Система уравнивания потенциалов: Система уравнивания потенциалов

Содержание

Системы уравнивания потенциалов

Уравнивание потенциалов —  электрическое соединение проводящих частей для достижения равенства их потенциалов. ПУЭ, п. 1.7.32. Защита от косвенного прикосновения.  

Так как защитное  заземление  (ЗУ) имеет сопротивление, и в случае протекания через него тока оказывается под напряжением, его одного недостаточно для защиты людей от поражения током.

Правильная защита создается путём организации системы уравнивания потенциалов (СУП), то есть электрического соединения и PE проводки, и всех доступных для прикосновения металлических частей здания (в первую очередь водопроводы и отопительные трубопроводы).

В этом случае, даже если ЗУ окажется под напряжением, под ним же оказывается всё металлическое и доступное для прикосновения ,т.е. происходит  растекание  тока по  значительной поверхности,  что снижает напряжение, и как  следствие - риск поражения током.

В кирпичных домах советского периода, как правило, СУП  не организовывалась, в панельных же (1970-е и позже) — организовывалась путем соединения в подвале дома и рамы электрощитков  (PEN) и водопроводов.

 Определения:

 Защитное заземление –заземление, выполняемое в целях электробезопасности - ПУЭ п.1.7.29.

Рабочее (функциональное) заземление – заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки ( не в целях электробезопасности) - ПУЭ п. 1.7.30.

Определение FE для сетей питания информационного оборудования и систем связи дано в следующих пунктах:

«Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал ( иногда для этого требуется наличие отдельного электрически независимого заземлителя )» - ГОСТ Р 50571. 22-2000  п. 3.14.

«Функциональное заземление может выполняться путём использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.

«Допускается функциональный заземляющий проводник ( FE-проводник ) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его к  главной заземляющей шине (ГЗШ)» - ГОСТ Р 50571.21-2000  п. 548.3.1

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

1 ) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;

2 ) заземляющий проводник, присоединённый к заземляющему устройству электроустановки, в системах IT и TT;

3 ) заземляющий проводник, присоединённый к заземлителю повторного заземления на вводе в здание;

4) металлические трубы коммуникаций , входящих в здание…

5 ) металлические части каркаса здания;

6 ) металлические части централизованных систем вентиляции и кондиционирования….

7 ) заземляющее устройство системы молниезащиты 2-й и 3-й категории;

8 ) заземляющий проводник функционального ( рабочего ) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9 ) металлические оболочки телекоммуникационных кабелей.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов - ПУЭ п. 1.7.82.

Система дополнительного уравнивания потенциалов должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток - ПУЭ п. 1.7.83. ГОСТ Р 50571.3-94.

 Система местного уравнивания потенциалов.

Незаземлённая система местного уравнивания потенциалов предназначена для предотвращения появления опасного напряжения прикосновения.

Все открытые проводящие части и сторонние проводящие части, одновременно доступные для прикосновения, должны быть объединены.

Система местного уравнивания потенциалов не должна иметь связи с землёй ни непосредственно, ни посредством открытых или сторонних проводящих частей.

 Обозначения:

РЕ – защитное заземление

FE – рабочее ( функциональное, технологическое ) заземление

Функциональное заземление применительно к учреждениям ЛПУ - для обеспечения нормальной, без помех работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования

( электрокардиограф, электроэнцефалограф, реограф, рентгеновский компьютерный томограф и тп. ) в помещениях операционных, реанимационных, родовых, палатах интенсивной терапии, кабинетах функциональной диагностики и других помещениях при установке в них указанной аппаратуры.

При отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Где  ГЗШ – главная заземляющая шина защитного заземления.

        ГШФЗ – главная шина функционального ( рабочего ) заземления.

Вариант «А», с точки зрения электробезопасности, допустим только при условии, что аппаратура питается от разделительного трансформатора ( IT – сеть ).

Использовать данный вариант для сетей типа TNS категорически не рекомендуется !

  Рис.2. Схема протекания тока замыкания на корпус аппарата при использовании независимого функциональног заземления в сети типа TN.

Так как функциональное заземление в отличие от защитного не имеет точки соединения с ГЗШ, а соответственно с нейтралью, то токи короткого замыкания составят не сотни и тысячи ампер, как это происходит при защитном заземлении, а всего лишь десятки ампер. Ситуация усугубится при условии, что FE по заданию выполнено 10 Ом, а в цепи отсутствует УЗО ( вычислительная техника, томографы, рентгеновское оборудование и тд. ).

Максимальный ток короткого замыкания составит 15,7А.

Iкз = 220(В) / (4 + 10)(Ом) = 15,7(А)

При данной схеме питания лучше воспользоваться вариантом «В» или «С», особенно если речь идет о мощном стационарном оборудовании ( рентгенаппараты, МРТ и тд. ).

Помимо сказанного выше, ситуация ( с точки зрения электробезопасности ) осложняется вероятностью возникновения разности потенциалов на раздельных системах заземления, тем более если эти системы заземления находятся в пределах одного помещения см. рис.3.

  1. Шаговое напряжение при срабатывании системы молниезащиты.
  2. КЗ на корпус в сети ТN-S до срабатывания системы защиты
  3. Внешние электромагнитные поля.

Вариант «В» удобен при реконструкции уже действующих объектов. Функциональное заземление при этом нередко выполняют с использованием составного, глубинного заземлителя. Второй положительный момент – функциональные заземлители и заземлители защитного заземления связанные между собой проводником уравнивания потенциала взаимно дублируют друг друга увеличивая надежность системы заземления.

Недостатки по электробезопасности, по сравнению с вариантом «А», либо отсутствуют, либо эффективно снижаются в десятки раз, а «лучевая» схема заземления обеспечивает стабильную работу оборудования.

Вариант «С» последнее время получает широкое распространение при проектировании новых объектов и соответствует высокому уровню электробезопасности.

В отечественных нормативных документах существуют противоречия в необходимости применения функционального заземления для заземления высокочувствительной и ответственной  медицинской аппаратуры. Ниже приведена таблица с указанием документов относящихся к данной теме.

 

 Подробные консультации и стоимость услуг Вы можете получить , связавшись с нами:

 

  • тел/факс: (8212)21-30-20

 

 

 

Практика выполнения дополнительной системы уравнивания потенциалов

Фактически, наиболее распространены пять вариантов выполнения шин системы дополнительного уравнивания потенциалов:

Вариант 1. С использованием стандартных коробок уравнивания потенциалов (КУП).

Вариант 2. Стальная шина 4х40 (4х50) с приварными болтами опоясывающая помещение.

Вариант 3. Стальная шина, уложенная в стандартный пластиковый короб.

Вариант 4. Использование шины заземления в РЩ (для небольших помещений).

Вариант 5. С использованием специализированного щитка типа ЩРМ – ШЗ (встроенный щиток с шиной 100 мм2 (Cu) со степенью защиты IP54).

Вне зависимости от конструкции должны быть соблюдены два основных условия:

-       возможность осмотра соединения;

-       возможность индивидуального отключения.

  1. Длина проводников дополнительной системы уравнивания потенциалов, соединяющих контакты штепсельных розеток, сторонние проводящие части и корпуса электрооборудования не должна превышать 2,5 м. Сечение 2,5 - 4 мм
    2
    Сu(ПУГВ). См. ПУЭ 1.7.82 рис. 1.7. 7.
  2. Для электроустановки здания, где применяются негорючие (ВВГ нг – FRLS…) кабеля, следует с осторожностью использовать кабеля марки ПУГВ. Данный тип кабеля, будучи уложенным вместе с негорючими кабелями, формально превращает всю систему в распространяющую горение. В большинстве случаев контролирующие органы относятся к этому спокойно, но в некоторых случаях стоит применить негорючие одножильные кабеля той же марки с нанесением соответствующей маркировки.
  3. Для зданий детских дошкольных учреждений, больниц, специальных домах престарелых и т.д. применяемые пластиковые короба должны иметь сертификат о не выделении токсичных веществ при горении. Тоже касается линолеума. Поставляемые в Россию короба Legrand, ABB … таких сертификатов не имеют. Как вариант - короба фирмы DKC или SPL, в которых в качестве отбеливающего вещества используется мел и есть все необходимые сертификаты.

ГОСТ Р 50571.28 п.

710.413.1.6.3 «Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должна быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…».

Пример схемы с использованием электрощитка ЩРМ – ШЗ (формирование шинной системы дополнительного уравнивания потенциалов) и розеток РЗ-01 (для оперативного подключения к шине дополнительного уравнивания потенциалов).

Система дополнительного уравнивания потенциалов в данном случае формируется из встроенных электрощитков ЩРМ-ШЗ (IP54) соединенных между собой проводником 16 мм2. В каждом щите установлена медная шина 100 мм2 с необходимым количеством клеммников. Съемная крышка позволяет получить доступ до каждого соединения системы. Количество щитков определяется размером помещения и количеством необходимых подключений. Рекомендуемое расстояние между щитками – 4-5 м. Система дополнительного уравнивания потенциалов одновременно выполняет функцию защитного заземления установленного в данном помещении электрооборудования. Для стационарных электроаппаратов сечение защитного заземляющего проводника, подсоединенного к шине, должно соответствовать сечению фазного (равно фазному до 16 мм

2 и не менее ½ при больших значениях).

Для присоединения переносной и передвижной аппаратуры используются розетки. В случае использования стандартных розеток, в непосредственной близости от них должны располагаться розетки с клеммниками (розетка заземления РЗ-01) для оперативного подключения корпусов электрооборудования к системе дополнительного уравнивания потенциалов. Количество заземляющих розеток определяется составом электрооборудования, но в среднем - половина от числа силовых.

При использовании мощных силовых розеток сечение проводников подключения к шине должно быть выбрано с учетом сечение фазного проводника данной розетки.

Использование специализированных розеточных электрощитков упрощает задачу, так как они уже содержат клеммники для подключения к дополнительной системе уравнивания потенциалов корпусов переносного и передвижного электрооборудования.


МЕД: Для учреждений здравоохранения в помещениях гр.1 и особенно в помещениях гр.2 (чистые помещения) удобно воспользоваться вариантом
№ 5, схема которого представлена на рисунке.

Основная и дополнительная система уравнивания потенциалов - это необходимо знать каждому

Основная и дополнительная система уравнивания потенциалов

Рубрика: Статьи   ‡  

Каждое жилое, общественное или промышленное здание помимо электрического оборудования имеет множество других инженерных узлов, которые в нормальном режиме не находятся под напряжением. Это такие элементы как металлические трубопроводы горячего и холодного водоснабжения, канализации, металлические короба вентиляции, металлорукава, строительные конструкции и т. д. Иными словами, любое здание имеет множество элементов и конструкций, способных проводить электрический ток, но зачастую не предназначенных для этого.

Каждая металлическая часть коммуникаций обладает электрическим потенциалом. В силу законов физики эти потенциалы для каждого металлического элемента могут отличаться, образуя разность потенциалов т.е. электрическое напряжение.

Электрическое напряжение между неизолированными металлическими элементами создает опасность для человека. Также причиной возникновения напряжения между нетоковедущими элементами  могут быть выход из строя изоляции фазных жил кабелей системы электроснабжения, атмосферные перенапряжения (молния), статическое электричество, блуждающие токи и так далее.

Для того что бы потенциалы всех металлических элементов были одинаковы и создается система уравнивания потенциалов. Если токоведущие части имеют непосредственное электрическое соединение, то потенциал их всегда одинаков, и напряжение между ними не возникнет.

В соответствии с действующими нормативными документами в каждом здании (сооружении) должна быть выполнена основная система уравнивания потенциалов, которую следует реализовать путем присоединения к главной заземляющей шине (ГЗШ) электроустановки следующих проводящих частей:

—      защитных проводников;

—      заземляющих проводников устройств защитного, функционального и молниезащитного заземлений, если такие устройства в электроустановке здания (сооружения) предусмотрены;

—      металлических труб коммуникаций, входящих в здание (сооружение) извне: холодного и горячего водоснабжения, канализации, отопления, газоснабжения (в случае наличия изолирующей вставки на вводе в здание присоединение осуществляется после неё со стороны здания) и т.п.;

—      металлических частей каркаса здания (сооружения) и металлических конструкций производственного назначения;

—      металлических частей систем вентиляции и кондиционирования;

—      основных металлических частей для усиления строительных конструкций, таких как стальная арматура железобетона, если это возможно;

—      металлических покрытий (оболочек, экранов, брони) телекоммуникационных кабелей (при этом следует принять во внимание требования собственника указанных кабелей или организации, обслуживающей эти кабели, относительно такого присоединения).

Проводящие части, которые входят в здание (сооружение) извне, должны быть соединены с проводниками основной системы уравнивания потенциалов как можно ближе к точке ввода этих частей в здание (сооружение).

Пример построения схемы системы уравнивания потенциалов в нашиш проектах приведен в статье «Электроснабжение квартир«.

Иногда для обеспечения безопасности помимо основной системы уравнивания потенциалов необходимо создание дополнительной системы уравнивания потенциалов.

Дополнительная система уравнивания потенциалов выполняется в дополнение к основной системе уравнивания потенциалов, когда защитное устройство не может обеспечить выполнение требований к времени автоматического отключения питания.

В некоторых специальных электроустановках с повышенной опасностью поражения электрическим током, например, расположенных в ванных и душевых помещениях, нормативные документы, в которых рассматриваются эти электроустановки, могут требовать выполнение дополнительной системы уравнивания потенциалов при любых обстоятельствах.

Дополнительная система уравнивания потенциалов может охватывать всю электроустановку, ее часть или отдельные аппараты электроустановки.

Дополнительная система уравнивания потенциалов должна объединять (путем соединения защитными проводниками) все доступные одновременному прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, в том числе, если это возможно, основные металлические части для укрепления строительных конструкций, такие как стальная арматура железобетона.

К дополнительной системе уравнивания потенциалов должны быть также присоединены защитные проводники всего электрооборудования, в том числе штепсельных розеток.

Для выполнения функций проводников основной и дополнительной систем уравнивания потенциалов следует применять, как правило, специально проложенные стационарные проводники.

Величины сечения проводников основной системы уравнивания потенциалов должны быть не меньшими 6 мм2 по меди, 16 мм2 по алюминию и 50 мм2 по стали.

Сечение проводника дополнительной системы уравнивания потенциалов должно быть не меньшим 4 мм2 по меди (при наличии механической защиты допускается 2,5 мм2) и 16 мм2 по алюминию.

Оставить комментарий или два

Пожалуйста, зарегистрируйтесь для комментирования.

Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части

Согласно Правилам устройства электроустановок (п. 1.7.29), которыми руководствуются в РФ, защитное заземление – заземление, выполняемое в целях электробезопасности.

Рассматривая данное определение подробнее, можно сказать, что защитное заземление выполняется преднамеренно и представляет собой электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, у которых есть возможность оказаться под напряжением из-за нарушения изоляции.

Цель защитного заземления – уберечь людей и животных от поражения током.

Цель достигается путем снижения напряжения до безопасной величины (относительно земли) на металлических частях оборудования. При замыкании на корпус заземленного оборудования снижается напряжение прикосновения. Следствием является снижение тока, проходящего через тело при прикосновении.

При электрическом переменном токе промышленной частоты, равным 50 герц, берут во внимание только активное сопротивление человеческого тела и соотносят его с величиной равной 1 кОм. В обычном состоянии сопротивление тела постоянному току соотносится с диапазоном от 3 до 100 кОм, но при длительном прохождении снижается до 300 Ом.

Корпус заземлен Корпус без заземления

На рисунках указаны примерные значения, но они позволяют оценить эффективность и необходимость защитного заземления.

Величина тока короткого замыкания и сопротивление системы заземления сильно влияют на ток, проходящий через тело. Максимально допустимое значение сопротивления заземления в установках до 1 кВ:

  • 10 Ом – при мощности генераторов + трансформаторов ≤ 100 кВА,
  • 4 Ом – во всех остальных случаях.

Нормы рассчитаны с допустимой величиной напряжения прикосновения, которая в сетях до 1 кВ не должна превышать 40 В.

Защитное заземление применяется в трехфазных трехпроводных сетях:

  • напряжением до 1 кВ с изолированной нейтралью,
  • с напряжением 1 кВ и выше – с любым режимом нейтрали.

Обратите внимание!
Присоединение корпусов электроустановки к заземлителю или магистрали заземления необходимо выполнять только отдельным ответвлением. Категорически запрещено последовательное подключение (см. рисунки)!

 

Виды заземляющих устройств

Группировать заземляющие устройства можно следующим образом:

Естественные заземлители

К естественным заземляющим устройствам относятся все конструкции, постоянно находящиеся в земле:

  • металлические конструкции здания и фундаменты;
  • металлические оболочки кабелей;
  • обсадные трубы артезианских скважин.

Категорически запрещено использовать в качестве заземлителей:

  • газопроводы и трубопроводы с горючими жидкостями;
  • алюминиевые оболочки подземных кабелей;
  • трубы теплотрасс;
  • трубы холодного и горячего водоснабжения.

К естественному заземлителю необходимо минимум 2 подключения в разных местах.

Искусственные заземлители

Искусственное заземление является специальным подсоединением к заземляющему устройству. К искусственным заземлителям относятся:

  • стальные трубы определенных размеров;
  • полосовая сталь толщиной от 4 мм;
  • угловая сталь от 4 мм;
  • прутковая сталь определенных размеров.

Пользуются популярностью глубинные заземлители с омедненными или оцинкованными электродами. Они существенно превосходят традиционные методы по долговечности и затратам на изготовление заземлителя.

Специфические проблемы существуют для грунта в условиях вечной мерзлоты. Здесь эффективным решением могут стать системы электролитического заземления:

Состояние обычного заземлителя через несколько лет эксплуатации в вечномерзлых грунтах. Пример схемы электролитического заземлителя

Примечания:

  • Достоинство контурного заземления состоит в выравнивании потенциалов в защищаемой зоне и уменьшении напряжения шага.
  • Выносные заземлители позволяют выбрать место с минимальным сопротивлением грунта.
  • Более подробную информацию о заземлителях можно найти в ГОСТ Р 50571.5.54-2013 «…Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов».

 

Основная система уравнивания потенциалов

Под основной системой уравнивания потенциалов понимается создание эквипотенциальной зоны в пределах электрооборудования. Цель создания – обеспечить безопасность человека и оборудования в экстренных ситуациях: срабатывание системы защиты от молний, занос потенциала, коротком замыкании.

В электрооборудовании до 1 кВ основная система уравнивания потенциалов соединяет перечисленные проводники:

  • нулевой защитный РЕ- или РЕN-проводник питающей линии в системе TN;
  • заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и TT;
  • заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание;
  • металлические конструкции здания: трубы коммуникаций, части каркаса здания и централизованных систем вентиляции и кондиционирования;
  • заземляющее устройство системы молниезащиты 2-й и 3-й категории;
  • заземляющий проводник функционального, действующего, заземления при его наличии и отсутствии ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;
  • металлические оболочки телекоммуникационных кабелей.

По Правилам устройства электроустановок (п. 1.7.82) все указанные составляющие должны присоединяться к главной заземляющей шине при помощи проводников системы уравнивания потенциалов – это и является соединением с основной системой уравнивания потенциалов.

На рисунке указан специализированный искровой разрядник с малым напряжением срабатывания для систем уравнивания потенциалов.

Элемент, который не соединен с главной заземляющей шиной, является очень грубым нарушением целостности основной системы уравнивания потенциалов. Появление разности потенциалов, которое может привести к возникновению искры, – непосредственная угроза жизни человека и безопасности объекта.

 

Система дополнительного уравнивания потенциалов

Правила устройства электроустановок (п. 1.7.83) предписывают соединение друг с другом всех одновременно доступных прикосновению открытых проводящих частей стационарного электрооборудования и сторонних проводящих частей. К ним относятся:

  • доступные прикосновению металлические части строительных конструкций здания,
  • нулевые защитные проводники в системе TN,
  • защитные заземляющие проводники в системах IT и ТТ, в том числе защитные проводники штепсельных розеток.

Система дополнительного уравнивания потенциалов служит для существенного улучшения электробезопасности в помещении. Формирование эквипотенциальной зоны по принципу основной системы уравнивания потенциалов происходит за счет коротких проводников защитного заземления и уравнивания потенциалов, сведенные на шину.

На рисунках выше можно заметить значительные изменения схемы электропитания. Соединение контактов заземления розеток и клемм заземления стационарных приборов на шину дополнительного уравнивания потенциалов является крайне важным! В случае отсутствия соединений корпусов приборов с шиной, система все равно сохранит свою эффективность по безопасности. Если же земли розеток и приборов не подключены к шине, электробезопасность ухудшается в разы.

 

Сторонняя проводящая часть

Проводник, который не является частью электроустановки, называется сторонней проводящей частью. Формальным примером служат металлическая дверная ручка или петля.

Можно ориентироваться на 2 принципа, согласно которым выбираются части для подключения на шину дополнительного уравнивания потенциалов. Задача – не делать систему чрезмерно перегруженной.

  • Фактическая или потенциальная возможность связи с «землей».
  • Возможность появления потенциала на сторонней проводящей части при аварии электрооборудования в процессе эксплуатации.

В таблице ниже приведены примеры сторонних проводящих частей, которые стоит или нет подключать к шине дополнительного уравнивания потенциалов:

Вопросы, связанные с уравниванием потенциалов в ванных и душевых помещениях, регулируются циркуляром № 23/2009.

Один из распространенных вопросов: может ли быть сторонней проводящей частью водопроводная вода, подающаяся по пластиковым трубам? Указанный циркуляр дает такой ответ: « …Водопроводная вода нормального качества …не рассматривается как сторонняя проводящая часть». Это означает, что такая возможность существует, как минимум из-за значительного присутствия различных железистых соединений в воде. Циркуляр рекомендует использовать токопроводящие вставки на отводах от стояков водопровода, подключив их к шине дополнительного уравнивания потенциалов.

 

Практика выполнения дополнительной системы уравнивания потенциалов

Наиболее распространенные варианты создания шин системы дополнительного уравнивания потенциалов:

  • С использованием стандартных коробок уравнивания потенциалов (КУП).
  • Стальная шина 4х40 (4х50) с приварными болтами опоясывающая помещение.
  • Стальная шина, уложенная в стандартный пластиковый короб.
  • Использование шины заземления в РЩ (для небольших помещений).
  • С использованием специализированного щитка типа ЩРМ – ЩЗ (встроенный щиток с шиной 100 мм2 (Cu) со степенью защиты IP54).

Выполнение двух требований является обязательным:

  • возможность осмотра соединения,
  • возможность индивидуального отключения.

Длина проводников дополнительной системы уравнивания потенциалов, соединяющих контакты штепсельных розеток, сторонние проводящие части и корпуса электрооборудования, должна быть не более 2,5 метров. Сечение от 2,5 до 4 кв.мм Сu (ПВ-1, ПВ-3). Подробнее на рис. 1.7.7 в ПУЭ п. 1.7.82.

Для электроустановки в здании с применением негорючих (ВВГнг –FRLS) кабелей использовать кабеля марки ПВ-1, ПВ-3 (проводники уравнивания потенциалов от дополнительной системы уравнивания потенциалов до ГЗШ или щитовой шины заземления) следует аккуратно. Если ПВ-1 и ПВ-3 уложить рядом с негорючими кабелями, то система (в теории) превращается в распространяющую пламя. Чаще всего контролирующие органы относятся к этому спокойно, однако иногда лучше использовать негорючие одножильные кабеля той же марки с нанесением соответствующей маркировки.

Необходимо учесть и заранее проверить: для зданий детских дошкольных учреждений, больниц, специальных домов престарелых и других учреждений применяемые пластиковые короба и линолеум должны иметь сертификат о невыделении токсичных веществ при горении.

В ГОСТ Р 50571.28 п.710.413.1.6.3 сказано: «Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должны быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…».

Для учреждений здравоохранения в помещениях гр.1 и особенно в помещениях гр.2 (чистые помещения) наиболее подходящий вариант № 5, схема которого представлена на рисунке выше.

 

Технический директор компании ЗАО «НПФ Полигон»
Соснин Владимир Вячеславович
тел.: (812) 327 07 06
e-mail: [email protected]

Система уравнивания потенциалов | Электрик



В нашем доме находятся различные металлические установки и предметы быта, кухонные мойки, металлические ванны, полотенцесушытели и батареи отопления, а также многое другое.
Все эти предметы, по законам физики, способны проводить электрический ток. Грубо говоря, их можно назвать проводниками.
В обычном состояние все ети проводники, как и любые другие проводники имеют равномерное распределение электронов, как положительных, так и отрицательных, по всей своей внутренней структуре.

Если подключить проводник к оборудованию, которое создает на одном своем полюсе недостаток электронов, а на другом своем полюсе их избыток, то все электроны нашего проводника начнут направленное движение, чтобы выровнять этот недостаток и избыток.
То есть вернутся опять в "обычный" режим. Такое направленное движение электронов и называется  электрическим током, а создаваемый на полюсе проводника избыток или недостаток электронов называется отрицательным и положительным электрическим потенциалом.

По законам физики, каждый проводник обладает каким то электрическим потенциалом.
Например, если между потенциалом батареи отопления и корпусом стиральной машыны есть разница то такую разницу можно считать напряжением.
И хоть эти вещи не находятся фактически под фазой, все же в действительности, по множеству причин, разница потенциалов может иметь опасно высокое напряжение.
К таким причинам можно отнести, например, повреждение изоляции, статическое электричество и блуждающие и циркулирующие токи систем заземления.

Чтобы решать эту проблему и безопасно пользоваться бытовой техникой и ванной, применяют систему уравнения потенциалов, ее суть довольно проста, если токоведущие части имеют непосредственное электрическое соединение, то их потенциал всегда одинаков, и напряжение между ними не возникнет ни при каких обстоятельствах.


Поэтому к системе уравнения потенциалов подключают все металлические предметы, трубы, щитки, короба и бытовую технику с металлическим корпусом. Все ети предметы подключаются к главной заземляющей шине.
Система уравнения потенциалов бывает:

  • основная система уравнения потенциалов - ОСУП
  • дополнительная система уравнения потенциалов - ДСУП

ОСУП включает в себя: контур заземления, главную заземляющую шину, сетки защитных проводников (РЕ) и сами проводники уравнения потенциалов.
Следует помнить что соединять защитные проводники (РЕ) с проводниками N - запрещается!
Схема подключения к заземляемым элементам, конструкциям и инженерным сетям здания должна быть радиальной, то есть на каждую заземляемую часть строения должен быть свой проводник уравнивания потенциалов. Подключать шлейфом РЕ-проводники строго запрещается!
А самое главное требование - не должно быть никаких коммутационных элементов, должна быть обеспечена полностью непрерывна защита проводников.

ДСУП - дополнительная система уравнения потенциалов нужна для того чтоб обеспечить дополнительную электробезопасность в помещениях с повышенной опасностью, в ванной комнате или душевой.



ДСУП состоит из монтажной коробки уравнения потенциалов, внутри которой находится латунная шина и самих соединительных проводников уравнения потенциалов, как правило это медные провода сечением 2.5 - 6мм.
К ДСУП подключают отопление, водопровод, ванную, душевую, а также все розетки в ванной и других влажных помещениях.

Так как на проводники действуют законы сопротивления - проводников большой протяжности быть не должно. Другими словами, электрический потенциал железной трубы на вводе в помещение и на девятом этаже имеет возможность очень отличатся и главная система уравнивания потенциалов становится все наименее действенной по мере удаления от ГЗШ.
Потому в любой жилплощади здания создается отдельная, вспомогательная система выравнивания потенциалов. Ее проводники подключаются к шине РЕ в квартирном щитке.

Система уравнивания потенциалов - это чрезвычайно важная и нужная вещь, она обладает сопротивлением, хотя и не огромным.
Поэтому, когда по одной ее части проходит электрический ток, к примеру, при срабатывании защитного прибора либо пробое, то и другая часть заземляющего проводника, та через которую ток даже не проходил также окажется под напряжением. Данное напряжение имеет возможность вызвать возникновение циркулирующих токов, действие которых фактически не прогнозируемо. Чтоб этого не произошло, объединяют все подлежащие заземлению металлические корпуса устройств и легкодоступные для прикосновения системы здания, также железные трубопроводы, ванны и душевые.
Когда заземление окажется под напряжением, под ним станут и все элементы, которые доступны для прикосновения, что автоматически понизит возможность поражения электрическим током.
Из этого всего возможно прийти к выводу, что система выравнивания потенциалов считается довольно важным методом защиты при косвенном прикосновении и для обеспечения электробезопасности ее непременно необходимо организовывать при ремонте и модернизации квартирной проводки.

Система уравнивания потенциалов, шина уравнивания потенциалов (ГЗШ) - ОБО Беттерман

Системы уравнивания потенциалов

Система уравнивания потенциалов обеспечивает соединение между собой токопроводящих элементов с целью недопущения возникновения разницы потенциалов между ними. Одна из ее функций – исключение возникновения и протекания непредсказуемых циркулирующих токов в системе заземления. При ее обустройстве соединению между собой перед вводом в здание подлежат следующие элементы:

  • Магистральные защитные проводники.
  • Элементы коммуникаций и инженерных систем здания (трубы, составные части системы вентиляции, отопления и пр.).
  • Металлические части здания (сооружения).
  • Магистральные заземляющие проводники.
  • Системы молниезащиты.

Система уравнивания потенциалов: разновидности

Выделяют 2 типа. Первый – основная система уравнивания потенциалов. Она объединяет в себе все крупные токопроводящие элементы здания (в их число входят рассмотренные выше), и состоит из следующих частей:

  • Заземляющий контур (устройство).
  • Главная заземляющая шина (общепринятая аббревиатура – ГЗШ), которая служит для объединения элементов, способных проводить ток.
  • Нулевые защитные проводники.
  • Проводники (шины) уравнивания потенциалов.

Второй тип системы уравнивания потенциалов – дополнительная. Ее обустройство производится в зонах (местах) повышенной опасности поражение электрическим током людей при эксплуатации электросети в нормальных режимах, а также при возникновении аварийных ситуаций (замыкание сети на элементы инженерных сетей, попадание молнии в объект и пр.). Такая система объединяет между собой:

  • Доступные для прикосновения токоведущие элементы (трубы отопления, водопровода и пр.).
  • Защитные и нулевые проводники электрооборудования.
  • Защитные проводники розеток, выключателей и прочих коммутационных элементов.

Компоненты систем уравнивания потенциалов от ОБО Беттерманн

ОБО Беттерманн занимается производством различных компонентов, необходимых для обеспечения электробезопасности зданий путем присоединения всех токоведущих элементов с ГЗШ. В ассортименте компании представлен широкий выбор оборудования, среди которого:

  • Шина уравнивания потенциалов разных типов. В каталоге компании ОБО Беттерманн Вы найдете шины для стандартного монтажа в помещениях и на открытом воздухе, варианты для скрытой установки, изделия для эксплуатации в условиях повышенной влажности и пр.
  • Заземляющие скобы.
  • Монтажные ленты.
  • Зажимы для обустройства систем заземления и уравнения потенциалов по разным схемам.

Какие компоненты выбрать, как заземлять оборудование, что подключать к ГЗШ, каков порядок определения схемы защитных систем: разобраться с этими вопросами Вам помогут технические специалисты компании ОБО Беттерманн в Вашем регионе. Заказать все необходимые элементы для обеспечения электробезопасности зданий и сооружений Вы можете у официальных дистрибьюторов оборудования ОБО Беттерманн.

Что такое коробка уравнивания потенциалов и как её подключают к СУП?

В соответствии с современными нормами, в здании, где проложена электропроводка, должна иметься система уравнивания потенциалов. Причем, помимо основной, устанавливается и дополнительная СУП. Об организации последней (подключение коробки уравнивания потенциалов и т.д.) пойдет речь в этой статье. Начнем с теории, а именно, что представляют собой СУП.

Пример организации основной и дополнительной СУП

Назначение

Металлические конструкции здания, проложенные в нем инженерные и коммуникационные сети, являются проводниками электричества. Пока они не замкнуты в единый контур между этими элементами может возникнуть разность потенциалов. Причем, причиной этому может быть как повреждение изоляции силового кабеля, так и статика, наводка, атмосферное перенапряжение и т.д. Это грозит тем, что коснувшись, например, корпуса бытового электроприбора и радиатора отопительного контура можно получить не только ощутимый, а и фатальный удар током.

Поражение током при пробое на корпус

Чтобы избежать таких неприятностей, все токопроводящие конструкции в здании, а также инженерные сети с подобными свойствами, объединяют в единый контур, соединенный с клеммной колодкой PE. Заземление может быть проложено отдельно или подводиться совместно с входящим кабелем.

При правильно организованной СУП в случае «пробоя» на токопроводящие элементы конструкции произойдет короткое замыкание или возникнет большой ток утечки, что приведет к активации устройств, производящих отключение. В результате поврежденный участок будет отключен и угрозы человеческой жизни не возникнет.

Система уравнивания потенциалов обеспечивает защиту в случае пробоя

Теперь перейдем к устройству основной и дополнительной системы.

Основная СУП

Она закладывается, непосредственно, при строительстве здания либо в процессе его реконструкции или капитального ремонта.

Основные составляющие СУП:

  • Заземляющий контур.
  • Провода РЕ.
  • Главная заземляющая шина.

Не будем вдаваться в подробности организации основной СУП, поскольку это тема отдельной статьи, но приведем три догмата ее построения:

  1. Объединять провода, используемые СУП с рабочим нолем (N), категорически запрещается.
  2. Заземление должно проводиться по радиальной схеме, то есть к каждому элементу подводиться отдельный проводник.
  3. В системе нельзя устанавливать никакие коммутационные устройства, поскольку одно из основных требований гласит, что входящие в нее проводники должны быть беспрерывны.

Необходимость дополнительной СУП и ее основные элементы

Казалось бы, зачем устанавливать дополнительную систему, если есть основная, на это есть несколько весомых причин, приведем две из них:

  1. Обеспечение безопасности во влажных помещениях, где установлено электрооборудование (например, ванная комната и кухня).
  2. Нет гарантии, что сосед снизу в процессе ремонта не заменил в стояке или контуре отопления металлические трубы на пластиковые, нарушив тем самым основную СУП.

Как видите, этих двух причин вполне достаточно для возникновения потенциальной угрозы жизни.

Основные элементы дополнительной системы:

  • Коробка уравнивания потенциалов (КУП), снабженная специальной клеммной колодкой (ШДУП) для дополнительного подключения элементов с токопроводящими свойствами. Желательно выбрать изделие известных брендов, например, DKC, Hegel или отечественные модели КУП2604, КУП2603, КУП1101 и т.д. Размер коробки подбирается в зависимости от количества подключаемых элементов. В большинстве случаев будет достаточно типовых 100х100х50 мм, например, как КУП в исполнении для открытой установки, продемонстрированная на рисунке 4.

В принципе, можно использовать и коробки неизвестных брендов из Поднебесной, только прежде, чем производить установку, убедитесь, что для их изготовления использовался негорючий материал. Помимо этого проверьте качество исполнения внутренней клеммной колодки.  Было немало случаев, когда крепление не обеспечивало надежного контакта.

Рис 4. Внешний вид коробки для уравнивания потенциалов
  • Провода, используемые ДСУП. Их количество должно соответствовать числу подключаемых элементов. За основу берется медный провод, у которого сечение в пределах 2,5-6 мм. Сразу заметим, что алюминиевые жилы не подходят для этой задачи, поскольку образующаяся на нем оксидная пленка может нарушить контакт, сведя на нет функциональное назначение системы.

Организация дополнительной системы

Весь процесс можно условно разделить на два этапа подготовительный и, собственно, монтаж.

В первую очередь необходимо составить схему ДСУП, хотя бы приблизительную. Это позволит «не намудрить» с подключениями, например, забыть подсоединить к клеммной колодке какой-либо элемент или подвести к нему несколько проводов РЕ. Пример правильно выполненного эскиза показан на рисунке 5.

Рис 5. Схема организации дополнительной системы уравнивания потенциалов

На эскизе показаны элементы, которые следует в обязательном порядке подключить к КУП, перечислим их:

  • 1 и 2 – трубы подачи холодной и горячей воды.
  • 3 – труба канализационной системы.
  • 4 – корпус ванны (если она металлическая, как вы понимаете, акриловую ванну заземлять не имеет смысла).
  • 5 – радиатор отопления (если таковой имеется в ванной комнате).
  • 6 – экран системы «теплый пол».
  • 7 – дверной короб (если он из металла).
  • 8 – вентиляционная решетка (при условии, что в системе вентиляции используются металлические трубы).

При правильно организованной электропроводке подводить отдельно провода к электроприборам не имеет смысла, поскольку эту функцию выполняет жила заземления.

Сделав эскиз, необходимо определиться, где будет устанавливаться КУП, особых критериев к этому нет, главное, чтобы к ней непроблематично было добраться в любое время.

Определившись с местоположением коробки, следует продумать трасы для проводов, идущих к КУП. Напоминаем, что они должны быть уложены по радиальной схеме, то есть к каждому элементу идет отдельный провод.

Если при подключении проводников системы к коробке с клеммником проблем не будет, то с заземлением труб могут возникнуть некоторые сложности. Исправить ситуацию можно с помощью специальных хомутов зажимов, один из них продемонстрирован на рисунке 6.

Рис 6. Зажим для подключения защитного заземления к трубам

Место для крепления провода заземления к хомуту отмечено красным кругом.

После того, как ДСУП смонтирована, клеммник КУП подключается к РЕ квартирного щитка (см. рис. 7).

Рис 7. Подключение ДСУП к шине РЕ

На кухне ДСУП организуется подобным образом. То есть, производится подключение к КУП труб холодного и горячего водоснабжения, газовая труба, отопление, а также электрооборудование.

После установки системы и подключения ее клеммной колодке PE необходимо убедиться в наличии между нею, КУП и подключенными элементами единой цепи. Сделать это можно произведя соответствующие замеры.

В остальных комнатах организация дополнительной системы не имеет смысла.

Что ещё необходимо принять во внимание?

Дополнительную систему запрещается монтировать, если в доме используется заземление по типу TN-С, поскольку это создает реальную опасность для жизни другим жильцам, не установившим ДСУП.

Подключение КУП к клеммам щитка необходимо выполнять, только обесточив электропроводку.

Обратим внимание! Если в ванной комнате или на кухне установлен бойлер, он должен быть обязательно подключен к КИП, а питание на него необходимо подавать через отдельную линию, защищенную УЗО.

Если на установленные в ванной розетки может попасть вода, то необходимо использовать изделия классом не ниже IP54.

Выравнивание потенциалов

Выравнивание потенциалов используется для создания электрических соединений между проводящими компонентами с целью достижения равенства потенциалов. Кроме того, проводящее соединение обеспечивает выравнивание разницы зарядов между двумя корпусами или компонентами. Все защитные проводники и проводники уравнивания потенциалов соединяются на главной заземляющей шине (PE-шине) и подключаются к заземлению фундамента (стальная арматура в бетонных плитах) через заземляющий провод.

Выравнивание потенциалов также предназначено для защиты от опасного электростатического разряда (ESD). Для этого люди и оборудование подключаются к заземлению фундамента через специальные устройства, чтобы обезопасить разность потенциалов.

Это выравнивание потенциалов может выполнять две разные задачи при электрическом монтаже машины:

Индивидуальная защита от поражения электрическим током в случае неисправности машины или системы с помощью системы защитных проводов.

2. Функциональное выравнивание потенциалов

Для предотвращения неисправностей (в результате повреждения экрана) и улучшения электромагнитной совместимости (ЭМС) чувствительных электронных компонентов.

Следующая принципиальная схема иллюстрирует цель выравнивания потенциалов:

Выравнивание потенциалов также является «требованием для защиты от поражения электрическим током». Он указан в международном стандарте IEC 60364-4-41: 2005 и немецком стандарте DIN VDE 0100-410: 2007-06.

Подключение всех токопроводящих корпусов электрических компонентов к заземленному защитному проводу и основной шине заземления является основой защиты от поражения электрическим током. Основная защитная мера, указанная в стандарте VDE, то есть автоматическое отключение источника питания в случае неисправности, обеспечивается посредством установки в соответствии со стандартами и последующего тестирования системы. Испытание также служит для проверки достаточного малого сопротивления контура для автоматического отключения в случае неисправности.

Техническая реализация выравнивания потенциалов, определение размеров поперечных сечений и стандартизованная терминология указаны в международном стандарте IEC 60364-5-54: 2011 и немецком стандарте DIN VDE 0100-540: 2012-06.

Разделение защитного и нулевого проводов!

Убедитесь, что в сети есть отдельные защитный (PE) и нейтральный (N) проводники и что два проводника не подключены к одному и тому же потенциалу (защитный и нейтральный проводники = PEN).

Системы электроснабжения

В системе TN-C точка звезды всех кабелей (L1, L2, L3 и PEN) заземлена напрямую . Нейтральный провод (N) и защитный провод (PE) объединены в один провод (PEN).

В трехфазном источнике питания используются четыре кабеля, как показано в примере слева:
L1, L2, L3 и PEN.

В следующем разделе описаны системы TN-S, рекомендованные Beckhoff Automation GmbH & Co. KG с точки зрения электромагнитной совместимости (ЭМС).

Подобно системе TN-C, в системе TN-S точка звезды всех кабелей (L1, L2, L3, N и PE) также напрямую заземлена. Нейтральный провод (N) и защитный провод (PE) подключаются к потребителю отдельно.

В трехфазном источнике питания используются пять кабелей, как показано в примере слева:
L1, L2, L3, N и PE.

Переход от системы TN-C к системе TN-S обозначен синим кабелем.

Система "звезда" (прочно заземленная звезда)

В системе "звезда" точка звезды всех кабелей (L1, L2, L3, N и GND) заземлена и соединена вместе. центр. В этой системе электроснабжения провод защитного заземления (GND) не должен пропускать ток.Нейтральный провод N (заземленный провод) должен быть отдельным и отводиться только в системе потребителя. В Германии используются системы электроснабжения TN-C-S.

Во многих случаях такие системы также используются в США в качестве стандарта.

В трехфазном источнике питания используются пять кабелей, как показано в примере слева:
L1, L2, L3, необязательно N и GND.

Система треугольника (треугольник с заземлением)

В системе треугольника все подключенные компоненты заземлены напрямую.Это делается независимо от заземления источника тока. Провод защитного заземления (GND) не должен пропускать ток! Нейтральный провод N (заземленный провод) должен быть отдельным и отводиться только в системе потребителя. Специальные меры, например сетевые фильтры, должны применяться в соответствии с требованиями ЭМС.

Эти системы не имеют прямого аналога в стандарте IEC. Заземление осуществляется либо через одну из фаз (с заземлением в углу), либо через центральный отвод между двумя фазами (High-Leg).

В трехфазном источнике питания используются пять кабелей, как показано в примере слева:
L1, L2, L3, необязательно N и GND.

В двухфазной системе заземление происходит через центральный отвод между двумя фазами. Оттуда выводится нейтральный проводник.

В трехфазном источнике питания используются четыре кабеля, как показано в примере слева:
L1, N, L2 и GND.

Потенциальные различия:

Несколько пространственно разделенных монтажных пластин внутри шкафа управления
Несколько шкафов управления, которые пространственно разделены внутри приложения
Работа несколько локальных сервоприводов (AX5000 / AX8000)
Питание компонентов шкафа управления от разных поставщиков

Все разности потенциалов приводят к токам утечки (токам выравнивания потенциалов).Для получения дополнительной информации обратитесь к разделу «Токи утечки» в системном руководстве сервопривода AX5000.

Потенциальные различия также влияют на сигналы управления и обратной связи, вызывают помехи в устройствах связи и могут вывести электронные компоненты из строя.

Чтобы уменьшить разность потенциалов, вам необходимо:

Установить выравнивание потенциалов. Для соединения неокрашенных монтажных плат и шкафов управления следует использовать заземляющие ленты с большой поверхностью и большой площадью контакта.
Подключите источник питания с общим потенциалом.
Обеспечивает соединения экрана с большой площадью поверхности.

Вопросы электробезопасности и электромагнитной совместимости

С точки зрения мер индивидуальной защиты (PPM), PE-шина в шкафу управления используется как точка звезды.
С точки зрения электромагнитной совместимости Beckhoff Automation GmbH & Co. KG рекомендует использовать неокрашенную монтажную пластину в шкафу управления в качестве точки нейтрали для выравнивания потенциалов.

Сечения проводников для кабелей выравнивания потенциалов

Кабели выравнивания потенциалов должны быть как можно короче. Сечение жилы должно быть прямоугольным и плоским. Поперечное сечение кабеля уравнивания потенциалов должно иметь соответствующие размеры.

На следующей диаграмме показан пример конфигурации выравнивания потенциалов с различными компонентами.Обратите внимание, что выравнивание потенциалов зависит от конкретного приложения, поэтому следующий образец не следует рассматривать как стандартное решение!

Дверь шкафа управления с заземляющей перемычкой

DIN-рейка для монтажа компонентов

Неокрашенная монтажная пластина в шкафу управления

Заземляющая лента, соединяющая шину PE и неокрашенную монтажную пластину

Соединение кабельного канала большой площади

Кабельный канал из листового металла

Выравнивание потенциалов между двигателем (OCT) и кабельным каналом (HF-совместимым) через фланцевую переходную пластину

Разделительная планка в кабельном канале для сигнала (зеленый) и силового кабеля (оранжевый)

Выравнивание потенциалов между Заземление рамы машины и фундамента

Токопроводящее соединение металлического кабельного канала

Заземление фундамента с помощью стальной арматуры в бетонной плите

Заземляющее соединение между блоками управления заземление шкафа и фундамента

Шина PE в шкафу управления

Установка выравнивания потенциалов

При установке выравнивания потенциалов обратите внимание на следующее:

Подключение защитного провода
Подсоедините двери шкафа управления (1) к шкафу управления через кабель защитного заземления (сечение ≥ 10 мм² Cu).
Соедините монтажную пластину шкафа управления (3) с шиной защитного заземления (13) с помощью кабеля защитного заземления (сечение ≥ 10 мм² Cu).
Подключите шкаф управления к заземлению фундамента (11) с помощью кабеля защитного заземления (сечение ≥ 10 мм² Cu). Кроме того, все кабельные каналы должны быть подключены к шкафу управления через кабель защитного заземления (сечение ≥ 10 мм² Cu).
Подключение двигателей и редукторов
Подключите все двигатели и редукторы вашего приложения к металлическим кабельным каналам с помощью заземляющих лент.
Соединение металлических кабельных каналов
Металлические кабельные каналы всегда должны соединяться друг с другом на большой площади.
Соединения кабелей защитного заземления должны быть как можно короче. Все соединения должны быть металлически чистыми! Никогда не подключайте защитные провода к окрашенным поверхностям! Перед подключением компонентов очистите все стыки промышленным очистителем.
Установка в шкафу управления

Выравнивание потенциалов

Чтобы экран эффективно экранировал высокочастотные помехи, он должен быть заземлен с обоих концов.В специальных установках могут возникать разности потенциалов между разными точками внутри одной установки, что приводит к токам выравнивания потенциалов по длине экрана кабеля. Уравнивающие токи этого типа всегда следует строго избегать, поскольку они могут привести к возникновению взаимных помех. Проблемы с землей возникают, если:

a) Шинный кабель покрывает большую площадь или соединяет большие расстояния

b) Электроэнергия поступает из разных источников (например, из разных источников).грамм. несколько подстанций)

c) Потребляются большие электрические мощности (например, сварочные роботы, большие приводы и т. д.)

Одно из решений - установить дополнительный кабель выравнивания потенциалов между отдельными потенциалами. Линия выравнивания потенциалов также должна быть способна отводить большие токи (профиль 16 мм2 не является чем-то необычным). Следует использовать многожильный кабель с хорошей поверхностью, чтобы можно было эффективно отводить даже токи высокой частоты.

Монтаж проводника для выравнивания потенциалов

Линии выравнивания потенциалов следует прокладывать параллельно кабелю шины и как можно ближе, чтобы расстояние между двумя кабелями было как можно меньше.

ВАЖНО: ЗАПРЕЩАЕТСЯ использовать экран шинного кабеля для выравнивания потенциалов!

PE-проводка (5-жильный кабель = TN-S)

В случае подключения PE (5-жильный = TN-S) нейтральный провод (N) и защитное заземление (PE) строго разделены. Даже при асимметричной нагрузке ток на землю не течет, и экран кабеля PROFIBUS остается свободным от тока. Это легко проверить с помощью токового щупа.Ток на экране не должен превышать несколько миллиампер. На практике ток на экране более 30 мА считается проблематичным. Ток, превышающий 300 мА, может чрезмерно нагреть кабель и стать причиной возгорания.

Подключение PEN (4-жильный кабель = TN-C)

В случае подключения PEN (4-жильный = TN-C) под асимметричной нагрузкой, уравнительный ток I1 будет течь по общему проводнику PEN, поскольку он будет искать путь с наименьшим сопротивлением.Таким образом, часть тока I3 также может быть отведена через землю. Это также может привести к тому, что немаловажная часть I2 будет отведена через экран PROFIBUS. Это можно подтвердить с помощью простого токового пробника.

Чтобы исправить это, рекомендуется сделать часть этого соединения оптоволоконным кабелем или использовать повторитель для электрической изоляции экрана.

В качестве альтернативы стандарты также предлагают емкостное заземление, особенно для взрывозащищенных установок.Это включает в себя соединение экрана с RC-цепочкой. Его небольшая емкость (<10 нФ) отводит высокочастотные помехи, но имеет высокий импеданс для частоты сети (50 или 60 Гц), тем самым предотвращая выравнивание токов по экрану. Параллельно подключенный высокоомный резистор предотвратит зарядку емкости постоянным напряжением. Это емкостное заземление может быть реализовано на одном или на всех концах кабеля PROFIBUS. Здесь также можно использовать токовый щуп для проверки правильности работы.

Емкостное заземление щита

205 Заземление и соединение с системой выравнивания потенциалов

Любые металлические корпуса устройств в искробезопасной системе должны быть подключены к местным стальным конструкциям и выравниванию потенциалов.

(соединение) таким же образом, как указано выше, как и корпуса аппаратов, использующих все другие концепции защиты. Аналогичным образом следует обрабатывать броню, применяемую к кабелям искробезопасных систем, металлическим оболочкам кабелей и трубопроводам (см. Главу 18).

К соединениям между искробезопасной цепью и любыми экранами, используемыми на кабелях, нужно относиться совершенно иначе. Поскольку искрение на клеммах и в других местах установки разрешено в рамках концепции искробезопасности, акцент смещается с безопасности соединения на предотвращение множественных соединений на систему выравнивания потенциалов, поскольку во время сбоев питания потенциал на различных частях выравнивания потенциалов системы могут отличаться друг от друга. Если это так, и если существует более одного соединения между искробезопасной системой и системой выравнивания потенциалов, разница в напряжении между ними может увеличивать напряжение искробезопасной системы, что может затем вызвать интенсивное искрение при нормальной работе. или в условиях неисправности.На рисунке 20.11 показана ситуация, которая может возникнуть, если искробезопасная цепь, подключенная к уравнению потенциалов в ее источнике, подключена таким образом, что токи повреждения, возникающие в других электрических цепях, вызывают подъем точки подключения даже на небольшое напряжение. Это напряжение будет добавлено к напряжению искробезопасной цепи, и если неисправность системы выравнивания потенциалов произойдет в другом месте цепи, где нет возвышения, искрение может быть воспламеняющим.Это наиболее важно для

Рис. 20.11 Влияние изменения напряжения в системе выравнивания потенциалов. Примечания: (1) i = ток электрического короткого замыкания, v = разность потенциалов между точкой подключения искробезопасной цепи к проводнику PE и основной точкой заземления из-за '/' и сопротивления провода PE Y. (2) Земля (PE проводник) потенциал в точке, где происходит замыкание на землю (PE) в искробезопасной электропроводке, равен потенциалу на основном соединении.(3) Ток неисправности l / S равен (V + v) / R. Это может быть воспламенение из-за добавления v

Рис. 20.11 Влияние изменения напряжения в системе выравнивания потенциалов. Примечания: (1) i = ток электрического короткого замыкания, v = разность потенциалов между точкой подключения искробезопасной цепи к проводнику PE и основной точкой заземления из-за '/' и сопротивления провода PE Y. (2) Земля (PE проводник) потенциал в точке, где происходит замыкание на землю (PE) в искробезопасной электропроводке, равен потенциалу на основном соединении.(3) Ток неисправности l / S равен (V + v) / R. Это может быть способным к воспламенению из-за добавления v

= li + l2 + l3 + U + U +> 6 lg = токи утечки и замыкания на землю от смонтированного на месте оборудования lr + ly + lb = токи питания l0 = ток на трансформаторе звездная точка

Рис. 20.12 Протекание тока на питающем трансформаторе.

- источник системы, поскольку именно здесь собираются все обратные токи, включая токи короткого замыкания, и, таким образом, повышение уровня намного более вероятно.

Рисунок 20.12 показана общая схема протекания тока в электрической установке.

Таким образом, основные критерии для искробезопасных электрических цепей следующие.

1. Их желательно изолировать от системы выравнивания потенциалов с помощью соединения с высоким сопротивлением (скажем, 0,5–1 Ом), чтобы предотвратить накопление заряда из-за образования статического электричества.

2. Они должны быть подключены к системе выравнивания потенциалов только в одном месте, а в другом месте должны быть изолированы от этой системы с изоляцией, способной выдержать испытание изоляции 500 В среднеквадр.

3. Точка подключения к системе выравнивания потенциалов, если таковая существует, должна быть такой, где потенциал системы, скорее всего, будет находиться при таком же напряжении, что и общая система выравнивания потенциалов и, следовательно, задействованные структурные металлоконструкции и земля.

20.5.1 Типовые искробезопасные цепи для Зоны 1 и Зоны 21 с заземляющим соединением в невзрывоопасной зоне

Самый общий тип искробезопасной системы - это система, в которой фактически требуется заземление цепи, и, следовательно, типичная для цепи, описанной в пункте 2 списка на предыдущей странице.Это дает значительные финансовые преимущества по сравнению с типом схемы, описанной в 1, и при правильной установке подходит для использования в Зонах 1 и 21. (Ситуация с Зонами 0 и 20 будет описана в Разделе 20.5.5 этой главы). Эта схема обычно имеет до трех элементов, требующих подключения к системе выравнивания потенциалов, и все они находятся в соответствующем аппарате. Обычно это корпус, экран в сетевом трансформаторе и искробезопасная цепь.

Корпус

Корпус часто бывает металлическим, и в этом случае его необходимо заземлить, чтобы обеспечить работу устройств защиты цепи в случае неисправности и обеспечить защиту персонала от поражения электрическим током.Обычно он монтируется на стальной конструкции, на которой также устанавливается другое электрическое оборудование, включая такие вещи, как освещение и неискробезопасное устройство управления, индикации и переключения, включая неискробезопасные части соответствующего устройства, которые сами могут генерировать значительные токи короткого замыкания. Таким образом, он будет подвергаться токам короткого замыкания от всего установленного на нем оборудования и, по этой причине, должен быть подключен к системе выравнивания (соединения) потенциалов, чтобы гарантировать срабатывание электрической защиты и исключить риск поражения электрическим током.Однако это соединение будет иметь много разных токов, протекающих по нему из-за множества устройств, с которыми оно контактирует (см. Рис. 20.13).

Интерфейс искробезопасной цепи

Часто это трансформатор (см. Рис. 20.13), образующий интерфейс, обеспечивающий управление первичным напряжением для искробезопасной цепи. Вероятно, он будет оснащен экраном между обмотками, питающими искробезопасные цепи, и другими обмотками, что переносить ток, если в трансформаторе происходит короткое замыкание, поскольку его цель - обеспечить срабатывание защиты трансформатора до того, как произойдет какой-либо прорыв экрана.Сердечник трансформатора будет соединен с общей системой выравнивания потенциалов, обычно через корпус устройства, и если экран соединен с сердечником, то его соединение уже определено. Если это не так, то экран будет удовлетворять основным требованиям к изоляции для связанного оборудования, и он все равно должен быть связан таким образом, чтобы его цель - отводить первичный ток от искробезопасной цепи. Искробезопасная цепь будет подключена ко вторичной обмотке трансформатора и почти всегда будет подключена к системе выравнивания потенциалов для предотвращения

Сопутствующий аппарат

Искробезопасная цепь

Заземление искробезопасной цепи

Шина заземления искробезопасной цепи (выравнивание потенциалов) (изолирована от общей шины и местных металлоконструкций)

Шина заземления искробезопасной цепи (выравнивание потенциалов) (изолирована от общей шины и местных металлоконструкций)

Поставка

Рама

Экран (Примечание)

Общая земля (выравнивание потенциалов) бар

К главной (распределительной) шине заземления (подключенной как можно ближе к соединительной части главного трансформатора питания / главной шины.)

Общая земля (выравнивание потенциалов) бар

К главной (распределительной) шине заземления

К главной (распределительной) шине заземления

Рис. 20.13 Типичная система выравнивания потенциалов (заземления) связанного аппарата.

Примечание Экран можно подключить вместо этого к искробезопасной шине заземления цепи, но предпочтительнее подключение, указанное выше.

шум, вызывающий эксплуатационные проблемы и, поскольку большинство цепей в основном асимметричны, предотвращает короткое замыкание устройств ограничения тока из-за замыканий на землю (см.рис.20.14). Это соединение очень важно, поскольку оно имеет значение для самой искробезопасной цепи, и подключение к общей системе выравнивания потенциалов вместе с экраном трансформатора и корпусом обычно неприемлемо из-за токов короткого замыкания, которые могут протекать. Идеальным вариантом является прямое соединение с точкой звезды главного трансформатора питания, поскольку это точка, в которой токи короткого замыкания выравниваются и не происходит повышения напряжения. Обычно невозможно обеспечить подключение к самому трансформатору, но опыт показал, что основная шина заземления в главном распределительном помещении является адекватной и именно там обычно выполняется подключение.Это соединение используется в других случаях, когда искробезопасная цепь напрямую задействована, например, в цепях с шунтирующими диодными барьерами безопасности.

(1) Возможная вторичная / экранная неисправность

(1) Возможное повреждение вторичной обмотки / экрана

К общей шине заземления

Читать здесь: 1

Была ли эта статья полезной?

Звезда выравнивания потенциалов для болта заземления 8 мм

  • Дом
  • Звезда выравнивания потенциалов для болта заземления 8 мм

Звезда выравнивания потенциалов для болта заземления 8 мм

Описание

Для шпильки заземления 8 мм, используется для простого уравнивания потенциалов на шпильке заземления 8 мм или в сочетании с центральной точкой заземления.

Новый
Это новый продукт. Этого товара пока нет в наличии.

Активный
Этот товар можно найти в активных торговых документах (каталог, прайс-лист или Интернет).

Пассивный
Этот товар больше не может быть найден в активных торговых документах. Товар все еще можно будет доставить до окончательного срока годности.

Limited
Этот товар больше не выпускается.Существующие запасы подлежат продаже.

Срок действия истек (EOS): конец продаж
Этот товар больше не доступен в качестве стандартного товара и сохраняется только для предоставления документации существующим клиентам.

0,00 руб.

.0 20 905 271403 20 905 eCl @ 20 905 271403 6.0 / 6.1
Описание Разъем заземления используется для простого уравнивания потенциалов на шпильке заземления 8 мм или в сочетании с центральной точкой заземления 7829.200. К одной точке заземления можно подключить до пяти плоских клемм (6,3 мм).
Комплект поставки: 10 заземляющих разъемов, включая сборочные элементы.
Единица упаковки 10 шт.
Вес / единица упаковки 0,12 кг (0,3 фунта)
EAN 4028177520264
Номер таможенного тарифа 73269098
EC000329
ETIM 5.0 EC000329
eCl @ ss 8.0 / 8.1 27400605
eCl @ ss 7.0 / 7.1 eCl @ 27140320
eCl @ ss 5.1 / 5.1.4 27189215
Описание продукта (длинное) DK Звезда выравнивания потенциалов Для заземляющего болта 8 мм Для плоского разъема 6 3 mm
Подробнее

Связанные категории

Уплотнения Roxtec для соединения и заземления обеспечивают электробезопасность

Решения Roxtec BG ™ и BG ™ B

Семейство продуктов Roxtec BG ™ и BG ™ B предназначено для безопасного и эффективного соединения или заземления армированных или экранированных кабелей и металлических труб через один вырез.Каждый модуль в системе Roxtec BG ™ или BG ™ B имеет отдельную проводящую склеивающую оплетку, которая непосредственно или через соседние модули контактирует с металлической рамой. Каждый кабель или труба, проходящие через систему, могут быть индивидуально связаны через модуль. В этом случае рама действует как промежуточная шина заземления при подключении к обычной системе заземления.

Решения Roxtec BG ™ B на 70% эффективнее по площади, чем кабельные вводы, и являются прямой заменой кабельных вводов, соединяющих кабели с металлической оболочкой и армированные кабели.С одним кабельным вводом вы можете изолировать один или несколько кабелей разного диаметра, обеспечивая при этом сертифицированное соединение или заземление. Решения эффективны и гибки, а благодаря простоте системы их легко установить.

Модуль Roxtec BG ™ состоит из двух идентичных половин, которые при установке образуют единый блок. Цилиндрические концентрические слои резины составляют его центр, и они съемные, чтобы обеспечить плотное прилегание к кабелю. Резиновые слои позволяют адаптировать его как к диаметру оболочки кабеля для защиты окружающей среды, так и к броне кабеля для защиты от электричества.

Модули Roxtec BG ™ B имеют часть, обеспечивающую электрическую безопасность с одной стороны и защиту окружающей среды с другой, и являются идеальным решением для шкафов и электрических шкафов.

Модули Roxtec BG ™ имеют часть, обеспечивающую электробезопасность в центре, и защиту окружающей среды с обеих сторон. Решение Roxtec BG ™ работает в полах или стенах, где требуется сквозное соединение.

Решения Roxtec BG ™ и BG ™ B сертифицированы для:

  • Электробезопасность
  • Опасные (Ex) места
  • Соединение и заземление
  • Противопожарная, газо- и водонепроницаемость

Испытание системы Roxtec BG ™

Решения

Roxtec BG ™ разработаны для приложений, где могут возникать токи высокого уровня.Ток, соответствующий указанному уровню устойчивости, направляется через модуль к корпусу и его оконечному разъему. Текущий уровень определяется применимыми электрическими стандартами и зависит от размера маршрутизируемой услуги. Система Roxtec BG ™ справляется с этим, поскольку площадь поперечного сечения оплетки увеличивается с увеличением размера модуля.

В таблице показано поперечное сечение меди для каждого размера модуля и уровень тока, на котором он был протестирован. Это пример информации, которую можно найти в технических характеристиках.

Данные оплетки для каждого размера модуля
Способность выдерживать ток и скачки напряжения для каждого размера модуля

Ошибка загрузки видео

Испытания в Roxtec - Заземление от короткого замыкания

Как проверить работоспособность соединения и заземления

Во всех электрических установках необходимо проверить работоспособность. Чтобы проверить электрическую функциональность решений Roxtec BG ™, мы рекомендуем вам проверить контактное сопротивление 4-полюсным методом с минимум 10 АЦП в соответствии с национальным законодательством.

Проверка установки систем Roxtec BG ™

Решения Roxtec BG ™ для защиты от молний

Система молниезащиты, LPS, предназначена для отвода переходных токов, вызванных ударами молнии, на землю. Система Roxtec BG ™ не предназначена для использования в качестве основной системы молниезащиты. Вместо этого он защищает от воздействия непрямых ударов молнии. Даже непрямые удары молнии могут вызвать высокое напряжение в металлических предметах, кабелях или трубопроводах, находящихся поблизости.Используя уплотнения Roxtec BG ™, вы можете минимизировать воздействие непрямых ударов молнии. Скачки и переходные процессы от удара молнии имеют широкополосный спектр, что требует методов заземления, разработанных EMI, чтобы избежать повреждения оборудования.

Система Roxtec BG ™ протестирована в соответствии с IEC 62305-1, который является стандартом защиты от молнии. Этот стандарт является более жестким, чем IEC 60060-1, в котором удары содержат примерно в 20 раз больше энергии.

Молниезащита объекта - Конструкции vs.Системы

Риск поражения молнией и разрушения промышленности и собственности США постоянно растет. Стоимость ущерба, связанного с молнией, в настоящее время оценивается в 8–10 млрд долларов в год (1) и растет на 20% в год. Помимо физической деградации, большая часть общих затрат связана с простоями оборудования и прерыванием бизнес-операций.

Тот факт, что молния может разрушить как внешние конструкции, так и внутренние системы, часто игнорируется, пока не становится слишком поздно.Однако внедрение комплексной системы молниезащиты (FLPS) может снизить риск повреждения и сбоя в обоих случаях. Эффективный FLPS не только защищает крыши, стены и другие конструктивные элементы от прямых ударов молнии, но также экранирует электрические цепи, коммуникации, системы управления технологическими процессами и другие элементы, уязвимые для непрямых ударов.

Нейтрализация прямых ударов молнии

Прямые удары молнии можно нейтрализовать с помощью структурной системы молниезащиты (структурная СМЗ).Основными компонентами этой системы являются молниеотводы (также известные как молниеотводы), проводники, соединяющие молниеотводы, и токоотводы, которые соединяют молниеотводы с землей. В соответствии с основными принципами физики структурная СМЗ генерирует электрическую «косу», которая перехватывает нисходящий электрический «лидер» из грозового облака. Этот перехват устанавливает цепь, позволяющую структурной СМЗ проводить ток молнии к земле, минуя конструкцию здания, при этом уравновешивая потенциал между облаком и землей.

Фото: Активность восходящего и нисходящего лидера при ударе молнии

Конструкционная СМЗ не притягивает молнии, и удар молнии в месте не зависит от того, установлена ​​ли защита. Вместо этого структурная СМЗ просто обеспечивает предпочтительный путь для тока молнии, протекающего к земле. Эта форма заземления отличается от обычного электрического заземления, устанавливаемого для повседневной безопасной работы электрических систем, которое не предназначено для работы с чрезвычайно высокими уровнями мгновенного напряжения и тока (100 миллионов вольт, 30 000 ампер или более), которые типичны для удар молнии.

Узнайте больше об образовании молний на веб-сайте Национального управления океанических и атмосферных исследований NOAA (2) .

Одного пути к земле недостаточно, чтобы гарантировать, что молния будет правильно отводиться от конструкции здания. Множественные токопроводящие дорожки должны быть проложены на правильном расстоянии от защищаемого здания.

Стандарты для этих систем молниезащиты включают NFPA 780 и UL 96A для США и IEC-62305 на международном уровне.Программа UL Master Label Certificate охватывает проверку и сертификацию этих систем.

Схема: воздушный терминал, проводник и расстояние между нижним проводником для LPS

Индукция по току и косвенное повреждение

Молния также производит электромагнитный импульс (ЭМИ), который наводит ток в любых черных металлах в здании. Близлежащие удары молнии, удары по электросети или системам связи или даже удары от облака к облаку могут вызвать опасный ток в объекте и его системах.Ток может вызвать возгорание проводов и оборудования. Это также может привести к внутреннему отказу электрического оборудования, оборудования связи и управления технологическим процессом, даже если нет видимых снаружи повреждений.

Таким образом, представление о том, что молния должна поразить здание напрямую, чтобы нанести ущерб или вызвать убытки, является мифом. Наведенный ток, который, например, повреждает системы управления технологическим процессом на объекте, может вызвать столько же простоев, как и физическое повреждение всей конструкции здания. Кроме того, здание и его оборудование с большей вероятностью будут повреждены индукцией вспомогательного тока, чем прямым ударом.

Необходимость как структурных, так и системных систем молниезащиты

Конструкционная СМЗ сама по себе не защитит объект от риска индукции. В то время как структурная система молниезащиты имеет решающее значение для защиты физической конструкции, а выравнивание потенциала, которое она обеспечивает, может снизить индуцированные токи, внутренние системы требуют дополнительных мер защиты.

К счастью, другие технологии позволяют защитить производственные системы, электрические компоненты, коммуникации и средства управления процессами так же эффективно, как и саму конструкцию.Эту защиту обеспечивает:

  • Системы заземления с низким сопротивлением (низкое переходное сопротивление)
  • Выравнивание потенциалов
  • Устройства защиты от перенапряжения (УЗИП)

Системы заземления с низким сопротивлением (низкое переходное сопротивление)

Стандарты

для полных систем молниезащиты основаны на принципе обеспечения прямого или квазинепрямого пути с низким сопротивлением и низким сопротивлением для безопасного прохождения тока молнии до земли. Достижение низкого импеданса требует правильного обращения как с сопротивлением, так и с реактивным сопротивлением (емкостью и индуктивностью) системы.

Невнимательность или необоснованные предположения об эффективности системы заземления могут способствовать повреждению, связанному с молнией, и прерыванию работы. Практические правила предотвращения этого риска включают следующее:

  • Системы заземления должны быть спроектированы и испытаны на достаточно низкое сопротивление заземления, обычно менее 25 Ом, для каждого заземляющего соединения. Там, где требуется заземление с особенно низким импедансом, например, для средств связи, или если сама земля имеет высокое сопротивление, можно использовать стержень электролитического заземления или другое усиление заземления.
  • Существующие системы необходимо регулярно проверять, чтобы гарантировать их работоспособность и целостность: например, заземляющие стержни, установленные несколько лет назад, теперь могут быть корродированы или повреждены иным образом.
  • Новые системы должны быть долговечными. Например, система заземления с низким сопротивлением, которая работает только в течение трех лет, не является подходящим решением, хотя она и хороша в течение этого времени.

Выравнивание потенциалов

Молния может проходить через почву и поэтому может улавливаться подземными водоводами, входящими в здание.Неправильное выравнивание потенциалов между электрическими и служебными линиями (вода, газ, телефонная связь, кабельное телевидение) и зданием, которое они обслуживают, может подвергнуть людей воздействию высоких уровней потенциала прикосновения и сделать объект уязвимым для косвенного поражения молнией. Следовательно:

  • Все системы на объекте, а также физическая структура должны быть надлежащим образом соединены вместе и подключены к одной и той же системе заземления для выравнивания потенциалов (уравнивания потенциалов). Эти системы включают в себя электроснабжение переменного тока, телекоммуникации, газ, воду, кабельное телевидение, системы управления и антенны.
  • Служба, которая должна оставаться изолированной, которая не может быть напрямую связана с системой заземления здания, должна использовать разрядник с газоразрядной трубкой (GDT), установленный между службой и системой заземления здания. GDT обеспечит путь разряда к земле для выравнивания потенциалов.

Эквипотенциальное соединение не заменяет кабелепроводы или служебные линии для заземления системы молниезащиты. Это также не подвергает эти системы большему риску. Вместо этого он позволяет отводить заряды от систем через общий потенциал земли, что также снижает риск боковой вспышки, искрения и воздействия на людей смертельного потенциала прикосновения в результате удара молнии.

Устройства защиты от перенапряжения (SPD)

УЗИП (устройство защиты от перенапряжения) предназначено для защиты электрооборудования от скачков напряжения. Он ограничивает напряжение, подаваемое на оборудование, до безопасного уровня, блокируя или отводя избыточные напряжения на землю, в том числе передаваемые в конструкцию по электрической цепи, линии связи или линии передачи данных. УЗИП может также называться ограничителем перенапряжения, устройством защиты от перенапряжения или ограничителем перенапряжения переходных процессов (TVSS).

Неправильное использование SPD является обычным явлением, и неправильная реализация может вызвать ложное ощущение защиты.К распространенным ошибкам относятся:

  • Неправильно расположенные или установленные SPD
    Правильная установка и размещение SPD является критическим фактором в обеспечении защиты. Точки входа в служебные линии являются ключевыми местами для установки УЗИП из-за обширных систем, которые образуют служебные линии для непрямой передачи молнии. По той же причине следует оборудовать другие электрические проводники здания, такие как антенные системы, УЗИП в точках входа.
  • Неправильное сквозное напряжение
    УЗИП предназначен для пропускания напряжения до определенного предела, известного как сквозное напряжение. Минимизация сквозного напряжения важна для защиты подключенного оборудования. УЗИП для питания переменного тока часто устанавливают на служебном входе, но в зависимости от используемых УЗИП и их установки сквозное напряжение может быть недостаточно низким для должной защиты всего оборудования, расположенного ниже по цепочке. Дополнительные SPD могут потребоваться в точках разветвления и рядом с оборудованием для дальнейшего снижения сквозного напряжения.
  • Отсутствующие SPD
    SPD также важны для низковольтных коммуникационных проводников, которые входят в производственную или технологическую панель управления. Хотя они часто являются наиболее уязвимыми системами, их часто упускают из виду при развертывании SPD. В более общем плане ни одно устройство защиты от перенапряжения не может защитить всю конструкцию, и SPD всегда должны быть развернуты в нескольких местах для надлежащей защиты оборудования.

Заключение

Сегодняшние объекты должны постоянно работать, что делает простои недопустимыми.К счастью, сбои и повреждения, связанные с молнией, можно предотвратить, используя доступные сейчас технологии. Правильно спроектированная и интегрированная система заземления объектов с низким сопротивлением / низким сопротивлением, выравнивание потенциалов и SPD может эффективно защитить современные цифровые системы, в то время как структурная система молниезащиты защищает здание, в котором они находятся.

Полная система молниезащиты объекта также важна для обеспечения безопасной и эффективной защиты. Частичные системы оставляют объекты уязвимыми к переходным напряжениям и токам, а также к боковым вспышкам для незащищенных проводящих компонентов и, следовательно, к повреждению, потере и прерыванию работы.Только за счет полной интеграции защиты как от прямого, так и от непрямого поражения молнией предприятия США могут рассчитывать на сокращение или даже устранение ежегодного ущерба и сбоев, связанных с молнией, на сумму от 8 до 10 млрд долларов.

Схема: структурная СМЗ, заземление, выравнивание потенциалов и защита от перенапряжения (SPD / TVSS)

Тодд Д. Воут, вице-президент по развитию бизнеса, VFC - BSBA, более 30 лет опыта в разработке и внедрении систем молниезащиты.Сертификат LPI № 861

Ларри Лабайен, старший инженер по приложениям, Lyncole - BS Electronics and Communications, имеет более чем 30-летний опыт работы в области электроники и телекоммуникаций.

Артикулы:

провод уравнивания потенциалов - Немецкий перевод - Linguee

При необходимости y, a провод выравнивания потенциалов s h or ld [...]

параллельно кабелю.

eaton-automation.com

Falls notw en dig, ein en Potentialausgleichsleiter mi t d em me hr fachen [...]

Querschnitt des Kabelschirms parallel zum Kabel verlegen.

eaton-automation.com

Соедините контакты выравнивания потенциалов электрохирургической установки и APC

. [...] 300 к тележке для оборудования v i a проводники выравнивания потенциалов .

erbe-med.com

Verbinden Sie die Potentialausgleichstifte des Hochfrequenz-Chirurgiegertes

[...] und des A PC 30 0 ber Potentialausgleichleitungen mit dem Ger te wagen.

erbe-med.com

Подключите ea c h провод выравнивания потенциалов w i th с поперечным сечением не менее 4 мм2 к соединениям выравнивания потенциалов (22) [...]

на крышке (2) и кожухе (1).

kiepe-elektrik.com

Schlieen Sie je eine n Potentialausgleichsleiter m it ei ne m Querschnitt von mindestens 4 mm2 an de n Potentialausgleichsanschlsse () an Potentialausgleichsanschlsse ()..]

Haube (2) und am Gehuse (1) an.

kiepe-elektrik.com

Желто-зеленый re e n выравнивание потенциалов c a bl e должен быть подключен к выравниванию потенциалов di g g g проводник p r ov ided in rooms [...]

используется для сердечных

[...]

вмешательства (см. Стандарт на помещения, используемые для медицинских целей).

fenix.cz

Das g rn / gelbe Potentialausgleichskabel m us s mit de m Potentialausgleich i n Katheterbehandlungsrumen verbunden sein [...]

(Норма от med. Genutzte Rume).

fenix.cz

T h e выравнивание потенциалов b u sb ar и защитный e ar t h b9 908 908 9087 9087 u9 проводник сб ар должен быть [...]

размещены в общем корпусе и

[...]

подключается посредством отключаемого соединения с использованием медного провода с минимальным сечением 16 мм2.

wago.com

D ie Potenzialausgleich -Sam mels ch iene und d ie Schutzleiter-Sa mm elschiene sind in einem [...]

gemeinsamen Gehuse anzuordnen, und

[...]

mit einem Leiter von mindestens 16 мм2 Cu lsbar miteinander zu verbinden.

wago.com

Выравнивание потенциалов i s r ealised через защитный e ar t h проводник t 0 he Распределение 0 .]

коробка или корпус.

daetwyler-cables.com

D er Potentialausgleich am Ver te ilerschrank oder -gehuse wird ber einen Schutzleiter [...]

realisiert.

daetwyler-cables.com

Требования к пространству, касающиеся электрики

[...] Установка

, озабоченность например

[...] группа nd e d проводник s y st em, t h e выравнивание потенциала 908 n d земля [...]

неисправность системы прерывания.

erbe-med.com

Die Rumliche Anforderungen Betreffen

[...]

bezglich der elektrischen Installation z. Б.

[...] das Sc hutzleite rs ystem , d en Potentialausgleich un d d ie Fe erromlutsch.

erbe-med.com

Согласно VDE 0107 «Монтаж и проверка электрооборудования

[...]

установки в медицинских помещениях »,

[...] эквипотенциальное соединение di n g проводники m u st быть подключены to a 9080 9087 выравнивание потенциала сб ар.

wago.com

Nach VDE 0107 "Errichten und Prfen von elektrischen Anlagen in

" [...]

medizinisch genutzten

[...] Rumen ", sin d die Potenzialausgleichsleitungen auf eine Potenzialausgleich- Samme ls chiene [...]

zu fhren.

wago.com

Нижнее сопротивление эквипотенциального бонуса di n g проводник , t he выше эффективных s f .

vipa.dk

Die Wirksamk ei t ei nes Potenzialausgleichs ist um so grer, je kleiner le dung8.

vipa.de

Блок питания оснащен встроенным блоком питания

[...] распределитель wi t h выравнивание потенциалов a n d интерфейс [...]

к дополнительному центральному переключателю на фиксированной консоли.

palmedico.hu

Die Ausstattung der Power-Box beginnt beim integrierten

[...] Netzvertei le r mi t Potenzialausgleich u nd S ch nittstelle [...]

zum optionalen Zentralschalter an der FestKonsole.

palmedico.hu

Важно:

[...] Там mus t b e выравнивание потенциалов b e tw een напряжение [...]

питание транспортной системы Montrac и напряжение

[...]

поставка системы управления (PLC).

montratec.com

Achtung: Z wisc he n der Spannungsversorgung des Montrac-Transportsystems [...]

und der Spannungsversorgung der Leitsteuerung (PLC)

[...]

muss ein Potentialausgleich bestehen.

montratec.com

Функциональное заземление (FE) должно быть подключено к

. [...] защитное заземление (PE) или к t h e выравнивание потенциалов .

eaton-automation.com

Die Funktionserde (FE) muss an die

[...] Schutzerde ( PE) o der de n Potentialausgleich a ngeschlossen werd en .

eaton-automation.com

Вы должны соединить все токопроводящие части, конструкцию и

[...] установка в t o выравнивание потенциалов .

download.suetron.net

Sie mssen all leitfhigen Teile, die Konstruktion und die

[...] Installati on in d en Potentialausgleich ei nbinden .

download.suetron.net

Сигналы после прохождения

[...] через 1 м lo n g проводник p a th до и ft e r hy hy de

Сигнал нач

[...] Durchlaufen einer 1m l angen Leiterbahn vor u nd nach der Equalization

hy-line.de

Работа без заземления оборудования, прибор

[...] заземление или де vi c e выравнивание потенциалов i s n не разрешено

spaun.de

Ein Betrieb ohne Schutzleiteranschluss,

[...] Gertee rd ung o der Gertepotentialausgleich ist nich t zulssig.

spaun.de

Выравнивание потенциалов - Прибор Th e должен быть интегрирован в t h e выравнивание потенциалов o he.

vegaswing.com

Potentialausgleich - D as Ge r t muss in de n Potenzialausgleich d er Anlage einbezogen werden.

vegaswing.com

Всегда консультируйтесь с компетентным инженером-электриком, знакомым с

. [...]

национальных правил, чтобы убедиться, что

[...] это заземление a n d выравнивание потенциалов o f t he трубопроводная система [...]

и прилегающие объекты

[...]

выполнены правильно, чтобы предотвратить опасность электростатического разряда.

kpsystem.com

Lassen Sie immer durch einen sachverstndigen Elektrotechniker, der mit den

[...]

nationalen Richtlinien vertraut ist,

[...] prfen, o b Erdun g u nd Potentialausgleich de s R ohrsy st ems und [...]

benachbarter Installationen korrekt

[...]

durchgefhrt wurden, um Gefahren durch elektrostatische Aufladung zu vermeiden.

kpsystem.com

Выравнивание потенциалов b e tw Предусмотрены продольные балки [...]

соответствующими разъемами.

puk.com

Bei den Verbindungen der

[...] Lngsp ro файл ist d er Potentialausgleich mi t den zu v er wendenden [...]

Verbindern gewhrleistet.

puk.com

Если целевое оборудование и ПЛК (или другой партнер по обмену данными) установлены в разных шкафах управления, а экран кабеля на ПЛК подключен

[...]

прямо или косвенно

[...] Protec ti v e проводник , p ro vi de a
0 0 0 0 0 0 9087 ua lisa ti o n проводник w i th a подходящий [...]

сечение между шкафами управления.

eaton-automation.com

Wird die Zielhardware und Die PLC (oder ein anderer Kommunikationspartner) в Verschiedenen Schaltschrnken installiert und die Kabelabschirmung ist PLC-seitig direkt oder

[...]

indirekt mit dem

[...] Schutzleiter verbunden, is t ein Potentialausgleichsleiter mit e ntsprechendem Querschnitt [...]

zwischen den Schrnken vorzusehen.

eaton-automation.com

Для интеграции анодированного

[...] рама модуля в t h e выравнивание потенциалов t h e следующие компоненты [...]

можно использовать

centrosolar.de

Fr die Einbeziehung der

[...] eloxierten Modu lr ahmen in de n Potentialausgleich k nn en folge nd e Bauteile [...]

verwendet werden

centrosolar.de

Первое подключение t h e выравнивание потенциалов c a bl e с соответствующим di n g выравнивание потенциалов p l ug pin (рядом с главным выключателем на передней панели устройства h / p / cosmos), затем подключите всю медицинскую систему к ma i n выравнивание потенциалов t e rm inal of [...]

медпункт и

[...]

, затем подключите сетевой штекер медицинской системы.

h-p-cosmos.com

Im medizinischen Bereich schlieen S ie erst de n Potentialausgleich a mv orges eh enen Steckerstift (vorne neben Hauptschalter 908 dysanischelter 908 dysanischelter 908, m. de r Potentialausgleichsschiene d es Raume s / Gebudes verbunden, und erst dann darf der [...]

Netzstecker angeschlossen werden.

h-p-cosmos.com

Гайки стопорные с режущими кромками были

[...] разработано f o r выравнивание потенциалов w h ic h также обеспечивает [...]

, что достигается оптимальный контакт,

[...]

даже в случае толстых слоев краски или порошкового покрытия.

лутце.es

F r den Potentialausgleich wur den Ge genmuttern mit [...]

Schneidkanten entwickelt, die auch bei dickeren Lackschichten oder Pulverbeschichtungen

[...]

fr eine optimale Kontaktierung sorgen.

lutze.es

Выравнивание потенциалов c a bl e, 5 м (требуется для [...]

медицинских систем, например для комбинированного применения беговой машины для диагностики работоспособности)

h-p-cosmos.biz

Potentialausgleichsleitung, 5 m (f r me di zinische [...]

Systeme erforderlich, z.B. bei kombinierter Anwendung des Laufbandes in der Leistungsdiagnostik)

h-p-cosmos.biz

Интерфейс оператора и любой

[...]

подключенного оборудования должно быть

[...] встроен в sa m e выравнивание потенциалов s y st em (см. установку [...]

в Руководстве по оборудованию).

stahl-hmi.de

Das Bediengert und angeschlossene Gerte

[...] mssen in da s gleiche Potentialausgleichssystem ei nbezogen [...]

werden (s. Installationsbeispiel im Hardwarehandbuch).

stahl-hmi.de

3 Все металлические монтажные конструкции, поручни, трубы, стойки и т. Д., На которых устанавливаются модули MIQ, должны быть подключены к l oc a l выравнивание потенциалов s y st em и систему заземления или должны быть индивидуально достаточно заземлены на месте в соответствии с практическими правилами.

wtw.com

3 Alle Metallischen Montagekonstruktionen Gelnder, Rohre, Standsulen und Sonstiges, denen MIQ Module installiert werden, sind nach den Regeln der Technik и das rtliche Potentialausgleichsystem und die Erdungsanlage anzuschlieen bzw. einzeln lokal ausreichend zu erden.

wtw.com

Таким образом, паяльные и демонтажные жала всегда подключены к высокому уровню

. [...] импеданс на переднюю часть ll e d выравнивание потенциалов s o ck et.

ersa-shop.com

Die Lt- bzw. Entltspitzen sind dann stets hochohmig mit der

[...] frontsei ti g angeordneten Potenzialausgleichsbuchse ver bu nden.

ersa-shop.com

Изолированная экранирующая сетка кабелей

[...] должен быть подключен к de vi c e потенциал o r t h e P E 908 e sp .

jenaer-antriebstechnik.de

Das abisolierte Schirmgeflecht der Kabel

[...] muss unb ed ingt mit de m Gehusepotenzial b zw. mi t P E verbunden w erden .

jenaer-antriebstechnik.de

Напряжение несимметричной помехи равно

. [...] измеряется между o n e проводником a n d относящимся к en c e потенциалом ар -й) контура.

weidmuller.com.au

Die unsymmetrische Strspannung

[...] wird zwi sc hen e ine m Leiter u nnd d em Bezugspotential (E rd e) e iner

gemessen.

weidmuller.com.au

Существует различие между точками подключения внутри зданий для подключения заземляющей нейтральной линии, t h e потенциал c o mp ensator, groun n di g проводник f o r низковольтные установки и оборудование для обработки данных и т. Д.с одной стороны, и места подключения для молниезащиты [...]

вне зданий.

woertz-carolina.com

Man unterscheidet zwischen Anschlussstellen im Innern des Gebudes fr den Anschluss des Nullungserdleiters, der Potentialausgleichsleiter, der Erdungsleiter fr Schwachstrom- und Datenverarbeitungsanlagen usw. und Anschlussstellen ausserhalb des Gebudes fr Blitzschutzanlagen.

woertz-carolina.com

Максимальное продолжительное напряжение устройств защиты от перенапряжения между фазным проводом, разрядником-разъединителем и шиной заземления или главной шиной заземления должно быть не менее 1.1 умноженное на значение фазы к neu tr a l потенциал d i ff erence и между neu tr a проводник , a rr эфирный разъединитель и шина PE или основная шина заземления, по крайней мере, равны этому значению.

weidmuller.com.au

Die hchste Dauerspannung der berspannungsschutzgerte zwischen dem Auenleiter, dem Ableitertrennschalter und der PE-Schiene oder der Haupterdungsschiene muss mindestens den 1,1-fachen Wert und zwischen dem Neutralleiter-dem Ableiter dernschalder-der der dertender der der der der der der der der der der der der der der der der der der der der, der der der der der.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *