежное установление соединения и контроль за принятыми данными, используется протокол TCP. Здесь мы указываем порт, на который будем стучаться и порт источника, чтобы сервер знал, куда отправлять ответ. Это нужно для того, чтобы сервер понял, что мы хотим попасть на веб-сервер (стандартно — это 80 порт), а не на почтовый сервер. Упаковываем и спускаем дальше.
  • Здесь мы должны указать, на какой адрес отправлять пакет. Соответственно, указываем адрес назначения (пусть адрес сервера будет 192. 168.1.2) и адрес источника (адрес компьютера 192.168.1.1). Заворачиваем и спускаем дальше.
  • IP пакет спускается вниз и тут вступает в работу канальный уровень. Он добавляет физические адреса источника и назначения, о которых подробно будет расписано в последующей статье. Так как у нас компьютер и сервер в локальной среде, то адресом источника будет являться MAC-адрес компьютера, а адресом назначения MAC-адрес сервера (если бы компьютер и сервер находились в разных сетях, то адресация работала по-другому). Если на верхних уровнях каждый раз добавлялся заголовок, то здесь еще добавляется концевик, который указывает на конец кадра и готовность всех собранных данных к отправке.
  • И уже физический уровень конвертирует полученное в биты и при помощи электрических сигналов (если это витая пара), отправляет на сервер.

Процесс деинкапсуляции аналогичен, но с обратной последовательностью:

  • На физическом уровне принимаются электрические сигналы и конвертируются в понятную битовую последовательность для канального уровня.
  • На канальном уровне проверяется MAC-адрес назначения (ему ли это адресовано). Если да, то проверяется кадр на целостность и отсутствие ошибок, если все прекрасно и данные целы, он передает их вышестоящему уровню.
  • На сетевом уровне проверяется IP адрес назначения. И если он верен, данные поднимаются выше. Не стоит сейчас вдаваться в подробности, почему у нас адресация на канальном и сетевом уровне. Это тема требует особого внимания, и я подробно объясню их различие позже. Главное сейчас понять, как данные упаковываются и распаковываются.
  • На транспортном уровне проверяется порт назначения (не адрес). И по номеру порта, выясняется какому приложению или сервису адресованы данные. У нас это веб-сервер и номер порта — 80.
  • На этом уровне происходит установление сеанса между компьютером и сервером.
  • Уровень представления видит, как все должно быть структурировано и приводит информацию в читабельный вид.
  • И на этом уровне приложения или сервисы понимают, что надо выполнить.

Много было написано про модель OSI. Хотя я постарался быть максимально краток и осветить самое важное. На самом деле про эту модель в Интернете и в книгах написано очень много и подробно, но для новичков и готовящихся к CCNA, этого достаточно. Из вопросов на экзамене по данной модели может быть 2 вопроса. Это правильно расположить уровни и на каком уровне работает определенный протокол.

Как было написано выше, модель OSI в наше время не используется. Пока разрабатывалась эта модель, все большую популярность получал стек протоколов TCP/IP. Он был значительно проще и завоевал быструю популярность.

Вот так этот стек выглядит:

Как видно, он отличается от OSI и даже сменил название некоторых уровней. По сути, принцип у него тот же, что и у OSI. Но только три верхних уровня OSI: прикладной, представления и сеансовый объединены у TCP/IP в один, под названием прикладной. Сетевой уровень сменил название и называется — Интернет. Транспортный остался таким же и с тем же названием. А два нижних уровня OSI: канальный и физический объединены у TCP/IP в один с названием — уровень сетевого доступа. Стек TCP/IP в некоторых источниках обозначают еще как модель DoD (Department of Defence). Как говорит википедия, была разработана Министерством обороны США. Этот вопрос встретился мне на экзамене и до этого я про нее ничего не слышал. Соответственно вопрос: «Как называется сетевой уровень в модели DoD?», ввел меня в ступор. Поэтому знать это полезно.

Было еще несколько сетевых моделей, которые, какое то время держались. Это был стек протоколов IPX/SPX. Использовался с середины 80-х годов и продержался до конца 90-х, где его вытеснила TCP/IP. Был реализован компанией Novell и являлся модернизированной версией стека протоколов Xerox Network Services компании Xerox. Использовался в локальных сетях долгое время. Впервые IPX/SPX я увидел в игре «Казаки». При выборе сетевой игры, там предлагалось несколько стеков на выбор. И хоть выпуск этой игры был, где то в 2001 году, это говорило о том, что IPX/SPX еще встречался в локальных сетях.

Еще один стек, который стоит упомянуть — это AppleTalk. Как ясно из названия, был придуман компанией Apple. Создан был в том же году, в котором состоялся релиз модели OSI, то есть в 1984 году. Продержался он совсем недолго и Apple решила использовать вместо него TCP/IP.

Также хочу подчеркнуть одну важную вещь. Token Ring и FDDI — не сетевые модели! Token Ring — это протокол канального уровня, а FDDI это стандарт передачи данных, который как раз основывается на протоколе Token Ring. Это не самая важная информация, так как эти понятия сейчас не встретишь. Но главное помнить о том, что это не сетевые модели.

Вот и подошла к концу статья по первой теме. Хоть и поверхностно, но было рассмотрено много понятий. Самые ключевые будут разобраны подробнее в следующих статьях. Надеюсь теперь сети перестанут казаться чем то невозможным и страшным, а читать умные книги будет легче). Если я что-то забыл упомянуть, возникли дополнительные вопросы или у кого есть, что дополнить к этой статье, оставляйте комментарии, либо спрашивайте лично. Спасибо за прочтение. Буду готовить следующую тему.

Содержание

  • Основы компьютерных сетей. Тема №1. Основные сетевые термины и сетевые модели
  • Основы компьютерных сетей. Тема №2. Протоколы верхнего уровня
  • Основы компьютерных сетей. Тема №3. Протоколы нижних уровней (транспортного, сетевого и канального)
  • Основы компьютерных сетей. Тема №4. Сетевые устройства и виды применяемых кабелей
  • Основы компьютерных сетей. Тема №5. Понятие IP адресации, масок подсетей и их расчет
  • Основы компьютерных сетей. Тема №6. Понятие VLAN, Trunk и протоколы VTP и DTP
  • Основы компьютерных сетей. Тема №7. Протокол связующего дерева: STP

Автор

Компьютерные сети | Бесплатные курсы Udacity

Перейти к содержимому

Бесплатный курс
by

Безопасность и программно-определяемые сети

Об этом курсе

Степень Этот класс предлагается как CS6250 в Технологическом институте Джорджии, где он является частью Online Masters ОМС). Пройдя этот курс здесь, вы не получите кредит на получение степени OMS.

Этот курс охватывает сложные темы компьютерных сетей, такие как программно-определяемые сети (SDN), сети центров обработки данных и распространение контента. Курс разделен на три части:

Часть 1 посвящена реализации, принципам проектирования и целям компьютерной сети и затрагивает различные алгоритмы маршрутизации, используемые в CN (такие как состояние канала и вектор расстояния).

Часть 2 рассказывает об управлении ресурсами и распределении контента в сетевых приложениях. Он охватывает управление перегрузкой и формирование трафика.

Часть 3 посвящена эксплуатации и управлению компьютерными сетями, включая SDN (программно-определяемые сети), управление трафиком и сетевую безопасность.

Included in Product

Rich Learning Content

Interactive Quizzes

Taught by Industry Pros

Self-Paced Learning

Course Leads

Nick Feamster

Instructor

Joshua Valdez

Instructor

What You Will Learn

урок 1

Введение

  • Обзор компьютерных сетей
  • Чем не занимается этот курс

Урок 2

Архитектура и принципы

  • Краткая история Интернета
  • Принципы архитектурного дизайна
  • Переключение пакетов
  • Перевод файлов
  • Конец на конец аргументации

50599999999999950505050505050505050505050505050505050505.
  • Коммутация и мост
  • Начальная загрузка: объединение двух хостов в сеть
  • ARP: протокол разрешения адресов
  • Соединение локальных сетей с концентраторами
  • Переключатели: Изоляция трафика
  • Spanning Tree
  • Переключатели против маршрутизаторов
  • Размеры буфера для отправителя TCP
  • Урок 4

    РАРЕЧАТЕЛЬ

    • RAPENTING
    • . Маршрутизация

    • Маршрутизация состояния канала
    • Междоменная маршрутизация
    • Сравнение IGP и iBGP
    • Выбор маршрута BGP
    • Дискриминатор множественного выхода (MEI)
    • Бизнес-модели междоменной маршрутизации

    Урок 5

    имен, адресация и пересылка

    • IP-адреса
    • Pre-1994: «Классная» адреса
    • Aldercation
    • Classful Blessdain Routing Mrounding (CIDRR)
    • Бесполезной бесклассный промежуток (CIDRR)
    • Бесплатный междовой маршрут (CIDRR)
    • 9
    • . Поиск с использованием попыток
    • Эффективность использования памяти и быстрый поиск
    • Альтернативы LPM с попытками
    • NAT и IPv6
    • Преобразование сетевых адресов (NAT)

    lesson 6

    Router Design Basics

    • Router Design
    • Basic Router Architecture
    • Decision: Crossbar Switching
    • Switching Algorithm: Maximal Matching
    • Head of Line Blocking
    • Scheduling and Fairness
    • Max- Минимальная справедливость

    урок 7

    Система доменных имен (DNS)

    • Типы записей
    • Примеры (с использованием «dig»)
    • Lookup IP -адрес

    Урок 8

    Контроль и потоковую передачу запор

    • Контроль заторов
    • AIMD (TCP Controlship)
    • Time и TCP «INCAST»
    • SYNCHRIE Потоковое
    • Оцифровка аудио и видео
    • Потоковое видео
    • Skype

    урок 9

    Ограничение скорости и формирование трафика

    • Классификация трафика и формирование
    • Классификация источников
    • Трафик.

    урок 10

    Распространение контента

    • Интернет и кэширование
    • HTTP-запросы
    • Постоянные соединения
    • Сети распределения контента (CDNS)
    • Выбор сервера
    • Маршрутизация содержимого
    • Бит Торрент
    • Решение для фририда

      • Обзор управления сетью
      • Программно определяемая сеть (SDN)
      • Плоскости управления и данных
      • Различные контроллеры SDN
      • NOX: Обзор
      • RYU, прожектор, NOX и POX
      • Настройка управления

      Урок 12

      ТРЕЖИ

      • Проездной инженерия
      • . Функция использования канала
      • BGP в управлении междоменным трафиком
      • Многопутевая маршрутизация
      • Сеть центра обработки данных
      • Балансировка нагрузки Valiant
      • Jellyfish Data Center Topology

      lesson 13

      Network Security

      • Internet is Insecure
      • Resource Exhaustion
      • Routing Security
      • Origin and Path Authentication
      • DNS Security
      • DNS Cache Poisoning

      Урок 14

      Интернет-черви

      • Вирусы и интернет-черви
      • Жизненный цикл интернет-червей
      • Первый червь: «Моррис» червь
      • Worm Outbreaks in Detail
      • Modeling Fast-Spreading Worms

      lesson 15

      Spam

      • Spam
      • IP Blacklisting

      lesson 16

      Denial of Service (DoS) Attacks

      • Трёхстороннее рукопожатие TCP
      • Определение активности отказа в обслуживании с помощью Backscatter
      • Автоматическое смягчение последствий DoS-атак
      • MTPCP
      Предпосылки и требования

      Идеальной подготовкой к этому курсу будет успешное завершение курса компьютерных сетей на уровне бакалавриата. Рекомендуется понимать протокол TCP/IP и его модель уровней. Требуется базовое знание Python (например, через Intro to Computer Science).

      Вам должно быть комфортно с реализацией основных алгоритмов поиска, рекомендуется иметь практические знания Linux и виртуальных машин.

      См. Технологические требования для использования Udacity.

      Зачем проходить этот курс

      Хотите развить свои знания в области компьютерных сетей или перейти на должности инженеров по сетевым технологиям, такие как системный администратор, сетевой администратор или специалист по техническим операциям (WebOps)? Если да, то этот класс для вас.

      Компьютерные сети используют практический подход к обучению очень техническому материалу, используя Mininet (эмулятор сети), чтобы показать вам, как функционирует компьютерная сеть, какие факторы влияют на ее эффективность и как преодолеть внутренние ограничения.

      Что я получу?
      • видео инструктора
      • Учитесь, выполняя упражнения
      • , преподаваемые специалистами отрасли
      Популярные бесплатные курсы

      Введение в Python Programming
      Davascript
      Intro to HTMLAMLING
      DAVASCRICT
      TOH TO HTMSLARMIN
      Знакомство с TensorFlow Lite
      Advanced Android с Kotlin

      CS 6250: Компьютерные сети | ОМСКС | Технологический институт Джорджии

      Учебная группа
      Мария Конте
      Инструктор
      Иоганн Лау
      Головка ТА
      Лорена Монтесинос
      Головка ТА
      Кен Вестдорп
      Головка ТА
      Обзор

      Этот курс содержит краткое обновление вводного материала и предлагает широкий охват протоколов и алгоритмов, охватывающих все уровни стека интернет-протоколов.

      Курс начинается с обзора эволюции архитектуры Интернета и краткого обзора алгоритмов и протоколов транспортного уровня, таких как TCP и управление перегрузкой. Далее курс будет посвящен внутридоменной и междоменной маршрутизации, пиринговым отношениям и сетевым отношениям, а также рассмотрению конструкции и функциональных возможностей маршрутизатора. После обсуждения технологий маршрутизации и маршрутизаторов курс продолжится с технологиями программно-определяемых сетей и обсудит темы, которые пересекаются с сетевой безопасностью и компьютерными сетями, например, атаки на интернет-маршрутизацию, такие как перехват BGP. Наконец, курс завершается обсуждением мультимедийных приложений и сетей доставки контента.

      На протяжении всего курса студенты будут работать над практическими проектами, чтобы узнать о маршрутизации, SDN, перехвате BGP и измерениях в Интернете. Для студентов, которые хотели бы узнать больше, существует дополнительный проект, связанный с инструментами для измерений в масштабах всего Интернета. В рамках проекта учащиеся изучат, как масштабные события, связанные с беспорядками, отражаются как сбои подключения к сетям в определенных частях мира.

      Этот курс засчитывается для получения следующих специализаций:
      Компьютерные системы

      Образец учебных планов

      Учебный план и расписание на осень 2022 г. (PDF)
      Учебный план и расписание на лето 2022 г. (PDF)
      Учебный план и расписание на весну 2022 г. (PDF)

      Примечание. Образцы учебных планов представлены только в информационных целях. Для получения самой актуальной информации обратитесь к официальной документации курса.

      Прежде чем приступить к этому курсу…
      Предлагаемые базовые знания

      Этот курс подходит для учащихся, имеющих опыт работы с сетями. Некоторое знакомство с сетевым программированием, языками сценариев (например, Python) и использованием виртуальных машин будет полезно.

      Если вы можете уверенно ответить «да» на эти вопросы, все в порядке:

      1. Можете ли вы объяснить основное различие между TCP и UDP?
      2. Сможете ли вы без труда пройти учебник по Python и написать базовые программы на Python?
      3. Вы понимаете трехэтапное рукопожатие TCP?
      4. Можно ли получить файлы с виртуальной машины без сопоставленного каталога?
      Технические требования и программное обеспечение
      • Браузер и скорость соединения: настоятельно рекомендуется последняя версия Chrome или Firefox. Мы также поддерживаем Internet Explorer 9 и настольные версии Internet Explorer 10 и выше (но не Metro-версии). рекомендуется 2+ Мбит/с; минимальное требование — скорость скачивания 0,768 Мбит/с.
      • Операционная система:
        • ПК: Windows XP или выше с установленными последними обновлениями
        • Mac: OS X 10.6 или выше с установленными последними обновлениями
        • Linux: любой последний дистрибутив, в котором установлены поддерживаемые браузеры
      • У вас должен быть компьютер (ноутбук или ПК), который НЕ имеет чипа M1.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *