Солнечная батарея принцип работы: Принцип работы солнечных батарей

Содержание

Принцип работы солнечных батарей

11.03.2019

Солнечные батареи сегодня применяются практически во всех сферах нашей жизни, зарядные устройства, уличные фонари, электромобили и много других областей где востребована солнечная энергия. Если вы хотите подробнее разобраться, как же работают эти устройства, из чего состоят и на что способны, читайте нашу статью.

Немного истории солнечной энергетики

Самым первым изобретенным устройством преобразующем были солнечные коллектора, которые изначально использовались как термальные электростанции, на которых электричество вырабатывается от нагретой до температуры кипения воды. Их использовали на термальных станциях, где с помощью вращения водяным паром турбины получали электричество.

Но немного позже, был изобретен более эффективный путь добычи электроэнергии из солнечных лучей – солнечные батареи. При прямой переработке лучей в энергию, потери значительно меньше, а эффективность намного выше.

На сегодняшний день солнечные батареи состоят из набора фотоэлементов, связанных в цепь. Фотоэлемент – это полупроводниковое устройство, которое непосредственно превращает луч в электрический ток. Этот процесс в физике называется фотоэлектрическим эффектом.

Фотоэлектрический эффект был открыт Александром Беккерелем в 19 веке, однако в то время это была лишь теория. Спустя полвека был создан первый фотоэлемент, который сконструировал А. Столетов.

Солнечная батарея: принцип работы

А теперь немного физики.

Полупроводник – это материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип).

Исходя из этого свойства полупроводника и был создан фотоэлемент, который вмещает в себя два слоя с разной проводимостью: n-слой – используется как катод, а p-слой – как анод.

А сам процесс выглядит так: лишние электроны с n-слоя покидают свои атомы, в то время как p-слой их собирает. А лучи солнечного света вытесняют электроны из атомов n-слоя, которые тут же захватывает p-слой.

Дальше все происходит по кругу, выходя с p –слоя электроны проходят через нагрузку (в данном примере через аккумулятор) и возвращаются на n-слой.

После понимания какие перспективы за этим стоят, ученые стали искать, какой же материал лучше всего подойдет для этих процессов. И первый современный фотоэлектрический элемент сделали из селена. После проведения ряда экспериментов, было выявлено что КПД процесса с использованием селена, еле достигал 1%, что конечно было не эффективно. Поиски нужного материала и эксперименты продолжались.

Современный фотоэлемент состоит из кремния, он достаточно эффективен (КПД от 15 до 25%) и доступен для массового производства. Однако разработки в этом направлении не прекращаются. Целью на сегодняшний день является упрощение и удешевление процесса производства фотоэлементов, а также повышение КПД.

Солнечная панель – состоит из набора фотоэлементов, связанных в электрическую сеть, так как по одному они мало эффективны. В зависимости от количества таких элементов, определяется и мощность всей панели или солнечной батареи.

Конструкция самой батареи состоит из рамы, на которой располагаются фотоэлементы, закрепленные таким образом, чтобы имелась возможность из заменить по одному, и сверху защитная прозрачная панель из стекла или сверхпрочного пластика, который защищает панель от атмосферных осадков и других объектов.

Разновидности солнечных батарей

Классификация солнечных панелей происходит по мощности и типу используемых элементов.

Элементы могут быть монокристаллические (из цельного кристалла кремния), поликристаллические (из сплава нескольких кусочков кремния) и аморфные (то есть гибкие).

Для того чтобы на примере рассмотреть работу солнечных батарей, определим мощность солнечного потока. На экваторе мощность солнечных лучей достигает 1 кВт, в нашем регионе при пасмурной погоде она может опускаться ниже отметки 100 Вт. Для примера возьмем среднее значение в 500 Вт.

Гибкие или аморфные солнечные батареи, изготавливаются на гибкой основе и могут покрывать неровные радиусные поверхности. При их производстве используются органические или химические элементы. У них самый низкий КПД около 5-10% . То есть такая панель, площадью 1 м2 при мощности солнечных лучей 500 Вт произведет 25 – 50 Вт электроэнергии.

Монокристаллические и поликристаллический батареи как упоминалось выше, изготовлены из кремниевых полупроводников. Их коэффициент преобразования 20-25%. Панель размером 1м2 выработает около 125 Вт энергии.

Ученые и дальше продолжают работать над сплавами, которые могут повысить эффективность солнечных батарей. Передовыми разработками на сегодняшний день являются решения на основе арсенида галлия, который способен повысить эффективность батарей до 35-40%.

В зависимости от нужной мощности батареи имеют разные типоразмеры. От совсем маленьких на 10-50 Вт (портативные, которые подходят для туризма, позволяют заряжать телефоны, планшеты и фотоаппараты) до больших 200 — 300 Вт (1-1,5м2), которые обычно устанавливают стационарно для снабжения электричеством дома или дачи.

Стабильность работы солнечной батареи и эффективность зависит от окружающей температуры, затенения, угла установки, смены сезона – все эти факторы могут значительно снизить производительность.

Например, при очень высоких температурах, производительность фотоэлемента сильно снижается. А если часть элементов на панели затенить, то производительность упадет у всех, даже хорошо освещенных.

Поэтому важно правильно выбирать место и способ установки таких панелей.

Крупнейшие производители солнечных батарей

Мировыми лидерами среди производителей являются китайские заводы, такие как Suntech, Yingli, Trina Solar.

Также не сдают позиции США- First Solar и японская компания Sharp, с ее солнечным подразделением Sharp Solar.

Все эти компании имеют большие заводы, лаборатории разработки и испытаний произведенных модулей.

Американская компания First Solar кроме производства принимает активное участие в проектировании и строительстве крупнейших солнечных станций в Америке. Например инженеры этой компании спроектировали мощнейшую в мире СЭС Агуа-Калиенте, которая находится в штате Аризона.

В Украине также наметилась положительная тенденция для солнечной энергетики. Самой крупной станцией считается СЭС «Перово» расположенная в Крыму общая мощность которой 105,56 МВт. Построена австрийской компании производителем солнечных панелей Activ Solar.

Крупная китайская компания Suntech известна тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.

Принцип работы солнечной батареи

Солнечные батареи, как источник альтернативной энергии, сегодня уже не относят к инновационным технологиям науки. Впервые, использованные уже более сорока лет назад для электропитания станций в открытом космосе, они с успехом применяются, в качестве независимого источника экологически чистой электроэнергии.

Элементы солнечных батарей изготавливают из материалов, преобразующих солнечный свет в электричество. Фотоэлектрическая батарея конструктивно состоит из нескольких модулей, электрически и механически соединенных между собой. Каждый солнечный модуль – это устройство, объединяющее несколько фотоэлектрических элементов и выходные клеммы для подключения электроприемников. Фотоэлектрический элемент состоит из 2-х пластин полупроводникового материала. Основную часть, выпускающихся промышленностью элементов батарей, изготавливают из чистого кремния. На одну пластину, с целью придания ей свойств проводника отрицательных зарядов (n-область), наносят бор. Вторую же, с целью создания проводника положительных зарядов, покрывают фосфором (р – область).

Под воздействием солнечных лучей в зоне соприкосновения двух пластин возникает электродвижущая сила, которая способна создавать электрический ток во внешнем контуре, электрически соединенном с р- и n-областями. Для того, чтобы снять ток с батарей их пропаивают тонкими полосами меди. Спаянные друг с другом пластины спаивают, ламинируют, а затем закрепляют на стекле. Для придания конструкции прочностных свойств соединенные пластины размещают в алюминиевую раму.

Явление, в основе которого лежит принцип работы солнечных батарей, имеет название «внешний фотоэффект». Мощность, вырабатываемая батареей, напрямую зависит от площади ее поверхности. На эффективность работы солнечных батарей оказывает влияние также положение относительно Солнца модулей и интенсивность излучения. Таким образом, КПД батарей зависит от времени года, места установки, погоды.

Энергия, генерируемая фотоэлектрической установкой, не предназначена для непосредственного подключения потребителей. Между электрогенерирующей установкой и потребляющей сетью необходимо подключать инвертор, с целью трансформирования напряжения в стандартные величины одно или трехфазного номинала (220 или 380В).

Солнечные фотоэлектрические модули способны вырабатывать электроэнергию в течение 25 и больше лет. Технический износ в большинстве случаев возникает вследствие влияния окружающей среды, поскольку в таких установках отсутствуют подвижные механизмы, а также нет никаких термодинамических процессов. Грамотно смонтированная солнечная батарея станет экологически безопасным, бесшумным и надежным источником электроэнергии на долгие годы.

Принцип работы солнечной батареи — как работает солнечная панель?

Если раньше люди были зависимы от централизованного энергоснабжения, то сейчас у всех есть хорошая альтернатива – солнечные батареи. Такое оборудование идеально для установки в частных домах, дачах, на промышленных объектах. Электростанции стали доступнее по цене и разнообразнее по видам и мощности. В этой публикации мы детальнее рассмотрим принцип работы солнечной батареи, ее виды и преимущества использования в быту и на производстве.

Устройство и история появления солнечных батарей

Человечество уже давно задумывалось об использовании неиссякаемой энергии солнца. Первые попытки предпринимались еще в двадцатом веке. Тогда была разработана концепция термальной электростанции. Однако на практике она показывала очень низкую эффективность, ведь концепция подразумевала трансформацию энергии солнца. Проанализировав первую неудачу, ученые пришли к выводу, что необходимо использовать солнечные лучи напрямую. Такой принцип был открыт в 1839 году. Его основал Александр Беккерель. Однако до появления первых полупроводников прошло немало лет. Они были изобретены лишь в 1873 году. Этот год можно назвать началом работы над современными прототипами электростанций.

Если говорить о том, из чего состоит солнечная батарея, то изначально стоит упомянуть фотоэлементы. Их можно назвать маленькими генераторами. Именно они выполняют основную функцию – собирают энергию солнца. Сегодня есть несколько видов солнечных панелей, о которых будет рассказано в следующем разделе. Однако, независимо от вида, современная панель представляет собой основу определенного размера, на которой размещаются вышеупомянутые фотоэлементы.

Эти элементы очень хрупкие, поэтому они дополнительно защищаются стеклом и полимерной подложкой.

Однако солнечные панели – это лишь часть всей электростанции. Также в нее входят другие элементы:

  1. Аккумуляторная батарея.
  2. Контролер заряда.
  3. Инвертор.
  4. Стабилизатор.

Каждый из перечисленных устройств выполняет свою функцию. Аккумулятор – накапливает и хранит добытую энергию, контролер – контролирует мощность, подключает и отключает батарею, анализируя уровень заряда. Инвертор называют еще преобразователем. Это оборудование превращает прямой ток в переменный. Благодаря ему электричество можно использовать для бытовых целей. Последней составляющей электростанции является стабилизатор. Он защищает всю систему от скачков напряжения.

Какие виды солнечных батарей существуют?

Есть несколько классификационных признаков, по которым все солнечные панели делятся на разные виды:

  1. Тип устройств.
  2. Материал изготовления фотоэлектрического слоя.

По типу устройства выделяют два вида: гибкие и жесткие. Первый тип отличается своей пластичностью. Такую панель можно легко скрутить в трубочку, ничего не повредив. Твердая панель не меняет своей формы. По материалу изготовления есть три вида: аморфные, поликристаллические, монокристаллические.

Аморфные батареи могут быть гибкими. Они непривередливы к месту установки, но КПД такого устройства очень низкий. Он составляет не более шести процентов. Поликристаллические изделия отличаются низкой ценой. Однако они более эффективны в пасмурную погоду. В очень жаркую погоду их выработка снижается чуть больше чем у монокристаллических модулей.

Если необходим максимальный эффект от электростанции, то следует отдавать предпочтение панелям с монокристаллическими элементами. Уровень их КПД достигает двадцати пяти процентов. Монокристаллические панели являются более дорогими, так как монокристаллический кремний при производстве требует больших энерго и временных затрат.

Сфера применения солнечных батарей

С разработкой новых технологий и развитием концепции питания от солнечной энергии сфера применения панелей стала довольно широкой. Раньше такие устройства обычно устанавливались на небольших частных домах или дачах. Они применялись исключительно в бытовых нуждах, так как потребляемая мощность была минимальная. Сейчас же есть мощнейшие электростанции, показывающие высокую эффективность работы. По этой причине сфера применения панелей стала больше.

Интересный факт! Энергии, которую выделает Солнце за одну секунду, может хватить для обеспечения электричеством всего человечества на пятьсот тысяч лет.

Солнечные батареи стали активно применяться на промышленных и коммерческих объектах, позволяя значительно экономить на их энергоснабжении. Также панели устанавливают на сельскохозяйственных предприятиях, на фермах, военно-космических объектах. Менее мощные панели применяются для изготовления различных приспособлений для быта: фонариков, калькуляторов, зарядных устройств, др. Они служат источником энергии там, где нет возможности подключиться к центральной сети. Такие приспособления пользуются большим спросом у охотников, рыбаков, любителей походов.

Важно! Солнечные электростанции современного образца будут эффективны везде: как в доме, так и на большом промышленном объекте. Однако для этого они должны быть правильно подобраны по необходимой мощности. Расчет данного параметра должен осуществляться специалистом.

Как работает солнечная панель: принцип работы устройства простым языком

Если предстоит покупка солнечных батарей, то нужно обязательно ознакомиться не только с их устройством, но и с принципом работы. Итак, как работает солнечная панель? Несмотря на внешнюю простоту устройства, принцип работы такой электростанции довольно сложный. Он основан на фотоэлектрическом эффекте, который достигается при помощи фотоэлементов.

Солнечные панели собирают лучи. Они попадают на фотоэлектрический слой. Солнечный свет приводит к высвобождению электронов из двух слоев. На освободившиеся место из первого слоя встают электроны второго слоя. Происходит постоянное движение электронов, что приводит к естественному образованию напряжения на внешней цепи. В результате один из фотоэлектрических слоев приобретает отрицательный заряд, а второй – положительный.

Эти действия приводят в работу аккумулятор. Он начинает набирать и хранить заряд. При этом уровень заряда аккумулятора постоянно контролируется. Если он низкий, контролер включает в работу солнечную панель. В случае высокого заряда это же устройство панель отключает. Далее включается в работу инвертор. Он преобразовывает ток из постоянного в переменный. С его помощи на выходе электростанции появляется напряжение в 220 В. Это дает возможность подключать и питать от электростанции бытовые приборы.

Подключение солнечной панели

Эффективность и правильность работы солнечных батарей зависит не только от их вида, мощности, но и от установки и подключения. Должна быть разработана правильная схема подключения всех элементов электростанции и грамотно выбрано место для установки солнечных панелей. Такую работу можно доверять только профессионалам.

Не секрет, что выходное напряжение одной панели относительно невысокое. Обычно используются несколько батарей одновременно. Все панели должны подключаться параллельно-последовательным способом. Такой тип подключения позволяет обеспечивать максимальную эффективность работы оборудования.

Преимущества, недостатки панелей

Солнечные батареи стали дешевле, что сделало их доступнее для более широкого круга потребителей. Однако перед покупкой каждый человек должен детально ознакомиться с преимуществами и недостатками этого источниками энергоснабжения. Среди его неоспоримых достоинств стоит отметить следующие:

  • экологическая безопасность. В наше время экология – это одна из насущных проблем. Солнечные электростанции работают без вреда окружающей среде. Они не выделяют при работе вредных веществ;
  • быстрая окупаемость. Стоимость электричества, как для бытовых пользователей, так и для предприятий, постоянно растет. С установкой панелей удается полностью или частично перейти на альтернативный источник энергии, являющийся абсолютно бесплатным и доступным каждому. Благодаря этому, покупка и установка оборудования окупается за считанные годы работы;
  • легкость использования электростанции. Несмотря на сложное устройство и принцип работы, эксплуатировать станцию довольно просто. Главное – следить за исправностью ее составляющих и не экономить на обслуживании, которое требуется не так часто;
  • быстрая установка. Профессионалы монтируют все элементы станции буквально за несколько часов или дней (в зависимости от количества панелей, мощности, др.). Больше времени занимает подбор составляющих и покупка оборудования.

Недостатки у таких установок тоже имеются. Самый основной заключается в дороговизне оборудования. Однако не стоит забывать, что большой вклад при покупке быстро окупится многолетним бесплатным использованием энергии солнца. Вторым серьёзным недостатком солнечных панелей является их зависимость от внешних факторов. Эффективность их работы зависит от погоды, температурных условий, положения по отношению к Солнцу, от чистоты поверхности.

Как достичь максимальной эффективности работы батарей?

Солнечную электростанцию имеет смысл ставить только в регионах с длительным световым днем. Там, где день короткий, можно применять панели только в качестве дополнительного источника света, но не основного. Как уже было замечено, разные виды солнечных батарей имеют свой КПД. Чтобы добиться максимального эффекта, следует выбирать устройства с максимальной производительностью, несмотря на их дороговизну.

Большую роль будет играть правильность расчета мощности всей установки. Это позволит подобрать необходимый размер и количество панелей, мощность других комплектующих станции. Также залогом эффективной работы панелей является мощный аккумулятор. В системе должно быть два аккумулятора, особенно в зимнее время года. Второй аккумулятор позволит накапливать достаточно энергии для обеспечения электричеством объекта в короткие световые дни.

Нельзя забывать и о других факторах, которые влияют на работу станции. Панели должны быть расположены под правильным углом, их нужно обязательно держать в чистоте. В противном случае, КПД батарей будет значительно снижаться.

Устройство и принцип работы солнечных батарей

Приветствую вас на сайте е-ветерок.ру — я не буду грузить вас ненужной информацией о структуре солнечных элементов и полупроводников, о том что они состоят из выращенных кристаллов кремния, которые являются кварцевым песком, прочей химией и физикой. Об этом вы можете почитать здесь О солнечных панелях Давайте сразу перейдём к конечному продукту и его характерристикам.

Солнечная батарея представляет из себя «пирог», который спекается при высокой температуре.

  • 1. выкладывается рама из анодированного алюминия

  • 2. вначале ложится специальная антибликовая плёнка

  • 3. на неё ложится стекло (закалённое 4мм)

  • 4. на стекло выкладывается специальная прозрачная плёнка (EVA)

  • 5. сверху на плёнку укладываются предварительно распаянная цепочка из солнечных элементов

  • 6. далее укладывается второй слой плёнки EVA

  • 7. последний слой это непрозрачная белая плёнка
  • Этот пирог отправляют в печь, где всё это спекается — склеивается. Плёнка намертво расплавляется и прилипает к стеклу, элементы полностью герметизируются внутри, прикрываясь плотно к пленкам с обеих сторон.

  • 8. после спекания присоединяется распределительная коробка

  • 9. присоединяются провода
  • >

    Солнечная батарея состоит из солнечных элементов, это фотоэлектрические модули (ФЭМ), их можно назвать ячейками. Ячейки в солнечной батарее соединяются последовательно, чтобы увеличить напряжение батареи до требуемого, так-как напряжение одной ячейки составляет всего 0,6V. А для зарядки 12-ти вольтового аккумулятора требуется как минимум 14 вольт. Но напряжение солнечного элемента зависит от освещённости, и чтобы напряжение даже в пасмурную погоду было выше 14 вольт, количество ячеек в батарее обычно равно 36. Напряжение холостого хода при этом 21.6 вольта. Бывают батареи с с другим количеством ячеек, для систем на 24 вольта изготавливаются солнечные панели на 72 ячейки, а так-же на 60 ячеек.

    Один солнечный элемент выдаёт напряжение максимум 0,6 вольт, но достаточно большой ток. Например ячейка размером 156×156мм с эффективностью 17% даёт ток короткого замыкания порядка 9А. Максимальная мощность одного элемента будет при просадке напряжения до 0,47-0,50 вольт. Таким образом батарея состоящая из 36 элементов будет максимально эффективна при напряжении 17-18 вольт. При этом ток под нагрузкой будет составлять чуть более 8 Ампер, а мощность порядка 150 ватт.

    Но если мы используем простой PWM контроллер зарядки АКБ, то напряжение будет равно текущему напряжению аккумулятора. А если напряжение достигнет 14 вольт, то контроллер будет отключать солнечную батарею чтобы аккумулятор не перезарядился. Это я к тому что при заряде напряжение солнечной панели не 17-18 вольт, а 13-14 вольт, а это значит что батарея выдаёт не всю свою мощность, так-как ток она даёт всего 8А, отсюда 14*8=112 ватт. Таким образом 30% энергии просто теряется.

    Такую-же мощность (112 ватт) можно получить если бы в солнечной батарее было не 36 элементов, а 28 элементов. При солнце была-ба такая-же мощность что и с 36 элементов, да хоть с 72 элемента, так-как ток не может быть больше 8 ампер, а напряжение проседает до напряжения АКБ. Но тогда в пасмурную погоду не будет зарядки, так-как напряжение упадет и будет ниже напряжения АКБ. Только для стабильной зарядки ставят лишние 8 солнечных элементов в батареи. Чтобы снимать до 98% энергии с солнечной батареи ставят MPPT контроллеры, которые держат панель в точке максимальной мощности и получаемую энергию преобразуют снижая напряжение на выходе и повышая ток. Так на входе контроллера будет 18 вольт и 8А, а на выходе 14 вольт и 10 Ампер.

    Выпускают солнечные батареи и на 60 элементов, напряжение холостого хода которых 36 вольт, они предназначены для АКБ на 24 вольта, или если соединить две последовательно то для систем на 48 вольт. Такие батареи получаются дешевле, но в пасмурную погоду отдача панелей ниже чем у панелей состоящих их 72 элемента, и если совсем пасмурно то зарядки не будет. Но хочу отметить что в пасмурную погоду мощность солнечных батарей падает в 15-20 раз. И например если при солнце вы получали 100 ватт*ч энергии, то при затянутом облаками небе вы получите всего порядка 5 ватт. Я думаю нет особого смысла переплачивать на 30% больше за солнечные батареи чтобы в пасмурную погоду иметь такое небольшое преимущество. Хотя лучше всего чтобы снимать 98% энергии использовать MPPT контроллер.

    Многие спрашивают что лучше, монокристаллические батареи или поликристаллические?

    Монокристаллические панели немного дороже так-как в их производстве ячеек используется кремний высокой очистки, до 100%, и процесс образования кристаллов происходит при 1300°. КПД монокристаллических панелей немного выше, и кристаллы в ячейках направлены строго параллельно, и однородны. От этого максимальный КПД только при прямых солнечных лучах, а при свечении под углом КПД значительно падает.

    Поликристаллические ячейки производятся методом осаждения паров кремния при температуре 300°, и кристаллы усаживаются неравномерно, и направлены в разные стороны. Из-за этого ниже КПД, но они лучше работают при рассеянном свете, и высоких температурах.

    Но разница совсем незначительна, и зависит от качества самих ячеек, их светочувствительности и других факторов. В итоге разница не превышает 5%, и это заметно только в пасмурную погоду. Или при очень острых углах падения солнечных лучей.

    Как работает солнечная батарея и и её устройство

    Солнечные батареи стали популярным альтернативным источником электроэнергии. Преобразующие устройства позволяют заметно ее удешевить, обеспечивают бесперебойное снабжение ресурсом объектов, поэтому активно применяются в частных домовладениях, фермерских хозяйствах, коммерческих организациях и в промышленности.

    Мы рассматриваем уникальную разработку человечества, и, конечно, хотелось бы узнать историю. Началось все в далеком 1839 г. Тогда Александр Беккерель открыл возможность преобразования света солнца в электроэнергию. Ученый представил первый прототип современной солнечной батареи. К сожалению, ввиду несовершенства устройство отличалось низким КПД – 1%. Но труды над развитием и совершенствованием идеи продолжились.

    В 1873 г. ученый Чарльз Фриттс выявил чувствительность селена к свету. Через четыре года удалось отметить, что вещество под действием лучей солнца вырабатывает электрический ток. Еще через три года создали первый солнечный элемент. Для изготовления применили покрытый золотом селен. Производительность также составила 1%.

    Несмотря на малую производительность, Фриттс считал свою разработку эволюционной. Ученый настаивал на том, что энергию солнца целесообразно использовать как способ получения электричества. Фриттс предсказал, что со временем солнечные батареи заменят электростанции.

    В 1905 г. А. Эйнштейн объяснил суть фотоэффекта. После обоснованного разъяснения появились надежды на изготовление солнечных батарей с производительностью, значительно превышающей ранее представленные показатели. Но прогресс не оправдал ожиданий.

    Первый прорыв в разработках состоялся в 1954 г. Тогда Гордон Пирсон, Дэррил Чапин и Кэл Фуллер изготовили кремниевый солнечный элемент. Производительность составила 4%. Кремний оказался лучше селена по уровню продуктивности. После производительность изделия повысили до 15%. 

    Использовать солнечные батареи начали в сельских районах, где были проблемы с инженерными коммуникациями. Сегодня разработка получила масштабное распространение, успешно применяется в развитых странах мира с целью получения дешевой электроэнергии.

    Основные термины

    Чтобы разбираться в теме было проще, внимательно изучите используемые в данной области термины. Они помогут улучшить понимание материала, упростить выбор оборудования при планировании покупки. К основным терминам отнесем:

    • солнечная энергетика – направление альтернативной энергетики, базирующееся на применении лучей солнца для получения энергии;
    • солнечная батарея – главный элемент. Это конструкция из последовательно или параллельно соединенных модулей;
    • солнечные модули – фотоэлектрические элементы, объединенные в блок;
    • фотоэлемент – главный компонент, используемый для создания батарей. Он преобразует энергию фотонов в электрическую;
    • монтажная шина – плоский луженый проводник, изготовленный из меди, используемый для соединения фотоэлектрических элементов методом спаивания;
    • ПЭТ или полиэтилентерефталатная пленка. Используется для защиты тыльной стороны фотомодуля;
    • пикочасы – время, за которое модуль способен принять освещенность, равную 1000 Вт/м²;
    • монокристаллический кремний – кремний, производимый методом Чохральского, цилиндрические слитки;
    • поликристаллический кремний – кремний, производимый методом направленной кристаллизации, прямоугольные блоки;
    • инсоляция – освещенность поверхности. Измеряется в кВтч/м².

    Это основные термины, касающиеся рассматриваемых устройств. Частному потребителю пригодится половина наименований, ведь подбором и установкой батарей занимаются мастера, работающие в этой области.

    Устройство 

    Сама солнечная панель состоит из соединенных между собой фотоэлементов, бывает рамочной и безрамной. Рамы изготавливают из алюминия. В основе модулей, расположенных на металлической основе, лежит два вида кремния, отличающихся физическими свойствами. На этих пластинах располагаются металлические ребра жесткости, сверху – прозрачное стекло. По сути, устройство солнечной батареи не представляет собой слишком сложной для понимания темы.

    Одна панель не даст никакого результата без дополнительных комплектующих:

    • аккумулятор – накапливает преобразованную фотоэлементами энергию. АКБ необходима для обеспечения постоянного энергоснабжения объекта даже в пасмурную погоду и холодное время года;
    • контроллер заряда – распределяет потоки электрической энергии, поддерживает стабильное напряжение на выходе;
    • инвертор-преобразователь – преобразовывает постоянный ток, получаемый от установки, в переменный;
    • стабилизатор напряжения – поддерживает оптимальные показатели напряжения в системе.

    Чтобы солнечные панели работали стабильно и на максимуме возможностей, компоненты системы должны быть подобраны правильно, соответствовать характеристикам друг друга. Поэтому выбор и монтаж рекомендуется доверять лицам, имеющим в этой области немалый опыт.

    Виды кристаллов фотоэлементов

    Выше мы говорили о том, что кремний бывает монокристаллическим и поликристаллическим. Рассмотрим отличия внимательнее:

    • монокристаллические пластины. Отличаются высоким КПД – 20-22% и дороговизной, обусловленной сложностью производственного процесса. Кристаллы имеют форму квадратов со срезанными углами;
    • поликристаллические. Кристаллы имеют прямоугольную форму, получаются в результате постепенного охлаждения расплавленного кремния. Простое производство позволяет устанавливать на материал невысокую цену, но КПД 15%.

    Этот момент следует учитывать, планируя приобретение солнечной панели.

    Принцип работы

    Рассматривая принцип работы солнечной батареи, отметим, что в конструкции модулей предусмотрено два типа полупроводников:

    • n-слой – с лишними электронами;
    • p-слой – с недостаточным количеством электронов.

    При попадании лучей солнца на первый слой электроны покидают атомы и перемещаются во второй слой, где для них есть свободные места. Таким образом обеспечивается движение электронов по замкнутому кругу, сформированному фотоэлементами и аккумулятором. Пока идет этот процесс, АКБ набирает заряд.

    Виды солнечных батарей

    На первом месте по степени распространения и уровню популярности стоят кремниевые моно- и поликристаллические панели. Они характеризуются КПД в пределах 15-20%, доступны по цене, представлены на рынке в широком ассортименте. Если сравнить по эксплуатационным характеристикам, получим следующее:

    • монокристаллические: надежнее, работают стабильно, окупаются за 2 года. Более совершенны, но дороже поликристаллических;
    • поликристаллические: менее стабильны, проще в производстве, дешевле, окупаются за 3 года. 

    Вышеуказанные показатели КПД нельзя назвать пределом совершенства, поэтому разработчики продолжают трудиться над поиском и воплощением в реальность новых решений. Так у кремниевых батарей появился ряд конкурентов.

    Тонкопленочные панели представлены тремя видами неорганических пленочных солнечных элементов:

    • кремниевые пленки на базе аморфного кремния (a-Si). КПД – 10%. Светопоглощение хорошее, устройства функционируют на прием лучей даже в пасмурную погоду. Эластичны, долговечны; 
    • пленки из теллурида кадмия (CdTe). КПД 10-11%. Материал характеризуется хорошим светопоглощением. Есть информация о ядовитости вещества, но исследования показывают, что количество частиц, которое попадает в атмосферу, абсолютно безопасно для человека и окружающей среды; 
    • пленки селенида меди-индия-галлия (CuInGaSe2, или CIGS). Производительность – 12-13%. Индий применяют в производстве жидкокристаллических мониторов, поэтому и заменяют часто галлием.

    Полимерные солнечные батареи появились на рынке недавно, как альтернатива существующим вариантам. В качестве проводников производители используют полифенилен, фуллерены, фталоцианин меди. Пленка получается тонкой – 100 нм, КПД всего 5%. Но даже при таких показателях полимерные панели пользуются спросом, обладая рядом преимуществ:

    • доступная цена;
    • исключение выделения вредных веществ;
    • широкое распространение.

    Для небольших частных домовладений это вполне удобный вариант.

    Многослойные, многопереходные или тандемные модели: ячейки включают разные материалы, образующие несколько p-n переходов. Ценятся панели тем, что могут улавливать лучи разного спектра и длины волн. Для получения возможности преобразования всего солнечного спектра используют специальные призмы, разделяющие свет солнца. На рынке такие модели появились сравнительно недавно, до этого использовались исключительно в космосе. После поступления в свободную продажу объемы реализации приятно удивили. Но оправдали ли панели приобретение? Из заявленных показателей КПД для разных конструкций отличается:

    • с двухслойными ячейками – 42%;
    • с трехслойными – 49%;
    • с бесконечным количеством слоев – 68%.

    Эти показатели теоретические. Зная, как работает солнечная батарея в теории, исследователи на определенном этапе разочаровались. Практика показала, что средний КПД многопереходных панелей составляет 30%. Исследования проводились при несфокусированном свете солнца. Результат оказался слишком малым, что свидетельствовало о невозможности окупить дорогой производственный процесс. Тогда и начали применять концентраторы для фокусировки света в 500-1000 раз. Концентратор в виде линзы Френеля и параболического зеркала получает свет с площади в 1000 раз больше площади ячейки. КПД увеличивается до 40%.

    Самые крупные производители 

    Сегодня удается выделить ряд фирм, являющихся крупнейшими производителями и поставщиками солнечных батарей:

    • Suntech – китайская компания. Занимается производством солнечных панелей высокого класса качества. Работает с 2001 года. Имеет представительства во многих развитых странах мира. Организация ведет полный цикл производства, начиная с получения кремниевых кристаллов, заканчивая сборкой преобразовывающих конструкций. Производственные мощности находятся в Китае, Японии, Германии, США; 
    • Yingli – крупная китайская корпорация, занимающаяся производством фотомодулей. Работает с 1998 года. С 2003 выпускает панели мощностью до 2 МВт. В 2012 и 2013 компания стала лидером по объемам производства в своей области;
    • Trina Solar – входит в число лидеров по производству преобразовательных панелей. Главный офис и завод находятся в Китае. Работает компания с 1997 г. Выпускает продукцию, соответствующую национальным и международным стандартам. Кроме Китая заводы фирмы располагаются в Таиланде и Вьетнаме. В 2017 году руководство анонсировало строительство производственных мощностей в Индии, но позже приостановило реализацию проекта; 
    • First Solar – американская компания, основанная в 1990 году. Занимается производством панелей и обеспечением профильных заводов специальным оборудованием, предоставляет услуги по обслуживанию производственных мощностей, участвует в переработке исчерпавших ресурс модулей;
    • Sharp Solar – подразделение крупной японской корпорации, занимающееся производством панелей не первый год. Продукция отличается качеством, надежностью и продолжительным ресурсом, благодаря чему ценится потребителем.

    Это самые популярные производители солнечных батарей. Но полный список специализированных компаний на порядок шире. Это позволяет выбрать товар, идеально соответствующий персональным требованиям.

    Преимущества установки солнечных батарей

    В завершении рассмотрим главные преимущества батарей, чтобы оценить актуальность приобретения:

    • экономия на электроэнергии. Только за этот счет за срок эксплуатации панелей удается сэкономить в 10 раз больше стоимости самих установок;
    • возможность использования электроэнергии для отопления дома и подогрева горячей воды;
    • независимость от исправности местных инженерных систем.

    Выбор конструкций широкий, поэтому вы легко найдете вариант под собственные потребности и пожелания.

    Выводы

    Мы узнали, из чего состоят и как работают солнечные батареи, рассмотрели КПД разных вариантов конструкций и другие важные особенности. Также получили краткие сведения из истории, свидетельствующие о том, что работа над поиском альтернативных источников электрической энергии ведется не первое столетие, и солнце давно рассматривают как неисчерпаемый ресурс. 

    Информации получено достаточно, чтобы оценить оправданность установки таких конструкций, определить основные принципы выбора. Понять, каким производителям отдать предпочтение, тоже не составляет труда.

    Принцип работы солнечных батарей | SUNSAY Energy

    Солнце — это неисчерпаемый источник энергии, а солнечный свет — это поток элементарных частиц фотонов. Они преодолевают почти 150 000 000 километров от Солнца к поверхности Земли за 8,5 минут. Количества фотонов, которая достигает поверхности нашей планеты за один час достаточно, чтобы удовлетворить энергетическую потребность нашей планеты на несколько лет.

    Солнечная энергия и открытие явления фотоэффекта

    Еще 120 лет назад французский ученый Эдмонд Беккерель открыл фотоэлектрический эффект — это явление высвобождения электронов из вещества под действием лучей света. Он исследовал, что электрический ток возникает при попадании солнечного света на некоторые материалы. Благодаря открытию фотоэффекта, стало возможным преобразование солнечного излучения в электрическую энергию. Этот экологически чистый и безопасный метод получения электроэнергии становится все более актуальным по всему миру.

    Принцип работы солнечных батарей

    Солнечная батарея состоит из простых фотоэлементов — фотоэлектрических преобразователей, в которых энергия солнца превращается в электрическую. Большинство фотопреобразователей изготавливаются из кремния — полупроводника, который является вторым по распространенности элементом на Земле.

    Простейший солнечный элемент (фотопреобразователь) можно сравнить с сэндвичем. Это две пластины, присоединенные друг к другу. Одна пластина имеет избыток электронов — это отрицательно заряженный слой «n». Вторая пластина имеет свободные места для электронов, которые называются дырки — это положительно заряженный слой «p». Между положительно и отрицательно заряженными слоями есть зона, которая противодействует переходу избыточных электронов в слой, где их не хватает.

    Фотон света влетает в слои «n» и «p» и передает свою энергию электронам. Электроны поглощают энергию фотонов света, свободно преодолевают эту зону и переходят в слой «n», тогда как дырки — в слой «p». Электроны движутся только в одном направлении p-n перехода, вызывая образование постоянного тока. А инвертор, важная составляющая солнечных электростанций, превращает сгенерированный солнечными батареями постоянный ток в переменный. То есть такой, которым можно пользоваться.

    Интересно, что один фотопреобразователь генерирует только 0,5 Вт. Для большей мощности их нужно объединять в фотомодули, привычными словами это и есть солнечная батарея. Например, для того чтобы зарядить мобильный телефон, нужно двенадцать фотоэлементов, а для полноценного питания дома необходимо в разы больше.

    Преимущества солнечных батарей

    1. Солнечная энергия бесплатна и не может быть израсходована.

    Электроны — единственные подвижные части в фотоэлементах и ​​они всегда возвращаются туда, откуда появились. Поэтому солнечные батареи могут работать десятки лет.

    2. Необходимое количество электроэнергии в нужное время.

    Солнечные батареи обычно производят наибольшее количество электроэнергии в то время, когда спрос достигает пика. Например, в жаркое время, когда кондиционеры включены большую часть дня и потребляют много энергии, батареи тоже работают интенсивнее.

    3. А в случае, если дом или предприятие производит больше электроэнергии, чем потребляет, электроэнергии подается обратно в сеть.

    Погода и сезон не имеют значения.

    Солнечные батареи вырабатывают электроэнергию при любой погоде. Единственное время, когда производительность останавливается — ночь. Мы уже писали о том, в каких регионах Украины солнечные батареи будут наиболее продуктивными.

    В 2017 году Международное Энергетическое Агентство предоставило отчет о том, что солнечная энергия заняла первое место по скорости роста установления и развития среди других альтернативных видов энергии.

    Солнечные энерготехнологии постоянно совершенствуются, стоимость производства солнечных батарей становится дешевле ежегодно. Это значит, доступнее и привлекательнее среди других альтернативных источников энергии.

    Помните, что солнечные специалисты SUNSAY Energy всегда рады проконсультировать вас по любым вопросам солнечной энергетики.

     

    Солнечные батареи. / Альтернативная энергетика / it works!

    Мы часто пишем про различные виды альтернативной энергетики, в том числе про солнечную. Этой статьей начинается цикл статей про принципы работы различных устройств работающих на возобновляемой энергии. И первое что будет рассмотрено — солнечные батареи. Солнечная энергия в последнее время используется повсюду: в естественном освещении помещений, нагрева воды, сушки и иногда даже в приготовлении пищи. Однако самым важным использованием энергии солнца является, пожалуй, генерация электричества. И главный элемент такой генерации — солнечная батарея!

    Строение солнечных батарей

    Солнечная батарея состоит из фотоэлементов, соединенных последовательно и параллельно. Все фотоэлементы располагаются на каркасе из непроводящих материалов. Такая конфигурация позволяет собирать солнечные батареи требуемых характеристик (тока и напряжения). Кроме того, это позволяет заменять вышедшие из строя фотоэлементы простой заменой.

    Принцип работы

    Принцип работы фотоэлементов из которых состоит солнечная батарея основан на фотогальваническом эффекте. Этот эффект наблюдал еще Александр Эдмонд Беккерель в 1839 году. Впоследствии работы Эйнштейна в области фотоэффекта позволили описать явление количественно. Опыты Беккереля показали, что лучистую энергию солнца можно трансформировать в электричество с помощью специальных полупроводников, которые позже получили название фотоэлементы.

    Вообще такой способ получения электричества должен быть наиболее эффективным, потому что является одноступенчатым. По сравнению с другой технологией преобразования солнечной энергии через термодинамический переход (Лучи -> Нагревание воды -> Пар -> Вращение турбины -> Электричество), меньше энергии теряется на переходы.

    Строение фотоэлемента

    Фотоэлемент на основе полупроводников состоит из двух слоев с разной проводимостью. К слоям с разных сторон подпаиваются контакты, которые используются для подключения к внешней цепи. Роль катода играет слой с n-проводимостью (электронная проводимость), роль анода — p-слой (дырочная проводимость).

    Ток в n-слоя создается движение электронов, которые «выбиваются» при попадании на них света за счет фотоэффекта. Ток в p-слое создается «движением дырок». «Дырка» — атом, который потерял электрон, соответственно, перескакивание электронов с «дырки» на «дырку» создает «движение» дырок, хотя в пространстве сами «дырки» конечно не двигаются.

    На стыке слоев с n- и p-проводимостью создается p-n-переход. Получается своего рода диод, которые может создавать разность потенциалов за счет попадание лучей света.

    Физический механизм действия

    Когда лучи света попадают на n-слой, за счет фотоэффекта образуются свободные электроны. Кроме этого, они получают дополнительную энергию и способны «перепрыгнуть» через потенциальный барьер p-n-перехода. Концентрация электронов и дырок изменяется и образуется разность потенциалов. Если замкнуть внешнюю цепь через нее начнет течь ток.

    Разность потенциалов (а соответственно и ЭДС) которую может создавать фотоэлемент зависит от многих факторов: интенсивности солнечного излучения, площади фотоэлемента, КПД конструкции, температуры (при нагревании проводимость падает).

    Из чего делают фотоэлементы?

    Самый первый в мире фотоэлемент появился в 1883 году в лаборатории Чарьза Фриттса. Он был изготовлен из селена, покрытого золотом. Увы, но такой набор материалов показал невысокие результаты — около 1% КПД.

    Революция в использовании фотоэлементов произошла тогда, когда в недрах лаборатории компании «Bell Telephone» был создан первый элемент на кремнии. Компания нуждалась в источнике электроэнергии для телефонных станцией, и, можно сказать, была первой компанией, которая использовала альтернативный источник на солнечной энергии.

    Кремний до сих пор остается основных материалом для производства фотоэлементов. Вообще кремний (Silicium, Silicon) — второй по распространенности элемент на Земле, запасы его огромны. Однако в промышленном его использовании есть одна большая проблема — его очистка. Процесс этот очень трудоемкий и затратный, поэтому чистый кремний стоит дорого. Сейчас ведется поиск аналогов, которые бы не уступали кремнию по КПД. Перспективными считаются соединения меди, индия, селена, галлия и кадмия, а также органические фотоэлементы.

    Солнечные батареи (Сборки)

    Однако разность потенциалов, создаваемая одним фотоэлементов, мала для промышленного применения. Чтобы иметь возможность использовать солнечные элементы для электропитания устройств, их соединяют вместе. Тем самым получаются солнечные батарей (солнечные сборки, солнечные модули). Кроме того, фотоэлементы покрывают различными защитными слоями из стекла, пластмассы, различных пленок. Это делают для того, чтобы защитить хрупкий элемент.

    Основной рабочей характеристикой солнечной батареи является пиковая мощность, которую выражают в Ваттах (Вт, W). Эта характеристика показывает выходную мощность батареи в оптимальных условиях: солнечном излучении 1 кВт/м2, температуре окружающей среды 25 oC, солнечном спектре шириной 45o(АМ1,5). В обычных условиях достичь таких показателей удается крайне редко, освещенность ниже, а модуль нагревается выше (до 60-70 градусов).

    Соединяя фотоэлементы последовательно мы повышаем разность потенциалов, соединяя параллельно — ток. Таким образом комбинируя соединения можно добиться требуемых параметров по току и напряжению, а следовательно и по мощности. Кроме того, последовательно или параллельно можно соединять не только фотоэлементы в рамках одной солнечной батареи, но и солнечные батареи в целом.

    Солнечная Энергетическая Система — Как это работает?

    Излишне говорить, что Солнце — самый большой источник возобновляемой энергии для Земли. Дело в том, что хотя Земля получает только часть энергии, генерируемой Солнцем (то есть солнечной энергии), эта часть солнечной энергии также чрезвычайно велика. Земля получает солнечную энергию в виде света и тепла. Но в современном мире слова «мощность» и «энергия» больше склоняются к «электричеству». В этой статье объясняется, как электричество извлекается из солнечной энергии и как оно используется.

    Как работает солнечная энергия?

    Электроэнергия может быть получена из солнечной энергии с помощью фотоэлектрических или концентрированных систем солнечной энергии.

    Фотогальваника (PV)

    Фотогальваника напрямую преобразует солнечной энергии в электричество . Они работают по принципу фотоэлектрического эффекта. Когда некоторые материалы подвергаются воздействию света, они поглощают фотоны и выделяют свободные электроны. Это явление называется фотоэлектрическим эффектом. Фотоэлектрический эффект — это метод производства электричества постоянного тока, основанный на принципе фотоэлектрического эффекта.На основе принципа фотоэлектрического эффекта изготавливаются солнечные элементы или фотоэлектрические элементы. Они преобразуют солнечный свет в электричество постоянного тока. Но один фотоэлектрический элемент не производит достаточного количества электроэнергии. Поэтому несколько фотоэлектрических элементов установлены на опорной раме и электрически соединены друг с другом, образуя фотоэлектрический модуль или солнечную панель . Обычно доступные солнечные панели варьируются от нескольких сотен ватт (скажем, 100 ватт) до нескольких киловатт (слышали когда-нибудь о солнечной панели мощностью 5 кВт?).Они доступны в разных размерах и в разных ценовых диапазонах. Солнечные панели или модули предназначены для подачи электроэнергии при определенном напряжении (скажем, 12 В), но вырабатываемый ими ток напрямую зависит от падающего света. На данный момент ясно, что фотоэлектрические модули вырабатывают электричество постоянного тока. Но в большинстве случаев нам требуется питание переменного тока, и, следовательно, солнечная энергетическая система также состоит из инвертора.
    Фотоэлектрическая солнечная энергетическая установка

    В соответствии с требованиями к мощности несколько фотоэлектрических модулей электрически соединяются вместе, чтобы сформировать фотоэлектрическую матрицу и достичь большей мощности.Существуют разные типы фотоэлектрических систем в зависимости от их реализации.

    • Фотоэлектрические системы прямого действия: Эти системы питают нагрузку только тогда, когда светит солнце. Нет накопления генерируемой энергии и, следовательно, отсутствуют батареи. Инвертор может использоваться или не использоваться в зависимости от типа нагрузки.
    • Автономные системы: Этот тип системы обычно используется в местах, где питание от сети недоступно или ненадежно. Внесетевые солнечные энергосистемы не подключены ни к какой электросети.Он состоит из солнечных панелей, аккумуляторных батарей и инверторных схем.
    • Системы, подключенные к сети: Эти солнечные энергетические системы связаны с сетями, так что избыточная требуемая мощность может быть получена из сети. Они могут питаться или не питаться батареями.

    Концентрированная солнечная энергия

    Как следует из названия, в этом типе солнечной энергетической системы солнечные лучи концентрируются (фокусируются) на небольшой площади путем размещения зеркал или линз на большой площади. Из-за этого в фокусируемой области выделяется огромное количество тепла.Это тепло можно использовать для нагрева рабочей жидкости, которая может дополнительно приводить в действие паровую турбину. Существуют различные типы технологий, основанные на концентрированной солнечной энергии для производства электроэнергии. Некоторые из них — параболический желоб, тарелка Стирлинга, солнечная энергетическая башня и т. Д. На следующей схеме показано, как работает солнечная энергетическая башня.

    Как работают солнечные батареи? | Фотоэлектрические элементы

    Проще говоря, солнечная панель работает, позволяя фотонам или частицам света выбивать электроны из атомов, создавая поток электричества.Солнечные панели на самом деле состоят из множества небольших блоков, называемых фотоэлектрическими элементами. (Фотоэлектрические элементы просто означают, что они преобразуют солнечный свет в электричество.) Многие элементы, соединенные вместе, составляют солнечную панель.

    Каждый фотоэлектрический элемент представляет собой сэндвич, состоящий из двух пластин полупроводящего материала, обычно кремния — того же материала, что и в микроэлектронике.

    Для работы фотоэлектрическим элементам необходимо создать электрическое поле. Подобно магнитному полю, которое возникает из-за противоположных полюсов, электрическое поле возникает, когда противоположные заряды разделены.Чтобы получить это поле, производители «смешивают» кремний с другими материалами, придавая каждому кусочку сэндвича положительный или отрицательный электрический заряд.

    В частности, они вводят фосфор в верхний слой кремния, который добавляет к этому слою дополнительные электроны с отрицательным зарядом. Между тем нижний слой получает дозу бора, что приводит к уменьшению количества электронов или положительному заряду. Все это складывается в электрическое поле на стыке между слоями кремния. Затем, когда фотон солнечного света выбивает электрон, электрическое поле выталкивает этот электрон из кремниевого перехода.

    Пара других компонентов ячейки превращает эти электроны в полезную энергию. Металлические проводящие пластины по бокам ячейки собирают электроны и переносят их на провода. В этот момент электроны могут течь, как любой другой источник электричества.

    Недавно исследователи создали ультратонкие гибкие солнечные элементы толщиной всего 1,3 микрона — примерно 1/100 ширины человеческого волоса — и в 20 раз легче листа офисной бумаги. На самом деле, элементы настолько легкие, что могут находиться на вершине мыльного пузыря, и при этом они производят энергию с такой же эффективностью, как и солнечные элементы на основе стекла, сообщили ученые в исследовании, опубликованном в 2016 году в журнале Organic Electronics.Такие более легкие и гибкие солнечные элементы могут быть интегрированы в архитектуру, аэрокосмические технологии или даже в носимую электронику.

    Существуют и другие типы технологий солнечной энергии, в том числе солнечная тепловая и концентрированная солнечная энергия (CSP), которые работают иначе, чем фотоэлектрические солнечные панели, но все они используют энергию солнечного света для производства электроэнергии или нагрева воды или воздуха .

    Примечание редактора : эта статья была первоначально опубликована 7 декабря.16 декабря 2013 г., и 6 декабря 2017 г. он был обновлен, чтобы включить последние достижения в области солнечных технологий.

    Оригинальная статья о Live Science.

    Как работают солнечные панели? Объяснение науки о Солнце.

    Все мы знаем, что солнечные фотоэлектрические (PV) панели преобразуют солнечный свет в полезное электричество, но мало кто знает настоящую науку, лежащую в основе этого процесса. На этой неделе в блоге мы поговорим о мельчайших подробностях науки о солнечной энергии. Это может показаться сложным, но все сводится к фотоэлектрическому эффекту; способность материи испускать электроны, когда купается в свете.

    Прежде чем мы перейдем к молекулярному уровню, давайте рассмотрим общий процесс производства электроэнергии:

    Основные этапы производства и передачи солнечной энергии

    1. Солнечный свет попадает на солнечные панели и создает электрическое поле.
    2. Произведенное электричество течет к краю панели и попадает в проводящий провод.
    3. Токопроводящий провод подводит электричество к инвертору, где оно преобразуется из электричества постоянного тока в переменный ток, который используется для питания зданий.
    4. Другой провод передает электроэнергию переменного тока от инвертора к электрической панели на участке (также называемой коробкой выключателя), которая распределяет электричество по всему зданию по мере необходимости.
    5. Любая электроэнергия, которая не требуется при генерации, проходит через счетчик в коммунальную электросеть. Поскольку электричество проходит через счетчик, он заставляет счетчик работать в обратном направлении, кредитуя вашу собственность за избыточную выработку.

    Теперь, когда у нас есть базовое представление о генерации и потоке солнечной электроэнергии, давайте глубже погрузимся в науку, лежащую в основе солнечных фотоэлектрических панелей.

    Наука о солнечных фотоэлементах

    Солнечные фотоэлектрические панели состоят из множества небольших фотоэлектрических элементов — это означает, что они могут преобразовывать солнечный свет в электричество. Эти элементы сделаны из полупроводниковых материалов, чаще всего из кремния, материала, который может проводить электричество, сохраняя при этом электрический дисбаланс, необходимый для создания электрического поля.

    Когда солнечный свет попадает на полупроводник в фотоэлементе (шаг 1 в нашем высокоуровневом обзоре), энергия света в форме фотонов поглощается, выбивая ряд электронов, которые затем свободно дрейфуют в элементе.Солнечный элемент специально разработан с положительно и отрицательно заряженными полупроводниками, зажатыми вместе, чтобы создать электрическое поле (см. Изображение слева для визуализации). Это электрическое поле заставляет дрейфующие электроны течь в определенном направлении — к проводящим металлическим пластинам, выстилающим ячейку. Этот поток известен как энергетический ток, и сила тока определяет, сколько электроэнергии может произвести каждая ячейка. Как только незакрепленные электроны попадают в металлические пластины, ток направляется в провода, позволяя электронам течь, как в любом другом источнике генерации электричества (шаг 2 в нашем процессе).

    Поскольку солнечная панель генерирует электрический ток, энергия течет по проводам к инвертору (см. Шаг 3 выше). В то время как солнечные панели вырабатывают электричество постоянного тока (DC), большинству потребителей электроэнергии требуется электричество переменного тока (AC) для питания своих зданий. Функция инвертора состоит в том, чтобы переключать электричество с постоянного тока на переменный, делая его доступным для повседневного использования.

    После того, как электричество преобразуется в пригодное для использования состояние (мощность переменного тока), оно отправляется от инвертора на электрическую панель (также называемую блоком выключателя) [шаг 4] и распределяется по всему зданию по мере необходимости.Электричество теперь доступно для питания фонарей, приборов и других электрических устройств с помощью солнечной энергии.

    Любая электроэнергия, которая не потребляется через блок выключателя, направляется в коммунальную сеть через счетчик коммунальных услуг (наш последний шаг, как описано выше). Счетчик коммунальных услуг измеряет поток электроэнергии из сети в вашу собственность и наоборот. Когда ваша солнечная энергетическая система производит больше электроэнергии, чем вы используете на месте, этот счетчик фактически работает в обратном направлении, и вам засчитывают избыточную электроэнергию, произведенную в процессе чистого измерения.Когда вы используете больше электроэнергии, чем вырабатывает ваша солнечная батарея, вы получаете дополнительную электроэнергию из сети через этот счетчик, заставляя ее работать нормально. Если вы полностью не отключились от сети через решение для хранения, вам нужно будет вытащить часть энергии из сети, особенно ночью, когда ваша солнечная батарея не производит. Однако большая часть этой сетевой энергии будет компенсирована избыточной солнечной энергией, которую вы производите в течение дня и в периоды меньшего использования.

    Несмотря на то, что солнечная энергия в деталях носит в высшей степени научный характер, не требуется ученого, чтобы рассказать о преимуществах, которые солнечная установка может принести бизнесу или владельцу недвижимости.Опытный разработчик солнечной энергии расскажет вам об этих преимуществах и поможет понять, подходит ли солнечное решение для вашего бизнеса.

    Solar Integration: Solar Energy and Storage Basics

    Иногда два лучше, чем один. Один из таких случаев — сочетание солнечной энергии и технологий хранения. Причина: солнечная энергия не всегда производится в то время, когда она больше всего необходима. Пиковое энергопотребление часто бывает летом после обеда и вечером, когда выработка солнечной энергии падает.В это время могут быть самые высокие температуры, и люди, которые работают в дневное время, возвращаются домой и начинают использовать электричество для охлаждения своих домов, готовки и работы с бытовой техникой.

    Накопитель помогает солнечной энергии вносить свой вклад в электроснабжение, даже когда солнце не светит. Это также может помочь сгладить различия в том, как солнечная энергия течет в сети. Эти изменения объясняются изменениями количества солнечного света, попадающего на фотоэлектрические (PV) панели или концентрирующие солнечно-тепловые системы (CSP).На производство солнечной энергии могут влиять сезон, время суток, облака, пыль, дымка или препятствия, такие как тени, дождь, снег и грязь. Иногда накопитель энергии совмещен или размещен рядом с солнечной энергетической системой, а иногда система накопления стоит отдельно, но в любой конфигурации она может помочь более эффективно интегрировать солнечную энергию в энергетический ландшафт.

    Что такое накопление энергии?

    «Хранение» относится к технологиям, которые могут улавливать электричество, хранить его как другую форму энергии (химическую, термическую, механическую), а затем высвобождать для использования, когда это необходимо.Литий-ионные батареи — одна из таких технологий. Хотя использование накопителя энергии никогда не бывает эффективным на 100% — некоторая энергия всегда теряется при преобразовании энергии и ее извлечении — накопление позволяет гибко использовать энергию в разное время по сравнению с тем, когда она была произведена. Таким образом, хранение может повысить эффективность и отказоустойчивость системы, а также улучшить качество электроэнергии за счет согласования спроса и предложения.

    Хранилища различаются как по энергоемкости, которая представляет собой общее количество энергии, которое может быть сохранено (обычно в киловатт-часах или мегаватт-часах), так и по мощности, которая представляет собой количество энергии, которое может быть высвобождено при данном время (обычно в киловаттах или мегаваттах).Для решения различных задач можно использовать накопители разной энергии и мощности. Кратковременное хранение, которое длится всего несколько минут, обеспечит бесперебойную работу солнечной электростанции во время колебаний мощности из-за проходящих облаков, в то время как более долгосрочное хранение может помочь обеспечить поставку в течение нескольких дней или недель, когда производство солнечной энергии низкое или во время крупного погодного явления. , Например.

    Преимущества объединения накопителей и солнечных батарей

    1. Балансировка электрических нагрузок — Без накопителей электричество должно генерироваться и потребляться одновременно, что может означать, что сетевые операторы отключают часть генерации или «сокращают» ее, чтобы избежать проблемы избыточной генерации и надежности сети.И наоборот, могут быть и другие времена, после захода солнца или в пасмурные дни, когда солнечное производство мало, но спрос на электроэнергию велик. Введите хранилище, которое можно заполнить или зарядить, когда выработка высокая, а потребление энергии низкое, а затем разгрузить, когда нагрузка или спрос высоки. Когда часть электроэнергии, произведенной солнцем, помещается в хранилище, это электричество можно использовать всякий раз, когда в нем нуждаются операторы сети, в том числе после захода солнца. Таким образом, хранение действует как страховой полис от солнечного света.
    2. «Укрепление» солнечной генерации — Кратковременное хранение может гарантировать, что быстрые изменения в генерации не сильно повлияют на производительность солнечной электростанции. Например, небольшую батарею можно использовать для преодоления кратковременного сбоя генерации из-за проходящего облака, помогая сети поддерживать «устойчивое» электроснабжение, которое является надежным и постоянным.
    3. Обеспечение отказоустойчивости — Солнечная энергия и система хранения могут обеспечить резервное питание во время сбоя в электроснабжении. Они могут поддерживать критически важные объекты в рабочем состоянии, чтобы обеспечить непрерывное предоставление основных услуг, таких как связь.Солнечные батареи и накопители также могут использоваться для микросетей и небольших приложений, таких как мобильные или портативные блоки питания.

    Типы накопителей энергии

    Наиболее распространенным типом накопителей энергии в энергосистеме является гидроэнергетика с гидроаккумулятором. Но технологии хранения, которые чаще всего сочетаются с солнечными электростанциями, представляют собой электрохимические аккумуляторы (батареи) с фотоэлектрическими установками и тепловые аккумуляторы (жидкости) с установками CSP. Другие типы накопителей, такие как накопители сжатого воздуха и маховики, могут иметь другие характеристики, такие как очень быстрая разрядка или очень большая емкость, что делает их привлекательными для операторов сетей.Подробнее о других типах хранилищ читайте ниже.

    Гидроэнергетика с гидроаккумулятором

    Гидроэнергетика с гидроаккумулятором — это технология накопления энергии на основе воды. Электрическая энергия используется для перекачки воды в водохранилище, когда потребность в энергии низкая. Позже вода может стекать вниз по склону и вращать турбину для выработки электроэнергии, когда потребность в ней высока. Насосная гидроаккумулирующая система — это хорошо испытанная и отработанная технология хранения, которая используется в Соединенных Штатах с 1929 года.Однако для этого требуются подходящие ландшафты и водохранилища, которые могут быть естественными или искусственными в результате строительства плотин, требующих длительных разрешений регулирующих органов, длительных сроков реализации и большого начального капитала. За исключением энергетического арбитража, стоимость услуг гидроаккумуляторов для интеграции переменных возобновляемых источников энергии не полностью реализована, что может привести к длительному периоду окупаемости. Это некоторые из причин, по которым в последнее время не строились гидроаккумуляторы, хотя интерес очевиден из запросов в Федеральную комиссию по регулированию энергетики о предварительных разрешениях и лицензиях.

    Электрохимический накопитель

    Многие из нас знакомы с электрохимическими батареями, такими как батареи ноутбуков и мобильных телефонов. Когда электричество подается в батарею, она вызывает химическую реакцию, и энергия накапливается. Когда батарея разряжается, эта химическая реакция меняется на противоположную, что создает напряжение между двумя электрическими контактами, заставляя ток течь из батареи. Наиболее распространенный химический состав аккумуляторных элементов — литий-ионный, но другие распространенные варианты включают свинцово-кислотные, натриевые и никелевые батареи.

    Накопитель тепловой энергии

    Накопитель тепловой энергии — это семейство технологий, в которых для аккумулирования тепла используется жидкость, такая как вода или расплавленная соль, или другой материал. Этот теплоаккумулирующий материал затем хранится в изолированном резервуаре до тех пор, пока не потребуется энергия. Энергию можно использовать непосредственно для отопления и охлаждения или для выработки электроэнергии. В системах хранения тепловой энергии, предназначенных для выработки электроэнергии, тепло используется для кипячения воды. Образующийся пар приводит в движение турбину и вырабатывает электроэнергию с использованием того же оборудования, которое используется на обычных электростанциях.Накопление тепловой энергии полезно в установках CSP, которые фокусируют солнечный свет на приемник для нагрева рабочей жидкости. Сверхкритический диоксид углерода исследуется как рабочая жидкость, которая может использовать преимущества более высоких температур и уменьшить размер генерирующих установок.

    Хранение маховика

    Маховик — это тяжелое колесо, прикрепленное к вращающемуся валу. Затрачивая энергию, колесо может вращаться быстрее. Эту энергию можно извлечь, подключив колесо к электрическому генератору, который использует электромагнетизм, чтобы замедлить колесо и произвести электричество.Хотя маховики могут быстро обеспечить мощность, они не могут накапливать много энергии.

    Хранение сжатого воздуха

    Системы хранения сжатого воздуха состоят из больших резервуаров, таких как резервуары, или естественных образований, таких как пещеры. Компрессорная система перекачивает сосуды, наполненные сжатым воздухом. Затем воздух можно выпустить и использовать для привода турбины, производящей электричество. Существующие системы аккумулирования энергии сжатым воздухом часто используют высвобождаемый воздух как часть энергетического цикла природного газа для производства электроэнергии.

    Солнечное топливо

    Солнечная энергия может использоваться для создания нового топлива, которое можно сжигать (сжигать) или использовать для получения энергии, эффективно сохраняя солнечную энергию в химических связях. Среди возможных видов топлива, которые исследуют исследователи, — водород, полученный путем отделения его от кислорода в воде, и метан, полученный путем объединения водорода и углекислого газа. Метан — основной компонент природного газа, который обычно используется для производства электроэнергии или отопления домов.

    Виртуальное хранилище

    Энергию можно также накапливать, изменив способ использования уже имеющихся у нас устройств.Например, обогревая или охлаждая здание перед ожидаемым пиком спроса на электроэнергию, здание может «накапливать» эту тепловую энергию, так что ему не нужно будет потреблять электроэнергию позже в течение дня. Само здание действует как термос, храня прохладный или теплый воздух. Аналогичный процесс можно применить к водонагревателям, чтобы распределить потребность в течение дня.

    В конечном счете, бытовые и коммерческие потребители солнечной энергии, а также коммунальные предприятия и крупные операторы солнечной энергии могут получить выгоду от систем «солнечная энергия плюс накопление».По мере продолжения исследований и снижения затрат на солнечную энергию и накопители, решения для солнечных батарей и накопителей станут более доступными для всех американцев.

    Дополнительная информация

    Узнайте больше о программе интеграции систем солнечного офиса.

    Узнайте о грандиозной задаче Министерства энергетики США по хранению энергии.

    Подпишитесь на нашу рассылку, чтобы быть в курсе последних новостей.

    Home »Солнечные информационные ресурсы» Основы системной интеграции

    Принцип работы солнечной панели — ваше электрическое руководство

    Привет, друзья, в этой статье я собираюсь обсудить принцип работы солнечной панели и надеюсь, что вам понравятся мои усилия.

    В солнечной фотоэлектрической системе солнечная энергия напрямую преобразуется в электрическую. Это делает систему намного более удобной и компактной по сравнению с тепловыми методами преобразования солнечной энергии.

    Технология солнечных батарей — это самая быстрорастущая технология производства электроэнергии в мире. Это связано с тем, что становятся доступными солнечные элементы с эффективностью преобразования более 40%.


    Фотоэлектрический элемент также называется солнечным элементом.Это полупроводниковое устройство, преобразующее солнечный свет в постоянный ток с помощью фотоэлектрического эффекта. Практически все солнечные элементы представляют собой фотодиоды из полупроводникового материала, например кремния. Солнечный элемент работает в три этапа:

    • Фотоны солнечного света попадают в солнечный элемент и поглощаются полупроводниковым материалом.
    • Отрицательно заряженные электроны отрываются от своих атомов и начинают течь в том же направлении, создавая электрический ток.
    • Обычный кремниевый солнечный элемент может производить до 0.5 В и ток до 6 А. Таким образом, его максимальная мощность составляет 3 Вт.

    Поскольку мощность одного солнечного элемента очень мала, большое количество солнечных элементов соединены между собой, образуя солнечный модуль, комбинация солнечных модулей называется панелью, а комбинация панелей называется солнечной батареей. Это делается для получения требуемой выходной мощности от фотоэлектрической системы.

    Когда солнечные элементы соединены последовательно, их напряжение увеличивается на столько же, сколько и количество элементов, соединенных последовательно.Но ток остается прежним.

    При параллельном соединении ячеек напряжение остается постоянным, как и у одной ячейки, но ток увеличивается. Ячейки, модули или панели можно подключать параллельно, только если их напряжения одинаковы. Основные компоненты солнечной фотоэлектрической системы:

    Блокирующие диоды


    Массивы SPV подключены к батарее. В солнечные часы панели вырабатывают электричество, которое заряжает аккумулятор. Но когда нет солнечного света или ночью, течение будет пытаться течь в обратном направлении i.е. от батареи к массивам. Это может повредить массивы. Поэтому, чтобы избежать этого обратного тока, используются блокирующие диоды.

    Регулятор напряжения


    Выходное напряжение фотоэлектрических панелей зависит от интенсивности солнечного света. Это приведет к колебаниям тока нагрузки. Стабилизаторы напряжения будут следить за тем, чтобы колебания напряжения оставались в установленных пределах.

    Инвертор


    Поскольку мощность, вырабатываемая фотоэлектрической антенной, является постоянным током, для преобразования ее в переменный ток используется инвертор, чтобы мы могли легко ее использовать.Инверторный блок с различными защитными устройствами обеспечивает безопасность системы и выполняет автоматическое переключение нагрузки и доступных источников питания.

    Аккумуляторы


    Они используются для хранения солнечной энергии. Они являются наиболее важными компонентами солнечной фотоэлектрической системы. Успех солнечной фотоэлектрической системы во многом зависит от аккумуляторной системы хранения.

    Контроллеры батарей


    Это устройства, обеспечивающие правильную зарядку аккумуляторов.Они контролируют зарядный ток и защищают аккумулятор от перезарядки. Это осуществляется путем постоянного контроля тока, напряжения и температуры аккумулятора.

    Типы солнечных фотоэлектрических систем


    По способу использования может быть две конфигурации:

    • Автономная система
    • Система, подключенная к сети

    Автономная система


    В этой системе питание подается на нагрузку без использования какой-либо общей сети или подключения к какой-либо другой системе и работает автономно и независимо.Он используется для резервного питания, когда подключение к сети очень дорого. Его можно использовать для питания нагрузок постоянного тока, а также нагрузок переменного тока с помощью инвертора.

    Существуют разные типы автономных систем. Но чаще всего используется гибридная автономная система .

    В гибридной автономной системе, помимо фотоэлектрических панелей, используются один или несколько источников. Источники, такие как генераторы, топливные элементы, сеть переменного тока и т. Д., Могут использоваться вместе с фотоэлектрическими батареями. Таким образом уменьшается зависимость от какого-либо одного источника.Это также снижает емкость аккумулятора и размер фотоэлектрических массивов.

    Система, подключенная к сети


    В этой системе мощность, генерируемая фотоэлектрической батареей, передается в сеть или на нагрузки переменного тока напрямую. Когда выработка электроэнергии превышает потребности нагрузок, она подается в коммерческую сеть. Таким образом, система становится частью большой сети. В этой системе, когда мощность, производимая фотоэлектрической антенной, превышает требования к локальной нагрузке, она подается в сеть. Счетчик энергии используется для контроля поставляемой энергии.

    Спасибо, что прочитали о принципе работы солнечной панели .

    Электростанции | Все сообщения

    © https://yourelectricalguide.com/ Принцип работы солнечной панели.

    Что такое солнечная энергия и как работают солнечные панели?

    Перейти к разделу «Как работают солнечные панели»

    Что такое солнечная энергия?

    Проще говоря, солнечная энергия — это самый распространенный источник энергии на Земле. Около 173 000 тераватт солнечной энергии поражает Землю в любой момент времени, что более чем в 10 000 раз превышает общие потребности мира в энергии.

    Улавливая солнечную энергию и превращая ее в электричество для вашего дома или бизнеса, солнечная энергия является ключевым решением в борьбе с текущим климатическим кризисом и сокращении нашей зависимости от ископаемого топлива.

    Как работает солнечная энергия?

    Наше солнце — это естественный ядерный реактор. Он испускает крошечные пакеты энергии, называемые фотонами, которые преодолевают расстояние в 93 миллиона миль от Солнца до Земли примерно за 8,5 минут. Каждый час на нашу планету воздействует достаточно фотонов, чтобы произвести достаточно солнечной энергии, чтобы теоретически удовлетворить глобальные потребности в энергии в течение всего года.

    В настоящее время фотоэлектрическая энергия составляет лишь пять десятых одного процента энергии, потребляемой в Соединенных Штатах. Но солнечные технологии улучшаются, и стоимость перехода на солнечную энергию быстро падает, поэтому наша способность использовать изобилие солнечной энергии растет.

    В 2017 году Международное энергетическое агентство показало, что солнечная энергия стала самым быстрорастущим источником энергии в мире — это первый раз, когда рост солнечной энергии превысил рост всех других видов топлива.С тех пор солнечная энергия продолжает расти и бить рекорды по всему миру.

    Как погода влияет на солнечную энергию?

    Погодные условия могут влиять на количество электроэнергии, производимой солнечной системой, но не совсем так, как вы думаете.

    Идеальные условия для производства солнечной энергии включают, конечно же, ясный солнечный день. Но, как и большая часть электроники, солнечные батареи более эффективны в холодную погоду, чем в теплую погоду. Это позволяет панели производить больше электроэнергии за то же время.При повышении температуры панель вырабатывает меньше напряжения и вырабатывает меньше электроэнергии.

    Но даже несмотря на то, что солнечные батареи более эффективны в холодную погоду, они не обязательно производят больше электроэнергии зимой, чем летом. Более солнечная погода часто бывает в более теплые летние месяцы. В дополнение к меньшему количеству облаков солнце обычно не светит большую часть дня. Таким образом, даже если ваши панели могут быть менее эффективными в теплую погоду, они все равно, вероятно, будут производить больше электроэнергии летом, чем зимой.

    Получают ли одни государства больше солнечной энергии, чем другие?

    Очевидно, что в одних штатах солнца больше, чем в других. Итак, реальный вопрос: если погода может повлиять на производство солнечной энергии, являются ли одни государства лучшими кандидатами на использование солнечной энергии, чем другие? Короткий ответ — да, но не обязательно из-за погоды.

    Возьмем, к примеру, облака. Любой, кто получил солнечные ожоги в пасмурный день, знает, что солнечное излучение проникает сквозь облака. По той же причине солнечные панели все еще могут производить электричество в пасмурные дни.Но в зависимости от облачности и качества солнечных панелей эффективность производства электроэнергии солнечными панелями обычно падает с 10 до 25 или более процентов по сравнению с солнечным днем.

    Другими словами, солнечная энергия может работать в обычно облачных и холодных местах. Нью-Йорк, Сан-Франциско, Милуоки, Бостон, Сиэтл — во всех этих городах ненастная погода, от дождя и тумана до метели, но это также города, где люди получают огромную экономию за счет использования солнечной энергии.

    Независимо от того, где вы живете, солнечная энергия может быть отличным вложением средств и отличным способом помочь в борьбе с изменением климата. Сколько вы сэкономите — и как быстро вы увидите окупаемость своих инвестиций в конкретном штате — зависит от многих факторов, таких как стоимость электроэнергии, доступные солнечные льготы, чистые измерения и качество ваших солнечных панелей.

    Как работают солнечные панели?

    Когда фотоны попадают в солнечный элемент, они выбивают электроны из их атомов.Если проводники присоединены к положительной и отрицательной сторонам ячейки, она образует электрическую цепь. Когда электроны проходят через такую ​​цепь, они вырабатывают электричество. Несколько ячеек составляют солнечную панель, а несколько панелей (модулей) могут быть соединены вместе, чтобы сформировать солнечную батарею. Чем больше панелей вы можете развернуть, тем больше энергии вы можете ожидать.

    Из чего сделаны солнечные панели?

    Фотоэлектрические (PV) солнечные панели состоят из множества солнечных элементов. Солнечные элементы сделаны из кремния, как и полупроводники.Они состоят из положительного и отрицательного слоев, которые вместе создают электрическое поле, как в батарее.

    Как солнечные панели вырабатывают электричество?

    фотоэлектрических панелей солнечных батарей вырабатывают электричество постоянного тока (DC). При использовании электричества постоянного тока электроны движутся по цепи в одном направлении. В этом примере показана батарея, питающая лампочку. Электроны движутся с отрицательной стороны батареи через лампу и возвращаются к положительной стороне батареи.

    При использовании электричества переменного тока (переменного тока) электроны толкаются и притягиваются, периодически меняя направление, подобно цилиндру двигателя автомобиля. Генераторы создают электричество переменного тока, когда катушка проволоки вращается рядом с магнитом. Многие различные источники энергии могут «повернуть ручку» этого генератора, например, газ или дизельное топливо, гидроэлектроэнергия, атомная энергия, уголь, ветер или солнце.

    Электроэнергия переменного тока

    была выбрана для электросети США, в первую очередь потому, что ее дешевле передавать на большие расстояния.Однако солнечные панели создают электричество постоянного тока. Как получить электроэнергию постоянного тока в сеть переменного тока? Используем инвертор.

    Для чего нужен солнечный инвертор?

    Солнечный инвертор принимает электричество постоянного тока от солнечной батареи и использует его для создания электричества переменного тока. Инверторы подобны мозгу системы. Наряду с преобразованием постоянного тока в переменный, они также обеспечивают защиту от замыканий на землю и статистику системы, включая напряжение и ток в цепях переменного и постоянного тока, выработку энергии и отслеживание точки максимальной мощности.

    Центральные инверторы доминируют в солнечной промышленности с самого начала. Внедрение микроинверторов — один из самых больших технологических сдвигов в фотоэлектрической индустрии. Микроинверторы оптимизируются для каждой отдельной солнечной панели, а не для всей солнечной системы, как это делают центральные инверторы.

    Это позволяет каждой солнечной панели работать с максимальным потенциалом. Когда используется центральный инвертор, проблема с одной солнечной панелью (возможно, она находится в тени или испачкалась) может снизить производительность всей солнечной батареи.Микроинверторы, такие как те, что используются в домашней солнечной системе SunPower Equinox, делают это несложным. Если одна солнечная панель неисправна, остальная часть солнечной батареи по-прежнему работает эффективно.

    Как работает система солнечных батарей?

    Вот пример того, как работает домашняя солнечная энергетическая установка. Сначала солнечный свет попадает на солнечную батарею на крыше. Панели преобразуют энергию в постоянный ток, который течет к инвертору. Инвертор преобразует электричество из постоянного тока в переменный, который затем можно использовать для питания вашего дома.Это красиво, просто и чисто, и со временем становится все более эффективным и доступным.

    Однако что произойдет, если вы не дома, чтобы использовать электроэнергию, которую ваши солнечные батареи вырабатывают каждый солнечный день? А что происходит ночью, когда ваша солнечная система не вырабатывает электроэнергию в реальном времени? Не волнуйтесь, вы все равно можете получить выгоду от системы, называемой «нетто-счетчик».

    Типичная фотоэлектрическая система, подключенная к сети, в часы пик в дневное время часто производит больше энергии, чем нужно одному потребителю, так что избыточная энергия возвращается в сеть для использования в другом месте.Заказчик, имеющий право на чистое измерение, может получать кредиты за произведенную избыточную энергию и может использовать эти кредиты для получения электроэнергии из сети ночью или в пасмурные дни. Счетчик нетто регистрирует отправленную энергию по сравнению с энергией, полученной из сети. Прочтите нашу статью о чистых счетчиках и о том, как это работает.

    Добавление накопителей в солнечную систему еще больше усиливает эти преимущества. С помощью системы хранения солнечной энергии клиенты могут хранить свою собственную энергию на месте, что еще больше снижает их зависимость от электросети и сохраняет способность обеспечивать электроэнергией свой дом в случае отключения электроэнергии.Если система хранения включает программный мониторинг, это программное обеспечение контролирует производство солнечной энергии, использование энергии в домашних условиях и тарифы на коммунальные услуги, чтобы определить, какой источник энергии использовать в течение дня — максимизируя использование солнечной энергии, предоставляя заказчику возможность снизить пиковую плату и возможность сохранять электроэнергию для последующего использования во время отключения электроэнергии.

    Если вы хотите узнать, сколько может сэкономить ваш дом или бизнес, назначьте время, чтобы мы разработали индивидуальный дизайн и расценки на потенциальную экономию.

    Похожие сообщения

    Основы солнечных фотоэлектрических элементов

    | Министерство энергетики

    Кремний

    Кремний, безусловно, является наиболее распространенным полупроводниковым материалом, используемым в солнечных элементах, составляя примерно 95% модулей, продаваемых сегодня. Это также второй по распространенности материал на Земле (после кислорода) и наиболее распространенный полупроводник, используемый в компьютерных микросхемах. Кристаллические кремниевые ячейки состоят из атомов кремния, соединенных друг с другом, чтобы сформировать кристаллическую решетку.Эта решетка обеспечивает организованную структуру, которая делает преобразование света в электричество более эффективным.

    Солнечные элементы, изготовленные из кремния, в настоящее время обеспечивают сочетание высокой эффективности, низкой стоимости и длительного срока службы. Ожидается, что модули прослужат 25 или более лет, и по истечении этого срока все еще будут вырабатывать более 80% своей первоначальной мощности.

    Тонкопленочная фотогальваника

    Тонкопленочный солнечный элемент изготавливается путем нанесения одного или нескольких тонких слоев фотоэлектрического материала на поддерживающий материал, такой как стекло, пластик или металл.Сегодня на рынке представлены два основных типа тонкопленочных фотоэлектрических полупроводников: теллурид кадмия (CdTe) и диселенид меди, индия, галлия (CIGS). Оба материала можно наносить непосредственно на переднюю или заднюю поверхность модуля.

    CdTe является вторым по распространенности фотоэлектрическим материалом после кремния, и элементы CdTe могут быть изготовлены с использованием недорогих производственных процессов. Хотя это делает их рентабельной альтернативой, их эффективность по-прежнему не так высока, как у кремния. Ячейки CIGS обладают оптимальными свойствами для фотоэлектрического материала и высокой эффективностью в лаборатории, но сложность, связанная с объединением четырех элементов, делает переход от лаборатории к производству более сложным.И CdTe, и CIGS требуют большей защиты, чем кремний, чтобы обеспечить длительную работу на открытом воздухе.

    Перовскитовые фотоэлектрические элементы

    Перовскитные солнечные элементы представляют собой тип тонкопленочных элементов, названных в честь их характерной кристаллической структуры. Ячейки из перовскита состоят из слоев материалов, которые напечатаны, покрыты или нанесены вакуумным осаждением на нижележащий опорный слой, известный как подложка. Как правило, их легко собрать, и они могут достигать эффективности, аналогичной эффективности кристаллического кремния.В лаборатории эффективность перовскитных фотоэлементов повышается быстрее, чем у любого другого фотоэлектрического материала, с 3% в 2009 году до более 25% в 2020 году. Чтобы быть коммерчески жизнеспособными, перовскитные фотоэлементы должны стать достаточно стабильными, чтобы выдержать 20 лет работы на открытом воздухе, поэтому исследователи работают над тем, чтобы сделать их более долговечными и разрабатывают крупномасштабные и недорогие технологии производства.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *