Как правильно измерить сопротивление изоляции обмоток электродвигателя. Какие нормы сопротивления изоляции существуют для разных типов двигателей. Какие приборы используются для измерения сопротивления изоляции. На что обратить внимание при проведении измерений.
Важность измерения сопротивления изоляции электродвигателя
Измерение сопротивления изоляции обмоток является одной из важнейших проверок состояния электродвигателя. Эта процедура позволяет:
- Оценить состояние изоляции обмоток
- Выявить повреждения или увлажнение изоляции на ранней стадии
- Определить пригодность двигателя к дальнейшей эксплуатации
- Предотвратить аварийные ситуации из-за пробоя изоляции
Регулярные измерения сопротивления изоляции позволяют своевременно выявить ухудшение ее свойств и принять необходимые меры по ремонту или замене двигателя.
Нормы сопротивления изоляции электродвигателей
Допустимые значения сопротивления изоляции зависят от номинального напряжения и мощности электродвигателя. Основные нормы:

- Для двигателей до 1000 В — не менее 0.5 МОм
- Для двигателей свыше 1000 В — не менее 1 МОм на 1 кВ номинального напряжения
- Минимально допустимое сопротивление — 1 МОм при температуре 10-30°C
Чем выше номинальное напряжение двигателя, тем выше должно быть сопротивление изоляции его обмоток.
Приборы для измерения сопротивления изоляции
Основным прибором для измерения сопротивления изоляции является мегаомметр. Используются следующие типы мегаомметров:
- Мегаомметры на 500 В — для двигателей до 500 В
- Мегаомметры на 1000 В — для двигателей 500-1000 В
- Мегаомметры на 2500 В — для высоковольтных двигателей свыше 1000 В
Также могут применяться цифровые мультиметры с функцией измерения высоких сопротивлений. Важно использовать прибор с подходящим испытательным напряжением.
Порядок измерения сопротивления изоляции электродвигателя
Основные этапы проведения измерений:
- Отключить двигатель от сети
- Отсоединить все внешние цепи от обмоток
- Очистить изоляторы от пыли и загрязнений
- Подключить мегаомметр согласно схеме
- Подать испытательное напряжение на 60 секунд
- Снять показания через 15 и 60 секунд
- Рассчитать коэффициент абсорбции
Измерения проводят между каждой обмоткой и корпусом, а также между обмотками. Важно соблюдать правила техники безопасности при работе с высоким напряжением.

Особенности измерения сопротивления изоляции разных типов электродвигателей
Асинхронные двигатели
Для асинхронных двигателей с короткозамкнутым ротором измеряется сопротивление изоляции обмоток статора относительно корпуса. У двигателей с фазным ротором дополнительно проверяется изоляция обмоток ротора.
Синхронные двигатели
У синхронных двигателей измеряется сопротивление изоляции:
- Обмоток статора относительно корпуса
- Обмотки возбуждения относительно корпуса
- Между обмотками статора и обмоткой возбуждения
При измерениях необходимо закоротить и заземлить обмотку ротора во избежание ее повреждения.
Двигатели постоянного тока
У двигателей постоянного тока проверяется сопротивление изоляции:
- Обмоток якоря относительно корпуса
- Обмоток возбуждения относительно корпуса
- Между обмотками якоря и возбуждения
Коллектор на время измерений замыкается перемычкой.
Факторы, влияющие на сопротивление изоляции электродвигателя
На результаты измерений могут влиять следующие факторы:
- Температура обмоток и окружающей среды
- Влажность воздуха и увлажнение изоляции
- Загрязнение поверхности изоляторов
- Механические повреждения изоляции
- Старение изоляционных материалов
При анализе результатов необходимо учитывать влияние этих факторов и при необходимости приводить измеренные значения к нормальным условиям.

Интерпретация результатов измерения сопротивления изоляции
При оценке состояния изоляции учитывают следующие показатели:
- Абсолютное значение сопротивления изоляции
- Коэффициент абсорбции (отношение R60/R15)
- Динамика изменения сопротивления во времени
Нормальные значения:
- Сопротивление не менее нормируемого
- Коэффициент абсорбции более 1.3
- Стабильность показаний при повторных измерениях
Снижение сопротивления или коэффициента абсорбции указывает на ухудшение состояния изоляции.
Меры при неудовлетворительных результатах измерений
Если измеренное сопротивление изоляции ниже нормы, необходимо:
- Провести визуальный осмотр двигателя
- Очистить и просушить обмотки
- Повторить измерения
- При сохранении низких значений — провести дополнительную диагностику
- Принять решение о ремонте или замене двигателя
Периодичность измерения сопротивления изоляции электродвигателей
Рекомендуемая частота проверок:

- Перед вводом в эксплуатацию нового или отремонтированного двигателя
- После длительного хранения или простоя
- При проведении плановых техобслуживаний (не реже 1 раза в год)
- При появлении признаков нарушения работы двигателя
- После воздействия неблагоприятных факторов (повышенная влажность, загрязнения и т.п.)
Регулярные измерения позволяют своевременно выявлять ухудшение состояния изоляции и предотвращать аварийные ситуации.
Правила техники безопасности при измерении сопротивления изоляции
При проведении измерений необходимо соблюдать следующие меры безопасности:
- Работы должен выполнять квалифицированный персонал
- Использовать средства индивидуальной защиты (диэлектрические перчатки, боты)
- Применять только исправные и поверенные приборы
- Не прикасаться к токоведущим частям во время измерений
- После измерений разрядить остаточный заряд обмоток на корпус
- Соблюдать правила работы с электроустановками до 1000 В и выше 1000 В
Строгое соблюдение техники безопасности позволит избежать поражения электрическим током при проведении измерений.

Нормальное сопротивление обмотки электродвигателя. Проверка мегомметром сопротивления изоляции двигателя
При поломке электродвигателя, бывает недостаточно просто осмотреть его, чтобы понять причину неисправности.
Постараемся использовать наиболее простые технические способы и минимум оборудования.
Механическая часть
Механическая часть электродвигателя, грубо говоря, состоит всего из двух элементов:1. Ротор — подвижный, вращающий элемент, который приводит в движения вал двигателя.
2. Статор — корпус с обмотками в центре которого находится ротор.
Два этих элемента между собой не прикасаются и разделены только с помощью подшипников.
Проверка электродвигателя начинается с внешнего осмотра
Прежде всего двигатель осматривают на предмет любых заметных дефектов, это могут быть, например, сломанные монтажные отверстия и подставки, потемнение краски внутри электродвигателя что явно говорит о перегреве, наличие загрязнений или посторонних веществ попавших внутрь двигателя, любые сколы и трещины.
Проверка подшипников
Большинство неисправностей электродвигателей вызваны неисправностью его подшипников. Ротор должен свободно втащатся внутри статора, подшипники которые расположены с двух сторон вала, должны минимизировать трение.Есть несколько типов подшипников использующихся в электродвигателях. Два самых популярных типа: латунные подшипники скольжения и шарикоподшипники. Многие из них имеют фитинги для смазки, в другие смазка заложена при производстве и они как-бы «не обслуживаемые».
Для проверки подшипников, прежде всего, необходимо снять напряжение с электродвигателя и попробовать вручную прокрутить ротор (вал) двигателя.
Для этого поместите электродвигатель на твердую поверхность и положите одну руку на верхнюю часть двигателя, проверните вал другой рукой. Внимательно наблюдайте, старайтесь почувствовать и услышать трение, царапающие звуки, неравномерность вращения ротора. Ротор должен вращаться спокойно, свободно и равномерно.
После этого проверяют продольный люфт ротора, попробуйте потянуть-потолкать ротор в статоре. Характерный небольшой люфт допустим, но не более 3 мм, чем люфт меньше тем лучше. При большом люфте и неисправностях подшипников, двигатель «шумит» и быстро перегревается.
Часто проверить вращение ротора бывает проблематично из-за подключенного привода. Например, ротор двигателя исправного пылесоса довольно легко раскрутить одним пальцем. А чтоб провернуть ротор рабочего перфоратора, придется приложить усилие. Прокрутить вал двигателя, подключенного через червячный ре
Измерение сопротивления в электродвигателе
Важной частью испытаний электродвигателя после ремонта или складского хранения являются измерение сопротивления изоляции и сопротивление обмоток постоянному току. Сопротивление изоляции производится для проверки отсутствия короткого замыкания и возможности подключения машины к сети. Сопротивление обмоток измеряется для проверки правильности намотки, отсутствия виткового замыкания и надёжности соединений.
Методы проверки изоляции
Перед подачей напряжения для предотвращения короткого замыкания необходимо проверить изоляцию между токоведущими частями и корпусом электромашины. В трёхфазных электродвигателях обмотки соединены между собой. Для проверки отсутствия замыкания между ними, при наличии возможности следует отключить обмотки друг от друга. Изоляция каждой из них проверяется относительно остальных катушек и корпуса машины. Проверка изоляции производится мегомметром. Для этого вывода к прибору подключаются на положение «мегаомы». Концы прикладываются к выводам и части корпуса, зачищенному от краски.
Информация! Вместо корпуса вывод можно приложить к валу электромашины.
Измерение производится вдвоём — один человек прикладывает вывода прибора к измеряемым элементам, а второй крутит ручку устройства в течение минуты, затем, не прекращая вращения, снимаются показания. При сомнительном результате измерения следует повторить. Провода и обмотки обладают электрической ёмкостью и во время измерения заряжаются от мегомметра, поэтому после завершения испытаний или перед повторной проверкой вывода прибора и измеряемые детали необходимо разрядить закорачиванием.
Измерение сопротивления обмоток
Измерение сопротивления обмоток производится постоянным током. Этот вид измерений производится для проверки правильности намотки и качества соединений.
Информация! Величина сопротивлений, за исключением обмоток параллельного возбуждения двигателей постоянного тока, составляет несколько Ом, а в электромашинах большой мощности менее 1 Ом
Измерения производятся измерительным мостом или цифровым омметром. При проведении измерений важно обеспечить надёжный контакт выводов прибора с клеммами электромашины. Перед началом измерений вывода измерительного прибора замыкаются между собой, и производится установка «0». В трехфазных машинах обмотки следует отключить друг от друга. При невозможности это сделать они измеряются попарно, через клеммы подключения. В коллекторных электродвигателях и машинах постоянного тока обмотки возбуждения разделены на две части и находятся по обе стороны ротора. Для проверки сопротивления их рассоединяют и измеряют по отдельности.
Температура электродвигателя
При изменении температуры сопротивление обмоток меняется, поэтому температура двигателя при измерении должна быть 20°С или сопротивление необходимо пересчитывать по специальным таблицам. Для измерения температуры используются встроенные или дополнительно устанавливаемые внутренние температурные датчики. Их количество зависит от мощности электромашины:
- до 10кВт — 1шт;
- 10-100кВт — 2шт;
- 100кВт-1мВт — 3шт;
- более 1мВт — 4шт.
Температурой аппарата считается среднее значение показаний. При измерении сопротивления двигателя, не работавшего длительное время, его температурой считается температура окружающей среды. При этом она не должна меняться в течение нескольких дней перед началом измерений больше, чем на 5°С. Измерения производят несколько раз с перерывом не менее 2 часов. Если результат меняется, то следует подождать до приобретения электромашиной температуры окружающей среды.
Измерения с помощью амперметра и вольтметра
Если измерительный мост или омметр отсутствуют, то допускается определить сопротивление обмоток методом измерения тока и напряжения:
- подключить параллельно обмотке вольтметр, а последовательно амперметр;
- подать в схему =5В;
- измерить ток и напряжение;
- по формуле R=U/I рассчитать сопротивление;
- повторить ещё два раза, меняя величину напряжения;
- рассчитать среднеарифметическое значение.
Важно! Если вместо постоянного использовать переменное напряжение, то можно обнаружить витковое замыкание между рядом расположенными витками.
Проверка целостности коллекторных электрических машин
Измерением сопротивления проверяется также исправность коллекторных машин переменного и постоянного тока. Делать это целесообразно стрелочным или цифровым омметром. Во время проверки показания прибора не должны меняться более чем на 10-15%. Измерения производятся между рядом расположенными пластинами коллектора или через щётки. Если при измерениях через щётки показания меняются, необходимо их снять и произвести измерения непосредственно на коллекторе.
Необходимая точность и результаты измерений
Точность и необходимый результат измерений определяется нормативными документами, такими, как ПУЭ, ПТЭЭР и другими, а также документацией к электродвигателю.
Необходимая точность при измерении сопротивления обмоток
Проводить измерения следует при температуре электромашины, равной температуре окружающей среде, до включения в работу. Разница между показаниями не должна превышать 2%, поэтому приборы, используемые для проверки должны обеспечивать необходимую точность:
- до 1 Ом применяется двойной измерительный мост;
- свыше 1 Ом — одинарный;
- цифровой омметр необходимо переключить на соответствующий предел измерений.
Измерение изоляции
При проверке сопротивления изоляции температура значения не имеет, но мегомметр следует проверить до начала испытаний и после. Величина сопротивления зависит от мощности электромашины и определяется по формуле Rиз=Uном/(1000+0,1Рном), где:
- Uном — напряжение сети;
- Рном — мощность двигателя. На практике считается, что сопротивление изоляции статора должно быть не менее 1мОм, а в обмотках фазного ротора не должно быть короткого замыкания. При показаниях мегомметра ниже требуемых:
- после перегрева электромашины она отправляется на ремонт;
- после хранения или намокания аппарат разбирается и сушится, после чего производится повторная проверка. Инструменты, используемые для измерения сопротивления Для проведения измерений применяются различные приборы.
Мегомметр
Служит для измерения сопротивления изоляции. Электродвигатели с номинальным напряжением до 1кВт используются мегомметры 0,5 и 1кВт, высоковольтные аппараты проверяются мегомметрами 2,5кВт или специальными устройствами. Вывода плотно прижимаются к измеряемому объекту, и ручка прибора вращается равномерно, со скоростью 1,5-2 об/мин до тех пор, пока стрелка не остановится.
Внимание! На выводах мегомметра присутствует высокое напряжение — до 2,5кВт, в зависимости от конструкции, но очень маленький ток. Поэтому прикосновения к ним болезненные, но не опасные для жизни.
Измерительный мост и цифровой омметр
При измерении сопротивления обмоток используются измерительный мост или цифровой омметр. Измеряемые величины составляют несколько Ом, поэтому важно обеспечить надёжный контакт прибора и клемм электромашины.
Мультиметр
Для приблизительной оценки состояния электродвигателя можно использовать мультиметр. Он не обладает необходимой точностью измерений, но позволяет проверить целостность обмоток и отсутствие короткого замыкания.
Тщательная проверка сопротивлений обмоток и изоляции электродвигателей необходима после ремонта, длительного периода хранения и оценки возможности дальнейшей эксплуатации при перегреве.
Измерение сопротивления изоляции электродвигателя
Сопротивление изоляции электродвигателя — это один из очень важных параметров. Он является достаточно важным для нормальной эксплуатации электрического устройства, а потому с определенной периодичностью его необходимо измерять. Основная цель измерений — это проверить состояние изоляции и определить пригодность машины для проведения последующих испытаний или работы.
Почему необходима проверка изоляции?
Здесь важно понять, что те материалы, которые применяются в качестве изоляционной обмотки для электрического двигателя, по сути своей не являются чистыми диэлектриками. Все они в большей или меньше степени проводят электрический ток. Это во многом зависит от их физических и химических свойств.
Помимо того, что на показатель сопротивления изоляции влияют эти факторы, здесь нужно учесть еще и то, что такая характеристика как влажность играет очень важную роль. Кроме того, механические повреждения, а также возможные разнообразные загрязнения и пыль могут негативно сказываться на данной характеристике. Из-за всех этих факторов такая операция как измерение сопротивления является неотъемлемой частью рабочего процесса электрического двигателя.

Общие сведения о проверке
Проверять сопротивление изоляции электродвигателя необходимо в то время, когда машина находится в практически холодном состоянии, то есть до начала ее работы. Есть еще несколько определенных условий, которые необходимо соблюдать, чтобы показания проверки были истинными. Во-первых, сопротивление изоляции обмоток у электрического двигателя на номинальное напряжение обмотки до 500 В, измеряется с использованием мегаомметра на 500 В. Если номинальное рабочее напряжение обмотки составляет более 500 В, то необходимо сменить устройство на более мощное, до 1 кВ.
Иногда, чтобы измерить сопротивление изоляции электродвигателя, то есть его обмоток, необходимо использовать достаточно мощное измерительное оборудование. Чаще всего это относится к тем случаям, когда номинальное рабочее напряжение самого электрического оборудования составляет до 6 кВ. В таком случае нужно использовать мегаомметр на 2,5 кВ, который дополнительно имеет моторный привод или же статическую схему выпрямления переменного напряжения.

Измерение изоляции по отношению к разным деталям
Когда речь идет об измерении сопротивления изоляции электродвигателя, то здесь нужно понимать, что оноопределяется по отношению к чему-либо. Если проводятся измерительные работы по отношению к корпусу машины или обмоткам, то их нужно осуществлять поочередно для каждой цепи.
Замер сопротивления изоляции электродвигателя, а точнее его обмоток с трехфазным током, которые обычно сопряжены в такие соединения, как звезда или треугольник, осуществляется сразу для всей обмотки по отношению к корпусу, а не поочередно, как это было описано до этого.

Обмотка с водяным охлаждением
Измерение сопротивления изоляции электродвигателя, который обладает обмоткой с непосредственным водяным охлаждением, должно проводится с использованием мегаомметра, имеющего встроенное экранирование. Здесь нужно обратить внимание на то, что зажим, который соединен с экраном, должен быть присоединен к водосборному коллектору. Сами же коллекторы не должны иметь никакой металлической связи с внешней системой питания обмоток дистиллятом.
После того, как все измерения в цепи будут окончены, необходимо разрядить ее. Для этого применяется электрическое соединение с заземленным корпусом машины. Если номинальное рабочее напряжение обмоток составляет 3 кВ и более, то время электрического соединения с корпусом должно быть следующим:
- электрического оборудование, мощность которого составляет до 1000 кВт (кВ*А) — продолжительность не менее 15 секунд для полного сброса;
- если нужно разрядить машину, чья мощность превышает 1000 кВт, то время должно быть увеличено до 1 минуты и более.
Для разрядки так же может использоваться все тот же мегаомметр. Если применить прибор с показателем мощности 2,5 кВ, то время на разрядку любого электродвигателя, вне зависимости от его мощности — не менее 3 минут.

Сопротивление ротора и статора
Допустимое сопротивление изоляции электродвигателя — это один из основных его показателей, которые свидетельствуют о состоянии изоляционной обмотки как ротора, так и статора электрического двигателя. Здесь стоит сказать о том, что проведение измерительных работ на обмотке статора всегда сопровождается определением такого показателя, как коэффициент абсорбции.
Проводить измерение сопротивления изоляции ротора можно лишь на синхронном оборудовании, а так же на электрических двигателях, имеющих фазный ротор. При этом напряжение должно составлять 3 кВ или более либо же мощность должна находиться выше 1 МВт. Для такого оборудования сопротивление изоляции должно составлять не менее 0,2 МОм. Норма сопротивления изоляции электродвигателя будет увеличиваться с ростом его эксплуатационных характеристик. Здесь же стоит сказать, что коэффициент абсорбции так же определяется только при наличии напряжения более 3 кВ или мощности более 1 МВт.

Подготовка прибора для измерения
Для того чтобы успешно провести все замеры, необходимо подготовить оборудование.
Для начала нужно зарядить батарею или же аккумулятор, если используется мегаомметр MIC-2500. После этого необходимо установить значение испытательного напряжения. Если для измерения, к примеру, используется стрелочный прибор ЭСО202, то он должен располагаться строго горизонтально. Для этого же прибора перед началом работ нужно установить не только значение напряжения, но и требуемый предел измерений, установить шкалу. После этого нужно проверить работоспособность измерительного аппарата. Для этого нужно замкнуть измерительные щупы устройства между собой и начать вращать рукоять генератора. Частота вращения должна быть 120-140 оборотов в минуту. При таких параметрах стрелка прибора должна показывать «0». После этого щупы размыкаются, а ручку нужно снова начать вращать с прежней скоростью. В этом случае аппарат должен показывать сопротивление 104 МОм.

Подготовка электрического двигателя к проверке
Кроме того, прежде чем перейти к проверке сопротивления изоляции электродвигателя, необходимо открыть его вводное устройство, которое называют борно. После этого изоляторы должны быть тщательно протерты от любых загрязнений и пыли. Только после этого допускается подключение измерительного прибора согласно его схеме.
Во время непосредственного измерения сопротивления необходимо снимать показания с аппарата каждые 15 секунд. Реальным значением сопротивления обмотки считается значение, которое будет снято через 60 секунд после начала процедуры. А соотношение значений снятых за 60 секунд к значению, полученному через 15 секунд, называется коэффициентом абсорбции, о котором говорилось ранее.
Результаты измерений
Если электрический двигатель отличается номинальным рабочим напряжение в 0,4 кВ, то есть входит в группу приборов с напряжением до 1000 В, то проведение измерения мегаоометром, мощность которого 2,5 кВ в течение одной минуты, считается высоковольтным испытанием.
Чтобы избежать негативного результата при измерении сопротивления обмотки статора у синхронного двигателя, необходимо закоротить и заземлить обмотку ротора. Если этого не сделать, то негативным результатом станет то, что во время измерения будет повреждена изоляция ротора.
ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ОБМОТОК ЭЛЕКТРОДВИГАТЕЛЯ — ИСПЫТАНИЯ ЭЛЕКТРОДВИГАТЕЛЕЙ —
Если электродвигатель не будет пущен в эксплуатацию сразу же после поставки, необходимо организовать его защиту от воздействия внешних факторов, таких как влажность, температура и загрязнения, чтобы не допустить повреждения изоляции. Прежде чем включить электродвигатель после длительного хранения, следует измерить сопротивление изоляции.
Если электродвигатель хранится в условиях высокой влажности, должны проводиться регулярные измерения. Практически невозможно сформулировать какие-либо стандарты для минимального фактического сопротивления изоляции электродвигателя, так как сопротивление зависит от конструктивных особенностей электродвигателя, используемого изоляционного материала и номинального напряжения. Исходя из опыта эксплуатации, минимальное сопротивление изоляции можно принять равным 10 МОм.
Измерение сопротивления изоляции выполняется с помощью мегаомметра – омметра с диапазоном высокого сопротивления. Измерение сопротивления производится: между обмотками и «землёй» электродвигателя на которые подаётся постоянное напряжение в 500 или 1000 В. В ходе измерения и сразу же после него на клеммах может присутствовать опасное напряжение, к ним НЕЛЬЗЯ ПРИКАСАТЬСЯ !!!
Сопротивление изоляции:
Минимальное сопротивление изоляции новых обмоток или обмоток после чистки или ремонта относительно «земли» составляет 10 МОм или более.
Минимальное сопротивление изоляции, R, вычисляется умножением номинального напряжения, Un, на постоянный множитель 0,5 МОм / кВ. Например: если номинальное напряжение составляет 690 В = 0,69 кВ, минимальное сопротивление изоляции: 0,69 кВ ½ 0,5 мегом / кВ = 0,35 мегом
Измерение сопротивления изоляции электродвигателя:
Минимальное сопротивление изоляции обмоток относительно земли измеряется с 500 В постоянного тока. Температура обмоток должна быть 25°C +/– 15°C.
Максимальное сопротивление изоляции должно измеряться с 500 В постоянного тока при рабочей температуре обмоток 80 -120°C в зависимости от типа электродвигателя и КПД.
Проверка сопротивления изоляции обмоток электродвигателя:
Если сопротивление изоляции нового электродвигателя, электродвигателя после чистки или ремонта, который не которое время не эксплуатировался, составляет меньше 10 МОм, это можно объяснить тем, что в обмотки попала влага и их необходимо просушить.
Если электродвигатель эксплуатируется в течение долгого промежутка времени, минимальное сопротивление изоляции может упасть до критического уровня. Двигатель сохраняет работоспособность, если сопротивление его изоляции упало до минимального расчетного значения. Однако, если зарегистрировано такое падение сопротивления, электродвигатель необходимо остановить, чтобы исключить вероятность поражения обслуживающего персонала блуждающими токами.
Источник:
Измерение сопротивления изоляции асинхронных двигателей
Материалы, применяемые при изоляции обмоток электродвигателей, не являются идеальными диэлектриками и в зависимости от своих физико-химических свойств являются в большей или меньшей степени токопроводящими. Сопротивление изоляции обмоток помимо конструкции самой изоляции и примененных материалов в значительной степени зависит также от влажности изоляции, механических повреждений и загрязнения поверхности.
О сопротивлении изоляции судят по значению проходящего через нее тока при приложении постоянного напряжения. Сопротивление изоляции измеряют мегаомметром с ручным или электрическим приводом либо сетевым мегаомметром, а также методом вольтметра.
Как известно, сопротивление изоляции измеряется в Омах, но так как в обмотках двигателей оно обычно 20 очень велико, то принято его выражать в миллионах ом (мегаомах), откуда и происходит название прибора. Мегаомметр (рис.1) представляет собой генератор постоянного тока, к выводам которого подсоединяется измеряемое сопротивление. Мегаомметр по существу фиксирует ток, проходящий через измеряемое сопротивление, но для удобства пользования шкала его измерительного прибора отградуирована непосредственно в мегаомах.
Рис. 1. Принципиальная схема мегаомметра.
Г — генератор постоянного тока; 1 — последовательная обмотка мегаомметра; 2 — параллельная обмотка мегаомметра; г1, г2 — ограничивающие сопротивления; Л — линейный зажим; 3 — зажим для присоединения заземления; К — кнопка включения; Э — корпус электродвигателя; О — обмотка электродвигателя.
В качестве измерительного прибора в мегаомметре применяется логометр, в котором взаимодействуют две обмотки — обмотка 1, соединенная последовательно с измеряемым сопротивлением, и обмотка 2, подключенная параллельно выводам генератора. Перед измерением производится упрощенная проверка мегаомметра: при вращении ручки и замкнутых накоротко зажимах мегаомметра показание прибора должно быть равно нулю, при разомкнутых — бесконечности. Обмотку перед измерением сопротивления ее изоляции на 1—2 мин заземляют для того, чтобы могущие быть в ее изоляции остаточные заряды стекли в землю и не повлияли на результаты испытания.
Провода, соединяющие мегаомметр с испытуемой обмоткой, а также с корпусом электродвигателя, должны иметь усиленную и надежную изоляцию. Ручку мегаом-
метра следует вращать по возможности равномерно, частота вращения должна быть около 150 об/мин. После разворота ручки мегаомметра до указанной частоты вращения включают кнопку К и тем самым испытуемая обмотка подключается к генератору мегаомметра. В мегаомметрах, у которых кнопки нет, после разворота ручки провод от зажима Л подключают к обмотке электродвигателя щупом (стальная острозаточенная игла с изолированной ручкой из текстолита или эбонита).
В начале замеров стрелка прибора делает бросок к началу шкалы, затем показание прибора медленно начинает увеличиваться и через некоторое время (15—60 с) стрелка устанавливается в некотором положении. Первоначальный бросок стрелки, соответствующий повышенному току генератора мегаомметра, вызывается зарядным током, определяемым емкостью изоляции, который быстро затухает. Относительно медленное движение стрелки после спада емкостного тока определяется токами абсорбции.
Изоляция не является монолитной, ее можно рассматривать состоящей из ряда слоев, т. е. последовательно соединенных емкостей. При приложении напряжения внутренние емкости в этой цепочке заряжаются через сопротивление предшествующих. При хорошей, сухой изоляции сопротивление каждого слоя велико и зарядный ток мал. Поэтому процесс заряда происходит медленно. При сырой изоляции процесс протекает быстро и также быстро стрелка прибора достигает своего максимального значения.
Установившееся показание прибора свидетельствует об окончании зарядки внутренних слоев изоляции (при этом ток абсорбции равен нулю). Это показание определяется только так называемым током сквозной проводимости, т. е. током, проходящим внутри изоляции по капиллярам, заполненным влагой, и током, проходящим по наружной поверхности изоляции, которая всегда в некоторой степени загрязнена и увлажнена.
Таким образом, судить о состоянии изоляции следует по значению тока сквозной проводимости и по скорости спадания тока абсорбции, которая определяется коэффициентом абсорбции
где R15 и R60 — сопротивления изоляции, отсчитанные соответственно через 15 и 60 с после достижения мегаомметром полной частоты вращения.
При хорошей, сухой изоляции коэффициент абсорбции составляет 1,5—2,0, а для увлажненной приближается к единице. Минимальной нормой следует считать &абс=1,3.
Сопротивление изоляции электрической машины относительно ее корпуса и сопротивление изоляции между обмотками при рабочей температуре должно быть не менее значения, получаемого по формуле, но не менее 0,5 МОм:
где U — номинальное напряжение машины, В; Р — номинальная мощность машины, кВт.
Сопротивление изоляции сильно зависит от температуры; с увеличением температуры оно снижается, а при уменьшении температуры повышается. Поэтому, если измерение сопротивления изоляции производится при температуре ниже рабочей, полученное по приведенной формуле сопротивление изоляции следует удваивать на каждые 20°С (полные или неполные) разности между рабочей температурой и той температурой, при которой выполнено измерение. Практически у электродвигателей с высушенной и неповрежденной изоляцией обмотки значение сопротивления изоляции всегда бывает выше нормируемого.
Примененное выше выражение «рабочая температура машины» нуждается в разъяснении.
Рабочей температурой любой части машины называют практически установившуюся температуру этой части, соответствующую номинальному режиму работы машины при неизменной температуре окружающей среды. Очевидно, что каждый тип и типоисполнение электродвигателя имеют свою рабочую температуру; она зависит от конструкции двигателя и его вентиляции, расчетных нагрузок и расчетной температуры охлаждающей среды и может быть приближенно определена тепловым расчетом, выполняемым при проектировании электродвигателя (или серии электродвигателей).
Определенная расчетом рабочая температура позволяет выбрать конструкцию изоляции двигателя и класс ее нагревостойкости таким образом, чтобы была обеспечена длительная работа электродвигателя при номинальном режиме. Поэтому по классу нагревостойкости изоляции, примененной в исполнении завода-изготовителя, можно судить о рабочей температуре электродвигателя. Эти сведения приведены ниже.
Класс нагревостойкости изоляции . | А | Е | В | F | Н |
Принимаемая раиочая температура |
|
|
|
|
|
электродвигателя, *С | 100 | 110 | 120 | 140 | 165 |
ГОСТ 1628-75 предписывает применять при измерении сопротивления изоляции обмоток электродвигателей с номинальным напряжением до 50U Б включительно мегаоммегр на 5ои Б и для электродвигателей напряжением выше 5UU Б — мегаомметр на 1000 Б. Рекомендуется применять мегаомметры, которые приводятся во вращение не вручную, а приводным электродвигателем. Помимо облегчения проведения испытаний это значительно повышает точность результатов.
Для электродвигателей, у которых выведены концы и начала всех фаз, измерение сопротивления изоляции производят между каждой фазой и корпусом. В этом случае допустимое минимальное сопротивление изоляции фазы должно быть повышено в 3 раза.
При измерении сопротивления изоляции каждой из электрических цепей все прочие цепи соединяют с корпусом машины. По окончании измерения сопротивления изоляции каждой электрически независимой цепи следует разрядить ее на заземленный корпус двигателя. Для обмоток на номинальные напряжения 3000 В и выше продолжительность разрядки для двигателей до 1000 кВт не менее 15 с и для электродвигателей мощностью более 1000 кВт — не менее 1 мин.
Рис. 2. Схема сетевого мегаомметра с полупроводниковыми диодами.
На рис. 2 представлена другая схема сетевого мегаомметра, где вместо кенотрона применены полупрородниковые диоды. Это делает сетевой мегаомметр более компактным, легким и более надежным в эксплуатации.
Схема соединения при измерении сопротивления изоляции методом вольтметра при питании от сети постоянного тока приведена на рис. 3.
Рис. 3. Измерение сопротивления изоляции вольтметром при питании от сети постоянного тока.
При измерении предварительно фиксируют напряжение питающей сети U1, для чего переключатель ставят в положение 1. Затем переключатель переводят в положение 2 и замеряют показание вольтметра U2. Так как при этом положении рубильника сопротивление вольтметра Яв (указанное на шкале вольтметра или приведенное в его паспорте) и измеряемое сопротивление R соединены последовательно, то падение напряжения в них будет распределяться прямо пропорционально значениям их сопротивлений.
Падение напряжения в вольтметре составит U2, В, а в изоляции U1—U2, В. Таким образом,
Для получения большей точности измерений вольтметр выбирают с большим собственным сопротивлением. Измерения можно производить не только от стационарной сети постоянного тока, но и от аккумуляторной батареи.
При измерении от электросети, один полюс которой может быть заземлен (на рис. 3 обозначено пунктиром), во избежание короткого замыкания следует подключать заземленный корпус электродвигателя 3 таким образом, чтобы он оказался соединенным с заземленным полюсом сети.
Наряду с питанием от источника постоянного тока можно применить для измерения также выпрямленный ток. На рис. 4 представлена схема измерения сопротивления изоляции при питании от сети переменного тока. Эта схема отличается от приведенной на рис. 3 наличием трансформатора 3 и выпрямителя 4. При питании выпрямленным током, если выпрямитель включен в сеть не непосредственно, а через трансформатор, отделяющий сеть переменного тока от цепи выпрямленного напряжения (как это указано на рис. 4), заземленный корпус электродвигателя может быть присоединен к любому из зажимов выпрямителя.
При ремонтах электродвигателей, связанных с переизолировкой активной стали, возникает необходимость проверить качество лаковой пленки после нанесения лака на листы и его запечки. Одним из показателей служит сопротивление постоянному току изоляции из отлакированных листов стали. В этом случае измерение сопротивления производят на приспособлении, изображенном на рис. 5.
Рис. 4. Измерение сопротивления изоляции вольтметром при питании от сети переменного тока.
Рис. 5. Приспособление для измерения сопротивления изоляции листов активной стали.
Пачку из 20 отлакированных листов 1 сжимают между электродами 2 и 3. Площадь каждого электрода составляет 1 дм2. Под электродом 3 устанавливают изолирующую подкладку 4. Листы сжимают рычагом с подвешенным на его конце грузом 5, который подбирается таким образом, чтобы давление, оказываемое на пачку листов, составляло 6000 Н (удельное давление 0,6 МПа). При указанных условиях сопротивление изоляции должно быть не менее 50 Ом.
Источником питания могут являться аккумуляторная батарея или выпрямитель напряжением 10—15 В. Потенциометром 6 устанавливают ток 0,1 А, при этом показание вольтметра должно быть не менее 5 В. Для предохранения амперметра от повреждения в цепь включают защитное сопротивление 7. Значение защитного сопротивления R, Ом, выбирают таким образом, чтобы при случайном коротком замыкании электродов 2 и 3 ток, проходящий через амперметр, не превосходил предельного значения, на которое рассчитан амперметр, т. е.
где U — напряжение источника питания, В; /амп — предельный ток амперметра, А.
При эксплуатации крупных электродвигателей под влиянием магнитной асимметрии или по некоторым другим причинам в замкнутом контуре (подшипники, вал, фундаментная плита), указанном на рис. 6, может возникнуть электрический ток. Этот ток разъедает шейки вала и вкладыши подшипников, из-за чего работа подшипников ухудшается и они быстро выходят из строя.
Рис. 6. Контур подшипниковых токов.
Для предотвращения возникновения этих токов указанный замкнутый контур разрывают установкой изолирующей текстолитовой или гетинаксовой прокладки между фундаментной плитой и подшипниковой стойкой. Болты, крепящие стойку к плите, изолируют изоляционными втулками и шайбами. При принудительной смазке подшипников во фланцах маслопровода устанавливают изоляционные прокладки и втулки.
В процессе эксплуатации и при ремонте установленную изоляцию необходимо периодически проверять — измерять сопротивления изоляции между подшипниковой стойкой и фундаментной плитой при полностью собранном маслопроводе мегаомметром на 500—1000 В.
Как видно на рис. 6, сопротивление изоляции не может быть проверено в собранном электродвигателе, так как изолированному подшипнику параллельна цепь, составленная валом, другим неизолированным подшипником и фундаментной плитой. Для измерения необходимо приподнять вал и заложить прокладку из электрокартона между шейкой вала и вкладышем неизолированного подшипника. Значение сопротивления не является нормируемым, но должно находиться на достаточно высоком уровне — не ниже 1 МОм, так как оно очень быстро и значительно снижается при загрязнении прокладок.
При ремонте, а также при эксплуатации крупных двигателей, температуру нагрева которых измеряют заложенными в обмотку термодетекторами, необходимо периодически измерять сопротивление изоляции этих термодетекторов, так как нарушение ее может представить серьезную опасность для обслуживающего персонала. Проверку производят мегаомметром на 250 В. Значение сопротивления не является нормируемым; показательным является его сравнение с результатами предыдущих измерений.
Сопротивление — изоляция — электродвигатель
Сопротивление — изоляция — электродвигатель
Cтраница 1
Сопротивление изоляции электродвигателей и кабелей также должно периодически измеряться и удовлетворять нормам. Изоляция обмоток статоров должна испытываться на пробой переменным напряжением 1 000 в при номинальном напряжении электродвигателя 380 б и 1 500 в при номинальном напряжении 500 а. Электрическая прочность изо-ляции обмоток роторов и реостатов должна проверяться напряжением, равным полуторному номинальному напряжению переменного тока на кольцах электродвигателя, но не ниже 1 000 в. Длительность испытания во всех случаях 1 мин. [1]
Сопротивление изоляции электродвигателя, измеренное между крепящими болтами и валом, а также между обмотками двигателя должно быть не менее 5 Мом. [2]
Сопротивление изоляции электродвигателей напряжением 3000 в и выше должно быть не ниже 1 Мам для обмоток статоров и 0 2 Мом для обмоток роторов. Помимо этого, измеряется коэффициент абсорбции, величина которого не нормируется. С помощью этого коэффициента определяются состояние изоляции и степень увлажненности обмоток двигателя. [3]
Сопротивление изоляции электродвигателей напряжением 3000 в и выше должно быть не ниже 1 Мом для обмоток статоров и 0 2 Мом для обмоток роторов. Помимо этого, измеряется коэффициент абсорбции, величина которого не нормируется. С помощью этого коэффициента определяются состояние изоляции и степень увлажненности обмоток двигателя. [4]
Сопротивление изоляции электродвигателей с напряжением до 500 в должно быть не ниже 0 5 мом у статорных обмоток и 0 2 мом у роторных как по отношению к корпусу, так и между фазами. [5]
Сопротивление изоляции электродвигателей напряжением до 1000 в должно быть не ниже 0 5 Мом. [6]
Сопротивление изоляции электродвигателя должно быть не менее i ком на 1 в рабочего напряжения. Коэффициент абсорбции берется из отношения значений сопротивления изоляции при различной длительности приложения напряжения. [7]
Сопротивление изоляции электродвигателей переменного тока до 1000 В проверяют мегаомметром на напряжение 1000 В. При этом измеряют сопротивление изоляции обмоток фаз статора относительно друг друга ( если выведены начала и концы обмоток всех трех фаз) и относительно корпуса. Если выведены только три конца обмотки статора, то сопротивление изоляции измеряют лишь относительно корпуса. У двигателей с фазным ротором производят также измерение сопротивления изоляции обмоток ротора на корпус и между обмотками статора и ротора. Величина сопротивления изоляции для электродвигателей до 1000 В Правилами не нормируется. [8]
Испытывают сопротивление изоляции электродвигателя и при необходимости просушивают его. [9]
Измерение сопротивления изоляции электродвигателя напряжением до 1000 в производится мегомметром на напряжение 1000 в после текущего и среднего ремонта, при этом сопротивление должно быть не ниже 0 5 ом. В случае резкого снижения сопротивления изоляции по сравнению с предыдущими замерами, необходимо выяснить причину и принять меры к его восстановлению. [10]
Величина сопротивления изоляции электродвигателей не нормируется. Сопротивление изоляции каждой цепи автоматики и вторичной коммутации должно быть не ниже 1 Мом. [11]
Величина сопротивления изоляции электродвигателей не нормируется. [12]
Величипа сопротивления изоляции электродвигателей напряжением до 500 в не нормируется. Для двигателей напряжением 3000 в и выше сопротивление изоляции статора должно быть не менее 1 мегома, а ротора — 0 2 мегома. [13]
При таких условиях сопротивление изоляции электродвигателей, кабелей, нагревателей компенсаторов объема и другого электротехнического оборудования снизится ниже разрешенного по техническим условиям из-за попадания влаги, поэтому после окончания дезактивации или срабатывания спринклерной установки необходимо измерять сопротивление изоляции указанного оборудования и кабелей. [14]
Систематически должно проверяться сопротивление изоляции электродвигателей. Сопротивление изоляции при температуре 60 С должно быть: для статора — не менее 1 МОм / кВ, для ротора — не менее 0 5 МОм. Объем чистого воздуха, используемого для предварительной продувки должен быть не менее пятикратного суммарного объема корпуса электродвигателя, воздуховодов и фундаментной ямы. В двигателях с разомкнутым циклом вентиляции продувка осуществляется внешним вентилятором, а в двигателях с замкнутым циклом вентиляции для продувки используется вентилятор подпитки, поэтому при
Сопротивление обмоток электродвигателя таблица — Всё о электрике
ПУЭ 7. Правила устройства электроустановок. Издание 7
Раздел 1. Общие правила
Глава 1.8. Нормы приемо-сдаточных испытаний
Электродвигатели переменного тока
1.8.15. Электродвигатели переменного тока до 1 кВ испытываются по п. 2, 4, 6, 10, 11. ¶
Электродвигатели переменного тока выше 1 кВ испытываются по п. 1-4,7,9-11. ¶
По п. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде. ¶
1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85. «Электротехнические устройства» Госстроя России. ¶
2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8. ¶
Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока. ¶
Напряжение мегаомметра, кВ
Обмотка статора напряжением до 1 кВ
Не менее 0,5 МОм при температуре 10-30 °С
Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором
Не менее 0,2 МОм при температуре 10-30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)
Подшипники синхронных электродвигателей напряжением выше 1 кВ
Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)
3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе. ¶
Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса. ¶
Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин. ¶
4. Измерение сопротивления постоянному току: ¶
а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более. ¶
Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%; ¶
б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%. ¶
5. Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, должны отличаться не более чем на 10% среднего размера. ¶
Таблица 1.8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока. ¶
Испытательное напряжение, кВ
Мощность до 1 МВт, номинальное напряжение выше 1 кВ
Мощность выше 1 МВт, номинальное напряжение до 3,3 кВ
Мощность выше 1 МВт, номинальное напряжение выше 3,3 до 6,6 кВ
Мощность выше 1 МВт, номинальное напряжение выше 6,6 кВ
Обмотка ротора синхронного электродвигателя
8Uном системы возбуждения, но не менее 1,2
Обмотка ротора электродвигателя с фазным ротором
Реостат и пускорегулировочный резистор
Резистор гашения поля синхронного электродвигателя
6. Измерение зазоров в подшипниках скольжения. Размеры зазоров приведены в табл. 1.8.10. ¶
7. Измерение вибрации подшипников электродвигателя. Значения вибрации, измеренной на каждом подшипнике, должны быть не более значений, приведенных ниже: ¶
Синхронная частота вращения электродвигателя, Гц
Допустимая вибрация, мкм
8. Измерение разбега ротора в осевом направлении. Производится для электродвигателей, имеющих подшипники скольжения. Осевой разбег не должен превышать 2-4 мм. ¶
9. Испытание воздухоохладителя гидравлическим давлением. Производится избыточным гидравлическим давлением 0,2-0,25 МПа (2-2,5 кгс/см 2 ). Продолжительность испытания 10 мин. При этом не должно наблюдаться снижение давления или утечки жидкости, применяемой при испытании. ¶
10. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 ч. ¶
11. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. ¶
Таблица 1.8.10. Наибольший допустимый зазор в подшипниках скольжения электродвигателей. ¶
Изоляция электродвигателя
При испытаниях электродвигателя после ремонта или хранения на складе одним из важных параметров является сопротивление изоляции.
Измерение сопротивление изоляции электродвигателя
Проверку изоляции производят разными способами.
Испытание изоляции мегомметром
Измерение сопротивления производится механическим или электронным мегомметром.
Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.
Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.
Порядок измерения сопротивления изоляции:
- подключить вывода или установить переключатель в положение “мегаомы”;
- проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
- результат должен быть около “0”;
- присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
- в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
- не прекращая вращения рукоятки проверить показания прибора.
Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра – 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.
Проверка межвитковой изоляции обмоток
Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.
Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях – 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.
Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.
При появлении шума, стуков, дыма или “плавающих” показаний амперметров, электродвигатель отключается и отправляется на ремонт.
Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.
Испытание изоляции повышенным напряжением переменного тока
Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.
Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.
Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.
Нормы сопротивления изоляции электрических машин
В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.
Допустимое сопротивление при испытании изоляции асинхронных электромашин
При измерении изоляции асинхронных двигателей соединение обмоток статора “звезда” или “треугольник” необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.
Сопротивление изоляции должно быть:
- в статоре не менее 0,5мОм;
- в фазном роторе не менее 0,2мОм;
- минимальное сопротивление изоляции термодатчиков не нормируется.
Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.
Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.
Изоляция двигателей постоянного тока
Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.
Измерение проводится между разными частями схемы электромашины:
- обмотками возбуждения и коллектором якоря;
- щёткодержателем и корпусом аппарата;
- коллектором якоря и корпусом;
- обмотками возбуждения и корпусом электромашины.
Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.
Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:
Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.
Причины низкого сопротивления
Есть несколько причин низкого сопротивления изоляции.
Перегрев электромашины
Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.
Предотвратить такую неисправность помогают устройства защиты:
- тепловое реле отключает электромашину при перегрузке;
- реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.
Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.
Сушка электродвигателя
Если пониженное сопротивление вызвано попаданием на двигатель влаги или хранением в сыром помещении, то электромашину можно высушить. Для этого её необходимо разобрать – снять крышки подшипниковых щитов и вынуть ротор. Это делается для свободного выхода влаги.
Совет! Можно снять только один щит, а ротор вынуть вместе со вторым.
После разборки осуществляется сушка одним из способов:
- Подачей на обмотки пониженного напряжения. Ток при этом не должен превышать номинальный.
- Вставить в статор нагреватель. Чаще всего для этого используется лампа накаливания 60-100Вт.
Через сутки проводится повторное измерение изоляции. Если сопротивление растёт, то сушка продолжается до полного высыхания, если нет, то двигатель отправляется на средний ремонт в специализированное предприятие. Этот вид ремонта включает в себя пропитку обмоток лаком и повторную сушку.
Проверка изоляции является необходимой частью испытаний электродвигателя. Виды проверок в отдельных случаях определяются ПУЭ и другими нормативными документами.
На первый взгляд обмотка представляет кусок проволоки смотанной определенным образом и в ней нечему особо ломаться. Но у нее есть особенности:
строгий подбор однородного материала по всей длине;
точная калибровка формы и поперечного сечения;
нанесение в заводских условиях слоя лака, обладающего высокими изоляционными свойствами;
прочные контактные соединения.
Если в каком-либо месте провода нарушена любое из этих требований, то изменяются условия для прохождения электрического тока и двигатель начинает работать с пониженной мощностью или вообще останавливается.
Чтобы проверить одну обмотку трехфазного двигателя необходимо отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из двух схем:
Концы обмоток обычно выводятся на клеммные колодки и маркируются буквами «Н» (начало) и «К» (конец). Иногда отдельные соединения могут быть спрятаны внутри корпуса, а для выводов используются другие способы обозначения, например, цифрами.
У трехфазного двигателя на статоре используются обмотки с одинаковыми электрическими характеристиками, обладающими равными сопротивлениями. Если при замере омметром они показывают разные значения, то это уже повод серьезно задуматься над причинами разброса показаний.
Как проявляются неисправности в обмотке
Визуально оценить качество обмоток не представляется возможным из-за ограниченного допуска к ним. На практике проверяют их электрические характеристики, учитывая, что все неисправности обмоток проявляются:
обрывом, когда нарушается целостность провода и исключается прохождение электрического тока по нему;
коротким замыканием, возникающем при нарушении слоя изоляции между входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;
межвитковым замыканием, когда изоляция нарушается между одним или несколькими близкорасположенными витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электрическое сопротивление и не создавая ими определенной работы;
пробоем изоляции между обмоткой и корпусом статора или ротора.
Проверка обмотки на обрыв провода
Этот вид неисправности определяется замером сопротивления изоляции омметром. Прибор покажет большое сопротивление — ∞, которое учитывает образованный разрывом участок воздушного пространства.
Проверка обмотки на возникновение короткого замыкания
Двигатель, внутри электрической схемы которого возникло короткое замыкание, отключается защитами от сети питания. Но, даже при быстром выводе из работы таким способом место возникновения КЗ хорошо видно визуально за счет последствий воздействия высоких температур с ярко выраженным нагаром или следами оплавления металлов.
При электрических способах определения сопротивления обмотки омметром получается очень маленькая величина, сильно приближенная к нулю. Ведь из замера исключается практически вся длина провода за счет случайного шунтирования входных концов.
Проверка обмотки на возникновение межвиткового замыкания
Это наиболее скрытая и сложно определяемая неисправность. Для ее выявления можно воспользоваться несколькими методиками.
Способ омметра
Прибор работает на постоянном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков создает значительно большую индуктивную составляющую.
При замыкании одного витка, а их общее количество может быть несколько сотен, изменение активного сопротивления заметить очень сложно. Ведь оно меняется в пределах нескольких процентов от общей величины, а подчас и меньше.
Можно попробовать точно откалибровать прибор и внимательно измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.
Более точные результаты позволяет получить мостовой метод измерения активного сопротивления, но это, как правило, лабораторный способ, недоступный большинству электриков.
Замер токов потребления в фазах
При межвитковом замыкании изменяется соотношение токов в обмотках, проявляется излишний нагрев статора. У исправного двигателя токи одинаковы. Поэтому прямое их измерение в действующей схеме под нагрузкой наиболее точно отражает реальную картину технического состояния.
Измерения переменным током
Определить полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда возможно. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.
У выведенного из работы двигателя можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток позволит токоограничивающий резистор или реостат соответствующего номинала.
При выполнении замера обмотка находится внутри магнитопровода, а ротор или статор могут быть извлечены. Баланса электромагнитных потоков, на условие которого проектируется двигатель, не будет. Поэтому используется пониженное напряжение и контролируются величины токов, которые не должны превышать номинальных значений.
Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его останется сравнить с характеристиками других обмоток.
Эта же схема позволяет снять вольтамперные характеристики обмоток. Просто надо выполнить замеры на разных токах и записать их в табличной форме или построить графики. Если при сравнении с аналогичными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.
Шарик в статоре
Способ основан на создании вращающегося электромагнитного поля исправными обмотками. Для этого на них подается трехфазное симметричное напряжение, но обязательно пониженной величины. С этой целью обычно применяют три одинаковых понижающих трансформатора, работающих в каждой фазе схемы питания.
Для ограничения токовых нагрузок на обмотки эксперимент проводят кратковременно.
Небольшой стальной шарик от шарикоподшипника вводят во вращающееся магнитное поле статора сразу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.
Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.
Во время теста нельзя превышать ток в обмотках больше номинальной величины и следует учитывать, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.
Электрическая проверка полярности обмоток
У статорных обмоток может отсутствовать маркировка начала и концов выводов и это затруднит правильность сборки.
На практике для поиска полярности используются 2 способа:
1. с помощью маломощного источника постоянного тока и чувствительного амперметра, показывающего направление тока;
2. методом использования понижающего трансформатора и вольтметра.
В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.
Проверка полярности посредством батарейки и амперметра
На внешней поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых надо определить.
С помощью омметра вызванивают и помечают вывода, относящиеся к каждой обмотке, например, цифрами 1, 2, 3. Затем произвольно маркируют на любой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой посередине шкалы, способной указывать направление тока.
Минус батарейки жестко подключают к концу выбранной обмотки, а плюсом кратковременно прикасаются к ее началу и сразу разрывают цепь.
При подаче импульса тока в первую обмотку он за счет электромагнитной индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. Причем, если полярность обмоток угадана правильно, то стрелка амперметра отклонится вправо при начале импульса и отойдет влево при размыкании цепи.
Если стрелка ведет себя по-другому, то полярность просто перепутана. Останется только промаркировать выводы второй обмотки.
Очередная третья обмотка проверяется аналогичным образом.
Проверка полярности посредством понижающего трансформатора и вольтметра
Здесь тоже вначале вызванивают обмотки омметром, определяя вывода, которые к ним относятся.
Затем произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, например, на 12 вольт.
Две оставшиеся обмотки случайным образом скручивают в одной точке двумя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в остальные обмотки с такой же величиной, поскольку у них равное число витков.
За счет последовательного подключения второй и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток эта величина будет составлять 24 вольта, а при разной полярности — 0.
Останется промаркировать все концы и выполнить контрольный замер.
В статье дан общий порядок действий при проверке технического состояния какого-то произвольного двигателя без конкретных технических характеристик. Они в каждом индивидуальном случае могут меняться. Смотрите их в документации на ваше оборудование.
{SOURCE}
Проверка сопротивления изоляции — Тестер изоляции
Сопротивление изоляции
Сопротивление изоляции (IR) — один из наиболее распространенных тестов двигателей. В нем также больше типов токов, чем думают некоторые пользователи. В самом простом варианте испытание сопротивления изоляции проводится с помощью ручного измерителя, измеряющего мегаом. Продвинутый тестер строит график МОм в течение 10 минут или более и отображает напряжение, ток утечки, DAR и отношения PI. Узнайте больше о соотношениях DAR и PI.
При испытании на ИК-излучение или МОм измеряется приложенное напряжение и полный ток утечки между обмотками и корпусом двигателя / землей. Для расчета сопротивления в МОм применяется закон Ома.
R = V / I
Где R — сопротивление в МОмах, V — приложенное напряжение в вольтах, а I — общий результирующий ток в микроамперах (мкА).
Температурный поправочный коэффициент применяется для корректировки мегомного измерения при текущей температуре до значения, которое было бы при стандартной температуре.Согласно стандартам IEEE 43 и ANSI / EASA стандартная температура составляет 40 ° C.
Ток утечки бывшего в употреблении двигателя часто представляет собой поверхностный ток, протекающий в грязи на внешней стороне обмоток. Грязь содержит частицы пыли, масла, жира, влаги и т. Д. Ток проводимости, протекающий через слабую изоляцию заземления к земле, часто затмевается поверхностными токами. Поэтому испытание сопротивления изоляции или измерение МОм иногда называют испытанием на загрязнение. Мегоммы имеют тенденцию падать с увеличением количества грязи.
Измерение МОм на новых двигателях часто не представляет интереса, кроме как проверить отсутствие прямого замыкания на землю. Пользователи часто переходят непосредственно к тесту Hipot.
Токи, задействованные в тестах МОм, DAR и PI
- I C — Емкостный: Пусковой емкостной ток доводит потенциал двигателя до испытательного напряжения, заряжая его. Этот ток быстро падает и достигает нуля в течение нескольких секунд после достижения испытательного напряжения.Для больших двигателей с высокой емкостью пусковой ток велик. Пределы отказа по общему току утечки должны быть достаточно высокими, чтобы избежать срабатывания предела во время этой начальной фазы испытания. Для получения дополнительной информации о емкостном пусковом токе и о том, как избежать срабатывания предела, см. Hipot Test.
- I A — Поглощение: Ток поглощения поляризует изоляцию. Этот ток также падает до нуля или очень близко к нулю в течение от 30 секунд до 1 минуты в двигателях с произвольной обмоткой.Двигатели с формованной обмоткой работают намного дольше из-за слоев изоляции между витками. Изменение тока поглощения во времени — это то, что используется для расчета отношений PI и DAR при испытании сопротивления изоляции.
- I G — Электропроводность: ток проводимости протекает между медными проводниками и землей через большую часть изоляции. Этот ток обычно равен нулю, если двигатель новый или неповрежденный. По мере того как изоляция двигателя стареет и треснет или повреждена, может течь ток проводимости в зависимости от приложенного испытательного напряжения.Ток проводимости имеет тенденцию увеличиваться с увеличением напряжения. Этот ток иногда называют током утечки или частью тока утечки.
- I L — Поверхностная утечка: Согласно IEEE 43, поверхностная утечка — это ток, протекающий в грязи на поверхности обмоток на землю. В других стандартах он называется током поверхностной проводимости. Более грязный двигатель имеет более высокий ток утечки и более низкий результат в мегомах. В двигателях с покрытием для контроля напряжения на концевых обмотках может наблюдаться увеличение поверхностного тока утечки.Через 1 минуту с электродвигателем с произвольной обмоткой или через 5-10 минут с электродвигателем с фасонной обмоткой ток поверхностной утечки обычно остается единственным током, если только изоляция не является слабой или поврежденной.
- I T — Итого: Суммарный ток складывается из 4 токов. Тестер двигателя и изоляции измеряет общий ток. Полный ток равен или очень близок к току поверхностной утечки в конце испытания сопротивления изоляции. Это дает оператору хорошее представление о том, насколько грязен или загрязнен двигатель.Он также предупреждает оператора о возможном катастрофическом соединении обмоток с землей.
Ток утечки как функция времени

Ток утечки как функция времени
Чтобы определить, является ли ток утечки в основном поверхностным током или он также содержит ток проводимости, необходимо выполнить испытание ступенчатым напряжением или испытание с линейным изменением. См. Информацию ниже о минимальных уровнях МОм. Обратите внимание, что эти тесты могут быть выполнены при напряжениях ниже, чем нормальное испытательное напряжение постоянного тока, чтобы определить ток проводимости.
Отслеживание измерений МОм во времени
ИзмеренияМОм отслеживаются с течением времени, чтобы помочь определить, когда двигатель или генератор следует ремонтировать. Это выполняется автоматически с помощью мотор-анализатора iTIG III. В оценках ремонта, особенно для более крупных двигателей, используются другие испытания сопротивления изоляции, такие как испытания DAR или PI. Дополнительные испытания — это высоковольтное напряжение постоянного тока, испытания ступенчатого напряжения / линейного изменения, испытания на скачки напряжения и измерение частичных разрядов.
Стандарты и температурная компенсация
ANSI / AR100-2015 и IEEE 43-2013 содержат следующие рекомендации.Двигатели с низкими значениями сопротивления изоляции не рекомендуется подвергать испытаниям высоким напряжением.
Примечание по температурной компенсации
Вышеуказанные пределы действительны для обмоток при температуре 40 ° C. Результаты испытаний МОм имеют температурную компенсацию, потому что обмотки обычно не имеют этой температуры при испытании. Большинство тестеров изоляции делают это автоматически, если в тестер вводится температура обмотки.Значения сопротивления должны быть компенсированы температурой, если ИК отслеживается во времени. Температура также должна быть выше точки росы для точного сравнения результатов.
Согласно наиболее распространенной формуле температурной компенсации сопротивление изоляции снижается на 50% на каждые 10 ° C повышения температуры. Таким образом, очевидно, что изоляционные свойства резко ухудшаются с повышением температуры. ИК-излучение 10000 МОм (10 гигаОм) при 20 ° C (~ 68 ° F) падает до 2500 МОм при 40 ° C и до 39 МОм при 100 ° C.
Есть несколько других формул температурной компенсации. Приведенная выше формула, вероятно, наиболее консервативна. Различные типы систем изоляции в двигателях с формованной обмоткой обладают уникальными температурными характеристиками. Их можно получить только у производителя двигателя.
Суть в том, что температура оказывает значительное влияние на сопротивление изоляции и должна компенсироваться для достижения наилучших результатов.
Ограничения толкования
Вопрос: Насколько лучше тест № 1, чем тест № 2?
Ответ: Кто знает? Разница 0.01µA может быть результатом действия ряда переменных. Эти переменные могут включать температуру, изменения условий окружающей среды, электрические помехи или нестабильность напряжения или тока.
Разница в сопротивлении изоляции велика из-за способа расчета сопротивления. Единственное физическое изменение — это сила тока, и это изменение очень мало. Некоторые тестеры изоляции отображают ток утечки с точностью до 3 rd или даже 4 th в десятичной системе с разрешением всего 1 нА или 1 пА.Прибор рассчитывает и отображает ИК в терраомах (ТОм). Точность последней цифры (а) не указана или является низкой по уважительной причине. Он слишком зависит от переменных, отличных от тока утечки, который он предназначен для измерения.
Другие советы и подсказки от IEEE 43-2013
- Перед началом испытания изоляцию обмотки следует разрядить, чтобы избежать ошибок измерения.
- Для двигателей с покрытием для контроля напряжения, нанесенным на концевые обмотки, может наблюдаться увеличение поверхностного тока утечки и, следовательно, более низкие МОм, чем ожидалось.
- Для температуры обмотки ниже точки росы невозможно предсказать эффект конденсации на поверхности. Таким образом, поправка на 40 ° C для анализа тенденций вносит значительные ошибки.
- Для обмоток с прямым водяным охлаждением необходимо удалить воду и тщательно высушить внутренний контур. Изготовитель обмотки может предоставить средства измерения результатов испытания сопротивления изоляции без необходимости слива охлаждающей воды.
- Рекомендуется минимальное время разряда, в четыре раза превышающее длительность приложения напряжения.Все Electrom Instruments разряжают двигатель через резистор. Для двигателей с напряжением менее 100 В подключение обмотки непосредственно к земле с помощью заземляющего провода прибора, перемычки или перемычки немедленно завершит разряд. Для разрядки любого остаточного абсорбционного заряда требуется больше времени. Держите двигатели с абсорбирующими зарядами подключенными непосредственно к земле, если с ними будут обращаться вскоре после испытания.
- Абсорбционный разряд занимает более 30 минут в зависимости от типа изоляции и физических размеров двигателя.
- Существенное снижение сопротивления изоляции (увеличение измеряемого тока) с увеличением приложенного напряжения является признаком проблем с изоляцией при испытании сопротивления изоляции.
- Постоянное увеличение ИК-излучения с возрастом указывает на разрушение связи изоляционных материалов, особенно если они термопластичные.
- Когда низкий PI происходит при температурах выше 60 ° C, в качестве проверки рекомендуется второе измерение ниже 40 ° C и выше точки росы.
- PI может использоваться для индикации завершения процесса сушки изоляции. Это происходит, когда PI превышает рекомендуемый минимум.
- Если значение IR при 40 ° C больше 5000 МОм, PI неоднозначен и не принимается во внимание.
Измерение сопротивления изоляции двигателя и обмотки и выдерживаемого напряжения
Измерение сопротивления изоляции двигателя и обмотки и выдерживаемого напряжения
Проведите испытание сопротивления изоляции и выдерживаемого напряжения.
Обеспечьте высокий уровень безопасности, проверяя состояние изоляции при транспортировке.
Пример измерения
Для использования при транспортировке. Измерение сопротивления изоляции и выдерживаемого напряжения
Ухудшение изоляции приводит к риску поражения электрическим током и замыкания на землю.
Состояние изоляции проверяется при транспортировке, чтобы гарантировать безопасность продукта.
Результаты износа изоляции
- Риск поражения электрическим током
- Риск замыкания на землю
Функция проверки контактов для обеспечения надежного тестирования
Неполный контакт датчика и обрыв проводов в кабелях могут помешать правильному контакту с тестируемым устройством.В таких случаях дефектные детали могут быть ошибочно идентифицированы как исправные. Функция проверки контактов обеспечивает эффективное средство обеспечения целостности теста.
Б / у оборудование
АВТОМАТИЧЕСКАЯ ИЗОЛЯЦИЯ / ВЫДЕРЖКА HiTESTER 3 153
Проверка контактов может выполняться непрерывно, не влияя на измеренные значения.・ Испытание выдерживаемого напряжения переменного тока: от 0,2 кВ до 5 кВ переменного тока, 100 мА
・ Проверка сопротивления изоляции: от 50 В до 1200 В постоянного тока, от 0,100 МОм до 9999 МОм
Страница продуктов Брошюра© 2020 HIOKI E.E. CORPORATION
.Общие сведения об испытаниях сопротивления изоляции от Cole-Parmer
Опубликовано с разрешения компании AEMC Instruments.
Зачем нужна программа испытаний изоляции?
Настоятельно рекомендуется регулярная программа проверки сопротивления изоляции для предотвращения поражения электрическим током, обеспечения безопасности персонала и сокращения или устранения времени простоя. Это помогает обнаружить ухудшение изоляции, чтобы запланировать ремонтные работы, такие как: чистка пылесосом, очистка паром, сушка и перемотка.Это также полезно при оценке качества ремонта перед вводом оборудования в эксплуатацию.
Что вызывает нарушение изоляции?
К наиболее частым причинам нарушения изоляции относятся: чрезмерное нагревание или холод, влажность, грязь, коррозионные пары, масло, вибрация, старение и зазубрины проводки. Какие тесты используются для обнаружения ухудшения изоляции? Для оценки качества изоляции проводятся многочисленные ремонтные испытания. Обсуждаемые здесь три испытания используются в основном для проверки изоляции двигателя, генератора и трансформатора.
Какое оборудование необходимо для проведения испытаний сопротивления изоляции?
- Мегомметр с функцией проверки по времени
- Индикатор температуры
- Измеритель влажности (не требуется, если температура оборудования выше точки росы)
Суммарный ток в корпусе изоляции равен сумма трех компонентов
- Емкость Зарядный ток
- Ток поглощения
- Ток утечки или проводимости
Показания сопротивления изоляции 38 |
Тест точечного считывания
Метод
Для этого теста мегомметр подключается через изоляцию обмоток проверяемой машины. Испытательное напряжение прикладывают в течение фиксированного периода времени, обычно 60 секунд, и снимают показания. Тест точечного считывания следует проводить только тогда, когда температура обмотки выше точки росы1. Оператор должен записать температуру обмотки, чтобы можно было скорректировать показания до базовой температуры 20 ° C.
Продолжительность теста
Для получения сопоставимых результатов тесты должны быть одинаковой продолжительности. Обычно показания снимаются через 60 секунд.
Интерпретация результатов
Для правильной интерпретации тестов выборочного чтения требуется доступ к записям результатов предыдущих тестов выборочного чтения. Для окончательных результатов используйте только результаты испытаний, проведенных при одном и том же испытательном напряжении в течение того же времени и при одинаковых условиях температуры и влажности.Эти показания используются для построения кривой изменения сопротивления изоляции. Кривая, показывающая тенденцию к снижению, обычно указывает на потерю сопротивления изоляции из-за неблагоприятных условий, таких как влажность, накопление пыли и т. Д. Очень резкое падение указывает на нарушение изоляции. См. Рисунок 1.
Пример изменения сопротивления изоляции в течение многих лет:
Для A эффект старения и накопления пыли проявляется в уменьшении значений.
На B резкое падение указывает на нарушение изоляции.
При C , значение сопротивления изоляции после перемотки двигателя.
(1) Температура точки росы — это температура, при которой пары влаги в воздухе конденсируются в виде жидкости.
Метод испытания на сопротивление времени
Этот метод практически не зависит от температуры и часто может дать вам окончательную информацию без учета прошлых испытаний. Он основан на поглощающем эффекте хорошей изоляции по сравнению с влажной или загрязненной изоляцией.Просто снимите последовательные измерения в определенное время и обратите внимание на разницу в показаниях (см. Кривые на рис. 2). Испытания этим методом иногда называют испытаниями на абсорбцию.Хорошая изоляция показывает постоянное увеличение сопротивления (см. Кривую D) в течение определенного периода времени (порядка 5–10 минут). Это вызвано абсорбцией; Хорошая изоляция показывает этот эффект заряда в течение периода времени, намного большего, чем время, необходимое для зарядки емкости изоляции.
Если изоляция содержит влагу или загрязнения, эффект поглощения маскируется высоким током утечки, который остается на довольно постоянном значении, поддерживая низкое значение сопротивления (R = E / I) (см. Кривую E).
Испытания на временное сопротивление имеют ценность, поскольку не зависят от размера оборудования. Увеличение сопротивления чистой и сухой изоляции происходит одинаково, независимо от того, большой или маленький двигатель. Вы можете сравнить несколько двигателей и установить стандарты для новых, независимо от их номинальной мощности.
На рисунке 2 показано, как будет выглядеть 60-секундный тест для хорошей и плохой изоляции. Когда изоляция в хорошем состоянии, 60-секундное показание выше 30-секундного.
Еще одним преимуществом этого теста с двумя показаниями является то, что он дает более четкое изображение, даже когда «точечное считывание» показывает, что изоляция выглядит нормально.
Испытания на сопротивление времени на больших вращающихся электрических машинах — особенно при высоком рабочем напряжении — требуют высоких диапазонов сопротивления изоляции и очень постоянного испытательного напряжения. Этой потребности служит сверхмощный мегомметр. Точно так же такой прибор лучше приспособлен для кабелей, вводов, трансформаторов и распределительных устройств более тяжелых размеров.
Методы испытаний — Испытания на долговечность Коэффициент диэлектрической абсорбции (DAR)
- Отношение 60 секунд / 30 секунд
- меньше 1 = не удалось
- От 1,0 до 1,25 = ОК
- От 1,4 до 1,6 = отлично Примечание: Это не часто используемый тест.
Испытание ступенчатым напряжением
Метод
В этом испытании оператор применяет два или более испытательных напряжения ступенчато. Рекомендуемое соотношение для ступеней испытательного напряжения — от 1 до 5.На каждом этапе следует прикладывать испытательное напряжение в течение одинакового периода времени, обычно 60 секунд. Приложение повышенного напряжения создает электрические напряжения на трещинах внутренней изоляции. Это может выявить старение и физические повреждения даже в относительно сухой и чистой изоляции, которые не были бы заметны при более низких напряжениях.
Продолжительность теста
Серия «шагов», каждый шаг длится 60 секунд.
Интерпретация результатов
Сравните показания, снятые при различных уровнях напряжения, ища любое чрезмерное снижение значений сопротивления изоляции на более высоких уровнях напряжения.Тщательно сухая, чистая и без физических повреждений изоляция должна обеспечивать примерно одинаковые значения сопротивления, несмотря на изменения уровней испытательного напряжения. Если значения сопротивления существенно снижаются при испытании на более высоких уровнях напряжения, это должно служить предупреждением о том, что качество изоляции может ухудшиться из-за грязи, влаги, растрескивания, старения и т. Д.
В стандарте IEEE Std 43-2000 перечислены следующие минимальные значения. для индекса поляризации вращающихся машин переменного и постоянного тока:
Класс A: 1.5 Класс B: 2,0 Класс C: 2,0
Кривая поглощения теста, проведенного на двигателе 350 л.с.: Кривая D указывает на хорошую изоляцию с отличным индексом поляризации 5. Кривая E указывает на потенциальную проблему . Индекс поляризации всего 140/95, или 1,47.
(2) IEEE Std. 43-2000, «Рекомендуемая практика для испытания сопротивления изоляции вращающегося оборудования». Доступно в Институте инженеров по электротехнике и электронике, Inc., 345 E. 47th St., New York, NY 10017.
До и после ремонта:
Кривая F показывает тенденцию к снижению значений сопротивления изоляции по мере увеличения испытательного напряжения. Это указывает на потенциальную проблему с изоляцией. Кривая G показывает то же оборудование после ремонта.
Использование защитного терминала
Защитный терминал полезен при измерении очень высоких значений сопротивления.
Какое испытательное напряжение мне следует использовать?
Есть две точки зрения относительно напряжения для проверки изоляции.Первый применяется к новому оборудованию или кабелю и может использовать испытательные напряжения переменного или постоянного тока.
Когда используется напряжение переменного тока, практическое правило — удвоить напряжение на паспортной табличке 1000. Когда используется постоянное напряжение (наиболее распространенное на мегомметрах, производимых сегодня), практическое правило — просто удвоить напряжение на паспортной табличке, за исключением случаев, когда используются более высокие напряжения. См. Таблицу ниже для предлагаемых значений.
Номинальные параметры оборудования / кабеля
от 24 до 50 В
от 50 до 100 В
от 100 до 240 В
от 440 до 550 В
2400 В
4100 В
Испытательное напряжение постоянного тока
От 50 до 100 В постоянного тока
от 100 до 250 В постоянного тока
от 250 до 500 В постоянного тока
500 до 1000 В постоянного тока
от 1000 до 2500 В постоянного тока
от 1000 до 5000 В постоянного тока
Всегда рекомендуется обращаться к производителю оригинального оборудования, чтобы получить рекомендации по правильному напряжению для использования при тестировании оборудования.
Преимущества испытаний на постоянном токе
- Более легкий размер и вес испытательного оборудования
- Неразрушающий
- Исторические данные могут быть собраны
Испытания трансформатора
Трансформаторы испытываются при номинальном напряжении или выше убедитесь, что нет чрезмерных путей утечки на землю или между обмотками. Они выполняются с полностью отключенным трансформатором от линии и нагрузки. Однако основание корпуса удалять не следует. Однофазный трансформатор
Следующие 5 тестов и соответствующие электрические схемы полностью протестируют однофазный трансформатор. Подождите не менее 1 минуты для каждого теста или пока показания не стабилизируются.
- Обмотка высокого напряжения к обмотке низкого напряжения и земле
- Обмотка низкого напряжения к обмотке высокого напряжения и земле
- Обмотка высокого напряжения к обмотке низкого напряжения
- Обмотка высокого напряжения к земле
- Обмотка низкого напряжения к земле
- Обмотка высокого напряжения к обмотке низкого напряжения и заземлению
- Обмотка высокого напряжения к земле с обмоткой низкого напряжения для защиты
- Обмотка высокого напряжения к обмотке низкого напряжения
- Обмотка низкого напряжения на землю и обмотка высокого напряжения для защиты
- Высокое напряжение от обмотки к обмотке низкого напряжения
Испытания кабеля
Трансформаторы испытывают при номинальном напряжении или выше него, чтобы убедиться в отсутствии чрезмерных путей утечки на землю или между обмотками.Они выполняются с полностью отключенным трансформатором от линии и нагрузки. Однако основание корпуса удалять не следует. Однопроводниковый
Подключите, как показано на схеме
- Проводник к клемме (-) и оболочка к земле ()
- Однопроводной
- Один проводник ко всем
- Один проводник на землю
- Один провод к другим минус заземление