Сопротивление формула параллельное соединение: Как найти параллельное сопротивление формула

Содержание

Как найти параллельное сопротивление формула

Из закона Ома и первого и второго правил Кирхгофа следует:

При параллельном соединении величина обратная полному сопротивлению, равна сумме величин, обратных сопротивлений ветвей.

При параллельном соединении полное сопротивление цепи меньше самого малого из сопротивлений ветвей.

Поскольку 1/R = G, т.е. проводимость, то
при параллельном соединении электрические проводимости отдельных ветвей складываются

Параллельное соединение двух сопротивлений

При параллельном соединении двух сопротивлений формула (1) упрощается

Параллельное соединение двух сопротивлений

При параллельном соединении двух сопротивлений формула (1) упрощается

Сопротивление проводников. Параллельное и последовательное соединение проводников.

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношениюнапряжения на концах проводника к силе тока, протекающего по нему [1] . Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

U — разность электрических потенциалов (напряжение) на концах проводника;

I — сила тока, протекающего между концами проводника под действием разности потенциалов.

При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

Последовательное соединение проводников

По закону Ома, напряжения U1 и U2 на проводниках равны

Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:

где R – электрическое сопротивление всей цепи. Отсюда следует:

При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.

Этот результат справедлив для любого числа последовательно соединенных проводников.

При параллельном соединении (рис. 1.9.2) напряжения U1 и U2 на обоих проводниках одинаковы:

Сумма токов I1 + I2, протекающих по обоим проводникам, равна току в неразветвленной цепи:

Этот результат следует из того, что в точках разветвления токов (узлы A и B) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δt подтекает заряд IΔt, а утекает от узла за то же время заряд I1Δt + I2Δt. Следовательно,I = I1 + I2.

Параллельное соединение проводников

Записывая на основании закона Ома

где R – электрическое сопротивление всей цепи, получим

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Этот результат справедлив для любого числа параллельно включенных проводников.

Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.

Расчет сопротивления сложной цепи. Сопротивления всех проводников указаны вомах (Ом)

Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.

Пример электрической цепи, которая не сводится к комбинации последовательно и параллельно соединенных проводников

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Параллельное соединение резисторов — расчет

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:


Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

Таким образом, протекающий общий ток в цепи можно определить как:

Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:

Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА

Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА

Таким образом, общий ток будет равен:

I = 0,545 мА + 0,255 мА = 0,8 мА

Это также можно проверить, используя закон Ома:

I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)

где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)

И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

Параллельная схема: характеристики, преимущества и недостатки

Параллельное соединение проводников

Параллельным соединением проводников называется такое соединение, когда начала всех проводников соединены в одну точку, а концы проводников – в другую точку (рисунок 4). Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.

Рисунок 4. Схема параллельного соединения проводников

Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, уходящих от этой точки:

I = I1 + I2 + I3.

Если токи, приходящие к точке разветвления, считать положительными, а уходящие – отрицательными, то для точки разветвления можно написать:

то есть алгебраическая сумма токов для любой узловой точки цепи всегда равна нулю. Это соотношение, связывающее токи в любой точке разветвления цепи, называется первым законом Кирхгофа. Определение первого закона Кирхгофа может звучать и в другой формулировке, а именно: сумма токов втекающих в узел электрической цепи равна сумме токов вытекающих из этого узла.

Видео 2. Первый закон Кирхгофа

Обычно при расчете электрических цепей направление токов в ветвях, присоединенных к какой либо точке разветвления, неизвестны. Поэтому для возможности самой записи уравнения первого закона Кирхгофа нужно перед началом расчета цепи произвольно выбрать так называемые положительные направления токов во всех ее ветвях и обозначить их стрелками на схеме.

Пользуясь законом Ома, можно вывести формулу для подсчета общего сопротивления при параллельном соединении потребителей.

Общий ток, приходящий к точке А, равен:

Токи в каждой из ветвей имеют значения:

По формуле первого закона Кирхгофа

I = I1 + I2 + I3

или

Вынося U в правой части равенства за скобки, получим:

Сокращая обе части равенства на U, получим формулу подсчета общей проводимости:

или

g = g1 + g2 + g3.

Таким образом, при параллельном соединении увеличивается не сопротивление, а проводимость.

Пример 3. Определить общее сопротивление трех параллельно включенных сопротивлений, если r1 = 2 Ом, r2 = 3 Ом, r3 = 4 Ом.

откуда

Пример 4. Пять сопротивлений 20, 30 ,15, 40 и 60 Ом включены параллельно в сеть. Определить общее сопротивление:

откуда

Следует заметить, что при подсчете общего сопротивления разветвления оно получается всегда меньше, чем самое меньшее сопротивление, входящее в разветвление.

Если сопротивления, включенные параллельно, равны между собой, то общее сопротивление r цепи равно сопротивлению одной ветви r1, деленному на число ветвей n:

Пример 5. Определить общее сопротивление четырех параллельно включенных сопротивлений по 20 Ом каждое:

Для проверки попробуем найти сопротивление разветвления по формуле:

откуда

Как видим, ответ получается тот же.

Пример 6. Пусть требуется определить токи в каждой ветви при параллельном их соединении, изображенном на рисунке 5, а.

Рисунок 5. К примеру 6

Найдем общее сопротивление цепи:

откуда

Теперь все разветвления мы можем изобразить упрощенно как одно сопротивление (рисунок 5, б).

Падение напряжения на участке между точками А и Б будет:

U = I × r = 22 × 1,09 = 24 В.

Возвращаясь снова к рисунку 5, а видим, что все три сопротивления окажутся под напряжением 24 В, так как они включены между точками А и Б.

Рассматривая первую ветвь разветвления с сопротивлением r1, мы видим, что напряжение на этом участке 24 В, сопротивление участка 2 Ом. По закону Ома для участка цепи ток на этом участке будет:

Ток второй ветви

Ток третьей ветви

Проверим по первому закону Кирхгофа

I = I1 + I2 + I3 = 12 + 6 + 4 = 22 А.

Следовательно, задача решена верно.

Обратим внимание на то, как распределяются токи в ветвях нашего параллельного соединения. Первая ветвь: r1 = 2 Ом, I1 = 12 А

Вторая ветвь: r2 = 4 Ом, I2 = 6 А. Третья ветвь: r3 = 6 Ом, I3 = 4 А

Первая ветвь: r1 = 2 Ом, I1 = 12 А. Вторая ветвь: r2 = 4 Ом, I2 = 6 А. Третья ветвь: r3 = 6 Ом, I3 = 4 А.

Как видим, сопротивление первой ветви в два раза меньше сопротивление второй ветви, а ток первой ветви в два раза больше тока второй ветви. Сопротивление третьей ветви в три раза больше сопротивления первой ветви, а ток третьей ветви в три раза меньше тока первой ветви. Отсюда можно сделать вывод, что токи в ветвях при параллельном соединении распределяются обратно пропорционально сопротивлениям этих ветвей. Таким образом, по ветви с большим сопротивлением потечет ток меньший, чем по ветви с малым сопротивлением.

Для двух параллельных ветвей можно также, конечно, пользоваться данной выше формулой.

Однако общее сопротивление проводника при параллельном соединении в этом случае легче подсчитать по формуле:

или окончательно:

Последовательное соединение ламп накаливания.

Последовательное соединение ламп накаливания в домашнем быту используется редко. В свое время я подключал две лампы последовательно у себя в подъезде, но это был единичный случай.

Тут ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.Но повторюсь – это редкий случай.

Посмотрите на рисунок ниже. Здесь изображены две схемы последовательного соединения ламп накаливания. В верхней части рисунка показана принципиальная схема, а в нижней части – монтажная. Причем для лучшего восприятия, монтажная схема показана с реальным изображением ламп и двужильного провода.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

На следующем рисунке показаны три лампы соединенные последовательно.

На этой схеме напряжение на каждой лампе составит около 73 Вольт, так как будет делиться уже между тремя лампами.

Так же примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

P.S. Так как напряжение в сети не постоянно, то расчет лучше производить исходя из 245 – 250 Вольт.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на базар, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, как Вы уже догадались, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Первый закон Кирхгофа

Как я уже упоминал, законы Кирхгофа вместе с законом Ома являются основными при анализе и расчётах электрических цепей. Закон Ома был подробно рассмотрен в двух предыдущих статьях, теперь настала очередь для законов Кирхгофа. Их всего два, первый описывает соотношения токов в электрических цепях, а второй – соотношение ЭДС и напряжениями в контуре. Начнём с первого.

Первый закон Кирхгофа гласит, что алгебраическая сумма токов в узле равна нулю. Описывается это следующим выражением

где ∑ — обозначает алгебраическую сумму.

Слово «алгебраическая» означает, что токи необходимо брать с учётом знака, то есть направления втекания. Таким образом, всем токам, которые втекают в узел, присваивается положительный знак, а которые вытекают из узла – соответственно отрицательный. Рисунок ниже иллюстрирует первый закон Кирхгофа

На рисунке изображен узел, в который со стороны сопротивления R1 втекает ток, а со стороны сопротивлений R2, R3, R4 соответственно вытекает ток, тогда уравнение токов для данного участка цепи будет иметь вид

Первый закон Кирхгофа применяется не только к узлам, но и к любому контуру или части электрической цепи. Например, когда я говорил о параллельном соединении приемников энергии, где сумма токов через R1, R2 и R3 равна втекающему току I.

Примеры использования

  • Батареи гальванических элементов или аккумуляторов, в которых отдельные химические источники тока соединены последовательно (для увеличения напряжения) или параллельно (для увеличения тока).
  • Регулировка мощности электрического устройства, состоящего из нескольких одинаковых потребителей электроэнергии, путём их переключения с параллельного на последовательное соединение. Таким способом регулируется мощность конфорки электрической плиты, состоящей из нескольких спиралей; мощность (скорость движения) электровоза, имеющего несколько тяговых двигателей.
  • Делитель напряжения
  • Балласт
  • Шунт

Какой способ лучше?

Метод «шлейфов» не слишком удобен только тем, что любой потребитель по цепи зависит от предыдущего. Например, если произойдёт обрыв провода на второй розетке, то третья и четвёртая также останутся без напряжения. Но при этом нельзя не выделить экономию проводника при начальном монтаже электропроводки.

Рисунок 3: Комбинированное соединение розеток

К тому же, «шлейфом» очень удобно проводить линии, когда необходимо минимизировать количество штроб в стенах. А делают это при монтаже проводки по полу или потолку, в специальной гофрированной трубе. Тогда остаётся провести только основные штробы к розеткам и между ними.

Вывод: прокладка электропроводки «шлейфом» удобна и экономична, не занимает много времени в процессе монтажа, имеет длительный эксплуатационный срок и совсем незначительные недостатки, которые можно оставить без внимания.

Последовательное соединение ламп накаливания.

Последовательное соединение ламп накаливания в домашнем быту используется редко. В свое время я подключал две лампы последовательно у себя в подъезде, но это был единичный случай.

Тут ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.Но повторюсь – это редкий случай.

Посмотрите на рисунок ниже. Здесь изображены две схемы последовательного соединения ламп накаливания. В верхней части рисунка показана принципиальная схема, а в нижней части – монтажная. Причем для лучшего восприятия, монтажная схема показана с реальным изображением ламп и двужильного провода.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

На следующем рисунке показаны три лампы соединенные последовательно.

На этой схеме напряжение на каждой лампе составит около 73 Вольт, так как будет делиться уже между тремя лампами.

Так же примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

P.S. Так как напряжение в сети не постоянно, то расчет лучше производить исходя из 245 – 250 Вольт.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на базар, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, как Вы уже догадались, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Как выглядит формула Георга Ома

Примером такого типа подключения резисторов может быть соединение цепи потребителей электроэнергии в многоквартирном доме. Так, светодиоды, отопительный радиатор, микроволновка и другие приборы установлены в цепи параллельно.

Вольтметр, который подключают в цепь, будет показывать напряжение на всех резисторах. Тогда оно везде будет равным и формулу можно записать как:

U1 = U2 = U.

Схема параллельного соединения

Когда образуются ветви при подключении, то часть общего напряжения проходит через первый резистор, а часть — через второй и так далее. Поэтому при таком виде соединения резисторов Fтока в неразветвлённой точке будет равняться суммарной Fтока в отдельных резисторах и записывается как:

I = I1 + I2.

Расчет силы тока при помощи закона Ома записывается как:

I = U/R;

I1 = U1/R1;

I2 = U2/R2.

Из формулы следует:

U/R = U1/R1 + U2/R2;

U = U1 = U2;

1/R = 1/R1 + 1/R2.

Дословно правило звучит так: число, обратное общему сопротивлению при параллельном подключении, будет суммарно равно числу обратного сопротивления.

Зависимость сопротивления

Значение электропроводимости зависит от нескольких факторов, которые необходимо учитывать при расчетах, изготовлении элементов резистивной нагрузки (резисторов), ремонте и проектировании устройств. К этим факторам необходимо отнести следующие:

  1. Температура окружающей среды и материала.
  2. Электрические величины.
  3. Геометрические свойства вещества.
  4. Тип материала, из которого изготовлен проводник (полупроводник).

Электрические величины

Зависимость величины электропроводимости от параметров электричества определяется законом Ома. Существует две формулировки: одна — для участка, а другая — для полной цепи. В первом случае соотношение определяются, исходя из значений силы тока (I) и напряжения (U) простой формулой: I = U / R. Из соотношения видна прямо пропорциональная зависимость тока от величины напряжения, а также обратно пропорциональная от сопротивления. Можно выразить R: R = U / I.

Для расчета электропроводимости всего участка следует воспользоваться соотношением между ЭДС (e), силой тока (i), а также внутренним сопротивлением источника питания (Rвн): i = e / (R+Rвн). В этом случае величина R вычисляется по формуле: R = (e / i) — Rвн. Однако при выполнении расчетов необходимо учитывать также геометрические параметры и тип проводника, поскольку они могут существенно повлиять на вычисления.

Тип и геометрические параметры

Свойство вещества к проводимости электричества определяется структурой кристаллической решетки, а также количеством свободных носителей. Исходя из этого, тип вещества является ключевым фактором, который определяет величину электропроводимости. В науке коэффициент, определяющий тип вещества, обозначается литерой «р» и называется удельным сопротивлением. Его значение для различных материалов (при температуре +20 градусов по Цельсию) можно найти в специальных таблицах.

Иногда для удобства расчетов используется обратная величина, которая называется удельной проводимостью (σ). Она связана с удельным сопротивлением следующим соотношением: p = 1 / σ. Площадь поперечного сечения (S) влияет на электрическое сопротивление. С физической точки зрения, зависимость можно понять следующим образом: при малом сечении происходят более частые взаимодействия частиц электрического тока с узлами кристаллической решетки. Поперечное сечение можно вычислить по специальному алгоритму:

  1. Измерение геометрических параметров проводника (диаметр или длину сторон) при помощи штангенциркуля.
  2. Визуально определить форму материала.
  3. Вычислить площадь поперечного сечения по формуле, найденной в справочнике или интернете.

В случае когда проводник имеет сложную структуру, необходимо вычислить величину S одного элемента, а затем умножить результат на количество элементов, входящих в его состав. Например, если провод является многожильным, то следует вычислить S для одной жилы. После этого нужно умножить, полученную величину S, на количество жил. Зависимость R от вышеперечисленных величин можно записать в виде соотношения: R = p * L / S. Литера «L» является длиной проводника. Однако для получения точных расчетов необходимо учитывать температурные показатели внешней среды и проводника.

Температурные показатели

Существует доказательство зависимости удельного сопротивления материала от температуры, основанное на физическом эксперименте. Для проведения опыта нужно собрать электрическую цепь, состоящую из следующих элементов: источника питания, нихромовой спирали, соединительных проводов амперметра и вольтметра. Приборы нужны для измерения значений силы тока и напряжения соответственно. При протекании электричества происходит нагревание нихромовой пружины. По мере ее нагревания, показания амперметра уменьшаются. При этом происходит существенное падение напряжения на участке цепи, о котором свидетельствуют показания вольтметра.

В радиотехнике уменьшение величины напряжение называется просадкой или падением. Формула зависимости р от температуры имеет следующий вид: p = p0 * . Значение p0 — удельное сопротивление материала, взятого из таблицы, а литера «t» — температура проводника.

Температурный коэффициент «а» принимает следующие значения: для металлов — a>0, а для электролитических растворов — a<0. Для получения формулы, определяющей все зависимости, необходимо подставить все соотношения в общую формулу зависимости R от типа материала, температуры, длины и сечения: R = p0 * * L / S. Формулы используются только для расчетов и изготовления резисторов. Для быстрого измерения величины сопротивления применяется омметр.

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример  №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

Последовательное соединение источников питания

Теперь давайте представим вот такую ситуацию. Что будет, если в нашей обрезанной водобашне полной воды добавим еще одну такую же сверху полную воды? Схематически это будет выглядеть примерно вот так:

Как вы думаете, уменьшится давление на землю, или увеличится? Понятное дело, что увеличится! Да еще и ровно в два раза! Почему так произошло? Уровень воды стал выше, следовательно, давление на дно увеличилось.

Если “минус” одной батарейки соединить с “плюсом” другой батарейки, то их общее напряжение суммируется.

Полностью заряженная батарейка будет выглядеть как башня, полностью залитая водой с учетом того, что работает насос автоматической подачи воды. По аналогии, насос – это ЭДС.

Наполовину разряженная батарейка будет уже выглядеть примерно вот так:

Можно сказать, насос уже не справляется.

Батарейка посаженная в “ноль” будет выглядеть вот так:

Насос автоматической подачи воды сломался.

Естественно, что если вы соедините полностью заряженную и наполовину дохлую батарейку последовательно, то их общее напряжение будет выглядеть примерно вот так:

Давайте все это продемонстрируем на практике. Итак, у нас есть 2 литий-ионных аккумулятора. Я их пометил цифрами 1 и 2. С плюса каждого аккумулятора я вывел красный провод, а с минуса – черный.

Давайте замеряем напряжение аккумулятора под №1 с помощью мультиметра. Как это сделать, я еще писал в статье Как измерить ток и напряжение мультиметром.

На первом аккумуляторе у нас напряжение 3,66 Вольт. Это типичное значение литий-ионного аккумулятора.

Таким же способом замеряем напряжение на аккумуляторе №2

О, как совпало). Те же самые 3,66 Вольт.

Для того, чтобы соединить последовательно эти аккумуляторы, нам надо сделать что-то подобное:

Также как и в башнях, нам надо соединить основание одной башни с верхушкой другой башни. В источниках питания, типа аккумуляторов или батареек, нам надо соединить минус одной батарейки с плюсом другой. Так мы и сделаем. Соединяем плюс одной батарейки с минусом другой и получаем… сумму напряжений каждой батарейки! Как вы помните, на первой батарейке у нас было напряжение 3,66 В, на второй тоже 3,66 В. 3,66+3,6=7,32 В.

Мультиметр показывает 7,33 В. 0,01В спишем на погрешность измерений.

Это свойство прокатывает не только с двумя аккумуляторами, но также с их бесконечным множеством. Думаю, не стоит говорить, что если выставить в ряд штук 100 таких аккумуляторов, соединить последовательно и коснуться крайних полюсов голыми руками, то все это может завершиться даже летальным исходом.

Оцените статью:

Сопротивление соединений

В этой теме мы уже изучили много закономерностей: в § 9-в мы выяснили, как распределяются силы токов при последовательном и параллельном соединении проводников. В § 9-г мы узнали как рапределяются напряжения в этих же соединениях. Опираясь на эти знания, а также на закон Ома для участка цепи (см. § 9-д), выведем формулы для расчёта сопротивлений соединений проводников.

Последовательное соединение проводников|
|
Параллельное соединение проводников
Так как
U = U1 + U2|I = I1 + I2
и по закону Ома
U = I · R|I = U / R
то получим:
I · R = I1 · R1 + I2 · R2|U / R = U1 / R1 + U2 / R1
Учитывая, что
I = I1 = I2|U = U1 = U2
заменяя, получим:
I · R  =  I · R1 + I · R2|U / R = U / R1 + U / R2
Сократим общий множитель:
1 · R  =  1 · R1 + 1 · R1|1 / R  =  1 / R1 + 1 / R2
Обобщая, получим:
и
  1/Rоб = 1/R1 + 1/R2 + …
Общее сопротивление последовательного соединения проводников равно сумме сопротивлений его отдельных участков.|
|
|
|
|
Величина, обратная общему сопротивлению параллельного соединения проводников, равна сумме величин, обратных сопротивлениям его участков.

 

Рассмотрим формулу в левой рамке: общее сопротивление складывается (суммируется) из отдельных сопротивлений. Поскольку сумма всегда больше любого из слагаемых, при последовательном соединении проводников общее сопротивление соединения всегда больше сопротивления любого его участка. Например, соединение составлено из резисторов с сопротивлениями 4 Ом и 5 Ом, тогда общее сопротивление будет равно 9 Ом (общее сопротивление больше большего).

Перейдём к формуле в правой рамке: при параллельном соединении проводников общее сопротивление соединения всегда меньше сопротивления любого его участка. Проверим это на примере с теми же сопротивлениями: 4 Ом и 5 Ом. Сделав вычисления по формуле, мы найдём, что общее сопротивление этих же двух резисторов, соединённых параллельно, ≈ 2,2 Ом (общее сопротивление меньше меньшего).

Продолжим изучать физические закономерности математическими методами. Теперь выведем две дополнительные формулы, описывающие общее сопротивление одинаковых проводников.

Вообразим, к примеру, что пять одинаковых резисторов соединены последовательно. Тогда их общее сопротивление будет таково:

Rоб  =  R + R + R + R + R  =  5·R .

Обобщая это на случай n проводников, получим, что их общее сопротивление увеличивается в n раз.

Вообразим теперь, что те же пять одинаковых резисторов соединены параллельно. Тогда их общее сопротивление вычислится так:

1 / Rоб  =  1/R + 1/R + 1/R + 1/R + 1/R  =  5/R .

Обобщая это на случай n проводников, получим, что их общее сопротивление уменьшается в n раз.

Примечание. При выводе последней формулы мы воспользовались правилом из алгебры: если две величины равны друг другу, то и величины, обратные им, также равны.

Параллельное соединение сопротивлений в электрической цепи. Параллельное соединение конденсаторов и катушек.

Определение параллельного соединения

Параллельное соединение электрических элементов (проводников, сопротивлений, емкостей, индуктивностей) — это такое соединение, при котором подключенные элементы цепи имеют два общих узла подключения.

Другое определение: сопротивления подключены параллельно, если они подключены одно и той же паре узлов. 

Графическое обозначение схемы параллельного соеднинения

На приведенном рисунке показана схема параллельное подключения сопротивлений R1, R2, R3, R4. Из схемы видно, что все эти четыре сопротивления имеют две общие точки (узла подключения). 

  

В электротехнике принято, но не строго требуется, рисовать провода горизонтально и вертикально. Поэтому эту же схему можно изобразить, как на рисунке ниже. Это тоже параллельное соединение тех же самых сопротивлений.

 

Формула для расчета параллельного соединения сопротивлений

При параллельном соединении обратная величина от эквивалентного сопротивления равна сумме обратных величин всех параллельно подключенных сопротивлений. Эквивалентная проводимость равна сумме всех параллельно подключенных проводимостей электрической схемы.

 

Для приведенной выше схемы эквивалентное сопротивление можно рассчитать по формуле:

В частном случае при подключении параллельно двух сопротивлений:

Эквивалентное сопротивление цепи определяется по формуле:

 

 В случае подключения «n» одинаковых сопротивлений, эквивалентное сопротивление можно рассчитать по частной формуле:

 

Формулы для частного рассчета вытекают из основной формулы. 

Формула для расчета параллельного соединения емкостей (конденсаторов)

При параллельном подключении емкостей (конденсаторов) эквивалентная емкость равна сумме параллельно подключенных емкостей:

 

Формула для расчета параллельного соединения индуктивностей

При параллельном подключении индуктивностей, эквивалентная индуктивность рассчитывается так же, как и эквивалентное сопротивление при параллельном соединении: 

 

Необходимо обратить внимание, что в формуле не учтены взаимные индуктивности.

Пример свертывания параллельного сопротивления  

Для участка электрической цепи необходимо найти параллельное соединение сопротивлений выполнить их преобразование до одного.

 

Из схемы видно, что параллельно подключены только R2 и R4. R3 не параллельно, т.к. одним концом оно подключено к источнику ЭДС E1. R1 — одним концом подключено к R5, а не к узлу. R5 — одним концом подключено к R1, а не к узлу. Можно так же говорить, что последовательное соединение сопротивлений R1 и R5 подключено параллельно с R2 и R4.

Рассчитать эквивалентное сопротивлений R14 можно по формуле для двух сопротивлений.

Ток при параллельном соединении

При параллельном соединении сопротивлений ток через каждое сопротивление в общем случае разный. Величина тока обратно пропорциональна величине сопротивления.

Напряжение при параллельном соединении 

При параллельном соединении разность потенциалов между узлами, объединяющими элементы цепи, одинакова для всех элементов.

Применение параллельного соединения

1. В промышленности изготавливаются сопротивления определенных величин. Иногда необходимо получить значение сопротивления вне данных рядов. Для этого можно подключить несколько сопротивлений параллельно. Эквивалентное сопротивление всегда будет меньше самого большого номинала сопротивления.

2. Делитель токов.

формула расчета общего сопротивления. Примеры параллельного соединения проводников

Резистор — это элемент электрической схемы, который обладает сопротивлением электрическому току. Классифицируют два типа резисторов: постоянные и переменные (подстроечные). При моделировании той или иной электрической схемы, а также при ремонте электронных изделий, возникает необходимость использовать резистор определенного номинала. Хотя и существует множество различных номиналов постоянных резисторов, в данный момент под рукой может не оказаться требуемого, либо резистора с таким номиналом не существует. Чтобы выйти из такой ситуации, можно использовать как последовательное так и параллельное соединение резисторов. О том, как правильно произвести расчет и подбор различных номиналов сопротивлений, будет рассказано в этой статье.

Последовательное соединение резисторов — это самая элементарная схема сборки радиодеталей, оно применяется для увеличения общего сопротивления цепи. При последовательном соединении, сопротивление используемых резисторов просто складывается, а вот при параллельном соединении необходимо производить расчет по нижеописанным формулам. Параллельное соединение необходимо для снижения результирующего сопротивления, а также для увеличения мощности, несколько параллельно подключенных резисторов имеют большую мощность, чем у одного.

На фотографии можно увидеть параллельное подключение резисторов.

Ниже представлена принципиальная схема параллельного соединения резисторов.

Общее номинальное сопротивление необходимо рассчитывать по следующей схеме:

R(общ)=1/(1/R1+1/R2+1/R3+1/R n).

R1, R2, R3 и Rn — параллельно подключенные резисторы.

Когда параллельное соединение резисторов состоит всего из двух элементов, в таком случае общее номинальное сопротивление можно высчитать по следующей формуле:

R(общ)=R1*R2/R1+R2.

R(общ) — общее сопротивление;

R1, R2 — параллельно подключенные резисторы.

В радиотехнике существует следующее правило: если параллельное подключение резисторов состоит из элементов одного номинала, то результирующее сопротивление можно высчитать, разделив номинал резистора на количество соединенных резисторов:

R(общ) — общее сопротивление;

R — номинал параллельно подключенного резистора;

N — количество соединенных элементов.

Важно учитывать, что при параллельном соединении результирующее сопротивление всегда будет ниже, чем сопротивление самого малого по номиналу резистора.

Приведем практический пример: возьмем три резистора, со следующими значениями номинального сопротивления: 100 Ом, 150 Ом и 30 Ом. Проведем расчет общего сопротивления, по первой формуле:

R(общ)=1/(1/100+1/150+1/30)=1/(0,01+0,007+0,03)=1/0,047=21,28Ом.

После расчета формулы мы видим, что параллельное соединение резисторов, состоящее из трех элементов, с наименьшим номиналом 30 Ом, в результате дает общее сопротивление в электрической цепи 21,28 Ом, что ниже наименьшего номинального сопротивления в цепи почти на 30 процентов.

Параллельное соединение резисторов чаще всего используют в тех случаях, когда необходимо получить сопротивление с большей мощностью. В таком случае необходимо взять резисторы одинаковой мощности и с одинаковым сопротивлением. Результирующая мощность в таком случае рассчитывается путем умножения мощности одного элемента сопротивления на общее количество параллельно подключенных резисторов в цепи.

Например: пять резисторов с номиналом в 100 Ом и с мощностью 1 Вт в каждом, подключенные параллельно, имеют общее сопротивление 20 Ом и мощность 5 Вт.

При последовательном подключении тех же резисторов (мощность так же складывается), получим результирующую мощность 5 Вт, общее сопротивление составит 500 Ом.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.


Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.


Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт

. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А ), а сопротивление каждого из них равно 50 Ом , тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт . В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт .

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте .

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

На практике нередко встречается задача нахождения сопротивления проводников и резисторов при различных способах соединения. В статье рассмотрено, как рассчитывается сопротивление при параллельном соединении проводников и некоторые другие технические вопросы.

Сопротивление проводника

Все проводники имеют свойство препятствовать течению электрического тока, его принято называть электрическим сопротивлением R, оно измеряется в омах. Это основное свойство проводниковых материалов.

Для ведения электротехнических расчётов применяется удельное сопротивление — ρ Ом·м/мм 2 . Все металлы — хорошие проводники, наибольшее применение получили медь и алюминий, гораздо реже применяется железо. Лучший проводник — серебро, оно применяется в электротехнической и электронной промышленности. Широко распространены сплавы с высоким

При расчёте сопротивления используется известная из школьного курса физики формула:

R = ρ · l/S, S — площадь сечения; l — длина.

Если взять два проводника, то их сопротивление при параллельном соединении станет меньше из-за увеличения общего сечения.

и нагрев проводника

Для практических расчётов режимов работы проводников применяется понятие плотности тока — δ А/мм 2 , она вычисляется по формуле:

δ = I/S, I — ток, S — сечение.

Ток, проходя по проводнику, нагревает его. Чем больше δ, тем сильнее нагревается проводник. Для проводов и кабелей разработаны нормы допустимой плотности, которые приводятся в Для проводников нагревательных устройств существуют свои нормы плотности тока.

Если плотность δ выше допустимой, может произойти разрушение проводника, например, при перегреве кабеля у него разрушается изоляция.

Правилами регламентируется производить расчёт проводников на нагрев.

Способы соединения проводников

Любой проводник гораздо удобнее изображать на схемах как электрическое сопротивление R, тогда их легко читать и анализировать. Существует всего три способа соединения сопротивлений. Первый способ самый простой — последовательное соединение.

На фото видно, что полное сопротивление равно: R = R 1 + R 2 + R 3 .

Второй способ более сложный — параллельное соединение. Расчёт сопротивления при параллельном соединении выполняется поэтапно. Рассчитывается полная проводимость G = 1/R, а затем полное сопротивление R = 1/G.

Можно поступить и по-другому, прежде рассчитать общее сопротивление при R1 и R2, после этого повторить операцию и найти R.

Третий способ соединения наиболее сложный — смешанное соединение, то есть присутствуют все рассмотренные варианты. Схема приведена на фото.

Для расчёта этой схемы её следует упростить, для этого заменяют резисторы R2 и R3 одним R2,3. Получается несложная схема.

R2,3,4 = R2,3 · R4/(R2,3 + R4).

Схема становится ещё проще, в ней остаются резисторы, имеющие последовательное соединение. В более сложных ситуациях используется этот же метод преобразования.

Виды проводников

В электронной технике, при производстве проводники представляют собою тонкие полоски медной фольги. Ввиду малой длины сопротивление у них незначительно, им во многих случаях можно пренебречь. Для этих проводников сопротивление при параллельном соединении уменьшается вследствие увеличения сечения.

Большой раздел проводников представляют обмоточные провода. Они выпускаются разных диаметров — от 0,02 до 5,6 миллиметра. Для мощных трансформаторов и электродвигателей выпускаются медные шинки прямоугольного сечения. Иногда при ремонте заменяют провод большого диаметра на несколько параллельно соединённых меньшего размера.

Особый раздел проводников представляют провода и кабели, промышленность предоставляет широчайший выбор марок для самых различных нужд. Нередко приходится заменять один кабель на несколько, меньшего сечения. Причины этого бывают самые различные, например, кабель сечением 240 мм 2 очень трудно прокладывать по трассе с крутыми изгибами. Его заменяют на 2×120 мм 2 , и проблема решена.

Расчёт проводов на нагрев

Проводник нагревается протекающим током, если его температура превысит допустимую, наступает разрушение изоляции. ПУЭ предусматривает расчёт проводников на нагрев, исходными данными для него являются сила тока и условия внешней среды, в которой проложен проводник. По этим данным из таблиц в ПУЭ выбирается рекомендуемое проводника сечение (провода или кабеля).

На практике встречаются ситуации, когда нагрузка на действующий кабель сильно возросла. Существует два выхода ‒ заменить кабель на другой, это бывает дорого, или параллельно ему проложить ещё один, чтобы разгрузить основной кабель. В этом случае сопротивление проводника при параллельном соединении уменьшается, следовательно падает выделение тепла.

Чтобы правильно выбрать сечение второго кабеля, пользуются таблицами ПУЭ, важно при этом не ошибиться с определением его рабочего тока. В этой ситуации охлаждение кабелей будет даже лучше, чем у одного. Рекомендуется рассчитать сопротивление при двух кабелей, чтобы точнее определить их тепловыделение.

Расчёт проводников на потерю напряжения

При расположении потребителя R н на большом расстоянии L от источника энергии U 1 возникает довольно большое падение напряжения на проводах линии. К потребителю R н поступает напряжение U 2 значительно ниже начального U 1 . Практически в качестве нагрузки выступает различное электрооборудование, подключаемое к линии параллельно.

Для решения проблемы производят расчет сопротивления при параллельном соединении всего оборудования, так находится сопротивление нагрузки R н. Далее следует определить сопротивление проводов линии.

R л = ρ · 2L/S,

Здесь S — сечение провода линии, мм 2 .

Параллельное соединение резисторов. При параллельном соединении резисторов нескольких приемников они включаются между двумя точками электрической цепи, образуя параллельные ветви (рис. 26, а). Заменяя

лампы резисторами с сопротивлениями R1, R2, R3, получим схему, показанную на рис. 26, б.

При параллельном соединении ко всем резисторам приложено одинаковое напряжение U. Поэтому согласно закону Ома:

I 1 =U/R 1 ; I 2 =U/R 2 ; I 3 =U/R 3 .

Ток в неразветвленной части цепи согласно первому закону Кирхгофа I = I 1 +I 2 +I 3 , или

I = U / R 1 + U / R 2 + U / R 3 = U (1/R 1 + 1/R 2 + 1/R 3) = U / R эк (23)

Следовательно, эквивалентное сопротивление рассматриваемой цепи при параллельном соединении трех резисторов определяется формулой

1/R эк = 1/R 1 + 1/R 2 + 1/R 3 (24)

Вводя в формулу (24) вместо значений 1/R эк, 1/R 1 , 1/R 2 и 1/R 3 соответствующие проводимости G эк, G 1 , G 2 и G 3 , получим: эквивалентная проводимость параллельной цепи равна сумме проводимостей параллельно соединенных резисторов :

G эк = G 1 + G 2 +G 3 (25)

Таким образом, при увеличении числа параллельно включаемых резисторов результирующая проводимость электрической цепи увеличивается, а результирующее сопротивление уменьшается.

Из приведенных формул следует, что токи распределяются между параллельными ветвями обратно пропорционально их электрическим сопротивлениям или прямо пропорционально их проводимостям. Например, при трех ветвях

I 1: I 2: I 3 = 1/R 1: 1/R 2: 1/R 3 = G 1 + G 2 + G 3 (26)

В этом отношении имеет место полная аналогия между распределением токов по отдельным ветвям и распределением потоков воды по трубам.
Приведенные формулы дают возможность определить эквивалентное сопротивление цепи для различных конкретных случаев. Например, при двух параллельно включенных резисторах результирующее сопротивление цепи

R эк =R 1 R 2 /(R 1 +R 2)

при трех параллельно включенных резисторах

R эк =R 1 R 2 R 3 /(R 1 R 2 +R 2 R 3 +R 1 R 3)

При параллельном соединении нескольких, например n, резисторов с одинаковым сопротивлением R1 результирующее сопротивление цепи Rэк будет в n раз меньше сопротивления R1, т.е.

R эк = R1 / n (27)

Проходящий по каждой ветви ток I1, в этом случае будет в п раз меньше общего тока:

I1 = I / n (28)

При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными. Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно.
На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Возьмем три постоянных сопротивления R1, R2 и R3 и включим их в цепь так, чтобы конец первого сопротивления R1 был соединен с началом второго сопротивления R 2, конец второго — с началом третьего R 3, а к началу первого сопротивления и к концу третьего подведем проводники от источника тока (рис. 1 ).

Такое соединение сопротивлений называется последовательным. Очевидно, что ток в такой цепи будет во всех ее точках один и тот же.

Рис 1

Как определить общее сопротивление цепи, если все включенные в нее последовательно сопротивления мы уже знаем? Используя положение, что напряжение U на зажимах источника тока равно сумме падений напряжений на участках цепи, мы можем написать:

U = U1 + U2 + U3

где

U1 = IR1 U2 = IR2 и U3 = IR3

или

IR = IR1 + IR2 + IR3

Вынеся в правой части равенства I за скобки, получим IR = I(R1 + R2 + R3) .

Поделив теперь обе части равенства на I , будем окончательно иметь R = R1 + R2 + R3

Таким образом, мы пришли к выводу, что при последовательном соединении сопротивлений общее сопротивление всей цепи равно сумме сопротивлений отдельных участков.

Проверим этот вывод на следующем примере. Возьмем три постоянных сопротивления, величины которых известны (например, R1 == 10 Ом, R 2 = 20 Ом и R 3 = 50 Ом). Соединим их последовательно (рис. 2 ) и подключим к источнику тока, ЭДС которого равна 60 В ( пренебрегаем).


Рис. 2. Пример последовательного соединения трех сопротивлений

Подсчитаем, какие показания должны дать приборы, включенные, как показано на схеме, если замкнуть цепь. Определим внешнее сопротивление цепи: R = 10 + 20 + 50 = 80 Ом.

Найдем ток в цепи : 60 / 80 = 0 ,75 А

Зная ток в цепи и сопротивления ее участков, определим падение напряжения на каждое участке цепи U 1 = 0,75х 10 = 7,5 В, U 2 = 0,75 х 20=15 В, U3 = 0,75 х 50 = 37,5 В.

Зная падение напряжений на участках, определим общее падение напряжения во внешней цепи, т. е. напряжение на зажимах источника тока U = 7,5+15 + 37,5 = 60 В.

Мы получили таким образом, что U = 60 В, т. е. несуществующее равенство ЭДС источника тока и его напряжения. Объясняется это тем, что мы пренебрегли внутренним сопротивлением источника тока.

Замкнув теперь ключ выключатель К, можно убедиться по приборам, что наши подсчеты примерно верны.

Возьмем два постоянных сопротивления R1 и R2 и соединим их так, чтобы начала этих сопротивлений были включены в одну общую точку а, а концы — в другую общую точку б. Соединив затем точки а и б с источником тока, получим замкнутую электрическую цепь. Такое соединение сопротивлений называется параллельным соединением.


Рис 3. Параллельное соединение сопротивлений

Проследим течение тока в этой цепи. От положительного полюса источника тока по соединительному проводнику ток дойдет до точки а. В точке а он разветвится, так как здесь сама цепь разветвляется на две отдельные ветви: первую ветвь с сопротивлением R1 и вторую — с сопротивлением R2. Обозначим токи в этих ветвях соответственно через I1 и I 2. Каждый из этих токов пойдет по своей ветви до точки б. В этой точке произойдет слияние токов в один общий ток, который и придет к отрицательному полюсу источника тока.

Таким образом, при параллельном соединении сопротивлений получается разветвленная цепь. Посмотрим, какое же будет соотношение между токами в составленной нами цепи.

Включим амперметр между положительным полюсом источника тока (+) и точкой а и заметим его показания. Включив затем амперметр (показанный «а рисунке пунктиром) в провод, соединяющий точку б с отрицательным полюсом источника тока (-), заметим, что прибор покажет ту же величину силы тока.

Значит, до ее разветвления (до точки а) равна силе тока после разветвления цепи (после точки б).

Будем теперь включать амперметр поочередно в каждую ветвь цепи, запоминая показания прибора. Пусть в первой ветви амперметр покажет силу тока I1 , а во второй — I 2. Сложив эти два показания амперметра, мы получим суммарный ток, по величине равный току I до разветвления (до точки а).

Следовательно, сила тока, протекающего до точки разветвления, равна сумме сил токов, утекающих от этой точки. I = I1 + I2 Выражая это формулой, получим

Это соотношение, имеющее большое практическое значение, носит название закона разветвленной цепи .

Рассмотрим теперь, каково будет соотношение между токами в ветвях.

Включим между точками а и б вольтметр и посмотрим, что он нам покажет. Во-первых, вольтметр покажет напряжение источника тока, так как он подключен, как это видно из рис. 3 , непосредственно к зажимам источника тока. Во-вторых, вольтметр покажет падения напряжений U1 и U2 на сопротивлениях R1 и R2, так как он соединен с началом и концом каждого сопротивления.

Следовательно, при параллельном соединении сопротивлений напряжение на зажимах источника тока равно падению напряжения на каждом сопротивлении.

Это дает нам право написать, что U = U1 = U2 ,

где U — напряжение на зажимах источника тока; U1 — падение напряжения на сопротивлении R1 , U2 — падение напряжения на сопротивлении R2. Вспомним, что падение напряжения на участке цепи численно равно произведению силы тока, протекающего через этот участок, на сопротивление участка U = IR .

Поэтому для каждой ветви можно написать: U1 = I1R1 и U2 = I2R2 , но так как U1 = U2, то и I1R1 = I2R2 .

Применяя к этому выражению правило пропорции, получим I1/ I2 = U2 / U1 т. е. ток в первой ветви будет во столько раз больше (или меньше) тока во второй ветви, во сколько раз сопротивление первой ветви меньше (или больше) сопротивления второй ветви.

Итак, мы пришли к важному выводу, заключающемуся в том, что при параллельном соединении сопротивлений общий ток цепи разветвляется на токи, обратно пропорциональные величинам сопротивлении параллельных ветвей. Иначе говоря, чем больше сопротивление ветви, тем меньший ток потечет через нее, и, наоборот, чем меньше сопротивление ветви, тем больший ток потечет через эту ветвь.

Убедимся в правильности этой зависимости на следующем примере. Соберем схему, состоящую из двух параллельно соединенных сопротивлений R1 и R 2, подключенных к источнику тока. Пусть R1 = 10 Ом, R2 = 20 Ом и U = 3 В.

Подсчитаем сначала, что покажет нам амперметр, включенный в каждую ветвь:

I1 = U / R1 = 3 / 10 = 0 ,3 А = 300 мА

I 2 = U / R 2 = 3 / 20 = 0,15 А = 150 мА

Общий ток в цепи I = I1 +I2 = 300 + 150 = 450 мА

Проделанный нами расчет подтверждает, что при параллельном соединении сопротивлений ток в цепи разветвляется обратно пропорционально сопротивлениям.

Действительно, R1 == 10 Ом вдвое меньше R 2 = 20 Ом, при этом I1 = 300 мА вдвое больше I2 = 150 мА. Общий ток в цепи I = 450 мА разветвился на две части так, что большая его часть (I1 = 300 мА) пошла через меньшее сопротивление (R1 = 10 Ом), а меньшая часть (R2 = 150 мА) -через большее сопротивление (R 2 = 20 Ом).

Такое разветвление тока в параллельных ветвях сходно с течением жидкости по трубам. Представьте себе трубу А, которая в каком-то месте разветвляется на две трубы Б и В различного диаметра (рис. 4). Так как диаметр трубы Б больше диаметра трубок В, то через трубу Б в одно и то же время пройдет больше воды, чем через трубу В, которая оказывает потоку воды большее сопротивление.

Рис. 4

Рассмотрим теперь, чему будет равно общее сопротивление внешней цепи, состоящей из двух параллельно соединенных сопротивлений.

Под этим общим сопротивлением внешней цепи надо понимать такое сопротивление, которым можно было бы заменить при данном напряжении цепи оба параллельно включенных сопротивления, не изменяя при этом тока до разветвления. Такое сопротивление называется эквивалентным сопротивлением.

Вернемся к цепи, показанной на рис. 3, и посмотрим, чему будет равно эквивалентное сопротивление двух параллельно соединенных сопротивлений. Применяя к этой цепи закон Ома, мы можем написать: I = U/R , где I — ток во внешней цепи (до точки разветвления), U — напряжение внешней цепи, R — сопротивление внешней цепи, т. е. эквивалентное сопротивление.

Точно так же для каждой ветви I1 = U1 / R1 , I2 = U2 / R2 , где I1 и I 2 — токи в ветвях; U1 и U2 — напряжение на ветвях; R1 и R2 — сопротивления ветвей.

По закону разветвленной цепи: I = I1 + I2

Подставляя значения токов, получим U / R = U1 / R1 + U2 / R2

Так как при параллельном соединении U = U1 = U2 , то можем написать U / R = U / R1 + U / R2

Вынеся U в правой части равенства за скобки, получим U / R = U (1 / R1 + 1 / R2 )

Разделив теперь обе части равенства на U , будем окончательно иметь 1 / R = 1 / R1 + 1 / R2

Помня, что проводимостью называется величина, обратная сопротивлению , мы можем сказать, что в полученной формуле 1 / R — проводимость внешней цепи; 1 / R1 проводимость первой ветви; 1 / R2- проводимость второй ветви.

На основании этой формулы делаем вывод: при параллельном соединении проводимость внешней цепи равна сумме проводимостей отдельных ветвей.

Следовательно, чтобы определить эквивалентное сопротивление включенных параллельно сопротивлений, надо определить проводимость цепи и взять величину, ей обратную.

Из формулы также следует, что проводимость цепи больше проводимости каждой ветви, а это значит, что эквивалентное сопротивление внешней цепи меньше наименьшего из включенных параллельно сопротивлений.

Рассматривая случай параллельного соединения сопротивлений, мы взяли наиболее простую цепь, состоящую из двух ветвей. Однако на практике могут встретиться случаи, когда цепь состоит из трех и более параллельных ветвей. Как же поступать в этих случаях?

Оказывается, все полученные нами соотношения остаются справедливыми и для цепи, состоящей из любого числа параллельно соединенных сопротивлений.

Чтобы убедиться в этом, рассмотрим следующий пример.

Возьмем три сопротивления R1 = 10 Ом, R2 = 20 Ом и R3 = 60 Ом и соединим их параллельно. Определим эквивалентное сопротивление цепи (рис. 5 ).


Рис. 5. Цепь с тремя параллельно соединенными сопротивлениями

Применяя для этой цепи формулу 1 / R = 1 / R1 + 1 / R2 , можем написать 1 / R = 1 / R1 + 1 / R2 + 1 / R3 и, подставляя известные величины, получим 1 / R = 1 / 10 + 1 / 20 + 1 / 60

Сложим эта дроби: 1/R = 10 / 60 = 1 / 6, т. е.. проводимость цепи 1 / R = 1 / 6 Следовательно, эквивалентное сопротивление R = 6 Ом.

Таким образом, эквивалентное сопротивление меньше наименьшего из включенных параллельно в цепь сопротивлений , т. е. меньше сопротивления R1.

Посмотрим теперь, действительно ли это сопротивление является эквивалентным, т. е. таким, которое могло бы заменить включенные параллельно сопротивления в 10, 20 и 60 Ом, не изменяя при этом силы тока до разветвления цепи.

Допустим, что напряжение внешней цепи, а следовательно, и напряжение на сопротивлениях R1, R2, R3 равно 12 В. Тогда сила токов в ветвях будет: I1 = U/R1 = 12 / 10 = 1 ,2 А I 2 = U/R 2 = 12 / 20 = 1 ,6 А I 3 = U/R1 = 12 / 60 = 0,2 А

Общий ток в цепи получим, пользуясь формулой I = I1 + I2 + I3 =1,2 + 0,6 + 0,2 = 2 А.

Проверим по формуле закона Ома, получится ли в цепи ток силой 2 А, если вместо трех параллельно включенных известных нам сопротивлений включено одно эквивалентное им сопротивление 6 Ом.

I = U / R = 12 / 6 = 2 А

Как видим, найденное нами сопротивление R = 6 Ом действительно является для данной цепи эквивалентным.

В этом можно убедиться и на измерительных приборах, если собрать схему с взятыми нами сопротивлениями, измерить ток во внешней цепи (до разветвления), затем заменить параллельно включенные сопротивления одним сопротивлением 6 Ом и снова измерить ток. Показания амперметра и в том и в другом случае будут примерно одинаковыми.

На практике могут встретиться также параллельные соединения, для которых рассчитать эквивалентное сопротивление можно проще, т. е. не определяя предварительно проводимостей, сразу найти сопротивление.

Например, если соединены параллельно два сопротивления R1 и R2 , то формулу 1 / R = 1 / R1 + 1 / R2 можно преобразовать так: 1/R = (R2 + R1) / R1 R2 и, решая равенство относительно R, получить R = R1 х R2 / (R1 + R2 ), т. е. при параллельном соединении двух сопротивлений эквивалентное сопротивление цепи равно произведению включенных параллельно сопротивлений, деленному на их сумму.

Формула расчета сопротивления при параллельном соединении резисторов

Электрическое сопротивление характеризует свойство проводника препятствовать прохождению через него электрического тока. У каждого материала есть свое удельное сопротивление. Это табличная величина, и условно она считается постоянной.

Условно, потому что во многом эта характеристика зависит от внешних условий, например температуры. Сопротивление же какого-либо конкретного элемента (мы будем говорить о резисторах) складывается из многих факторов, например, из геометрических параметров, а когда речь идет о цепи переменного тока, то в расчеты включают также индуктивное и емкостное сопротивление, но об этом мы расскажем позже. Пока же — немного теории.

Закон Ома

В 1826 году немецкий физик Георг Ом на основе своих опытов вывел закон, согласно которому сила тока на участке цепи прямо пропорциональна напряжению, которое к нему приложено, и обратно пропорциональна сопротивлению участка. Из школьного курса мы знаем этот закон:

I=U/R

Позже он был сформулирован и для полной цепи:

I=ε/(R+r)

Где ε — ЭДС источника, R — сопротивление цепи, а r — сопротивление источника.

Мощность прибора

Электрический заряд при своем перемещении совершает работу. Может быть, это незаметно глазу, но вот пощупать результат этой работы можно: электроприборы у нас греются, а иногда нагрев — это цель, а не побочное явление. Не верите — ну, электроплитки, ТЭНы, утюги как раз это свойство и эксплуатируют. Правда, руками это проверять не советую.

Мощностью у нас называют работу, совершенную за единицу времени. Попробуем вычислить мощность электроприбора, включенного в цепь.2/R

Последовательное и параллельное соединение

В реальной жизни мы редко имеем дело с одним проводником и одним источником. Достаточно взглянуть в любую принципиальную электрическую схему, например, такую простенькую:

(это схема микроволновки «Электроника»)

можно увидеть, что элементы в схеме соединены по-разному, но мы покажем вам базовые закономерности, которые работают в цепях.

Правила Кирхгофа

Если взять замкнутую электрическую цепь, по которой течет заряд, то можно определенно сказать: он никуда не денется. Сумма всех зарядов, которые текут в одной цепи, всегда одинакова. Это называется законом сохранения заряда, частным случаем общего закона сохранения (как говорится, если в одном месте что-то убудет, в другом непременно прибудет).

Отсюда мы и выводим тот факт, что в каждом узле цепи сумма токов равна нулю. То есть, если ток «приходит» в точку по ветке и «уходит» по двум — значит, первый равен сумме второго и третьего.

На этой картинке мы видим, что I1+I4=I2+I3

Это называется первым правилом Кирхгофа.

Если наша цепь не будет содержать узлов, значит, ток в ней будет величиной постоянной, а элементы, один за другим поставленные в цепь, будут давать падение напряжения. При этом общее напряжение в цепи останется тем же. Отсюда вытекает второе правило Кирхгофа: сумма напряжений на участках цепи будет равна ЭДС источников тока, входящий в эту цепь. Если у нас источник один, то будет верно равенство:

ε=U1+U2+U3+…+Un

Сумма падений напряжения будет, таким образом, нулевой.

В ситуациях, когда мы имеем дело с переменным током, падение будет наблюдаться на участках с конденсаторами и катушками — в цепях переменного тока у них появляется сопротивление (об этом позже).

Теперь, когда мы познакомились с теоретической частью, можем перейти к более приближенному к суровой реальности вопросу, а именно — расчету последовательного и параллельного соединения резисторов.2/R

Исходя из вышеперечисленных закономерностей, вы сможете рассчитывать самые причудливые соединения резисторов, можете попрактиковаться, взяв в библиотеке задачник.

Типы резисторов

Как уже было сказано ранее, элемент, который ставится в цепь для нагрузки, называется резистором. Ставят его для разных целей, главным образом для того, чтобы изменить тот или иной параметр на участке цепи. Например, понизить напряжение или силу тока, чтобы деталь, стоящая за резистором, не сгорела.

Предприятиями выпускается большой ассортимент таких изделий, и их можно по-разному классифицировать. Номинально резистор имеет то сопротивление, которое указано на нем, а по факту оно может зависеть от напряжения в сети (нелинейность), иметь разброс параметра (иногда до 20% доходит). По применяемой технологии резисторы можно разделить на:

  1. проволочные;
  2. композитные;
  3. металлофольговые;
  4. угольные;
  5. интегральные.

Фактическое сопротивление такого элемента может зависеть от температуры окружающей среды и даже от частоты, если мы имеем дело с переменным током. Дело в том, что часть ассортимента резисторов выполнены по проволочной технологии, то есть фактически они представляют собой мини-катушку. При малых частотах (50 Гц) это в расчет не берется, а вот на высоких (мегагерцы) паразитная индуктивность и индуктивное сопротивление может сказаться на работе схемы. Поэтому при выборе резистора для работы с высокочастотными схемами внимательно смотрите. по какой технологии он сделан. Отдайте предпочтение тонкослойным и композиционным изделиям.

Помимо этого, большое распространение получили переменные резисторы, значение сопротивления которых можно регулировать. Делается это чаще всего отверткой. Необходимость в таких изделиях продиктована разбросом параметров у обычных резисторов, а подстроечный вариант позволяет регулировать сопротивление.

Все вышесказанное актуально для цепей постоянного тока и переменного при невысоких частотах, и все это — при нормальных условиях внешней среды. Расчеты цепей при нарушении этих условий нуждаются в дополнительной корректировке: это связано с ограниченностью действия закона Ома. С чем связаны ограничения? Вот несколько примеров:

  1. при сверхнизких температурах многие проводники проявляют такое интересное явление, как сверхпроводимость;
  2. также сопротивление может разниться при нагревании;
  3. неприменим закон Ома для описания электрического тока в газах;
  4. наконец, обычный резистор можно просто пробить высоким напряжением.

Все это прекрасно работает. Не верите — можете поэкспериментировать у себя дома или провести замеры тестером. Например, изучить елочную гирлянду или показания счетчиков при включенных электроприборах (напомню, что в гирлянде лампочки соединены последовательно, а розетки в доме — параллельно). Удачи!

Как я и обещал в статье про переменные резисторы (ссылка), сегодня речь пойдет о возможных способах соединения резисторов, в частности о последовательном соединении и о параллельном.

Последовательное соединение резисторов.

Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:

Здесь у нас классический случай последовательного соединения – два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:

А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:

В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:

Тогда для вычисления общего напряжения можно будет использовать следующее выражение:

Но для общего напряжение также справедлив закон Ома:

Здесь – это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:

Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.

Например для следующей цепи:

Общее сопротивление будет равно:

Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление будем работать в любом случае &#128578; А если при последовательном соединении все сопротивления равны (), то общее сопротивление цепи составит:

в данной формуле равно количеству элементов цепи.

С последовательным соединением резисторов мы разобрались, давайте перейдем к параллельному.

Параллельное соединение резисторов.

При параллельном соединении напряжения на проводниках равны:

А для токов справедливо следующее выражение:

То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:

Подставим эти выражения в формулу общего тока:

А по закону Ома ток:

Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:

Данную формулу можно записать и несколько иначе:

Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:

Смешанное соединение резисторов.

Помимо параллельного и последовательного соединений резисторов существует еще смешанное соединение. Из названия уже понятно, что при таком соединении в цепи присутствуют резисторы, соединенные как параллельно, так и последовательно. Вот пример такой цепи:

Давайте рассчитаем общее сопротивление цепи. Начнем с резисторов и – они соединены параллельно. Мы можем рассчитать общее сопротивление для этих резисторов и заменить их в схеме одним единственным резистором :

Теперь у нас образовались две группы последовательно соединенных резисторов:

Заменим эти две группы двумя резисторами, сопротивление которых равно:

Как видите, схема стала уже совсем простой ) Заменим группу параллельно соединенных резисторов и одним резистором :

И в итоге у нас на схеме осталось только два резистора соединенных последовательно:

Общее сопротивление цепи получилось равным:

Таким вот образом достаточно большая схема свелась к простейшему последовательному соединению двух резисторов &#128521;

Тут стоит отметить, что некоторые схемы невозможно так просто преобразовать и определить общее сопротивление – для таких схем нужно использовать правила Кирхгофа, о которых мы обязательно поговорим в будущих статьях. А сегодняшняя статья на этом подошла к концу, до скорых встреч на нашем сайте!

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.


Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.


Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт . Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А ), а сопротивление каждого из них равно 50 Ом , тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт . В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт .

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте .

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно , можно найти по формуле:

Параллельное соединение резисторов — расчет

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:


Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов (I1 и I2) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

Таким образом, протекающий общий ток в цепи можно определить как:

Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:

Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА

Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА

Таким образом, общий ток будет равен:

I = 0,545 мА + 0,255 мА = 0,8 мА

Это также можно проверить, используя закон Ома:

I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)

где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)

И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать .

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

На практике нередко встречается задача нахождения сопротивления проводников и резисторов при различных способах соединения. В статье рассмотрено, как рассчитывается сопротивление при и некоторые другие технические вопросы.

Сопротивление проводника

Все проводники имеют свойство препятствовать течению электрического тока, его принято называть электрическим сопротивлением R, оно измеряется в омах. Это основное свойство проводниковых материалов.

Для ведения электротехнических расчётов применяется удельное сопротивление – ρ Ом·м/мм 2 . Все металлы – хорошие проводники, наибольшее применение получили медь и алюминий, гораздо реже применяется железо. Лучший проводник – серебро, оно применяется в электротехнической и электронной промышленности. Широко распространены сплавы с высоким значением сопротивления.

При расчёте сопротивления используется известная из школьного курса физики формула:

R = ρ · l/S, S – площадь сечения; l – длина.

Если взять два проводника, то их сопротивление при параллельном соединении станет меньше из-за увеличения общего сечения.

и нагрев проводника

Для практических расчётов режимов работы проводников применяется понятие плотности тока – δ А/мм 2 , она вычисляется по формуле:

δ = I/S, I – ток, S – сечение.

Ток, проходя по проводнику, нагревает его. Чем больше δ, тем сильнее нагревается проводник. Для проводов и кабелей разработаны нормы допустимой плотности, которые приводятся в Для проводников нагревательных устройств существуют свои нормы плотности тока.

Если плотность δ выше допустимой, может произойти разрушение проводника, например, при перегреве кабеля у него разрушается изоляция.

Правилами регламентируется производить расчёт проводников на нагрев.

Способы соединения проводников

Любой проводник гораздо удобнее изображать на схемах как электрическое сопротивление R, тогда их легко читать и анализировать. Существует всего три способа соединения сопротивлений. Первый способ самый простой – последовательное соединение.

На фото видно, что полное сопротивление равно: R = R 1 + R 2 + R 3 .

Второй способ более сложный – параллельное соединение. Расчёт сопротивления при параллельном соединении выполняется поэтапно. Рассчитывается полная проводимость G = 1/R, а затем полное сопротивление R = 1/G.

Можно поступить и по-другому, прежде рассчитать общее сопротивление при R1 и R2, после этого повторить операцию и найти R.

Третий способ соединения наиболее сложный – смешанное соединение, то есть присутствуют все рассмотренные варианты. Схема приведена на фото.

Для расчёта этой схемы её следует упростить, для этого заменяют резисторы R2 и R3 одним R2,3. Получается несложная схема.

R2,3,4 = R2,3 · R4/(R2,3 + R4).

Схема становится ещё проще, в ней остаются резисторы, имеющие последовательное соединение. В более сложных ситуациях используется этот же метод преобразования.

Виды проводников

В электронной технике, при производстве проводники представляют собою тонкие полоски медной фольги. Ввиду малой длины сопротивление у них незначительно, им во многих случаях можно пренебречь. Для этих проводников сопротивление при параллельном соединении уменьшается вследствие увеличения сечения.

Большой раздел проводников представляют обмоточные провода. Они выпускаются разных диаметров – от 0,02 до 5,6 миллиметра. Для мощных трансформаторов и электродвигателей выпускаются медные шинки прямоугольного сечения. Иногда при ремонте заменяют провод большого диаметра на несколько параллельно соединённых меньшего размера.

Особый раздел проводников представляют провода и кабели, промышленность предоставляет широчайший выбор марок для самых различных нужд. Нередко приходится заменять один кабель на несколько, меньшего сечения. Причины этого бывают самые различные, например, кабель сечением 240 мм 2 очень трудно прокладывать по трассе с крутыми изгибами. Его заменяют на 2×120 мм 2 , и проблема решена.

Расчёт проводов на нагрев

Проводник нагревается протекающим током, если его температура превысит допустимую, наступает разрушение изоляции. ПУЭ предусматривает расчёт проводников на нагрев, исходными данными для него являются сила тока и условия внешней среды, в которой проложен проводник. По этим данным из таблиц в ПУЭ выбирается рекомендуемое проводника или кабеля).

На практике встречаются ситуации, когда нагрузка на действующий кабель сильно возросла. Существует два выхода ‒ заменить кабель на другой, это бывает дорого, или параллельно ему проложить ещё один, чтобы разгрузить основной кабель. В этом случае сопротивление проводника при параллельном соединении уменьшается, следовательно падает выделение тепла.

Чтобы правильно выбрать сечение второго кабеля, пользуются таблицами ПУЭ, важно при этом не ошибиться с определением его рабочего тока. В этой ситуации охлаждение кабелей будет даже лучше, чем у одного. Рекомендуется рассчитать сопротивление при параллельном соединении двух кабелей, чтобы точнее определить их тепловыделение.

Расчёт проводников на потерю напряжения

При расположении потребителя R н на большом расстоянии L от источника энергии U 1 возникает довольно большое на проводах линии. К потребителю R н поступает напряжение U 2 значительно ниже начального U 1 . Практически в качестве нагрузки выступает различное электрооборудование, подключаемое к линии параллельно.

Для решения проблемы производят расчет сопротивления при параллельном соединении всего оборудования, так находится сопротивление нагрузки R н. Далее следует определить сопротивление проводов линии.

Здесь S – сечение провода линии, мм 2 .

Каждый в этой жизни сталкивался с резисторами. Люди с гуманитарными профессиями, как и все, изучали в школе на уроках физики проводники электрического тока и закон Ома.

С резисторами также имеют дело студенты технических университетов и инженеры различных производственных предприятий. Перед всеми этими людьми, так или иначе, вставала задача расчёта электрической цепи при различных видах соединения резисторов. В данной статье речь пойдёт о расчёте физических параметров, характеризующих цепь.

Виды соединений

Резистор – пассивный элемент , присутствующий в каждой электрической цепи. Он предназначен для того, чтобы сопротивляться электрическому току. Существует два вида резисторов:

Зачем же спаивать проводники друг с другом? Например, если для какой-то электрической цепи нужно определённое сопротивление. А среди номинальных показателей нужного нет. В таком случае необходимо подобрать элементы схемы с определёнными значениями сопротивления и соединить их. В зависимости от вида соединения и сопротивлений пассивных элементов мы получим какое-то определённое сопротивление цепи. Оно называется эквивалентным. Его значение зависит от вида спайки проводников. Существует три вида соединения проводников:

Значение эквивалентного сопротивления в цепи считается достаточно легко. Однако, если резисторов в схеме очень много, то лучше воспользоваться специальным калькулятором, который считает это значение. При ведении расчёта вручную, чтобы не допускать ошибок, необходимо проверять, ту ли формулу вы взяли.

Последовательное соединение проводников

В последовательной спайке резисторы идут как бы друг за другом. Значение эквивалентного сопротивления цепи равно сумме сопротивлений всех резисторов. Особенность схем с такой спайкой заключается в том, что значение тока постоянно . Согласно закону Ома, напряжение в цепи равно произведению тока и сопротивления. Так как ток постоянен, то для вычисления напряжения на каждом резисторе, достаточно перемножить значения. После этого необходимо сложить напряжения всех резисторов, и тогда мы получим значение напряжения во всей цепи.

Расчёт очень простой. Так как с ним имеют дело в основном инженеры-разработчики, то для них не составит труда сосчитать всё вручную. Но если резисторов очень много, то проще воспользоваться специальным калькулятором.

Примером последовательного соединения проводников в быту является ёлочная гирлянда.

Параллельное соединение резисторов

При параллельном соединении проводников эквивалентное сопротивление в цепи считается по-другому. Немного сложнее, чем при последовательном.

Его значение в таких цепях равняется произведению сопротивлений всех резисторов, делённому на их сумму. А также есть и другие варианты этой формулы. Параллельное соединение резисторов всегда снижает эквивалентное сопротивление цепи. То есть, его значение всегда будет меньше, чем наибольшее значение какого-то из проводников.

В таких схемах значение напряжения постоянно . То есть значение напряжения во всей цепи равно значениям напряжений каждого из проводников. Оно задаётся источником напряжения.

Сила тока в цепи равна сумме всех токов, протекающих через все проводники. Значение силы тока, протекающего через проводник. равно отношению напряжения источника к сопротивлению этого проводника.

Примеры параллельного соединения проводников:

  1. Освещение.
  2. Розетки в квартире.
  3. Производственное оборудование.

Для расчёта схем с параллельным соединением проводников лучше пользоваться специальным калькулятором. Если в схеме много резисторов, спаянных параллельно, то гораздо быстрее вы посчитаете эквивалентное сопротивление с помощью этого калькулятора.

Смешанное соединение проводников

Этот вид соединения состоит из каскадов резисторов . Например, у нас есть каскад из 10 проводников, соединённых последовательно, и после него идёт каскад из 10 проводников, соединённых параллельно. Эквивалентное сопротивление этой схемы будет равно сумме эквивалентных сопротивлений этих каскадов. То есть, по сути, здесь последовательное соединение двух каскадов проводников.

Многие инженеры занимаются оптимизацией различных схем. Её целью является уменьшение количества элементов в схеме за счёт подбора других, с подходящими значениями сопротивлений. Сложные схемы разбиваются на несколько небольших каскадов, ведь так гораздо проще вести расчёты.

Сейчас, в двадцать первом веке, инженерам стало гораздо проще работать. Ведь несколько десятилетий назад все расчёты производились вручную. А сейчас программисты разработали специальный калькулятор для расчёта эквивалентного сопротивления цепи. В нём запрограммированы формулы, по которым ведутся расчёты.

В этом калькуляторе можно выбрать вид соединения, и потом ввести в специальные поля значения сопротивлений. Через несколько секунд вы уже увидите это значение.

§15. Параллельное и смешанное соединение проводников. — Начало. Основы. — Справочник

§15. Параллельное и смешанное соединение проводников.


     Если элементы электрической цепи соединены таким образом, что находятся под одинаковым напряжением, то такое соединение называется параллельным.
Рассмотрим пример по рис. 1. Ток из узла «а» разделяется на четыре ветви, к каждой из которых подключены резисторы. Очевидно, что общее сопротивление уменьшится, если бы был подключен один резистор, а проводимость цепи, наоборот, увеличится. Общая проводимость  цепи будет искомая также, как и общее сопротивление при последовательном соединении:
                                                              .
 Ну а сопротивление будет обратно пропорционально проводимости:
                                                          .
     Докажем полученное нами выражение. Обозначим силу тока во входящей цепи буквой I, а силу тока в каждой ветви соответственно I1, I2, I3, I4, а напряжение между сопротивлениями (между точками «а» и «б») – U и общее сопротивление в этих ветвях – R. По закону Ома ток на участке цепи равен:
                                                               ,
токи в ветвях будут равны соответственно
                                                        .
    По первому закону Кирхгофа (сумма токов, входящих  в общую точку, равна сумме токов, выходящих из этой точки)
                                                         I=I1+I2+I3+I4                                                                                                       или что одно и тоже:
                                                     
Преобразовав обе стороны выражения, получаем:
                                                                                Собственно, что и требовалось доказать.
      Это выражение применимо для любого количества сопротивлений, соединенных параллельно. Если в цепи присутствуют только два параллельно соединенных резистора (либо другого элемента, имеющего сопротивление), то можно воспользоваться более удобной формулой, преобразовав из выше написанного равенства:                                                                                                                                                           
       Если при параллельном соединении элементы имеют одинаковые сопротивления, то общее сопротивление цепи можно вычислить по формуле Rобщ=R/n, где n – число элементов на данном участке цепи.
                                                                                                                         
       Вернувшись к рис. 1, можно записать следующие выражения:
                                               U=I1·R1; U=I2·R2; U=I3·R3; U=I4·R4.
     Заметим, что левые части этих соотношений равны, значит равны и правые их части:
                                                   I1·R1= I2·R2= I3·R3= I4·R4.
Отсюда получим следующие выражения:
                                                     и т. д.
     Из этих выражений видно, что токи обратно пропорциональны этим сопротивлениям. То есть, чем меньше сопротивление параллельно включенного элемента, тем больше ток в этом элементе и наоборот.
При неизменном напряжении между узлами цепи, токи в элементах, вставленных в разрыв между этими узлами, в отличие от последовательного соединения, не зависят один от другого. Потому лампы, двигатели и прочие электроприемники обычно включают параллельно.
    Если в цепь с параллельно включенными сопротивлениями добавить последовательно им еще резистор, то такое соединение называется смешанным. Для вычисления эквивалентного сопротивления при смешанном соединении резисторов, определяют сначала общее сопротивление резисторов, соединенных параллельно либо последовательно, заменив их резистором, равным вычисленному. К примеру, чтобы определить сопротивление между точками «б» и «в» (рис. 2) вначале вычисляют значение общего сопротивления между точками «б» и «в»:                                                                                                         а потом суммируют найденное значение с сопротивлением R1:
                                           R=R1+ R2·R3/(R2+R3).
                                                             

Серия

и параллельные резисторы

  • Изучив этот раздел, вы сможете:
  • Рассчитайте значения общего сопротивления в цепях с последовательным сопротивлением.
  • Используйте соответствующие формулы для расчета сопротивления в цепях с параллельным сопротивлением.
  • • Вычисление суммы обратных величин.
  • • Произведение над суммой.
  • Рассчитайте значения общего сопротивления в последовательных / параллельных сетях.

Расчеты в последовательных и параллельных резисторных цепях

Компоненты, включая резисторы в цепи, могут быть соединены вместе двумя способами:

ПОСЛЕДОВАТЕЛЬНО, так что один и тот же ток течет через все компоненты, но различная разность потенциалов (напряжение) может существовать на каждом из них.

ПАРАЛЛЕЛЬНО, так что одинаковая разность потенциалов (напряжение) существует на всех компонентах, но каждый компонент может проводить разный ток.

Рис. 4.2.1 Резисторы серии

Рис. 4.2.2 Параллельные резисторы

В любом случае (для резисторов) общее сопротивление той части цепи, которая содержит резисторы, может быть рассчитано с использованием методов, описанных ниже.

Возможность рассчитать суммарное (общее) значение резисторов таким способом позволяет легко вычислить неизвестные значения сопротивления, тока и напряжения для довольно сложных цепей, используя относительно простые методы.Это очень полезно при поиске неисправностей.

ПЕРЕД ДАЛЬНЕЙШЕЙ ДАЛЬНОСТЬЮ ПОПРОБУЙТЕ ИСПОЛЬЗОВАНИЕ ФОРМУЛ ДЛЯ РАСЧЕТА ОБЩИХ ЗНАЧЕНИЙ СЕРИИ И ПАРАЛЛЕЛЬНЫХ РЕЗИСТОРОВ.

Для резисторов в серии:

Общее сопротивление двух или более резисторов, подключенных последовательно , определяется простым сложением индивидуальных значений резисторов, чтобы найти общую сумму (R TOT ):

Для резисторов, включенных параллельно:

Для расчета общего сопротивления цепи, в которой используются параллельные резисторы, можно использовать следующую формулу.

Обратите внимание, однако, что эта формула НЕ дает вам общего сопротивления R TOT . Это дает вам ВЗАИМОДЕЙСТВИЕ R TOT или:

Это совсем другое значение — и НЕ является полным сопротивлением. Он делится на 1, разделенный на R TOT . Чтобы получить правильное значение для TOT рэндов (которое будет обратным 1/ TOT , т. Е. TOT /1, просто нажмите соответствующую клавишу на вашем калькуляторе (отмеченную 1 / x или x-1) .

Другой способ расчета параллельных цепей.

Суммарное сопротивление двух резисторов, включенных параллельно , которое не включает обратных сопротивлений, определяется по формуле:

Эту формулу часто называют «произведение над суммой».

Он рассчитывает только ДВА резистора параллельно? Ну да, но это не большая проблема. Если имеется более двух параллельных резисторов, просто выберите два из них и определите общее сопротивление для этих двух — затем используйте это общее сопротивление, как если бы это был один резистор, и составьте еще одну пару с третьим резистором.Определите новую сумму и так далее, пока вы не включите все параллельные резисторы в этой конкретной сети.

О, еще одна вещь, которую следует помнить о произведении над суммой, видите скобки вокруг суммы (нижняя часть) формулы? Это означает, что вы должны решить это, прежде чем использовать его для разделения продукта (верхняя часть) на. Если вы этого не сделаете, ваш ответ будет неправильным.

Звучит сложно? Не совсем, это просто вопрос повторения, и на практике вы не часто встречаетесь с множеством параллельных сетей с гораздо более чем двумя резисторами.Тем не менее, какую формулу вы выберете, зависит от вас, взаимная или сумма продукта.

подсказки

Использование обратного метода

Если вы используете МЕТОД ВЗАИМОДЕЙСТВИЯ для параллельных цепей, НЕ ЗАБУДЬТЕ, когда вы добавили обратные величины отдельных резисторов — вы должны снова найти обратную величину 1 / R1 + 1 / R2 + 1 / R3 = 1 / R TOT , а чтобы найти R TOT , вы должны найти обратное 1 / R TOT .

Упрощающие схемы

Для комбинированных последовательных и параллельных цепей сначала определите участок цепи (последовательный или параллельный).Затем перерисуйте схему, заменив участок, сопротивление которого вы нашли, одним резистором. Теперь у вас есть упрощенная схема, по которой можно найти R TOT .

Вы можете использовать формулу «произведение на сумму»:

Для цепей с более чем двумя параллельными резисторами просто определите два параллельных резистора одновременно, используя формулу произведения на сумму, а затем перерисуйте схему, заменив два резистора одним резистором, значение которого является объединенным сопротивлением двух .

Теперь вы можете использовать ваше первое комбинированное значение в качестве единственного резистора со следующим параллельным резистором и так далее. Таким образом, можно выработать большое количество параллельных резисторов с использованием произведения на сумму.

Когда все параллельные резисторы одинакового номинала.

Если несколько одинаковых параллельных резисторов подключены, общее сопротивление будет равно величине резистора, умноженной на обратную величину количества резисторов.

, т. Е. Два параллельных резистора 12 кОм имеют общее сопротивление

12K x 1/2 = 6K

Три параллельно включенных резистора 12 кОм имеют общее сопротивление

12K x 1/3 = 4K и т. Д.

Проверяю ответ

Суммарное значение любого количества параллельных резисторов всегда будет МЕНЬШЕ, чем значение наименьшего отдельного резистора в сети. Используйте этот факт, чтобы проверить свои ответы.

Серия

и параллельная комбинация

Попробуйте выполнить несколько расчетов для последовательной и параллельной цепей резисторов. Для этого вам просто нужно использовать информацию на этой странице и на странице «Советы по расчету резисторов». Вас просят вычислить общее сопротивление для каждой цепи.Вы можете выбрать, какую формулу использовать

Вы также можете получить помощь по математике, загрузив нашу бесплатную брошюру «Советы по математике».

Перед тем, как начать, подумайте над этими несколькими советами. Они упростят задачу, если вы будете внимательно им следовать.

1. Разработайте ответы с помощью карандаша и бумаги; перерисуйте схему, над которой работаете.

2. Конечно, ответ — это не просто число, это будет определенное количество Ом, не забудьте указать правильную единицу (например.грамм. Ω, KΩ или MΩ) или ваш ответ не имеет смысла.

3. Когда вы вводите значения в калькулятор, преобразуйте все значения KΩ или MΩ в Ом с помощью клавиши EXP. Если вы здесь ошибетесь, то получите действительно глупые ответы, в тысячи раз слишком большие или слишком маленькие.

Итак, вы прочитали эти инструкции и готовы приступить к работе. Вот способ решить типичную проблему на бумаге, чтобы (со временем) вы не запутались.

Пример последовательной и параллельной цепи.

Хорошо, есть что вспомнить, так почему бы не попробовать несколько практических вопросов в Resistors Module 4.5 по определению общего сопротивления некоторых цепей резисторов?

Расчет тока в последовательно-параллельных цепях

Расчет тока в последовательно-параллельных цепях


Рисунок 1. Последовательно-параллельные резисторы.

В цепи с резисторами, включенными как последовательно, так и параллельно, рассматривать схему как комбинацию параллельных частей и последовательных части.

Используйте формулы сопротивления для определения общего сопротивления серийных и параллельных частей. Затем используйте закон Ома, чтобы вычислить напряжение падает поперек и токи через каждую часть.

В схеме на Рисунке 1 сначала используйте параллельное сопротивление формула для определения эквивалентного сопротивления R 123 .

Тогда формула последовательного сопротивления говорит нам: R TOT = R 123 + R 4 .Итак, закон Ома дает полный ток цепи:

I TOT равняется как текущим I 4 хотя R 4 и текущему I 123 вход / выход из параллельной части. Используя закон Ома:

Итак, зная значение В 123 , снова применим закон Ома, чтобы найти ток I 1 через параллельный резистор R 1 :

и аналогично для I 2 и I 3 .

Пример

Для схемы на рисунке 1 предположим, что E = 9 В, R 1 = 500 Ом, R 2 = 1,0 кОм, R 3 = 1,5 кОм и R 4 = 220 Ом. Тогда R 123 = 273 Ом и R TOT = 493 Ом, поэтому

и, следовательно,

И аналогично для I 2 и I 3 .

Примечание: Важно осторожно обращаться с единицами измерения с метрическими префиксами. Выше мы отрегулировали десятичную точку и единицы измерения так, чтобы наша формула для тока давала вольт / Ом = ампер.

Как рассчитать падение напряжения на резисторе в параллельной цепи

Обновлено 28 декабря 2020 г.

Автор: S. Hussain Ather

••• Syed Hussain Ather

TL; DR (слишком долго; не читал)

На приведенной выше схеме параллельной цепи падение напряжения можно найти, суммируя сопротивления каждого резистора и определяя, какое напряжение получается из тока в этой конфигурации.Эти примеры параллельных цепей иллюстрируют концепции тока и напряжения в разных ветвях.

На схеме параллельной цепи, падение напряжения на резисторе в параллельной цепи одинаково для всех резисторов в каждой ветви параллельной цепи. Напряжение, выраженное в вольтах, измеряет электродвижущую силу или разность потенциалов в цепи.

Когда у вас есть цепь с известной величиной тока , поток электрического заряда, вы можете рассчитать падение напряжения в схемах параллельной цепи следующим образом:

  1. Определите объединенное сопротивление или сопротивление к потоку заряда параллельных резисторов.Суммируйте их как 1 / R всего = 1 / R 1 + 1 / R 2 … для каждого резистора. Для приведенной выше параллельной цепи полное сопротивление можно найти как:
    1. 1 / R всего = 1/5 Ом + 1/6 Ом + 1/10 Ом
    2. 1 / R всего = 6/30 Ом + 5/30 Ом + 3/30 Ом
    3. 1 / R всего = 14/30 Ом
    4. R всего = 30/14 Ом = 15/7 Ом
  2. Умножьте ток на общее сопротивление, чтобы получить падение напряжения в соответствии с законом Ома В = IR .Это равно падению напряжения во всей параллельной цепи и на каждом резисторе в параллельной цепи. В этом примере падение напряжения равно В = 5 А x 15/7 Ом = 75/7 В.

Этот метод решения уравнений работает, потому что ток, входящий в любую точку параллельной цепи, должен быть равен текущий уход. Это происходит из-за текущего закона Кирхгофа, который гласит: «алгебраическая сумма токов в сети проводников, встречающихся в одной точке, равна нулю.»Калькулятор параллельной цепи мог бы использовать этот закон в ветвях параллельной цепи.

Если мы сравним ток, входящий в три ветви параллельной цепи, он должен равняться общему току, выходящему из ветвей. Поскольку падение напряжения остается постоянное значение на каждом параллельном резисторе, это падение напряжения, вы можете суммировать сопротивление каждого резистора, чтобы получить общее сопротивление и определить напряжение по этому значению. Примеры параллельных цепей показывают это

Падение напряжения в последовательной цепи

•• • Syed Hussain Ather

В последовательной цепи, с другой стороны, вы можете рассчитать падение напряжения на каждом резисторе, зная, что в последовательной цепи ток постоянен на всем протяжении.Это означает, что падение напряжения на каждом резисторе разное и зависит от сопротивления в соответствии с законом Ома V = IR . В приведенном выше примере падение напряжения на каждом резисторе составляет:

V_1 = R_1I = 3 \ times 3 = 9 \ text {V} \\ V_2 = R_2I = 10 \ times 3 = 30 \ text {V} \\ V_3 = R_3I = 5 \ times 3 = 15 \ text {V}

Сумма каждого падения напряжения должна быть равна напряжению батареи в последовательной цепи. Это означает, что наша батарея имеет напряжение 54 В.

Этот метод решения уравнений работает, потому что падение напряжения на всех резисторах, расположенных последовательно, должно в сумме составлять общее напряжение последовательной цепи.Это происходит из-за закона напряжения Кирхгофа, который гласит, что «направленная сумма разностей потенциалов (напряжений) вокруг любого замкнутого контура равна нулю». Это означает, что в любой точке замкнутой последовательной цепи падение напряжения на каждом резисторе должно равняться общему напряжению цепи. Поскольку ток в последовательной цепи постоянный, падение напряжения должно различаться на каждом резисторе.

Параллельные и последовательные схемы

В параллельной схеме все компоненты схемы подключаются между одними и теми же точками на схеме.Это дает им их разветвленную структуру, в которой ток разделяется между каждой ветвью, но падение напряжения на каждой ветви остается неизменным. Сумма каждого резистора дает общее сопротивление, обратное каждому сопротивлению ( 1 / R всего = 1 / R 1 + 1 / R 2 для каждого резистора).

В последовательной цепи, напротив, есть только один путь для прохождения тока. Это означает, что ток остается постоянным на всем протяжении, а падение напряжения на каждом резисторе отличается.Сумма каждого резистора дает общее сопротивление при линейном суммировании ( R всего = R 1 + R 2 для каждого резистора).

Последовательно-параллельные схемы

Вы можете использовать оба закона Кирхгофа для любой точки или петли в любой цепи и применять их для определения напряжения и тока. Законы Кирхгофа дают вам метод определения тока и напряжения в ситуациях, когда природа цепи как последовательной и параллельной может быть не такой простой.

Как правило, для схем, в которых есть как последовательные, так и параллельные компоненты, вы можете рассматривать отдельные части схемы как последовательные или параллельные и соответственно комбинировать их.

Эти сложные последовательно-параллельные схемы можно решить несколькими способами. Один из методов — рассматривать их части как параллельные или последовательные. Другой метод — использование законов Кирхгофа для определения обобщенных решений, использующих систему уравнений. Калькулятор последовательно-параллельных цепей учитывает различную природу цепей.

••• Syed Hussain Ather

В приведенном выше примере текущая точка выхода A должна равняться текущей точке выхода A. Это означает, что вы можете написать:

(1). I_1 = I_2 + I_3 \ text {или} I_1-I_2-I_3 = 0

Если рассматривать верхний контур как замкнутую последовательную цепь и рассматривать падение напряжения на каждом резисторе, используя закон Ома с соответствующим сопротивлением, вы можете написать:

(2). V_1-R_1I_1-R_2I_2 = 0

и, проделав то же самое для нижнего контура, вы можете обработать каждое падение напряжения в направлении тока в зависимости от тока и сопротивления, чтобы записать:

(3).V_1 + V_2 + R_3I_3-R_2I_2 = 0

Это дает вам три уравнения, которые можно решить несколькими способами. Вы можете переписать каждое из уравнений (1) — (3) так, чтобы напряжение было с одной стороны, а ток и сопротивление — с другой. Таким образом, вы можете рассматривать три уравнения как зависимые от трех переменных I 1 , I 2 и I 3 с коэффициентами комбинаций R 1 , R 2 и R 3 .

\ начало {выровнено} & (1).I_1-I_2-I_3 = 0 \\ & (2). R_1I_1 + R_2I_2 + 0 \ times I_3 = V_1 \\ & (3). 0 \ times I_1 + R_2I_2-R_3I_3 = V_1 + V_2 \ end {align}

Эти три уравнения демонстрируют, как напряжение в каждой точке цепи каким-то образом зависит от тока и сопротивления. Если вы помните законы Кирхгофа, вы можете создать эти обобщенные решения схемных задач и использовать матричную нотацию для их решения. Таким образом, вы можете подставить значения для двух величин (среди которых напряжение, ток, сопротивление), чтобы найти третью.

Параллельные схемы

Ваш браузер не поддерживает Java-апплеты

Схема с более чем одним Путь прохождения тока представляет собой параллельную цепь.

НАПРЯЖЕНИЕ В ПАРАЛЛЕЛЬНЫХ ЦЕПЯХ

Общее напряжение равно напряжение любого параллельного сопротивления.

ТОК В ПАРАЛЛЕЛЬНЫХ ЦЕПЯХ

Полный ток равен сумма тока каждого параллельного компонента.

ПАРАЛЛЕЛЬНОЕ СОПРОТИВЛЕНИЕ ЦЕПИ

Общее сопротивление может быть рассчитывается по закону Ома, если известны напряжение и полный ток.

Общее сопротивление всегда меньше наименьшего значения сопротивления.

Метод равных значений

Для параллельных сопротивлений в какие все резисторы имеют одинаковое значение, сопротивление можно рассчитать по формуле разделив номинал одного из резисторов на количество резисторов.

Взаимный метод

Для параллельных сопротивлений в какие все резисторы имеют одинаковое значение, сопротивление можно рассчитать по формуле разделив номинал одного из резисторов на количество резисторов.

1 / R T = 1 / R 1 + 1 / R 2 + 1 / R N

R EQ = 1 / (1 / R 1 + 1 / R 2 + … + 1 / R N )

Метод произведения на сумму

Для расчета сопротивления двух резисторов параллельно можно использовать эту формулу:

рэндов EQ = ( рэндов * рэндов 2 ) / ( 1 рэндов + рэндов 2 )

Правило приближения 10 к 1

Если подключены два резистора параллельно, и один резистор в 10 или более раз больше по стоимости, чем другой резистор, резистор большего номинала можно не учитывать.

ПРОВОДИМОСТЬ

Общая проводимость равна сумме проводимости каждого компонента.

ПИТАНИЕ В ПАРАЛЛЕЛЬНЫХ ЦЕПЯХ

Суммарная мощность равна сумма мощности каждого компонента. (Это то же самое, что и с серией схемы).

Правила для параллельных цепей постоянного тока

  1. Такое же напряжение существует через каждую ветвь параллельной цепи и равно напряжению источника.
  2. Ток через параллельная ветвь обратно пропорциональна величине сопротивления ветвь.
  3. Полный ток параллельная цепь равна сумме отдельных токов ответвления цепь
  4. Эквивалентное сопротивление параллельная цепь находится по общему уравнению Req = 1 / (1 / R1 + 1 / R2 + 1 / р-н)
  5. Общая мощность, потребляемая в параллельная схема равна сумме мощности, потребляемой индивидуумом резисторы.

ПАРАЛЛЕЛЬНЫЙ АНАЛИЗ ЦЕПЕЙ

  1. Соблюдайте принципиальную схему внимательно или при необходимости нарисуйте.
  2. Обратите внимание на указанные значения и значения, которые необходимо найти.
  3. Выберите подходящий уравнения, которые будут использоваться при решении для неизвестных величин на основе известных количества.
  4. Подставьте известные значения в выбранном вами уравнении и найдите неизвестное значение.

ПАРАЛЛЕЛЬНОЕ УСТРАНЕНИЕ НЕПОЛАДОК ЦЕПИ

Когда в ветви параллельной сети сопротивление ветви увеличивается и общее сопротивление цепи увеличивается. Это вызывает уменьшение общего Текущий.

Короткое замыкание всегда приводит в отсутствии тока, протекающего через другие ветви цепи.

19.3 Параллельные схемы — Физика

Задачи обучения секции

К концу этого раздела вы сможете делать следующее:

  • Расшифровка принципиальных схем с параллельными резисторами
  • Расчет эквивалентного сопротивления комбинаций резисторов, содержащих последовательные и параллельные резисторы

Поддержка учителей

Поддержка учителей

Цели обучения в этом разделе помогут вашим ученикам овладеть следующими стандартами:

  • (5) Научные концепции.Студент знает природу сил в физическом мире. Ожидается, что студент:
    • (Ж) дизайн. построить и рассчитать в терминах сквозного тока, разности потенциалов, сопротивления и мощности, используемой элементами электрической цепи, соединенными как в последовательной, так и в параллельной комбинациях.

Кроме того, лабораторное руководство по физике средней школы рассматривает содержание этого раздела лаборатории под названием «Схемы», а также следующие стандарты:

  • (5) Учащийся знает природу сил в физическом мире.Ожидается, что студент:
    • (F) проектировать, конструировать и рассчитывать в терминах сквозного тока, разности потенциалов, сопротивления и мощности, используемой элементами электрической цепи, соединенными как в последовательной, так и в параллельной комбинациях.

Раздел Основные термины

Параллельные резисторы

В предыдущем разделе мы узнали, что последовательно включенные резисторы — это резисторы, которые подключаются друг за другом. Если вместо этого мы объединим резисторы, подключив их рядом друг с другом, как показано на рисунке 19.16, то говорят, что резисторы подключены параллельно . Резисторы включены параллельно, когда оба конца каждого резистора соединены непосредственно вместе.

Обратите внимание, что верхние части резисторов подключены к одному проводу, поэтому напряжение на верхушках каждого резистора одинаково. Точно так же все нижние части резисторов подключены к одному и тому же проводу, поэтому напряжение на нижней стороне каждого резистора одинаково. Это означает, что падение напряжения на каждом резисторе одинаковое.В этом случае падение напряжения соответствует номинальному напряжению батареи В, , потому что верхний и нижний провода подключаются к положительной и отрицательной клеммам батареи соответственно.

Хотя падение напряжения на каждом резисторе одинаково, мы не можем сказать то же самое для тока, протекающего через каждый резистор. Таким образом, I1, I2 и I3I1, I2 и I3 не обязательно одинаковы, потому что резисторы R1, R2 и R3R1, R2 и R3 не обязательно имеют одинаковое сопротивление.

Обратите внимание, что три резистора на рисунке 19.16 обеспечивают три разных пути, по которым может течь ток. Это означает, что эквивалентное сопротивление для этих трех резисторов должно быть меньше наименьшего из трех резисторов. Чтобы понять это, представьте, что наименьший резистор — это единственный путь, по которому может течь ток. Теперь добавьте альтернативные пути, подключив другие резисторы параллельно. Поскольку у тока больше путей, общее сопротивление (то есть эквивалентное сопротивление) будет уменьшаться. Следовательно, эквивалентное сопротивление должно быть меньше наименьшего сопротивления параллельных резисторов.

Рисунок 19.16 На левой принципиальной схеме показаны три резистора, включенных параллельно. Напряжение В батареи приложено ко всем трем резисторам. Токи, протекающие через каждую ветвь, не обязательно равны. На правой принципиальной схеме показано эквивалентное сопротивление, заменяющее три параллельных резистора.

Поддержка учителя

Поддержка учителя

Подчеркните, что напряжение на каждом параллельном резисторе одинаковое, а ток может отличаться; то же самое будет, если пара резисторов будет иметь одинаковое сопротивление.

Чтобы найти эквивалентное сопротивление RequivRequiv трех резисторов R1, R2 и R3R1, R2 и R3, мы применим закон Ома к каждому резистору. Поскольку падение напряжения на каждом резисторе составляет В , мы получаем

V = I1R1, V = I2R2, V = I3R3V = I1R1, V = I2R2, V = I3R3

19,21

или

I1 = VR1, I2 = VR2, I3 = VR3. I1 = VR1, I2 = VR2, I3 = VR3.

19,22

Из сохранения заряда мы также знаем, что три тока I1, I2 и I3I1, I2 и I3 должны складываться, чтобы получить ток I , который проходит через батарею.Если бы это было не так, ток должен был бы таинственным образом создаваться или разрушаться где-то в цепи, что физически невозможно. Таким образом, имеем

Я = I1 + I2 + I3. I = I1 + I2 + I3.

19,23

Вставка выражений для I1, I2 и I3I1, I2 и I3 в это уравнение дает

I = VR1 + VR2 + VR3 = V (1R1 + 1R2 + 1R3) I = VR1 + VR2 + VR3 = V (1R1 + 1R2 + 1R3)

19,24

или

V = I (11 / R1 + 1 / R2 + 1 / R3). V = I (11 / R1 + 1 / R2 + 1 / R3).

19,25

Эта формула представляет собой закон Ома, где множитель в скобках является эквивалентным сопротивлением.

V = I (11 / R1 + 1 / R2 + 1 / R3) = IRэкв. V = I (11 / R1 + 1 / R2 + 1 / R3) = IRequiv.

19,26

Таким образом, эквивалентное сопротивление для трех параллельно включенных резисторов составляет

Требование = 11 / R1 + 1 / R2 + 1 / R3. Требование = 11 / R1 + 1 / R2 + 1 / R3.

19,27

Та же самая логика работает для любого количества резисторов, включенных параллельно, поэтому общая форма уравнения, которая дает эквивалентное сопротивление резисторов Н , подключенных параллельно, составляет

Requiv = 11 / R1 + 1 / R2 + ⋯ + 1 / RN.Requiv = 11 / R1 + 1 / R2 + ⋯ + 1 / RN.

19,28

Рабочий пример

Найдите ток через параллельные резисторы

Три схемы ниже эквивалентны.Если номинальное напряжение батареи Vbattery = 3VVbattery = 3V, каково эквивалентное сопротивление цепи и какой ток проходит через цепь?

Стратегия

Три резистора подключены параллельно, и падение напряжения на них составляет В АКБ . Таким образом, мы можем применить уравнение для эквивалентного сопротивления резисторов, включенных параллельно, которое принимает вид

Требование = 11 / R1 + 1 / R2 + 1 / R3. Требование = 11 / R1 + 1 / R2 + 1 / R3.

19,29

Схема с эквивалентным сопротивлением показана ниже.Как только мы узнаем эквивалентное сопротивление, мы можем использовать закон Ома, чтобы найти ток в цепи.

Решение

Вставка заданных значений сопротивления в уравнение эквивалентного сопротивления дает

Требуемое = 11 / R1 + 1 / R2 + 1 / R3 = 11/10 Ом + 1/25 Ом + 1/15 Ом = 4,84 Ом Требуемое = 11 / R1 + 1 / R2 + 1 / R3 = 11/10 Ом + 1/25 Ом + 1/15 Ом = 4,84 Ом.

19,30

Таким образом, ток в цепи равен

V = IRI = VR = 3 В 4,84 Ом = 0,62 А. V = IRI = VR = 3 В 4,84 Ом = 0,62 А.

19,31

Обсуждение

Хотя 0.62 А протекает через всю цепь, обратите внимание, что этот ток не проходит через каждый резистор. Однако, поскольку электрический заряд должен сохраняться в цепи, сумма токов, проходящих через каждую ветвь цепи, должна составлять ток, проходящий через батарею. Другими словами, мы не можем волшебным образом создать заряд где-нибудь в цепи и добавить этот новый заряд к току. Давайте проверим это рассуждение, используя закон Ома, чтобы найти ток через каждый резистор.

I1 = VR1 = 3 В 10 Ом = 0.30AI2 = VR2 = 3V25Ω = 0.12AI3 = VR3 = 3V15Ω = 0.20AI1 = VR1 = 3V10Ω = 0.30AI2 = VR2 = 3V25Ω = 0.12AI3 = VR3 = 3V15Ω = 0.20A

19.32

Как и ожидалось, эти токи в сумме дают 0,62 A, который представляет собой обнаруженный полный ток, проходящий через эквивалентный резистор. Также обратите внимание, что наименьший резистор имеет наибольший ток, протекающий через него, и наоборот.

Рабочий пример

Рассуждения с параллельными резисторами

Без каких-либо расчетов, каково эквивалентное сопротивление трех одинаковых резисторов R , включенных параллельно?

Стратегия

Три идентичных резистора R , включенных параллельно, образуют три идентичных пути, по которым может течь ток.Таким образом, току протекать через эти резисторы в три раза легче, чем через один из них.

Решение

Если протекать через три одинаковых резистора R в три раза легче, чем через один из них, эквивалентное сопротивление должно быть втрое меньше: R /3.

Обсуждение

Давайте проверим наши рассуждения, вычислив эквивалентное сопротивление трех одинаковых резисторов R , включенных параллельно.Уравнение эквивалентного сопротивления параллельно включенных резисторов дает

Требуется = 11 / R + 1 / R + 1 / R = 13 / R = R3. Требуется = 11 / R + 1 / R + 1 / R = 13 / R = R3.

19,33

Таким образом, наши рассуждения были правильными. В общем, когда доступно больше путей, по которым может течь ток, эквивалентное сопротивление уменьшается. Например, если у нас есть идентичные резисторы R, параллельно, эквивалентное сопротивление будет R /10.

Практические задачи

10.

Три резистора 10, 20 и 30 Ом подключены параллельно.Какое эквивалентное сопротивление?

  1. Эквивалентное сопротивление 5,5 Ом
  2. Эквивалентное сопротивление 60 Ом
  3. Эквивалентное сопротивление 6 × 103 Ом
  4. Эквивалентное сопротивление 6 × 104 Ом
11.

Если падение напряжения на 5 \ text {-V} происходит на R_1, а R_1 подключен параллельно к R_2, каково падение напряжения на R_2?

  1. Падение напряжения на 0 \, \ text {V}.
  2. Падение напряжения на 2.5 \, \ text {V}.
  3. Падение напряжения на нем 5 \, \ text {V}.
  4. Падение напряжения на нем 10 \, \ text {V}.

Резисторы параллельно и последовательно

Более сложные соединения резисторов иногда представляют собой просто комбинации последовательного и параллельного. Комбинации последовательных и параллельных резисторов могут быть уменьшены до одного эквивалентного сопротивления с помощью техники, показанной на рисунке 19.17. Различные части идентифицируются как последовательные или параллельные, сокращаются до их эквивалентов и далее уменьшаются до тех пор, пока не останется единственное сопротивление.Процесс занимает больше времени, чем труден.

Рисунок 19.17 Эта комбинация из семи резисторов имеет как последовательные, так и параллельные части. Каждое из них идентифицируется и приводится к эквивалентному сопротивлению, а затем уменьшается до тех пор, пока не будет достигнуто единичное эквивалентное сопротивление.

Поддержка учителей

Поддержка учителей
Предупреждение о неправильном представлении

У студентов может возникнуть соблазн немедленно сложить R1R1 и R7R7 вместе, потому что они кажутся последовательными.Обратите внимание, что R1R1 включен последовательно с параллельной комбинацией R7R7 и всех резисторов справа от R7R7. Таким образом, перед добавлением к R1R1 необходимо найти эквивалентное сопротивление этой параллельной комбинации.

Поддержка учителя

Поддержка учителя

Рассмотрите этот пример вместе с учащимися, чтобы убедиться, что они понимают сокращение, которое происходит на каждом этапе.

Давайте проработаем четыре шага на рисунке 19.17, чтобы уменьшить семь резисторов до одного эквивалентного резистора.Чтобы не отвлекать внимание от алгебры, предположим, что каждый резистор имеет сопротивление 10 Ом. На шаге 1 мы уменьшаем два набора параллельных резисторов, обведенных синей пунктирной петлей. Верхний набор имеет три резистора, включенных параллельно, и будет уменьшен до одного эквивалентного резистора RP1RP1. Нижний набор имеет два резистора, включенных параллельно, и будет уменьшен до одного эквивалентного резистора RP2RP2. Используя уравнение эквивалентного сопротивления параллельно включенных резисторов, получаем

RP1 = 11 / R2 + 1 / R3 + 1 / R4 = 11 / 10Ω + 1 / 10Ω + 1 / 10Ω = 103Ω RP2 = 11 / R5 + 1 / R6 = 11 / 10Ω + 1 / 10Ω = 5Ω.RP1 = 11 / R2 + 1 / R3 + 1 / R4 = 11 / 10Ω + 1 / 10Ω + 1 / 10Ω = 103Ω RP2 = 11 / R5 + 1 / R6 = 11 / 10Ω + 1 / 10Ω = 5Ω.

19,34

Эти два эквивалентных сопротивления обведены красной пунктирной петлей после шага 1. Они включены последовательно, поэтому мы можем использовать уравнение для эквивалентного сопротивления последовательно включенных резисторов, чтобы уменьшить их до одного эквивалентного сопротивления RS1RS1. Это делается на шаге 2, в результате получается

RS1 = RP1 + RP2 = 103 Ом + 5 Ом = 253 Ом. RS1 = RP1 + RP2 = 103 Ом + 5 Ом = 253 Ом.

19,35

Эквивалентный резистор RS1RS1 появляется в зеленой пунктирной петле после шага 2.Этот резистор включен параллельно резистору R7R7, поэтому пара может быть заменена эквивалентным резистором RP3RP3, который равен

. RP3 = 11 / RS1 + 1 / R7 = 13 / 25Ω + 1 / 10Ω = 5011Ω. RP3 = 11 / RS1 + 1 / R7 = 13 / 25Ω + 1 / 10Ω = 5011Ω.

19,36

Это делается на шаге 3. Резистор RP3RP3 включен последовательно с резистором R1R1, как показано в фиолетовой пунктирной петле после шага 3. Эти два резистора объединяются на последнем шаге, чтобы сформировать окончательный эквивалент резистора RequivRequiv, что составляет

Requiv = R1 + RP3 = 10 Ом + 5011 Ом = 16011 Ом.Requiv = R1 + RP3 = 10 Ом + 5011 Ом = 16011 Ом.

19,37

Таким образом, вся комбинация из семи резисторов может быть заменена одним резистором с сопротивлением около 14,5 Ом.

Это была большая работа, и вы можете спросить, зачем мы ее делаем. Для нас важно знать эквивалентное сопротивление всей цепи, чтобы мы могли рассчитать ток, протекающий по цепи. Закон Ома говорит нам, что ток, протекающий по цепи, зависит от сопротивления цепи и напряжения в цепи.Но чтобы узнать силу тока, мы должны сначала узнать эквивалентное сопротивление.

Вот общий подход к поиску эквивалентного резистора для любой произвольной комбинации резисторов:

  1. Определите группу резисторов, которые включены только параллельно или только последовательно.
  2. Для резисторов, включенных последовательно, используйте уравнение для эквивалентного сопротивления резисторов, подключенных последовательно, чтобы уменьшить их до единственного эквивалентного сопротивления. Для резисторов, подключенных параллельно, используйте уравнение для эквивалентного сопротивления резисторов, подключенных параллельно, чтобы уменьшить их до одного эквивалентного сопротивления.
  3. Нарисуйте новую принципиальную схему с резисторами из шага 1, замененными их эквивалентными резисторами.
  4. Если в цепи осталось более одного резистора, вернитесь к шагу 1 и повторите. В противном случае все готово.

Развлечение в физике

Робот

Роботы захватывают наше коллективное воображение уже более века. Теперь мечта о создании умных машин для выполнения нашей грязной работы, а иногда и просто для того, чтобы составить нам компанию, становится реальностью. Робототехника стала огромной областью исследований и разработок, причем некоторые технологии уже коммерциализированы.Подумайте, например, о небольших автономных пылесосах.

На рис. 19.18 показаны лишь некоторые из множества различных форм, которые могут принимать роботы. Самые продвинутые роботы-гуманоиды могут ходить, наливать напитки и даже танцевать (хотя и не очень изящно). Другие роботы вдохновлены биологией, например, собачий робот , показанный на средней фотографии рис. 19.18. Этот робот может нести сотни фунтов груза по пересеченной местности. Фотография справа на рис. 19.18 показывает внутреннюю работу блока M, , разработанного Массачусетским технологическим институтом.Эти простые на вид блоки содержат инерционные колеса и электромагниты, которые позволяют им вращаться, переворачиваться в воздух и соединяться друг с другом в самых разных формах. Обмениваясь беспроводной связью между собой, они самостоятельно собираются в различные формы, такие как столы, стулья и, возможно, когда-нибудь даже здания.

Все роботы включают в себя огромное количество физики и инженерии. Простое наливание напитка было освоено роботами совсем недавно, после более 30 лет исследований и разработок! Баланс и выбор времени, которые мы, люди, считаем само собой разумеющимися, на самом деле являются очень сложной задачей, требующей отличного баланса, ловкости и обратной связи.Чтобы справиться с этим, требуются датчики для обнаружения баланса, вычислительная мощность для анализа данных и передачи соответствующих компенсирующих действий, а также соединения и приводы для выполнения требуемых действий.

Помимо определения силы тяжести или ускорения, роботы могут содержать несколько различных датчиков для обнаружения света, звука, температуры, запаха, вкуса и т. Д. Все эти устройства основаны на физических принципах, которые вы изучаете в этом тексте. Например, оптика, используемая для машинного зрения, аналогична оптике, используемой в ваших цифровых камерах: пиксельные полупроводниковые детекторы, в которых свет преобразуется в электрические сигналы.Для определения температуры можно использовать простые термисторы, которые представляют собой резисторы, сопротивление которых изменяется в зависимости от температуры.

Строить робота сегодня намного проще, чем несколько лет назад. Многие компании сейчас предлагают комплекты для сборки роботов. Они варьируются по сложности, от чего-то подходящего для младших школьников до чего-то, что бросает вызов лучшим профессиональным инженерам. Если интересно, вы можете легко найти их в Интернете и начать создавать своего собственного робота уже сегодня.

Рис. 19.18 Роботы бывают разных форм и размеров, от классического гуманоида типа до собачьих роботов и небольших кубиков, которые самостоятельно собираются для выполнения различных задач.

Watch Physics

Параллельные резисторы

В этом видео лектор обсуждает простую схему с батареей и парой резисторов, включенных параллельно. Он подчеркивает, что электроны текут в направлении, противоположном положительному току, а также использует тот факт, что напряжение одинаково во всех точках идеального провода.Вывод очень похож на то, что делается в этом тексте, но лектор хорошо его проходит, объясняя каждый шаг.

Проверка захвата

Верно или неверно. На принципиальной схеме мы можем предположить, что напряжение одинаково в каждой точке данного провода.

  1. ложь
  2. правда

Watch Physics

Последовательные и параллельные резисторы

В этом видео показано, как рассчитать эквивалентное сопротивление цепи, содержащей резисторы, включенные параллельно и последовательно.Лектор использует тот же подход, что и описанный выше, для поиска эквивалентного сопротивления.

Проверка захвата

Представьте, что N одинаковых резисторов соединены параллельно. Каждый резистор имеет сопротивление R . Какое эквивалентное сопротивление для этой группы параллельных резисторов?

  1. Эквивалентное сопротивление ( R ) N .
  2. Эквивалентное сопротивление — NR.
  3. Эквивалентное сопротивление RN.РН.
  4. Эквивалентное сопротивление — NR.NR.

Рабочий пример

Найдите ток через цепь сложного резистора

Батарея в цепи ниже имеет номинальное напряжение 10 В. Какой ток течет по цепи и в каком направлении?

Стратегия

Примените стратегию поиска эквивалентного сопротивления, чтобы заменить все резисторы одним эквивалентным сопротивлением, затем используйте закон Ома, чтобы найти ток через эквивалентный резистор.

Решение

Комбинацию резисторов R4R4 и R5R5 можно уменьшить до эквивалентного сопротивления

RP1 = 11 / R4 + 1 / R5 = 11/45 Ом + 1/60 Ом = 25,71 Ом R. RP1 = 11 / R4 + 1 / R5 = 11/45 Ом + 1/60 Ом = 25,71 Ом R.

19,38

Замена R4R4 и R5R5 с этим эквивалентным сопротивлением дает схему ниже.

Теперь мы заменим два верхних резистора R2R2 и R3R3 эквивалентным резистором RS1RS1 и два нижних резистора RP1RP1 и R6R6 их эквивалентным резистором RS2RS2.Эти резисторы включены последовательно, поэтому мы складываем их вместе, чтобы найти эквивалентное сопротивление.

RS1 = R2 + R3 = 50 Ом + 30 Ом = 80 Ом RS2 = RP1 + R6 = 25,71 Ом + 20 Ом = 45,71 Ом RS1 = R2 + R3 = 50 Ом + 30 Ом = 80 Ом RS2 = RP1 + R6 = 25,71 Ом + 20 Ом = 45,71 Ом

19,39

Замена соответствующих резисторов на их эквивалентные резисторы дает схему, приведенную ниже.

Теперь замените два резистора RS1 и RS2RS1 и RS2, которые включены параллельно, на их эквивалентные резисторы RP2RP2. Сопротивление RP2RP2

RP2 = 11 / RS1 + 1 / RS2 = 11/80 Ом + 1/45.71 Ом = 29,09 Ом. RP2 = 11 / RS1 + 1 / RS2 = 11/80 Ом + 1 / 45,71 Ом = 29,09 Ом.

19,40

Обновление принципиальной схемы путем замены RS1 и RS2 RS1 и RS2 с этим эквивалентным сопротивлением дает схему ниже.

Наконец, мы объединяем резисторы R1 и RP2R1 и RP2, которые включены последовательно. Эквивалентное сопротивление: RS3 = R1 + RP2 = 75 Ом + 29,09 Ом = 104,09 Ом. RS3 = R1 + RP2 = 75 Ом + 29,09 Ом = 104,09 Ом. Окончательная схема показана ниже.

Теперь мы используем закон Ома, чтобы найти ток в цепи.

V = IRS3I = VRS3 = 10V104.09Ω = 0,096AV = IRS3I = VRS3 = 10V 104,09Ω = 0,096A

19,41

Ток идет от положительной клеммы батареи к отрицательной клемме батареи, поэтому в этой цепи он течет по часовой стрелке.

Обсуждение

Этот расчет может показаться довольно длинным, но, немного попрактиковавшись, вы сможете объединить несколько этапов. Также обратите внимание, что при вычислении учитывались лишние значащие цифры. Только в конце окончательный результат был округлен до двух значащих цифр.

Рабочий пример

Странные электрические схемы

Иногда вы можете встретить принципиальные схемы, которые нарисованы не очень аккуратно, например, схему, показанную ниже.Эта принципиальная схема больше похожа на то, как настоящая схема может появиться на лабораторном столе. Каково эквивалентное сопротивление резисторов на этой диаграмме, если каждый резистор имеет сопротивление 10 Ом и номинальное напряжение батареи 12 В.

Стратегия

Давайте перерисуем эту принципиальную схему, чтобы было понятнее. Затем мы применим описанную выше стратегию для расчета эквивалентного сопротивления.

Решение

Чтобы перерисовать диаграмму, рассмотрите рисунок ниже.В верхней схеме синие резисторы образуют путь от положительной клеммы батареи к отрицательной. Параллельно с этой цепью расположены красные резисторы, которые составляют еще один путь от положительной к отрицательной клемме батареи. Синий и красный пути показаны более четко на нижней принципиальной схеме. Обратите внимание, что как на верхней, так и на нижней принципиальной схеме синий и красный пути соединяют положительную клемму аккумулятора с отрицательной клеммой аккумулятора.

Теперь легче увидеть, что R1 и R2R1 и R2 подключены параллельно, а параллельная комбинация находится последовательно с R4R4. Эта комбинация, в свою очередь, параллельна последовательной комбинации R3 и R5R3 и R5. Сначала мы вычисляем синюю ветвь, которая содержит R1, R2 и R4R1, R2 и R4. Эквивалентное сопротивление

Rblue = 11 / R1 + 1 / R2 + R4 = 11 / 10Ω + 1 / 10Ω + 10Ω = 15Ω. Rblue = 11 / R1 + 1 / R2 + R4 = 11 / 10Ω + 1 / 10Ω + 10Ω = 15Ω.

19,42

где мы показываем вклад параллельной комбинации резисторов и последовательной комбинации резисторов.Теперь рассчитаем эквивалентное сопротивление красной ветви, которое составляет

. Rred = R3 + R5 = 10 Ом + 10 Ом = 20 Ом. Rred = R3 + R5 = 10 Ом + 10 Ом = 20 Ом.

19,43

Если вставить эти эквивалентные резисторы в схему, получится схема, показанная ниже.

Эти два резистора включены параллельно, поэтому их можно заменить одним эквивалентным резистором с сопротивлением

Requiv = 11 / Rblue + 1 / Rred = 11 / 15Ω + 1 / 20Ω = 8,6Ω. Requiv = 11 / Rblue + 1 / Rred = 11 / 15Ω + 1 / 20Ω = 8.6Ω.

19,44

Окончательная эквивалентная схема показана ниже.

Обсуждение

Найти эквивалентное сопротивление было проще благодаря понятной принципиальной схеме. Вот почему мы стараемся делать четкие принципиальные схемы, где резисторы, включенные параллельно, выстроены параллельно друг другу и в одном и том же горизонтальном положении на схеме.

Теперь мы можем использовать закон Ома, чтобы найти ток, проходящий через каждую ветвь этой цепи. Рассмотрим принципиальную схему с RblueRblue и RredRred. Напряжение на каждой из этих ветвей составляет 12 В (т.е.е. номинальное напряжение аккумулятора). Ток в синей ветке —

Iblue = VRblue = 12В15Ω = 0,80A Голубой = VRblue = 12V15Ω = 0,80A.

19,45

Ток через красную ветвь

Ired = VRred = 12 В20 Ом = 0,60 А. Ired = VRred = 12 В 20 Ом = 0,60 А.

19,46

Ток, протекающий через батарею, должен быть суммой этих двух токов (вы понимаете, почему?), Или 1,4 А.

Практические задачи

12.

Какова формула эквивалентного сопротивления двух параллельных резисторов с сопротивлением R 1 и R 2 ?

  1. Эквивалентное сопротивление двух параллельных резисторов Reqv = R1 + R2 Reqv = R1 + R2
  2. Эквивалентное сопротивление двух параллельных резисторов Reqv = R1 × R2Reqv = R1 × R2
  3. Эквивалентное сопротивление двух параллельных резисторов Reqv = R1-R2Reqv = R1-R2
  4. Эквивалентное сопротивление двух параллельных резисторов Reqv = 11 / R1 + 1 / R2Reqv = 11 / R1 + 1 / R2
13.

Рисунок 19.19

Какое эквивалентное сопротивление для двух показанных резисторов?

  1. Эквивалентное сопротивление 20 Ом
  2. Эквивалентное сопротивление 21 Ом
  3. Эквивалентное сопротивление 90 Ом
  4. Эквивалентное сопротивление 1,925 Ом

Проверьте свое понимание

14.

Падение напряжения на параллельных резисторах ________.

  1. то же для всех резисторов
  2. больше для больших резисторов
  3. На
  4. меньше для резисторов большего размера
  5. больше для меньших резисторов
15.

Рассмотрим схему из параллельных резисторов. Наименьший резистор — 25 Ом. Каков верхний предел эквивалентного сопротивления?

  1. Верхний предел эквивалентного сопротивления составляет 2,5 Ом.
  2. Верхний предел эквивалентного сопротивления составляет 25 Ом.
  3. Верхний предел эквивалентного сопротивления составляет 100 Ом.
  4. Нет верхнего предела.

EET 1150 Блок 8: Параллельные цепи

EET 1150 Блок 8: Параллельные цепи

После последовательных цепей, которые вы изучали на Разделе 7, следующий простейший Тип схемы — параллельная схема , которую мы рассмотрим далее.Опять же, мы ограничим наше внимание параллельными резистивными цепями, которые помимо источников напряжения содержат только резисторы.

Раздел 7 Обзор
  • Этот блок будет основан на материале, который вы изучили в блоке. 7. Итак, давайте начнем с самопроверки, чтобы проверить, что вы узнал в том блоке.

Параллельное соединение
  • Вспомните из блока 2, что два компонента соединены последовательно, если они связаны друг с другом ровно в одной точке, и если нет другой компонент подключен к этой точке.
    • Пример: В схеме, показанной ниже, R2 и R3 соединены в последовательно, а R3 и R4 также подключены последовательно.
  • С другой стороны, два компонента соединены параллельно , если они связаны друг с другом в двух точках.
    • Пример: В схеме, показанной выше, источник напряжения и R1 соединены параллельно.
Компоненты, соединенные параллельно, имеют одинаковое напряжение
  • Самым важным свойством параллельных подключений является то, что напряжение одинаково на всех параллельно подключенных компонентах .
  • Пример: В схеме, показанной ниже, источник напряжения и R1 подключены параллельно, поэтому мы знаем, что напряжение на источнике должно быть таким же, как напряжение на R1. Но R1 и R3 не подключены параллельно, поэтому мы не можем предполагать, что напряжение на R1 равно к напряжению на R3.
Параллельная цепь
  • Параллельная цепь — та, в которой все компоненты соединены параллельно друг с другом.Вот пример:
Напряжение в параллельной цепи
  • Как отмечалось выше, параллельно соединенные компоненты имеют одинаковое напряжение. Следовательно, все компоненты в параллельной цепи должны иметь одинаковое напряжение между собой .

Действующий закон Кирхгофа
  • Текущий закон Кирхгофа гласит, что сумма всех входящих токов точка равна сумме всех токов, выходящих из этой точки .
  • Мы используем аббревиатуру KCL как сокращенное обозначение ссылаясь на действующий закон Кирхгофа.
KCL в параллельных резистивных цепях
  • При приложении к параллельной резистивной цепи с единичным напряжением источник, KCL говорит, что если вы добавите токи через все резисторы, сумма должна быть равна значению полного тока, выходящего из источник напряжения.
  • Вот почему. Рассмотрим параллельную схему, показанную ниже, которая показывает направления токов, вытекающих из источника и через резисторы.
    • Глядя на точку с надписью A , мы видим, что один ток, текущий в эту точку, а именно I T , полный ток цепи.
    • Есть два тока, выходящие из точки A , а именно I 1 и I 2 .
    • Поскольку KCL сообщает нам, что сумма токов, входящих в точку равна сумме выходящих из этой точки токов, мы можем скажи это

      I T = I 1 + I 2

    • Применяя те же рассуждения к параллельной цепи с больше резисторов, мы всегда будем приходить к одному и тому же выводу: сумма тока резистора равен току, текущему из источник напряжения.
KCL в других цепях
  • KCL — это общее правило, которое применяется во всех цепях , не только параллельные цепи и не только цепи, содержащие резисторы. В более сложных схемах может быть сложно правильно применить KCL, но при правильном применении это мощный инструмент. Мы увидим это в более поздние единицы.

Общее параллельное сопротивление
Особый случай № 1: два параллельных резистора
Особый случай № 2: Параллельные резисторы То же значение
  • Другой особый случай возникает, когда у вас есть два или более резистора в параллельно, и все резисторы имеют одинаковое индивидуальное сопротивление.(Например, возможно, у вас есть три резистора по 100 Ом параллельно друг с другом.) Опять же, мы могли бы использовать взаимная формула в таких случаях, или мы могли бы использовать следующее правило особого случая:
  • Для параллельных резисторов n , каждый из которых имеет сопротивление R ,

    R T = R ÷ n

  • На словах, если у вас подключено несколько резисторов одинакового номинала параллельно общее сопротивление равно индивидуальному сопротивлению значение, деленное на количество резисторов.
  • По понятным причинам это правило часто называют преувеличением ценности . Правило .
  • У нас есть еще один особый случай, но этот анимированный В уроке кратко излагаются случаи, которые мы рассмотрели до сих пор.
Особый случай № 3: резистор, подключенный параллельно резистору гораздо меньшего размера
Эффект добавления дополнительных ветвей к параллельной цепи
  • Если вы добавите еще один параллельный резистор в параллельную цепь, общее сопротивление уменьшается на .Это может быть сложно концепция для понимания учащимися, и следующий анимированный урок хорошо объясняет это.
  • Поскольку добавление еще одного параллельного резистора уменьшает общую сопротивление, это также увеличивает общее Текущий.
  • С практической точки зрения добавление слишком большого количества дополнительных параллельных ответвлений может привести к тому, что общий ток схемы станет настолько большим, что это вызывает проблемы, как показано в этом анимационном уроке.

Анализ параллельных резистивных цепей
  • Выше мы отметили, что все компоненты в параллельной цепи должны имеют одинаковое напряжение друг с другом.
  • Конечно, если мы знаем напряжение на любом резисторе, мы можем использовать Закон Ома, чтобы найти ток через резистор.
  • Итак, теперь мы знаем достаточно, чтобы определять токи и падения напряжения. в параллельной резистивной цепи. Есть четыре основных шага.
    1. Напомним, что в параллельной цепи каждый компонент имеет одинаковые Напряжение.Следовательно, напряжение каждого резистора равно источнику Напряжение. В символах

      V S = V 1 = V 2 = … = В n

    2. Используйте закон Ома в форме I = V ÷ R to найти ток через каждый резистор. В символах

      I 1 = V 1 ÷ R 1
      I 2 = V 2 ÷ R 2
      и так далее для каждого из резисторов.

    3. Используйте обратную формулу (или одну из формул особого случая приведено выше), чтобы найти полное сопротивление цепи:

      R T = 1 ÷ (1 ÷ R 1 + 1 ÷ R 2 +… + 1 ÷ R n )

    4. Используйте один из следующих методов, чтобы найти общую Текущий:
      • Либо сложить вместе все индивидуальные токи резистора:

        I T = I 1 + I 2 + … + I n

      • Или применить закон Ома в форме I = В ÷ R для всю схему.Проще говоря, общий ток, производимый напряжение источника равно напряжению источника, деленному на полное сопротивление. В символах

        I T = V S ÷ R T


Источники напряжения подключены параллельно?
  • Как правило, не следует подключать разнозначные источники напряжения. параллельно друг другу.
    • Исключением являются аккумуляторные батареи.Для Например, предположим, что у вас есть «мертвый» автомобильный аккумулятор, напряжение близко к 0 В. Аккумулятор можно зарядить, подключив параллельно с исправным автомобильным аккумулятором или параллельно с аккумулятором зарядное устройство, вырабатывающее напряжение около 12 В.
  • Хотя мы, как правило, не подключаем разнозначных источников напряжения параллельно друг другу иногда подключаем равнозначных источников напряжения параллельно друг другу. Зачем нам это нужно? Следующий анимированный урок объясняет.
Источники тока, подключенные параллельно
  • Источник тока — это устройство, которое подает такой же ток к любому сопротивлению, подключенному к его клеммам.
  • Схематический символ источника тока показан ниже.
  • Источники тока можно подключать параллельно.
  • Источники тока, подключенные параллельно, могут быть заменены одиночными эквивалентный источник тока, который производит ток, равный алгебраическому сумма отдельных источников.

Делитель тока
  • Группа резисторов, соединенных параллельно, часто называется током . делитель , потому что общий ток, поступающий в группу, делится среди различных резисторов обратно пропорционально сопротивлению каждого.
    • Например, если у вас есть два резистора параллельно и один резистор на вдвое больше на , чем на другой (например, предположим, что один — 20 кОм, а другой — 10 кОм), тогда будет вдвое больше тока через меньший резистор, как и через больший.
    • С другой стороны, если один из параллельных резисторов равен , три умножить на больше, чем другой (скажем, 30 кОм и 10 кОм), то будет трижды как большой ток через меньший резистор, так как через больший.
  • Помните, что, как в этих примерах, если два резистора разных размеры параллельны друг другу, чем меньше резистор, тем больше ток, чем у большего резистора.
Правило делителя тока
  • Для параллельных ветвей ток I x через любая ветвь равна отношению общего параллельного сопротивления R T к сопротивление ветви R x , умноженное на общее ток I T ввод параллельная комбинация.В форме уравнения:

    I x = ( R T ÷ R x ) × I T

  • Здесь x — это переменная, представляющая номер резистора. что вас интересует.
    • Например, если вы пытаетесь найти ток через резистор R1 замените x на 1, чтобы получить:

      I 1 = ( R T ÷ R 1 ) × I T

    • С другой стороны, применяя правило к резистору R4 параллельно схема дает нам:

      I 4 = ( R T ÷ R 4 ) × I T

  • Обратите внимание, что R T в этой формуле означает эквивалент сопротивление (определяется обратной формулой), , а не сумма резисторы.
  • Правило делителя тока, приведенное выше, применяется всякий раз, когда у вас есть любой номер из резисторы параллельно. Есть еще одна форма делителя тока Правило, которое применяется только к случаям двух резисторов , включенных параллельно. Однако я обнаружил, что студенты обычно путаются, если постарайтесь запомнить эти частные формулы в дополнение к общим формула. Поэтому рекомендую просто запомнить общую формулу и используйте ее для всех случаев.

Питание в параллельной цепи
  • Чтобы найти мощность, рассеиваемую резистором в параллельной цепи, используйте любую из тех же формул, которые вы использовали для последовательных цепей:

    P = V × I

    P = I 2 × R

    P = V 2 ÷ R

  • Напомним, что в каждом из этих уравнений R — это сопротивление резистора. сопротивление, В — напряжение на резисторе, а I — ток через резистор.
Общая мощность цепи
  • Как и в случае последовательной резистивной цепи, есть два способы вычисления общей мощности, рассеиваемой в параллельной резистивной цепи. В любом случае вы получите один и тот же ответ:
    1. Либо найти мощность для каждого резистора, и затем добавьте эти полномочия:

      P T = P 1 + P 2 + P 3 + … + P n

    2. или примените любую из формул мощности к вся схема:

      P T = V S × I T

      P T = I T 2 × R T

      P T = V S 2 ÷ R T

      Это те же формулы мощности, что и выше, за исключением того, что теперь мы применяя их ко всей цепи, а не к одному резистору.

Устранение неисправностей параллельных цепей
  • Напомним из предыдущего раздела, что два наиболее распространенных типа схем проблемы: открывает (обрывает) и замыкает (пути точек подключения нулевого сопротивления, которые не должны быть подключены).
  • Напомним также, что ток через открытый равен нулю , и что напряжение на коротком замыкании равно нулю .
  • В параллельной цепи разомкнутый резистор не имеет влияние на ток, проходящий через другие резисторы.Но это увеличивает общее сопротивление цепи и, следовательно, уменьшает полный ток цепи.
  • А закороченный резистор в параллель схема в основном то же самое, что и подключение провода напрямую от положительной клеммы источника питания к ее отрицательной клемме. Это очень плохой поступок, и он приведет к общему количеству ток увеличить до чрезмерного значения.
    • Если цепь должным образом защищенный предохранителем или автоматическим выключателем, предохранитель перегорит или выключатель сработает, отключив весь ток в цепи.
    • Если цепь не защищена должным образом, чрезмерный ток вызывает короткое замыкание может привести к возгоранию или повреждению источника питания цепи.

Блок 8 Обзор
  • Этот электронный урок охватывает несколько важных тем, в том числе:
    • параллельные соединения и параллельные цепи
    • Действующий закон Кирхгофа (KCL)
    • общее сопротивление параллельно включенных резисторов
    • параллельно подключенных источника
    • линейка делителя тока
    • мощность в параллельных цепях
    • закорачивает и размыкает в параллельных цепях.
  • Чтобы завершить электронный урок, пройдите самопроверку, чтобы проверить свое понимание из этих тем.

Поздравляем! Вы завершили электронный урок по этому модулю.


Параллельные цепи постоянного тока и последовательно-параллельные цепи постоянного тока и переменный ток (AC) и напряжение

Параллельные цепи постоянного тока

Схема, в которой два или более электрических сопротивления или нагрузки подключены к одному источнику напряжения, называется параллельной цепью.Основное различие между последовательной цепью и параллельной цепью состоит в том, что для тока в параллельной цепи предусмотрено более одного пути. Каждый из этих параллельных путей называется ветвью. Минимальные требования для параллельной цепи следующие:

  • Источник питания
  • Проводники
  • Сопротивление или нагрузка для каждого пути тока
  • Два или более путей для протекания тока

На рисунке 12-96 показаны самые основные параллельная цепь.Ток, вытекающий из источника, делится в точке A на схеме и проходит через R 1 и R 2 . По мере того как в схему добавляется больше ветвей, предоставляется больше путей для тока источника.

Рисунок 12-96. Базовая параллельная схема.

Падения напряжения

Прежде всего, необходимо понять, что напряжение на любой ветви равно напряжению на всех других ветвях.

Общее параллельное сопротивление

Параллельная цепь состоит из двух или более резисторов, соединенных таким образом, чтобы позволить току проходить через все резисторы одновременно.Это устраняет необходимость прохождения тока через один резистор перед прохождением через следующий. При параллельном соединении резисторов общее сопротивление цепи уменьшается. Общее сопротивление параллельной комбинации всегда меньше, чем значение наименьшего резистора в цепи. В последовательной цепи ток должен проходить через резисторы по одному. Это дало сопротивление току, равное сумме всех резисторов. В параллельной цепи у тока есть несколько резисторов, через которые он может проходить, фактически уменьшая общее сопротивление цепи по отношению к любому сопротивлению одного резистора.

Величина тока, проходящего через каждый резистор, зависит от его индивидуального сопротивления. Полный ток цепи — это сумма токов во всех ветвях. Путем осмотра можно определить, что общий ток больше, чем у любой данной ветви. Используя закон Ома для расчета общего сопротивления на основе приложенного напряжения и общего тока, можно определить, что полное сопротивление меньше, чем у любой ветви.

Примером может служить схема с резистором 100 Ом и резистором 5 Ом; хотя точное значение должно быть рассчитано, все же можно сказать, что суммарное сопротивление между ними меньше 5 Ом.

Параллельные резисторы

Формула для общего параллельного сопротивления выглядит следующим образом:

Если взять обратное для обеих сторон, то общая формула для общего параллельного сопротивления будет:

Два параллельных резистора

Как правило, удобнее рассматривать одновременно только два резистора, потому что такая установка встречается в обычной практике. Любое количество резисторов в цепи можно разбить на пары. Поэтому наиболее распространенным методом является использование формулы для двух параллельных резисторов.Объединение членов в знаменателе и переписывание: Проще говоря, это означает, что полное сопротивление для двух резисторов, включенных параллельно, равно произведению обоих резисторов, деленному на сумму двух резисторов. По приведенной ниже формуле рассчитайте общее сопротивление.

Источник тока

Источник тока — это источник энергии, который обеспечивает постоянное значение тока для нагрузки, даже когда нагрузка изменяется по сопротивлению. Общее правило, о котором следует помнить, заключается в том, что полный ток, производимый источниками тока, подключенными параллельно, равен алгебраической сумме отдельных источников.

Текущий закон Кирхгофа

Текущий закон Кирхгофа можно сформулировать следующим образом: сумма токов в соединении или узле равна сумме токов, вытекающих из того же соединения или узла. Соединение можно определить как точку в цепи, где сходятся два или более тракта цепи. В случае параллельной цепи это точка в цепи, где соединяются отдельные ветви. См. Пример на Рисунке 12-97. Точки A и B представляют собой два соединения или узла в цепи с тремя резистивными ветвями между ними.

Рисунок 12-97. Текущий закон Кирхгофа.

Источник напряжения обеспечивает полный ток I T в узле A. В этот момент ток должен делиться, выходя из узла A в каждую из ветвей в соответствии с сопротивлением каждой ветви. Текущий закон Кирхгофа гласит, что входящий ток должен равняться выходящему. После прохождения тока через три ветви и обратно в узел B, общий ток I T , входящий в узел B и покидающий узел B, будет таким же, как тот, который поступил в узел A.Затем ток возвращается к источнику напряжения. На рисунке 12-98 показано, что отдельные токи ответвления равны:

Рисунок 12-98. Отдельные токи ответвления.

Полный ток, протекающий в узел A, равен сумме токов ответвления, что составляет: I T = I 1 + I 2 Общий ток, поступающий в узел B, также такой же.

На рисунке 12-99 показано, как определить неизвестный ток в одной ветви. Обратите внимание, что полный ток в соединении трех ветвей известен.Известны два тока ответвления. Изменив общую формулу, можно определить ток во второй ветви.

Рисунок 12-99. Определение неизвестной цепи в ветви 2.

Делители тока

Теперь легко увидеть, что параллельная цепь является делителем тока. Как показано на рисунке 12-96, через каждый из двух резисторов проходит ток.

Рисунок 12-96. Базовая параллельная схема.

Поскольку одинаковое напряжение приложено к обоим резисторам параллельно, токи ответвления обратно пропорциональны омическим значениям резисторов.Ветви с более высоким сопротивлением имеют меньший ток, чем ветви с меньшим сопротивлением. Например, если значение сопротивления R 2 вдвое выше, чем у R 1 , ток в R 2 будет вдвое меньше, чем у R 1 . Все это можно определить с помощью закона Ома. По закону Ома ток через любую из ветвей можно записать как: Источник напряжения появляется на каждом из параллельных резисторов, а R X представляет любой из резисторов. Напряжение источника равно суммарному току, умноженному на общее параллельное сопротивление.

Эта формула является общей формулой делителя тока. Ток через любую ветвь равен полному параллельному сопротивлению, деленному на сопротивление отдельной ветви, умноженному на общий ток.

Последовательно-параллельные цепи постоянного тока

Большинство схем, с которыми сталкивается техник, не будут простой последовательной или параллельной схемой. Цепи обычно представляют собой комбинацию обоих, известных как последовательно-параллельные цепи, которые представляют собой группы, состоящие из резисторов, включенных параллельно и последовательно.Пример схемы этого типа можно увидеть на Рисунке 12-100. Хотя сначала последовательно-параллельная схема может показаться сложной, к этим схемам можно применить те же правила, которые использовались для последовательной и параллельной схемы.

Рисунок 12-100. Последовательно-параллельные схемы.

Источник напряжения подает ток на резистор R 1 , затем на группу резисторов R 2 и R 3 , а затем на следующий резистор R 4 перед возвратом к источнику напряжения.Первым шагом в процессе упрощения является выделение группы R 2 и R 3 и признание того, что они представляют собой параллельную сеть, которая может быть уменьшена до эквивалентного резистора. Используя формулу для параллельного сопротивления,

R 2 и R 3 можно уменьшить до 23 R. На рисунке 12-101 показана эквивалентная схема с тремя последовательно включенными резисторами. Общее сопротивление цепи теперь можно просто определить, сложив значения резисторов R 1 , R 23 и R 4 .

Рисунок 12-101. Эквивалентная схема с тремя последовательно включенными резисторами.

Определение общего сопротивления

Более количественный пример определения общего сопротивления и тока в каждой ветви комбинированной схемы показан в следующем примере. [Рисунок 12-102] Рисунок 12-102. Определение общего сопротивления.

Первым шагом является определение тока на переходе А, ведущем в параллельную ветвь. Для определения I T необходимо знать полное сопротивление R T всей цепи.Общее сопротивление цепи определяется как:

Теперь определив общее сопротивление R T , можно определить общее сопротивление I T . Используя закон Ома:

Ток через параллельные ветви R 2 и R 3 можно определить с помощью правила делителя тока, описанного ранее в тексте. Напомним, что:

Теперь, используя Закон Кирхгофа, можно определить ток в ветви с R 3 .

Переменный ток (AC) и напряжение

Переменный ток (AC) в значительной степени заменил постоянный ток (DC) в коммерческих энергосистемах по ряду причин.Его можно передавать на большие расстояния легче и экономичнее, чем постоянный ток, поскольку переменное напряжение можно увеличивать или уменьшать с помощью трансформаторов.

Поскольку все больше и больше устройств работают от электричества в самолетах, требования к мощности таковы, что при использовании переменного тока можно реализовать ряд преимуществ. Можно сэкономить место и вес, поскольку устройства переменного тока, особенно двигатели, меньше и проще устройств постоянного тока. В большинстве двигателей переменного тока щетки не требуются, и проблемы с коммутацией на большой высоте устранены.Автоматические выключатели удовлетворительно работают под нагрузкой на больших высотах в системе переменного тока, в то время как дуга в системах постоянного тока настолько сильна, что автоматические выключатели необходимо часто заменять. Наконец, большинство самолетов, использующих 24-вольтовую систему постоянного тока, имеют специальное оборудование, которое требует определенного количества переменного тока с периодичностью 400 циклов.

Сравнение переменного и постоянного тока

Многие принципы, характеристики и эффекты переменного тока аналогичны таковым для постоянного тока. Точно так же есть ряд отличий.Постоянный ток постоянно течет только в одном направлении с постоянной полярностью. Он меняет величину только тогда, когда цепь разомкнута или замкнута, как показано в форме сигнала постоянного тока на Рисунке 12-103.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *