Стабилитрон для чего нужен: Как работает стабилитрон — Характеристика стабилитрона.

Содержание

Как работает стабилитрон — Характеристика стабилитрона.

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-).  Если глянуть в толковый словарик, то можно толково разобрать, что же такое «стабильность». На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный — это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа  радиоэлектронной аппаратуры.  Если оно изменится в меньшую,  или даже еще хуже, в большую сторону, то аппаратура  в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать «играющее» напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:

Вывод с «кепочкой» называется также как и у диода — катод, а другой вывод — анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева  популярный вид современного стабилитрона, а справа один из  образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно  увидеть это схематическое обозначение на нем самом, указывающее, где у него находится  катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона — это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это  понятно и дошкольнику.

Теперь  по аналогии с электроникой. Стакан — это стабилитрон. Уровень воды в полном до краев стакане — это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом  большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один — лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники — кувшин обладает «напряжением» больше, чем «напряжение» стакана.

Так  вот, дорогие читатели,  в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит,  напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

[quads id=1]

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 — это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон


Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов.  В схемах стабилитрон включается последовательно с резистором:

где Uвх — входное напряжение, Uвых.ст.  — выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉

Итак, собираем схемку.  Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт!  Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне  5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт,  а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт  — это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр — прямой ток, А

Uпр  — прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр — обратное напряжение, В

Uст — номинальное напряжение стабилизации, В

Iст — номинальный ток стабилизации, А

Номинальный — это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.

Imax — максимальный ток стабилитрона, А

Imin — минимальный ток стабилитрона, А

Iст, Imax, Iminэто  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное — не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт.  Выбирайте на ваш вкус и цвет.


Можете посмотреть видео на тему «КАК РАБОТАЕТ СТАБИЛИТРОН (ДИОД ЗЕНЕРА)», рекомендую.

Стабилитрон. Особенности практического применения. — Радиомастер инфо

Рассказано о назначении и применении стабилитронов, как проверить их исправность и основные параметры, чем и как можно заменить.

Сердцем практически любого стабилизатора напряжения является стабилитрон. Его основная функция поддерживать постоянное напряжение на выходе при изменении напряжения на входе. Информации на эту тему очень много. Я постараюсь ее систематизировать и подать максимально коротко, только то, что нужно для практики.

На схемах обозначаются так:

Выглядят, в основном, вот так:

Стабилитрон — специально изготовленный диод с особой воль-амперной характеристикой. Показать ее и пояснить нужно обязательно, для понимания принципа работы. Вот как она выглядит для обычного стабилитрона, например, Д814:

Когда на анод подают плюс, а на катод минус, то стабилитрон ведет себя как обычный диод. На рисунке прямая ветвь. При возрастании напряжения ток растет. Когда плюс подают на катод, а минус на анод, т.е. включают в обратном направлении, то характеристика стабилитрона, зависимость тока через него от приложенного напряжения, тоже кардинально меняется. Это хорошо видно по форме обратной ветви характеристики. Когда напряжение на стабилитроне достигает напряжения пробоя, cтабилитрон пробивается, но не перегорает, так как ток через него ограничен резистором. Этот резистор называется балластным.  Если не будет этого резистора, или его номинал подобран не правильно, то стабилитрон выйдет из строя. Величина сопротивления этого резистора подбирается таким образом, чтобы в диапазоне изменения входных напряжений ток через стабилитрон не выходил за допустимые для данного стабилитрона пределы Iст min Iст max. При этом напряжение на стабилитроне остается постоянным и равно напряжению стабилизации. Его величина для каждого типа стабилитрона своя. У двуханодных стабилитронов прямая ветвь такая же как и обратная только расположена справа вверху. В схемах двуханодный стабилитрон можно включать независимо от полярности входного напряжения. Это удобно для ограничения переменного напряжения по амплитуде.

Типовая схема включения стабилитрона на конкретном примере:

Параметры стабилитрона КС182 указаны в справочнике:

Напряжение стабилизации стабилитрона 8,2В. При этом ток стабилизации может изменяться от 3мА до 17мА.

Как правило, в расчетах рекомендуют брать минимальное напряжение на входе в 1,5 раза выше напряжения стабилизации. Получаем 12,3 В. Максимальное примем исходя из допустимого разброса напряжения сети 20%. Получаем 14,73 В. Номинал резистора по закону Ома можно посчитать вручную, но в интернете много онлайн калькуляторов для решения таких задач, например, вот этот:

При таких заданных параметрах получим ток в нагрузке от 0 до 12 мА, что соответствует максимальной мощности 0,1 Вт.

Сопротивление балластного резистора 340 Ом, его мощность 0,125 Вт.

Мощность стабилитрона 0,156 Вт.

Мощность, рассеиваемая на резисторе и стабилитроне, составляет в сумме 0,28 Вт. При этом мощность в нагрузке 0,1 Вт. КПД получается 36%. При больших мощностях это не рационально.

Теперь основные моменты из практики.

  1. Как проверить исправность стабилитрона? Обычный стабилитрон проверяется как диод, т.е. прозванивается мультиметром и должен обладать односторонне проводимостью. Другое дело, стабилитрон двухстронний (или двуханодный) или стабилитрон с защитным диодом. Их прозвонить как диод не удастся. Они показывают обрыв в обе стороны. Проверяются только по методике, указанной в следующем пункте.
  2. Проверка напряжения стабилизации. Перед проверкой нужно определиться с мощностью стабилитрона. Это можно сделать по внешнему виду. Если стабилитрон малых размеров и выводы тонкие, то это малая мощность с током стабилизации от 3 до 20 мА. Если корпус чуть больше и выводы толще, то это средняя мощность и ток стабилизации до 90 мА. Ну а мощный стабилитрон имеет большие размеры и возможность установки на радиатор. У него ток стабилизации до ампера и выше.

Есть еще одна особенность. Чем выше напряжение стабилизации стабилитрона, тем меньше ток стабилизации, так как определяющей в этом случае является рассеиваемая стабилитроном мощность. Так что для стабилитронов малой и средней мощности при проверке достаточно тока 10 мА, для большой мощности 20-30мА. Поэтому для большинства проверок стабилитронов с напряжением стабилизации до 30В  берем резистор 1-2 кОм и через него подключаем катод стабилитрона к плюсу регулируемого блока питания, анод соответственно к минусу.

Параллельно стабилитрону подключаем вольтметр. От нуля плавно повышаем напряжение и следим за показаниями вольтметра. Как только они перестали расти при увеличении напряжения блока питания снимаем показания вольтметра. Если напряжение перестало расти при значениях около 1В, значит перепутан анод и катод стабилитрона. Нужно их поменять местами и повторить процедуру. Значение напряжения, при котором прекратились увеличиваться показания вольтметра, и есть напряжение стабилизации. У двуханодных оно будет одинаковым при смене полярности подключения. У стабилитрона с диодом напряжение стабилизации при неправильном включении будет достаточно высоким, на практике выше напряжения блока питания. Теоретически оно будет равно обратному напряжению диода. Можно применять для проверки и нерегулируемый блок питания напряжением выше предполагаемого напряжения стабилизации стабилитрона. При подключении, как на схеме, измеренное напряжение на стабилитроне будет равно напряжению стабилизации стабилитрона. Если показания вольтметра равны напряжению блока питания, значит стабилитрон включен наоборот или имеет напряжение стабилизации выше напряжения блока питания.

  1. В некоторых случаях очень важным параметром является температурный коэффициент напряжения стабилизации. Например, в автомобильном реле-регуляторе, которое управляет величиной напряжения в бортсети автомобиля. Если оно будет сильно изменяться в зависимости от температуры в моторном отсек, то выйдет из строя электрооборудование автомобиля. Следующий наглядный пример. В телевизорах и радиоприемниках в блоке формирования напряжения настройки на частоту принимаемого сигнала также недопустима зависимость напряжения от температуры, иначе сигнал будет плавать и пропадать. Именно поэтому в реле-регуляторах применяют стабилитроны типа Д818Е, а в блоках настройки телевизоров КС531. У первых температурный коэффициент составляет +0,001 %/град, у вторых ±0,005%/град. В то время, как у других, например, КС182 о которых упоминалось в начале статьи, температурный коэффициент составляет около 0,1 %/град. Это почти в 100 раз хуже. как правило, стабилитроны с хорошим температурным коэффициентом содержат внутренний диод, катод которого соединен с катодом стабилитрона. Температурный коэффициент этого диода имеет знак противоположный температурному коэффициенту самого стабилитрона. Таким образом достигается высокая температурная стабильность напряжения стабилизации.

Пока проверяемый стабилитрон подключен для проверки напряжения стабилизации по схеме п.2 этой статьи, можно его выводы подогреть паяльником, немного, градусов до 60-70 и понаблюдать за изменением напряжения на вольтметре. Разница между термостабильным стабилитроном и обычным будет очень заметна.

  1. То, что основное назначение стабилитрона поддерживать постоянное напряжение на нагрузке при изменении входного напряжения и тока нагрузки уже понятно. Но тут есть особенность. Для эффективного выполнения этих задач, мощность нагрузки реально не должна превышать 30% от мощности, рассеиваемой на балластном резисторе и стабилитроне. Об этом уже было сказано в начале статьи. Для увеличения КПД и тока в нагрузке применяют транзисторы. Наиболее простая схема:

Если ток стабилитрона 10мА, а коэффициент усиления транзистора по току 100 раз, то ток в нагрузке будет 10х100=1000мА. Установив параллельно стабилитрону переменный резистор можно напряжение стабилизации в нагрузке изменять от нуля почти до максимального значения напряжения стабилизации стабилитрона.

  1. Чем можно заменить стабилитрон или изменить напряжение стабилизации?

Обычный кремниевый диод включенный в прямом направлении может выполнять функции стабилитрона напряжением около 0,7 В. Для увеличения напряжения диоды можно включать последовательно с такими же диодами или стабилитроном, напряжение которого нужно немного увеличить. Германиевый диод, при прямом включении, стабилизирует напряжение около 0,5 В, светодиод, в зависимости от типа 2…3,2 В.

Примеры показаны ниже на фото:

Кремниевые транзисторы в диодном включении также могут выполнять функции стабилитрона напряжением 5…6 В. Причем можно использовать последовательное подключение транзистора с диодами, нескольких транзисторов, как показано ниже:

Если есть маломощный стабилитрон на нужное напряжение, а нужен более мощный, то можно использовать такую аналогию ( где VD1 маломощный стабилитрон):

R2 – балластный резистор. Напряжение стабилизации схемы равно напряжению стабилизации стабилитрона плюс напряжение б-э транзистора (0,7В у кремниевых и 0,5В у германиевых). Максимальный ток стабилизации схемы равен току стабилитрона, умноженному на коэффициент усиления транзистора по току (h21). Используя такие схемы нельзя допускать превышения значений параметров применяемых элементов.

Если нужны высоковольтные стабилитроны на напряжения 120…180В (КС620А, КС630А, КС650А, КС680А), то можно использовать такие схемы:

Как источник стабильного тока используют германиевые диоды Д220, Д220А, Д219А которые имеют низкое дифференциальное сопротивление при обратном включении и обратном токе 0,1…10 мА. Понятно, что напряжение применяемого транзистора должно быть выше 180 В.

Материал статьи продублирован на видео:

 

Зачем нужен резистор в цепи защиты стабилитрона?

Итак, давайте сделаем математику здесь.

Изобразите эти реальные цифры: R3 = R4 = 100 Ом, стабилитрон = 4,7 В, Vcc = 5,0 В,

В сценарии 1 (верхнее изображение):

Вы непослушны и подаете 12 В на SDA-вход I²C (правая сторона R3).

Ток протекает через R3 и D1.

  • Падение напряжения на D1 составляет 4,7 В (чрезмерно упрощенное).

  • Падение напряжения на R3 составляет 12 В — 4,7 В = 7,3 В

  • Ток через R3 и D1 составляет 7,3 В / 100 Е = 0,073 А

  • Мощность, рассеиваемая в D1, составляет 0,073 А * 4,7 В = 0,3431 Вт.

Таким образом, если вы выбрали пакет стабилитронов 0,5 Вт, стабилитрон не взрывается. Напряжение, видимое выводом SDA, составляет 4,7 вольт. Таким образом, ваше устройство I²C не взорвалось.

Сценарий 2 (нижняя картинка):

Вы снова подаете 12 В на вход SDA. Ток снова проходит через R3 и D1 так же, как в сценарии 1:

  • Падение напряжения на D1 составляет 4,7 В
  • Падение напряжения на R3 составляет 7,3 В
  • Ток, протекающий через R3 и D1, составляет 0,073A.
  • Рассеиваемая мощность составляет 0,3431 Вт, поэтому диод не взрывается.

Но … Напряжение на выводе вашего устройства I²C теперь составляет 12В. Потому что все напряжение падает вместе с R3 и D1. Это повредит ваш компонент.

Надеюсь, это прояснит, как работает защита Зенера.


Приложение: Если вы хотите знать, что происходит, когда R3 и R4 слишком малы, повторите вычисления с R3 = R4 = 1 Ом. (Стабилитрон рассеется +/- 34 Вт и взорвется). Если вы сделаете R3 и R4 слишком высокими, то стабилитрон может работать не так, как задумано (им нужно некоторое количество тока для стабилизации при правильном напряжении).

Кроме того, если другие устройства, подключенные к вашим сигналам I²C, поднимают шину на низкий уровень, логический уровень будет смещен вверх.

Стабилитроны, стабисторы, импульсные ограничительные TVS-диоды

Современная электронная аппаратура предъявляет жёсткие требования к стабильности постоянного напряжения источника питания. Основными причинами, вызывающими колебания выходного напряжения ИП, являются изменения напряжения сети и сопротивления нагрузки. Для минимизации влияния указанных причин предназначены стабилизаторы напряжения, позволяющие в заданных пределах поддерживать напряжение на нагрузке, а основой данных электронных устройств как раз и являются стабилитроны и стабисторы.

Начнём с наиболее распространённых полупроводников, использующихся в стабилизаторах ИП — стабилитронах, и попробуем разобраться — что такое стабилитрон, для чего он нужен, каков принцип его работы и в какое место схемы его следует засовывать.

В электротехнике полупроводниковый стабилитрон или диод Зенера – это особый вид диодов, функционирующий в режиме устойчивого пробоя в условиях обратного смещения p-n перехода.


Рис.1

На рисунке Рис.1 приведена вольтамперная характеристика стабилитрона.
При включении стабилитрона в прямом направлении, его ВАХ аналогична вольтамперной характеристике обычного кремниевого диода. При превышении уровня прямого напряжения (Uпр) значения 0,6-0,7В, стабилитрон переходит в проводящие состояние и поддерживает данный уровень до тех пор, пока не будет превышен максимально допустимый ток через него.
Однако стандартным рабочим режимом стабилитрона — является режим обратного напряжения.
По мере роста обратного напряжения до момента наступления пробоя, через стабилитрон протекает лишь малый ток утечки. Однако в момент достижения напряжением значения пробоя полупроводника, ток мгновенно вырастает. Происходит это в силу уменьшения дифференциального сопротивление стабилитрона до величин, составляющих единицы Ом.

Таким образом, напряжение на стабилитроне весьма точно поддерживается в определённом, достаточно широком диапазоне обратных токов.
Этот диапазон токов должен быть не меньше минимального тока стабилизации, т.е. наименьшего тока, при котором возможна работа стабилитрона в режиме пробоя, и не больше допустимого максимального тока стабилизации. Обе эти величины указаны в справочных характеристиках полупроводника.
По большому счёту, при выборе полупроводникового стабилитрона для работы в стабилизаторах напряжения, во многих случаях вполне достаточно ориентироваться на три его основных параметра: напряжение стабилизации, а также на минимальный и максимальный рабочие токи.

Температурная зависимость напряжения стабилизации стабилитрона характеризуется параметром ТКН (TKU) — температурным коэффициентом напряжения стабилизации. Причём, зависимость свойств стабилитрона от температуры может быть как с положительным ТКН, так и отрицательным. При последовательном подключении элементов с разными по знакам коэффициентами создаются прецизионные стабилитроны, с характеристиками, слабо зависящими от температуры нагрева или охлаждения.

Простейшая схема стабилизатора напряжения приведена на Рис.1 справа и состоит из балластного сопротивления Rб и стабилитрона, шунтирующего нагрузку Rн.
Значение резистора Rб подбирается из тех соображений, чтобы при минимально возможной величине напряжения питания Uвх и максимальном токе в нагрузке Iн — ток, протекающий через стабилитрон Iст, находился в рабочей зоне регулирования и рассчитывается по следующей формуле:
Rб = (Uвх — Uст)/(Iст + Iн). Ток стабилитрона Iст выбирается между допустимыми максимальным и минимальным значениями, в зависимости от напряжения на входе Uвх и тока нагрузки Iн.

Поясним примером. Предположим, заданы такие исходные данные:

— Uвх = 12-15 В — диапазон изменения входного напряжения;
— Uст = 9 В — необходимое стабилизированное напряжение на нагрузке;
— Iн = 100 мА — максимальный ток нагрузки.

Для наших целей вполне сгодится стабилитрон Д815В с типовым напряжением стабилизации ≈ 9В и током стабилизации 50-950мА. Давайте подставим все имеющиеся у нас вводные в формулу:
Rб = (12В — 9В)/(50мА + 100мА) = 20 Ом
При выбранном значении резистора мы: при максимальном токе нагрузки и минимальном напряжении питания обеспечиваем ток через стабилитрон, равный 50мА. С другой стороны, при отсутствии или обрыве нагрузки и максимальном напряжении питания — ток через стабилитрон равен 300мА, что с большим запасом укладывается в диапазон допустимых максимальных токов полупроводника.

Далее у нас на очереди стабистор .
Стабистор — полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики (то есть в области прямого смещения напряжение на стабисторе).
Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации, которое составляет величину, примерно равную 0,7 В.
Последовательное соединение двух или трёх стабисторов даёт возможность получить удвоенное или утроенное значение напряжения стабилизации. Некоторые типы стабисторов представляют собой единый набор с последовательным соединением отдельных элементов.
Стабисторам присущ отрицательный температурный коэффициент сопротивления, то есть напряжение на стабисторе при неизменном токе уменьшается с увеличением температуры. В связи с этим стабисторы часто используют для температурной компенсации стабилитронов, обладающих положительным температурным коэффициентом изменения напряжения стабилизации.

TVS-диоды — полупроводниковые приборы, выполняющие защитные функции ограничителя высоких напряжений, поступающих на вход устройства.
TVS-диоды разработаны и предназначены для защиты от мощных импульсов перенапряжения, в то время как кремниевые стабилитроны предназначены для поддержания величины постоянного напряжения и не рассчитаны на работу при значительных импульсных нагрузках.

Условные обозначения электрических параметров, характеризующих свойства
стабилитронов, стабисторов, импульсных TVS-диодов:

Uст/Iст напряжение стабилизации (Uст) стабилитрона при заданном прямом токе (Iст) через него.
Iс1/Iс2 минимальный и максимальный токи стабилизации.
Rст/Iст динамическое сопротивление (Rст) стабилитрона при заданном прямом токе (Iст) через него (разные столбцы при разных токах).
максимально допустимая постоянная рассеиваемая мощность на диоде.
ТКU температурный коэффициент изменения напряжения стабилизации стабилитрона.
dUст разброс номинального напряжения стабилизации (приводится максимальное отклонение в процентах или в вольтах).
Диод Uст/Iст
  В/мА
Ic1-Ic2
 мА-мА
Rст/Iст
 Ом/мА
Rст/Iст
 Ом/мА

мВт
 TKU(мВ/C)
 1/10000*C
dUст
%(В)
Кор-
пус
2С101А
2С101Б
2С101В
2С101Г
2С101Д
3.3/3
3.9/3
4.7/3
5.6/3
6.8/3
  1-30
  1-26
  1-21
  1-18
  1-15
180/3
180/3
200/3
100/3
 50/3




100
100
100
100
100
 -10
 -8
 -6
 +/-4
 +6
 10
 10
 10
 10
 10
 74
 74
 74
 74
 74
КС102А 4.84/20   3-58 160/3 17/20 300  —  —  —
КС104А 7.5/4 0.5-17  40/4 125  —  —  —
КС104Б 9.2/4 0.5-14  40/4 125  —  —  —
КС106А 3.2/0.01 0.01-0.5 500/0.2   2  13 (0.3)  86
2С107А 0.7/10   1-100  50/1  7/10  — (2 мв/ C)  10  75
2С108А
2С108Б
2С108В
2С108Г
2С108Д
2С108Е
2С108Ж
2С108И
2С108К
2С108Л
2С108М
2С108Н
2С108П
2С108Р
2С108C
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
15/7.5
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 70
 +/-0.2
 +/-0.1
 +/-0.05
 +/-0.2
 +/-0.1
 +/-0.05
 +/-0.2
 +/-0.1
 +/-0.05
 +/-0.1
 +/-0.05
 +/-0.1
 +/-0.05
 +/-0.05
 +/-0.05
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
2С113А 1.3/10   1-100  90/1 12/10   (-4мв/ C)  10  75
КС114А 6.4/7.5   3-35   15/7.5 250  0.5   5  
КС115А 1.5/3   1-100 150/1 35/3 200   (.06)  33
2С117А
2С117Б
2С117В
2С117Г
2С117Д
2С117Е
2С117Ж
2С117И
2С117К
2С117Л
2С117М
2С117Н
2С117П
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
  3-12
  3-12
  3-12
  3-12
  3-12
  3-12
  3-12
  3-12
  3-12
  3-12
  3-12
  3-12
  3-12
 50/
 50/
 50/
 50/
 50/
 50/
 50/
 50/
 50/
 50/
 50/
 50/
 50/
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
 80
-0.2;+0.2
-0.1;+0.1
-0.05;+0.05
-0.2;+0.2
-0.1;+0.1
-0.05;+0.05
-0.2;+0.2
-0.1;+0.1
-0.05;+0.05
-0.1;+0.1
-0.05;+0.05
-0.05;+0.05
-0.05;+0.05
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
2С118А 3.2/0.2 0.01-0.5 500/.225  —   2  —  10  —
2С119А 1.9/10   1-100 130/1 15/10  — (-6 мв/ C)  10  75
КС121А 7.5/5 0.5-35  — 15/5  —  — (0.4)  33
2С123А
2С123Б
2С123В
2С123Г
2С123Д
2С123Е
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
6.4/7.5
  3-12
  3-12
  3-12
  3-12
  3-12
  3-12
 50/
 50/
 50/
 50/
 50/
 50/
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
20/7.5
 80
 80
 80
 80
 80
 80
-0.05;+0.05
-0.02;+0.02
-0.05;+0.05
-0.02;+0.02
-0.05;+0.05
-0.02;+0.02
  5
  5
  5
  5
  5
  5
  1
  1
  1
  1
  1
  1
КС133А
2С133Б
КС133В
КС133Г
3.3/10
3.3/5
3.3/5
3.3/5
  3-81
  1-37.5
  1-37.5
  1-37.5
180/3
680/1
680/1
 65/10
150/5
150/5
150/5
300
125
125
125
-11

-10; -2
-10
 10
 10
(0.2)
(0.3)
  1
  —
  1
  1
КС139А
2С139Б
КС139Г
3.9/10
3.9/10
3.9/5
  3-70
  3-26
  1-32
180/3
180/3
 60/10
 60/10
150/5
300
100
125
-10;0
-10
-10
 10
 10
 —
  1
  —
  1
КС147А
2С147Б
2С147В
КС147Г
2С147Т9
4.7/10
4.7/10
4.7/5
4.7/5
4.7/3
  3-58
  3-21
  1-26.5
  1-26.5
  1-38
160/3
180/3
680/1
680/1
560/
 56/10
 56/10
150/5
150/5
220/3
300
100
125
125
200
-9; +1
-8; +2
-7
-7
-8
 10
 10
 10
 10
(0.3)
  1
  —
  1
  1
  —
КС156А
2С156Б
2С156В
КС156Г
2С156Т9
2С156Ф
5.6/10
5.6/10
5.6/5
5.6/5
5.6/3
5.6/5
  3-55
  3-18
  1-22.4
  1-22.4
  1-34
  1-20
160/3
160/3
470/1
470/1
560/
290/1
 46/10
 45/10
100/5
100/5
160/3
 30/5
300
100
125
125
200
125
-5; +5
-4; +7
0; +5
0; +7
-4; +6
 10
 10
 10
 10
(0.3)
  5
  1
  —
  1
  1
  —
  —
КС162А
КС162А2
6.2/10
6.2/10
  3-35
  3-22
150/3
150/3
 35/10
 35/10
150
300
— 6
— 6
(0.4)
(0.4)
 76
 77
2С164М9 6.4/3 0.5-3  — 120/1.5  20 -0.5;+0.5 (0.3)  —
2С166А
2С166Б
2С166В
2С166Г
2С166Д
2С166Е
2С166Ж
2С166И
2С166К
6.6/7.5
6.6/7.5
6.6/7.5
6.6/7.5
6.6/7.5
6.6/7.5
6.6/7.5
6.6/7.5
6.6/7.5
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
  3-10
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 70/3
 20/7.5
 20/7.5
 20/7.5
 20/7.5
 20/7.5
 20/7.5
 20/7.5
 20/7.5
 20/7.5
 70
 70
 70
 70
 70
 70
 70
 70
 70
-0.2;+0.2
-0.1;+0.1
-0.05;+0.05
-0.2;+0.2
-0.1;+0.1
-0.05;+0.05
-0.2;+0.2
-0.1;+0.1
-0.05;+0.05
  5
  5
  5
  5
  7
  7
  5
  5
  6
 —
 —
 —
 —
 —
 —
 —
 —
 —
КС168А
2С168Б
КС168В
КС168В2
2С168К9
6.8/10
6.8/10
6.8/10
6.8/10
6.8/0.5
  3-28
  3-15
  3-28
  3-20
0.1-27
120/3
 40/3
120/3
120/3
1000/
 28/10
 15/10
 28/10
 28/10
200/0.5
300
100
150
300
200
— 6; +6
+7
— 5; +5
— 5; +5
-5;
 10
 10
(0.5)
(0.5)
(0.3)
  1
 —
 76
 77
 —
КС170А 7.0/10   3-20  50/3  20/10 150 — 1; +1 (.35)  76
КС175А
КС175А2
2С175Е
2С175Ж
2С175Ц
7.5/5
7.5/5
7.5/5
7.5/4
7.5/0.5
  3-18
  3-18
  3-20
0.5-17
0.1-17
 70/3
 70/3
 —
200/0.5
820/0.1
 16/5
 16/5
 30/5
 40/4
200/0.5
150
300
150
125
125
— 4; +4
— 4; +4
10
+7
6.5
(0.5)
(0.5)
  5
(0.4)
  —
 76
 77
 —
 77
 77
2С180А 8.0/5   3-15  15/1   8/5 125 +7 (0.6)  —
КС182А
КС182А2
2С182Е
2С182Ж
2С182Ц
8.2/5
8.2/5
8.2/5
8.2/4
8.2/0.5
  3-17
  3-17
  3-18
0.5-15
0.1-15
 30/3
 30/3
 —
200/0.5
820/0.1
 14/5
 14/5
 30/5
 40/4
200/0.5
150
300
150
125
125
+5
-5; +5

+8
7
(0.6)
(0.6)
  5
(0.5)
  —
 76
 77
 —
 77
 77
КС190А
КС190Б
КС190В
КС190Г
КС190Д
КС190Е
КС190Ж
КС190И
КС190К
КС190Л
КС190М
КС190Н
КС190О
КС190П
КС190Р
КС190У
КС190Ф
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
9.0/10
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
  5-15
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
 15/10
  150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
-0.5 +0.5
-0.5 +0.5
-0.2 +0.2
-0.1 +0.1
-0.05 +0.05
-0.5 +0.5
-0.2 +0.2
-0.1 +0.1
-0.05 +0.05
-0.2 +0.2
-0.1 +0.1
-0.05 +0.05
-0.05 +0.05
-0.1 +0.1 
-0.05 +0.05
-0.05 +0.05
-0.05 +0.05
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
  5
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
КС191А
КС191А2
КС191Б
КС191В
2С191Е
2С191Ж
КС191М
КС191Н
КС191П
КС191Р
КС191С
КС191T
КС191У
КС191Ф
2С191Ц
9.1/5
9.1/5
9.1/10
9.1/10
9.1/5
9.1/4
9.1/10
9.1/10
9.1/10
9.1/10
9.1/10
9.1/10
9.1/10
9.1/10
9.1/0.5
  3-15
  3-15
  3-20
  3-20
  3-16
0.5-14
  5-15
  5-15
  5-15
  5-15
  3-20
  3-20
  3-20
  3-20
0.1-14
 30/3
 30/3
 —
 —
 —
200/0.5
 39/5
 39/5
 39/5
 39/5
 —
 —
 —
 —
820/0.1
 18/5
 18/5
 15/10
 15/10
 30/5
 40/4
 18/10
 18/10
 18/10
 18/10
 18/10
 18/10
 18/10
 18/10
200/0.5
150
300
200
200
150
125
150
150
150
150
200
200
200
200
125
+6
-6; +6
-1; +1
-0.5; +0.5

+9
-0.5; +0.5
-0.2; +0.2
-0.1; +0.1
-0.05;+0.05
-0.5; +0.5
-0.2; +0.2
-0.1; +0.1
-0.05;+0.05
8
(0.6)
(0.6)
(0.4)
(0.4)
  5
(0.5)
  5
  5
  5
  5
  5
  5
  5
  5
  —
 76
 77
 75
 75
 —
 77
 —
 —
 —
 —
 75
 75
 75
 75
 77
КС196А
КС196Б
КС196В
КС196Г
9.6/10
9.6/10
9.6/10
9.6/10
  3-20
  3-20
  3-20
  3-20
 70/3
 70/3
 70/3
 70/3
 18/10
 18/10
 18/10
 18/10
200
200
200
200
-0.5; +0.5
-0.25;+0.25
-0.1; +0.1
-0.05;+0.05
  5
  5
  5
  5
 
КС201А
КС201Б
КС201В
КС201Г
  —
 11/4
 12/4
 13/4
0.5-11
0.5-4.5
0.5-16
0.5-16
   70/2
 40/4
 15/4
 15/4
200
125
200
200
 10
 —
 —
 —
(0.5)
(0.6)
(0.4)
(0.7)
 
КС210Б
КС210Б2
2С210Е
2С210Ж
2С210Ц
 10/5
 10/5
 10/5
 10/4
 10/0.5
  3-14
  3-14
  3-15
0.5-13
0.1-12.5
 35/3
 35/3
 —
200/0.5
820/0.1
 22/5
 22/5
 30/5
 40/4
200/0.5
150
300
150
125
125
+7
-7; +7

+9
8.5
(0.7)
(0.7)
  5
(0.5)
 76
 77
 —
 77
 77
2С211А
КС211Б
КС211В
КС211Г
КС211Д
2С211Ж
2С211И
КС211Ц
 11/5
 11/10
 11/10
 11/10
 11/10
 11/4
 11/5
 11/0.5
  3-10
  5-33
  5-33
  5-33
  5-33
0.5-14
  3-13
0.1-11.2
 36/1
 30/5
 30/5
 30/5
 30/5
200/0.5
 40/3
820/0.1
 19/5
 15/10
 15/10
 15/10
 15/10
 70/4
 23/5
200/0.5
125
280
280
280
280
150
150
125
+9.5
+2
-2; +2
-1; +1
-0.5; +0.5
+9
+7
8.5
 —
+15
-15
+-10
+-10
(0.5)
(0.7)
 —
 —
 87
 87
 87
 87
 77
 76
 77
2С212В
2С212Е
2С212Ж
2С212Ц
 12/5
 12/5
 12/4
 12/0.5
  3-12
  3-13
0.5-11
0.1-10.6
 45/3
 —
200/0.5
820/0.1
 24/5
 30/5
 40/4
200/0.5
150
150
125
125
+7.5

+9.5
8.5
  5
  5
(0.6)
  —
 76
 —
 77
 77
2С213А
2С213Б
КС213Б2
2С213Е
2С213Ж
 13/5
 13/5
 13/5
 13/5
 13/4
  3-9
  3-10
  3-10
  3-12
0.5-10
 44/1
 45/3
 45/3
 —
200/0.5
 22/5
 25/5
 25/5
 30/5
 40/4
125
150
300
150
125
+9.5
+8
-8; +8

+9.5
  —
(0.9)
(1.0)
  5
(0.7)
 —
 76
 77
 77
2С215Ж  15/2 0.5-8.3 300/0.5  70/2 125  — (0.8)  77
2С216Ж  16/2 0.5-7.8 300/0.5  70/2 125  — (0.9)  77
2С218Ж  18/2 0.5-6.9 300/0.5  70/2 125  — (1.0)  77
2С220Ж  20/2 0.5-6.2 300/0.5  70/2 125  — (1.0)  77
2С222Ж  22/2 0.5-5.7 300/0.5  70/2 125  — (1.1)  77
2С224Ж  24/2 0.5-5.2 300/0.5  70/2 125  — (1.2)  77
2С291А  91/1 0.5-2.7 1600/0.5 700/1 250 11 (5.0)  —
Д818А
Д818Б
Д818В
Д818Г
Д818Д
Д818Е
  9/10
  9/10
  9/10
  9/10
  9/10
  9/10
  3-33
  3-33
  3-33
  3-33
  3-33
  3-33
100/3
100/3
100/3
100/3
100/3
100/3
 25/10
 25/10
 25/10
 25/10
 25/10
 25/10
300
300
300
300
300
300
+2.3;
-2.3;
-1.1; +1.1
-0.6; +0.6
-0.2; +0.2
-0.1; +0.1
 20
-20
 15
 15
 15
 15
 75
 75
 75
 75
 75
 75

  2С108, 2С117, 2С123, КС133,
 КС139, КС147, КС156, КС168А

  КС115, КС121

  2С101

  2С107, 2С113, 2С119, КС190,
  КС191Б, В, КС191С-Ф, Д818

  КС162А, КС168В, КС175А,
  КС182А, КС191А, КС210Б,
  2С213Б

  КС162А2, КС168В2, КС175А2,
 2С175Ж, 2С175Ц, КС182А2,
  2С182Ж, 2С182Ц, КС191А2,
  2С191Ж, 2С191Ц, КС210Б2,
  2С210-212Ж, 2С210-212Ц,
  КС213Б2, 2С213Е, 2С215-224

  КС211Б-Д

 

Как проверить стабилитрон (диод Зенера) на напряжение стабилизации и работоспособность.

В этой статье предлагаю Вам разобраться с вопросом – как можно достаточно простым методом проверять стабилитроны (которые также называются диодами Зенера) на их напряжение стабилизации, а также на пригодность вообще. Напомню, что стабилитрон представляет собой обычный полупроводник, у которого есть некоторое свое стабильное напряжение, что присутствует между катодом и анодом, при обратном включении к источнику постоянного напряжения, при электрическом пробое этого полупроводника.

Если взять самый обычный диод, то при обратном включении между анодом и катодом будет величина постоянного напряжения равная напряжению источника этого питания. При таком подключении диод подобен обычному диэлектрику, который через себя не пропускает ток (точнее ток есть, называемый током утечки, но он очень мал).

И это при условии, что данный диод рассчитан на обратное напряжение больше, чем на него подается. В противном случае (если подаваемое напряжение будет больше того, на какое рассчитан диод) этот диод просто пробьется, выйдя из строя. При этом скорее всего он либо начнет электрический ток проводить в обе стороны, как обычный проводник, либо станет диэлектриком, ток проводить уже вовсе не будет.

У стабилитрона же, в отличие от обычного диода, имеется более низкое обратное напряжение, при котором этот стабилитрон пробивается. И этот пробой не выводит стабилитрон из строя, а напряжение на нем стабилизируется на определенном уровне. У разных стабилитронов это напряжение стабилизации может отличаться, и оно соответствует конкретной маркировке этих стабилитронов. Естественно, когда у стабилитрона возникает пробой, то через него начинает течь ток. И чем больше мы будем подавать напряжение на этот стабилитрон, тем больше будет сила тока, протекающая через него. Напряжение же будет меняться очень незначительно.

При прямом же включении, что у обычного диода, что у стабилитрона, будет происходить практически одно и тоже. А именно, до напряжения где-то 0,6 вольт полупроводник будет закрыт. Но, как только подаваемое напряжение превысит это значение, то через полупроводник начнет течь электрический ток. Чем больше ток будет протекать через полупроводник, тем больше будет падение напряжения на нем, в пределах где-то от 0,6, до 1,2 вольта. К примеру, у диодов Шоттки падение напряжения при прямом включении имеет минимальное значение – от 0,2 В. Если при проверке, хоть диода, хоть стабилитрона, при прямом включении мы не увидим этого падения напряжения (0,6 В), то скорей всего диод пробит и уже не пригоден к работе.

Ну и теперь ближе к теме о простом способе проверки стабилитронов на их целостность и напряжение стабилизации. Тут все просто. Нам нужен обычный источник постоянного напряжения, у которого это самое напряжение должно быть больше напряжения стабилизации проверяемого стабилитрона. Иначе при более низком напряжении стабилитрон просто не пробьется и не выйдет на свой рабочий номинальный режим стабилизации. Нужно учесть, что мощность блока питания может быть маленькой, поскольку в режиме стабилизации стабилитрон через себя пропускает незначительные токи (до 100 мА).

Если Вы планируете таким способом проверять стабилитроны с достаточно большим напряжением стабилизации, то и блок питания нужен с соответствующим постоянным напряжением. Хотя не всегда под рукой можно найти такие БП с относительно большим выходным напряжением. Простым выходом из такой ситуации будет использования обычного дешевого повышающего напряжение DC-DC модуля. На вход этого модуля можно подавать любое стандартное напряжение, ну а на его выходе уже можно получать более высокое напряжение. Причем, как я заметил ранее, сила тока при проверки будет крайне незначительна.

Кроме блока питания нам еще понадобится обычный вольтметр постоянного тока, которым мы и будем оценивать величину напряжения стабилизации диода Зенера (стабилитрона). Подойдет абсолютно любой вольтметр, лишь он мог показывать постоянное напряжение от 0 до 50 и более. Подойдет самый простой мультиметр.

Ну, и еще немаловажная деталь, это обычный постоянный резистор с сопротивлением где-то около 2 килоом, хотя можно от 1 кОм до 10 кОм.  Роль этого сопротивления очень простая. Он ограничивает силу тока, который будет протекать через проверяемый стабилитрон. Что предотвратит полупроводник от случайного выхода из строя в случае, когда подаваемое напряжение будет большое, а напряжение стабилитрона будет мало. Сопротивление же ограничивать силу тока при любых типах стабилитрона, тем самым обезопасит процесс измерения и проверки. По мощности подойдет самый обычный резистор на 0,125 Вт.

Ну, и вот сама схема, которая и позволяет делать проверку стабилитронов:

Тут все просто. Плюс блока питания подключается через резистор к катоду стабилитрона, что соответствует обратному включению, а минус БП подается на анод проверяемого полупроводника. Щупы вольтметра прикладываются параллельно стабилитрону. На экране вольтметра мы увидим то самое напряжение стабилизации, на которое и рассчитан данный стабилитрон. Когда же мы перевернем стабилитрон и подсоединяем его прямым включением, то есть плюс БП к аноду полупроводника, а минус БП к катоду стабилитрона. То на вольтметре мы должны увидеть значение около 0,6 вольт, что свидетельствует о полной работоспособности данного полупроводника. Прямым включением, этим способом, можно проверять и обычные диоды. При обратном подключении диода вольтметр должен показывать напряжение блока питания, поскольку диод будет полностью закрыт.

Видео по этой теме:

P.S. Если у Вас нет под рукой блока питания на нужное напряжение, допустим 50 вольт. А также нет возможности приобрести модуль, повышающий постоянное напряжение. То с этой ситуации легко выйти таким образом. Чтобы получить высокое напряжение даже от одной батарейки на 1,5 вольт, можно воспользоваться обычной катушкой (витков так на 100 и более), намотанной на куске феррита. При кратковременной подаче напряжения от батарейки на эту катушку на ее выводах будет возникать ЭДС самоиндукции, которая в разы может превышать напряжение батарейки. Добавив простой диод и конденсатор вы легко получите самодельный увеличитель постоянного напряжения. Разве что его придется при проверке стабилитронов периодически нажимать переключатель этой схемы.

Стабилитрон коды ТН ВЭД (2020): 8541100009, 9026102909, 9026102900

Диоды (диоды подавления переходных скачков напряжения (TVS), диоды Шоттки, диоды-стабилитроны, диоды выпрямители, диоды типа Зеннера, варакторные диоды, регулируемые резистивные диоды) на напряжение 50-1000 вольт, 8541100009
Диоды на напряжение 50-1000 вольт: диоды подавления переходных скачков напряжения (TVS), диоды Шоттки, диоды-стабилитроны, диоды выпрямители, диоды типа Зеннера, варакторные диоды, регулируемые резистивные диоды, 8541100009
Диоды на напряжение 50-1000 вольт: диоды подавления переходных скачков напряжения (TVS), диоды Шоттки, диоды-стабилитроны, диоды выпрямители, диоды типа Зеннера, варакторные диоды, регулируемые резистивные диоды, 8541100009
Датчик уровня топлива LLS 20230 с блоком искрозащиты на стабилитронах БИС 20240 9026102909
Стабилитрон, диод Зенера, модель 1N6351US, марки Microsemi 8541100009
Автоматический барьер искрозащиты на стабилитронах на напряжение 30 В, силу тока 4-20 мА, не бытового назначения. артикул RB223-B1B 8536301000
Диоды подавления переходных скачков напряжения (TVS), диоды шоттки,  диоды-стабилитроны, диоды выпрямители, диоды типа зеннера, варакторные диоды, регулируемые резистивные диоды, на напряжение 50-1000 вольт, 8541100009
Диоды (диоды подавления переходных скачков напряжения (TVS), диоды Шоттки, диоды-стабилитроны, диоды выпрямители, диоды типа Зеннера, варакторные диоды, регулируемые резистивные диоды) на напряжение 50-1000 вольт, 8541100009
Диоды, диодный мост, стабилитроны 8541100009
Стабилитрон, напряжение питания 91 В, торговая марка ON Semiconductor 8541100009
Блок искрозащиты на стабилитронах БИС-1 с маркировкой взрывозащиты: [Ex ia Ga] IIC 8531103000
Выпрямительные диоды, стабилитроны, диоды Шоттки , 8541100009
Стабилитрон, небытового назначения, напряжение от 75 до 1500 В постоянного тока, 8541100009
Диод-стабилитрон, полупроводниковый на напряжение 68 В, 8541100009

Что такое стабилитрон и как он работает

Как известно, любой диод пропускает ток в прямом направлении, то есть когда плюс поступает на его анод, а минус — на катод, и не пропускает ток в обратном направлении.

Но среди прочих важных параметров у диода есть такой параметр как максимальное допустимое обратное напряжение. Это максимальное напряжение, приложенное к диоду в обратном направлении, при котором сохраняются его «диодные» свойства.

Допустим, мы подключим к диоду напряжение плюсом к катоду, а минусом к аноду (то есть, в обратном направлении) и станем это напряжение повышать.

Как только это напряжение достигнет «максимального допустимого» значения произойдет пробой диода Он потеряет свои «диодные» свойства и будет пропускать ток в обратном направлении.

Для обычного диода пробой вещь неприятная, часто приводящая к выходу диода из строя. По тяжести последствий таких пробоев бывает два типа:

Необратимый пробой — это выход из строя диода, порча его, поломка, полная непригодность.

Обратимый пробой — это когда диод пробило, но не испортило, то есть, он стал пропускать ток в обратном направлении, но если обратное напряжение на нем понизить то он опять, как ни в чем небывало, перестанет пропускать обратный ток.

Диоды с ярко выраженной склонностью к обратимому пробою выпускают специально, и делают их такими, чтобы этот обратимый пробой наступал при строго определенном обратном напряжении.

Такие диоды называют стабилитронами. А обратное напряжение, при котором происходит обратимый пробой стабилитрона называют напряжением стабилизации.

Теперь посмотрим в чем смысл такого диода Допустим, есть стабилитрон на напряжение стабилизации 10V. Это значит, что если на него подавать обратное напряжение ниже 10V, то он как любой диод, включенный в обратном направлении ток пропускать не будет.

А вот если обратное напряжение на нем достигнет 10V, произойдет обратимый пробой, ток возникнет и будет сильно увеличиваться если мы продолжим повышать напряжение.

Чтобы обратимый пробой не превратился в необратимый этот обратный ток нужно ограничивать, например, обычным резистором (как в случае со светодиодами).

Обозначение стабилитрона, схема подключения

А смысл стабилитрона в том, что если мы соберем схему, показанную на рисунке 2, то при колебаниях входного напряжения Uвх от величины напряжения стабилизации стабилитрона (Uct) до значительно больших величин, напряжение на стабилитроне не будет меняться, и будет равно Uct. Вот на этой основе и построено большинство схем стабилизаторов напряжения.

А схема, показанная на рисунке 2, это и есть простейший стабилизатор напряжения. На рисунке 1 показано обозначение стабилитрона на схеме. Оно похоже на обозначение диода, — треугольник это анод, а черточка — катод. Но у катодной черточки сделан уголок.

Если есть такой уголок, — значит это стабилитрон.

Рис. 1. Внешний вид и обозначение стабилитронов на принципиальных схемах.

Рис. 2. Схема подключения стабилитрона.

Стабилитроны выпускаются в таких же корпусах, как и диоды, и вообще внешне на них очень похожи. В схеме на рисунке 2 есть резистор R1, который нужен для ограничения тока через стабилитрон.

В справочниках обычно указывают не только напряжение стабилизации, но ток стабилизации, — минимальный и максимальный. Вот, например, популярный стабилитрон Д814А.

Напряжение стабилизации 7,5V, ток стабилизации минимальный 3 мА, максимальный 40 mA. Сопротивление R1 должно быть таким, чтобы ток через стабилитрон лежал в этих пределах, так как при токе ниже минимального (ниже ЗмА) обратимый пробой может и не наступить, либо будет нестабильным, а при токе более 40мА пробой может уже стать необратимым.

Допустим, у нас входное напряжение Ubx изменяется от 10 до 20V. Чтобы стабилитрон Д814А работал, нужно чтобы ток через него был не ниже 3 мА и не выше 40мА.

Так как напряжение стабилизации равно 7,5V, то напряжение, которое падает на R1 (U1) будет в пределах от 10-7,5=2,5V до 20-7,5=12,5V Для тока 40mA при максимальном Ubx сопротивление R1 определяем по Закону Ома:

R1 = 12,5V/0,04А = 312,5 Ом

Для тока 3 мА при минимальном Ubx сопротивление R1 определяем по Закону Ома:

R1 = 2.5V/0.003A = 833,333 От.

Из расчетов получается, что сопротивление R1 для нашего стабилизатора может быть любым в пределах от 312,5 до 833,333 От, например, 470 Ом.

Индикаторы напряжения на стабилитронах

Кроме стабилизаторов напряжения стабилитроны можно использовать и в индикаторах напряжения. На рисунке 3 показана схема индикатора напряжения 9V и больше. В этой схеме есть светодиод HL1, стабилитрон Д814А и токоограничивающий резистор R1.

Рис. 3. Схема индикатора напряжения 9V и больше.

Стабилитрон Д814А имеет напряжение стабилизации 7,5V, то есть, он начинает пропускать ток, когда обратное напряжение на нем достигает 7,5V. А светодиод, который в этой схеме, имеет прямое напряжение падения 1,5V. В сумме это будет 9V. Когда напряжение Ubx ниже 9V напряжение на стабилитроне ниже 7,5V и тока через него нет.

Соответственно, нет тока и через светодиод, так как они же включены последовательно. А вот когда напряжение Ubx больше 9V у стабилитрона возникает обратимый пробой, и ток начинает протекать через него и светодиод. Светодиод загорается. На рисунке 4 показана схема индикатора напряжения для автомобиля.

Здесь используются три стабилитрона с разными напряжениями стабилизации: Д814А — 7,5V, Д814В — 9,5V, Д814Д — 12V. И три ярких светодиода с падениями напряжения по 2,5V.

Рис. 4. Схема индикатора напряжения для автомобиля, собрана с применением стабилитронов.

В результате, когда напряжение Ubx ниже 10V ни один из светодиодов не горит. При напряжении от 10V до 12V горит HL1. При напряжении от 12V до 14,5V будут гореть два светодиода HL1 и HL2. А при напряжении больше 14.5V горят все три светодиода. И, наконец, я вас совсем запутаю.

Помимо стабилитронов есть еще и стабисторы. Так вот многие неопытные радиолюбители путают эти два радиоэлемента. Стабисторы обычно используют для стабилизации малых напряжений, ниже 2V.

Разница в том, что если стабилитрон мы включаем в обратном направлении, и стабилизация достигается на эффекте обратимого пробоя обратным напряжением. Стабисторы же включают как обычные диоды, то есть, в прямом направлении.

А эффект стабилизации у стабистора достигается на начальном участке прямой ветви ВАХ. То есть, напряжение стабилизации стабистора это его прямое напряжение падения (как у светодиода).

Кстати, частенько и светодиоды используют в качестве стабисторов, чтобы получить стабильное малое напряжение, равное прямому напряжению падения на светодиоде.

Андреев С. РК-12-2018.

Стабилитрон

Преимущества для функциональности схемы

Отправлено

Стабилитрон — это тип выпрямительного полупроводникового диода, который используется для регулирования напряжения в цепи, работая в режиме обратного смещения, чтобы избежать отказа. Полупроводниковые диоды позволяют току течь только в одном направлении, но стабилитроны позволяют току течь и в противоположном направлении при воздействии достаточного напряжения.Стабилитроны обеспечивают отличное решение для нескольких общих схем.

Ниже компания Solid State Inc. рассматривает применение, работу и преимущества стабилитронов.

В чем разница между диодом и стабилитроном?

Как уже отмечалось, диод — это полупроводник, который проводит только в одном направлении, тогда как стабилитрон проводит как в прямом, так и в обратном направлениях смещения. Если бы нормальный диод работал в обратном направлении, он бы вышел из строя, хотя стабилитрон не повредит.Вместо этого стабилитроны в полной мере используют количество приложенного обратного напряжения.

Стабилитрон

: основные операции и приложения

Стабилитрон

работает так же, как диод с PN переходом, когда работает в прямом направлении смещения, но в своих приложениях обычно используется для обратного режима. Тем не менее, стабилитроны также регулируют напряжение в одном направлении (обычном) или в обоих направлениях (двунаправленном). Он имеет широкий диапазон напряжений, и, когда обратное напряжение увеличивается до напряжения пробоя, через диод начинает течь ток.Поскольку напряжение остается довольно постоянным в широком диапазоне источников питания, они используются для регулирования напряжения, ограничителей перенапряжения, схем ограничения и в качестве опорных элементов в различных приложениях.

Если вы собираете диоды или используете их в цепи, важно определить, в какую сторону направлять диод. Два вывода диода называются анодом к корпусу (AK) и катодом к корпусу (KK). Анод — это электрод, через который в устройство поступает положительный заряд от внешней цепи; Катод — это электрод, который направляет ток, выходящий из устройства.

Преимущества стабилитронов

Использование стабилитронов в схемах дает ряд преимуществ, включая следующие:

  • Дешевле, чем другие диоды
  • Возможность переключения напряжения
  • Легко совместимы и доступны в разных системах
  • Стандарт высокой производительности
  • Защита от перенапряжения
  • Возможность регулирования и стабилизации напряжения цепи
  • Больше контроля над током переполнения
  • Используется в схемах меньшего размера

Итак, стабилитроны предназначены для работы в режиме обратного смещения, при котором они начинают проводить значительный ток.Он может работать как регулятор напряжения, потребляя меньше тока, если напряжение слишком низкое, или, поочередно, потребляя больше, если напряжение слишком высокое.

Свяжитесь со специалистами Solid State Inc.

Solid State Inc. — известный производитель электронных компонентов. Помимо стабилитронов и диодов, мы предлагаем транзисторы, светодиоды, выпрямители, симисторы, диоды и многое другое. Чтобы поговорить с нашей командой, свяжитесь с Solid State Inc. сегодня.

Что такое стабилитрон

Стабилитрон широко используется в качестве источника опорного напряжения, где его характеристика обратного пробоя обеспечивает стабильное напряжение на диоде для ряда протекающих через него токов.


Учебное пособие по стабилитронам / эталонным диодам Включает в себя:
стабилитрон Теория работы стабилитрона Технические характеристики стабилитрона Схемы на стабилитронах

Другие диоды: Типы диодов


Стабилитрон — это разновидность полупроводникового диода, который широко используется в электронных схемах в качестве источника опорного напряжения.

Стабилитрон или диод опорного напряжения — это электронный компонент, который обеспечивает стабильное и заданное напряжение.В результате схемы на стабилитронах часто используются в источниках питания, когда требуются регулируемые выходы. Эти диоды также используются во многих других приложениях, где требуются стабильные заданные источники опорного напряжения. Их также можно использовать для ограничения напряжения в ограничителях напряжения или для устранения скачков переходных процессов в линиях напряжения.

Стабилитроны

/ опорные диоды напряжения дешевы, они также просты в использовании, и эти электронные компоненты легко доступны для различных напряжений, с различными номинальными мощностями и т. Д.

Стабилитрон работает как обычный диод с PN переходом в прямом направлении, но обеспечивает очень резкий пробой в обратном направлении при определенном напряжении. Именно это напряжение обратного пробоя используется для опорных напряжений или в приложениях ограничения.

История стабилитрона

История стабилитронов

берет свое начало в разработке первых полупроводниковых диодов. Хотя первые детекторы, такие как «кошачий ус» и диоды с точечным контактом, были доступны примерно с 1905 года, большая часть работ по полупроводникам и полупроводниковым диодам была проделана во время и после Второй мировой войны.

Первым человеком, описавшим электрические свойства стабилитрона, был Кларенс Мелвин Зинер (родился 1 декабря 1905 г., умер 15 июля 1993 г.).

Кларенс Зинер был физиком-теоретиком, который работал в Bell Labs, и в результате его работы Белл назвал стабилитрон в его честь. Он впервые постулировал эффект разрушения, носящий его имя, в статье, опубликованной в 1934 году.

Основы стабилитрона

Стабилитроны

иногда называют эталонными диодами, поскольку они могут обеспечивать стабильное эталонное напряжение для многих электронных схем.Сами диоды дешевы и доступны в большом количестве, и их можно купить практически в каждом магазине электронных компонентов.

Стабилитроны

обладают многими из основных свойств обычных полупроводниковых диодов. Они проводят в прямом направлении и имеют такое же напряжение включения, что и обычные диоды. Для кремния это около 0,6 вольт.

IV характеристика стабилитрона

В обратном направлении стабилитрон работает иначе, чем обычный диод. При низком напряжении диоды проводят не так, как можно было бы ожидать.Однако при достижении определенного напряжения диод «выходит из строя» и течет ток.

Глядя на кривые стабилитрона, можно увидеть, что напряжение почти постоянно, независимо от протекаемого тока. Это означает, что стабилитрон обеспечивает стабильное и известное опорное напряжение для широкого диапазона уровней тока.

Замечательная стабильность напряжения пробоя в широком диапазоне уровней пропускной способности — вот что делает эталонный стабилитрон таким полезным.Его можно использовать в широком спектре цепей для обеспечения стабильного опорного напряжения, а также во множестве других цепей, где можно использовать его характеристику обратного пробоя.

Условное обозначение цепи стабилитрона

Существует много стилей корпусов стабилитронов. Некоторые из них используются для высоких уровней рассеивания мощности, а другие содержатся в форматах для поверхностного монтажа. Для домашнего строительства наиболее распространенный тип заключен в небольшую стеклянную капсулу.У него есть полоса вокруг одного конца, которая отмечает катод.

Видно, что полоса вокруг упаковки соответствует линии на символе диодной цепи, и это может быть простым способом запомнить, какой конец какой. Для стабилитрона, работающего в режиме обратного смещения, полоса является более положительной клеммой в цепи.

Маркировка стабилитронов, символы и контуры упаковки

Чтобы отличить стабилитрон или эталонный диод от других форм диодов в пределах принципиальной схемы, символ цепи стабилитрона помещает две метки на конце полосы: одна направлена ​​вверх, а другая — внизу. нижнее направление, как показано на схеме.

Типовой номер стабилитрона

С точки зрения нумерации типов стабилитроны или диоды опорного напряжения представляют небольшую проблему при их нумерации. Может быть общая серия диодов одного семейства, но с разными пробивными или опорными напряжениями.

В результате можно зарезервировать последовательный ряд номеров диодов в системе или добавить суффикс к номеру базового типа для обозначения напряжения.

Один из методов нумерации стабилитронов одного семейства, но с разными напряжениями — это использовать серию в рамках стандартной системы нумерации.Одним из примеров является серия от 1N4728A до 1N4764A с одним номером детали, назначенным для каждого напряжения. Эти диоды представляют собой стабилитроны мощностью 400 мВт с диапазоном напряжений от 3,3 до 100 В с допуском 5% и диапазоном E24.

Другой используемый метод состоит в том, чтобы указать номер для семейства, а затем добавить к номеру детали напряжение, например BZY88 C5V6 где 5V6 — напряжение, 5,6 вольт.

Стабилитроны или значения опорного диода напряжения обычно разнесены с использованием серии E12, хотя некоторые из них доступны в серии E24, например.g 5V1 используется для ряда логических микросхем, где используется очень простой стабилитрон. Если транзисторный эмиттерный повторитель используется для большего тока, то стабилитрон 5V6 лучше, так как транзистор упадет на 0,6 вольт, что делает его идеальным.

Хотя лучше всего придерживаться более часто используемой серии E12, а еще лучше E6 или даже E3, часто это невозможно, и доступны значения напряжения стабилитронов из серии E24.


Стандартное напряжение стабилитрона E24 серии
(Примечание: значения E12 выделены жирным шрифтом)
1.0 1,1 1,2
1,3 1,5 1,6
1,8 2,0 2,2
2,4 2,7 3,0
3,3 3,6 3,9
4,3 4,7 5.1
5,6 6,2 6,8
7,5 8,2 9,1

Примечание: Значения E12 выделены жирным шрифтом.

Стабилитроны

обычно не поставляются последовательно выше диапазона E24. Причина этого в том, что производственные допуски недостаточны, и их использование обычно не требует.

Стабилитроны с технологией

Стабилитроны

работают при обратном смещении и используют две формы обратного пробоя. Одна из форм обратного пробоя называется пробоем Зенера, и это дает название, которое часто используется для описания всех форм опорного диода напряжения. Другой тип обратного пробоя можно назвать ударно-ионизационным пробоем.

Обнаружено, что из двух эффектов эффект Зенера преобладает выше примерно 5,5 вольт, тогда как ударная ионизация является основным эффектом ниже этого напряжения.

Поскольку два эффекта имеют температурный коэффициент, который находится в противоположных смыслах, это означает, что диоды с напряжением около 5,5 В являются наиболее устойчивыми к температуре.


Технические характеристики стабилитронов / опорных диодов

При выборе стабилитрона или опорного диода напряжения для использования в цепи необходимо учитывать несколько спецификаций, чтобы гарантировать выбор оптимального диода для конкретного применения.

Очевидная спецификация стабилитрона — это обратное напряжение, но другие характеристики, такие как рассеиваемая мощность, обратный ток и т.п., также важны для любой схемы, которая может включать диод.


Цепи стабилитронов

Есть много способов использования стабилитронов или диодов опорного напряжения. Наиболее широко известен как источник опорного напряжения в некоторой форме регулятора напряжения, но они также могут использоваться в качестве ограничителей формы сигнала для схем, где может возникнуть необходимость ограничить отклонение формы сигнала для предотвращения перегрузки и т. Д. Они также могут использоваться. в переключателях напряжения.

Соответственно, стабилитроны часто используются в конструкциях электронных схем, и огромное количество их повторно используется в производстве, как в качестве устройств с выводами, так и в форматах для поверхностного монтажа.

Стабилитрон — особенно полезный компонент для разработки электронных схем. В результате миллионы стабилитронов ежегодно используются при создании электронного оборудования как в виде дискретных компонентов, так и в виде компонентов, содержащихся в больших интегральных схемах.

Несмотря на то, что доступны интегральные схемы опорного напряжения, которые обеспечивают очень высокую степень точности и температурную стабильность, для большинства применений простой стабилитрон более чем удовлетворительный и обеспечивает гораздо более дешевое решение.Соответственно, это помогает узнать, что такое стабилитрон, как он работает, и основы схемы стабилитрона.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Что такое стабилитрон? Использование стабилитронов

Опубликовано

Джереми С.Кук имеет степень бакалавра медицинских наук в Университете Клемсона и 10 лет проработал в сфере автоматизации производства. Теперь он пишет для сорта … Подробнее

Обычные диоды позволяют току течь только в одном направлении. Если обратное напряжение пробоя будет превышено в другом направлении, и ток будет вынужден течь, диод может быстро выйти из строя. Стабилитроны работают по-другому, поскольку они позволяют току течь свободно (с небольшим падением напряжения) в прямом смещенном направлении так же, как и не-стабилитроны.Однако в другом направлении, обратном смещении, ток может свободно течь только после превышения расчетного порога напряжения, известного как напряжение Зенера. Это происходит без повреждения компонента.

Обозначение стабилитрона и схема полярности

Типичные значения напряжения стабилитрона могут быть такими, как 2,7 В, 3,9 В или 9,1 В, но могут находиться в диапазоне от менее одного вольт до сотен вольт. Стабилитроны построены с сильно легированным переходом между полупроводниковыми элементами p и n, с заданным напряжением пробоя, устанавливаемым этим процессом легирования.

Применение стабилитронов: стабилитрон в качестве регулятора напряжения

Обычный проект предполагает использование стабилитрона в качестве простого регулятора напряжения с последовательно соединенными резистором и стабилитроном. Выходное напряжение в этом случае — это просто напряжение стабилитрона, пока входное напряжение находится на более высоком уровне, чем напряжение пробоя стабилитрона:

Стабилитрон как регулятор напряжения

Стабилитрон сдвиг напряжения

Если поменять местами стабилитрон и резистор в этой схеме, вместо этого будет получен преобразователь напряжения , в котором выходное напряжение понижается на величину, равную напряжению стабилитрона.

Стабилитрон с обратной связью как ограничитель формы сигнала

Формы сигналов стабилитрона

Два стабилитрона также могут быть размещены в цепи регулятора напряжения друг за другом вместо одного компонента, образуя ограничитель формы сигнала . В этой схеме колебательный сигнал не может превышать напряжение стабилитрона (3,3 В на экранах осциллографа ниже) как в положительном, так и в отрицательном направлениях, создавая колебания, которые кажутся «обрезанными» сверху и снизу.

Нерегулируемый колебательный сигнал 5 В и сигнал, ограниченный ограничителем формы сигнала на стабилитроне 3,3 В

Осциллирующий сигнал ± 2 В демонстрирует ту же форму волны с или без установки ограничения стабилитрона 3,3 В

Обратите внимание, что при подаче сигнала ± 2 В ничего не меняется при включении цепи ограничителя, поскольку оно ниже напряжения пробоя стабилитрона. Когда он ограничен сигналом ± 5 В, верхняя часть не обрезается резко, но все же немного закругляется сверху.

Хотя это округление могло быть вызвано, по крайней мере, частично, моей измерительной установкой, важно отметить, что использование стабилитрона в этой установке дает выходной сигнал, который в некоторой степени зависит от входного напряжения. Приемлемо ли это, зависит от приложения. Другой вариант регулирования напряжения — это стабилизаторы с малым падением напряжения, или LDO, как мы подробно описали в этой статье.

изображений сигналов были получены с помощью универсального генератора сигналов / осциллографа Digilent Analog Discovery 2, как описано здесь и здесь, для универсальной установки Rasbperry Pi.Приобретите на Arrow.com стабилитрон, подходящий для вашего следующего проекта.

Теги товаров

стабилитрон | Инжиниринг | Фэндом

Обозначение стабилитрона.

Диод обычно рассматривается как устройство, позволяющее току течь через него только в одном направлении; однако стабилитроны позволяют току течь и в обратном направлении, если напряжение больше номинального пробоя или «напряжения стабилитрона».

Обычный твердотельный диод не пропускает ток, если он смещен в обратном направлении ниже его напряжения обратного пробоя. При превышении напряжения пробоя обычный диод разрушается при пробое из-за избыточного тока, что приводит к перегреву. Однако процесс обратим, если устройство работает в определенных пределах. В случае прямого смещения (в направлении стрелки) на диоде наблюдается падение напряжения примерно 0,6 В для типичного кремниевого диода. Падение напряжения зависит от типа диода.

Стабилитрон демонстрирует почти те же свойства, за исключением того, что устройство специально спроектировано так, чтобы иметь значительно пониженное напряжение пробоя, так называемое напряжение Зенера . Стабилитрон содержит сильно легированный p-n-переход, позволяющий электронам туннелировать из валентной зоны материала p-типа в зону проводимости материала n-типа. Стабилитрон с обратным смещением будет демонстрировать управляемый пробой и пропускать ток, чтобы поддерживать напряжение на стабилитроне на уровне стабилитрона.Например, стабилитрон на 3,2 В будет демонстрировать падение напряжения на 3,2 В при обратном смещении. Однако ток не неограничен, поэтому стабилитрон обычно используется для генерации опорного напряжения для каскада усилителя или в качестве стабилизатора напряжения для слаботочных приложений.

Напряжение пробоя можно довольно точно контролировать в процессе легирования. Доступны допуски с точностью до 0,05%, хотя наиболее широко используемые допуски составляют 5% и 10%.

Эффект открыл американский физик Кларенс Мелвин Зинер.

Другой механизм, производящий аналогичный эффект, — это лавинный эффект, как в лавинном диоде. На самом деле два типа диодов сконструированы одинаково, и в диодах этого типа присутствуют оба эффекта. В кремниевых диодах напряжением примерно до 5,6 вольт стабилитрон является преобладающим эффектом и демонстрирует заметный отрицательный температурный коэффициент. При напряжении выше 5,6 вольт лавинный эффект становится преобладающим и имеет положительный температурный коэффициент.

В 5,6-вольтовом диоде два эффекта возникают вместе, а их температурные коэффициенты аккуратно компенсируют друг друга, таким образом, 5.6-вольтовый диод является предпочтительным элементом в приложениях с критичными температурами.

Современные технологии производства позволяют производить устройства с напряжением ниже 5,6 В с незначительными температурными коэффициентами, но по мере того, как встречаются устройства с более высоким напряжением, температурный коэффициент резко возрастает. Диод на 75 вольт имеет в 10 раз больший коэффициент, чем у диода на 12 вольт.

Все такие диоды, независимо от напряжения пробоя, обычно продаются под общим термином «стабилитрон».

Использует []

Стабилитроны

широко используются в электронных схемах. Их основная функция — регулировать напряжение в цепи. При параллельном подключении к источнику переменного напряжения, так что он имеет обратное смещение, стабилитрон действует как короткое замыкание, когда напряжение достигает обратного напряжения пробоя диода, и, следовательно, ограничивает напряжение до известного значения. Используемый таким образом стабилитрон известен как шунтирующий стабилизатор напряжения (шунтирующий , означает параллельное соединение, а стабилизатор напряжения представляет собой класс цепей, которые вырабатывают фиксированное напряжение).

См. Также []

  • b: Стабилитроны | Викиучебники: Стабилитроны [1]

Глоссарий терминов по электронным стабилитронам

Словарь терминов по электротехнике
«A» «B» «C», «D», «E», «F», «ГРАММ», «ЧАС», «Я», «J», «К», «L», «М»,
«Н», «О», «П», «Q», «Р», «S», «Т», «U», «V», «W», «ИКС», «Y», «Z»

Стабилитрон : предназначен для проведения в обратном направлении [смещения]: с точным напряжением пробоя [Vz]. Также обратитесь к списку производителей стабилитронов, который включает обозначения типов диодов.И правительство, и военные называют стабилитроны диодом-стабилизатором напряжения. Таким образом, термин «стабилитрон» может не встречаться во многих документах или спецификациях, которые фактически относятся к этим типам диодов. Стабилитроны
доступны как для поверхностного монтажа, так и для сквозных отверстий.

Пробой стабилитрона: Обратное напряжение пробоя стабилитрона. Это напряжение, указанное в техническом паспорте как напряжение стабилитрона, и нормальная область, в которой работает диод.

Эффект стабилитрона: Эффект обратного пробоя в диодах, в которых пробой происходит при обратных напряжениях ниже 5 вольт. Наличие поля высокой энергии на стыке полупроводника вызывает пробой. См. Кривую ниже.



Кривая электрических характеристик диода

Стабилитрон: Стабилитрон, используемый для ограничения напряжения на определенном уровне для защиты другого устройства, а не в качестве источника опорного напряжения.В некоторых случаях диод также используется последовательно со стабилитроном. Этот термин относится к способу использования стабилитрона в цепи, а не к какой-либо характеристике диода.

Импеданс стабилитрона: Импеданс стабилитрона при пробивном напряжении. В таблице данных может быть указано Vz или просто «Z» для импеданса.

Ток стабилитрона: Обратный ток, протекающий через стабилитрон при напряжении пробоя. Ток стабилитрона обозначен как Iz в техническом описании.

Напряжение стабилитрона: Напряжение пробоя стабилитрона. Аббревиатура Vz используется в технических данных для обозначения напряжения стабилитрона. Диоды обычно сортируются по напряжению пробоя [Vz], а затем по току пробоя [Iz].

Диод — это устройство с двумя выводами, использующее PN переход [Производители диодов]. Диоды могут быть изготовлены из кремния, германия, селена или арсенида галлия. Большинство диодов будут быть изготовленным из кремния. Обычно прямое падение напряжения 0.7 вольт будет наблюдается с кремниевыми диодами, и прямое падение напряжения 0,3 вольт будет замечено с германиевыми диодами.
Диоды в основном используются в качестве переключающих устройств. В то время как стабилитрон используются в качестве опорного напряжения.

Техническое примечание: Конечно, стабилитрон будет показан на схеме с символом стабилитрона. Однако двух- или трехконтактный прецизионный источник опорного напряжения также может быть изображен с тем же символом стабилитрона и, следовательно, вовсе не может быть стабилитроном.В качестве примера обратитесь к определению опорного напряжения, а также к рисунку, показанному для символа, и рисунку, который изображает реальную схему [вообще не физический диод].

Примечание производителя: Хотя это не имеет значения с осевыми выводами, некоторые корпуса диодов могут поставляться с двумя разными полярностями. То есть, у диода болтового типа [DO-4 Package] анод может быть соединен со стороной болта устройства с одним номером детали, но катод соединен с частью болта, используя немного другой номер детали.Незначительное изменение номера детали может быть таким же небольшим, как добавление буквы «R» для обозначения обратного соединения.

Разница между диодом и стабилитроном

Обновлено 23 ноября 2019 г.

Автор: S. Hussain Ather

Работа электронных приборов в вашем доме зависит от их схемотехники. Эти электрические цепи спроектированы таким образом, чтобы позволить электричеству течь в нужном направлении для различных целей. Управление потоком электроэнергии может быть затруднено из-за различных целей, которым служит электричество.Вот где на помощь приходят диоды.

Стабилитрон

Диоды используются, чтобы позволить электричеству течь в одном направлении через цепь. Стабилитрон отличается от других типов диодов тем, что, когда вы подключаете их в цепи в обратном направлении, так что ток течет в обратном направлении через диод, они пропускают небольшой ток утечки. Это тип тока, который течет на землю, чтобы предотвратить его влияние на другие части цепи, а также предотвратить повреждение самого диода.

Вы можете использовать диоды, такие как стабилитрон, для преобразования переменного тока (AC) в постоянный ток (DC). Переменный ток меняется между течением в одном направлении и течением в другом, в то время как постоянный ток движется только в одном направлении. Вы можете найти мостовые выпрямители или выпрямительные диоды во многих из этих электрических установок.

Выпрямители могут преобразовывать переменный ток в постоянный, пропуская ток только в одном направлении, положительном или отрицательном, или преобразовывая одно направление цикла переменного тока в другое.Выпрямители преобразуют источники питания постоянного тока, которые транспортируют электричество на большие расстояния, в мощность переменного тока, которая присутствует в большинстве бытовых приборов.

Напряжение обратного пробоя стабилитрона

Эти характеристики позволяют стабилитронам иметь определенное напряжение обратного пробоя. Это напряжение, при котором диоды начинают проводить ток в обратном направлении, и это одно из различий между стабилитронами и выпрямительными диодами. Эти диоды имеют определенное падение напряжения, которое не сильно меняется в диапазоне входных напряжений.

Как только вы увеличиваете напряжение в обратном направлении для стабилитрона до точки, где оно достигает напряжения пробоя, ток течет через диод. Последовательный резистор диода регулирует максимальное значение тока, прежде чем он стабилизируется до постоянного значения. Это значение остается постоянным независимо от того, насколько сильно вы меняете входное напряжение.

Если вы увеличите напряжение до значения, превышающего напряжение пробоя, на резисторе образуется падение напряжения.Ток протекает через диод, и устройство подключается к земле, замыкая диод. Это отключит нагрузку от источника питания и отрегулирует напряжение.

Применение стабилитронов

По этим причинам стабилитроны хорошо подходят для регулирования напряжения в цепях. Вы найдете эти характеристики стабилитронов в системах регулирования напряжения, ограничителях перенапряжения и ограничителях напряжения.

Стабилитроны в схемах ограничителей могут изменять форму переменного тока, ограничивая его прямые или обратные циклы.Стабилитроны полезны для регулирования напряжения в различных цепях, когда его слишком много или слишком мало. Простота конструкции и использования делает их идеальными кандидатами для преобразования напряжения.

Конструкция диода

Как и стабилитроны, в выпрямителях используются P-N переходы, полупроводниковые материалы, которые пропускают ток только в одном направлении. Они спроектированы с использованием полупроводников p-типа рядом с полупроводниками n-типа со стороной «p», которая имеет дополнительные дырки, места без электронов, которые имеют положительный заряд.Напротив, сторона «n» имеет больше электронов на внешних оболочках, что делает ее заряженной отрицательно.

Эти полупроводниковые материалы сделаны из металлов, таких как галлий, или металлоидов, таких как кремний, основного материала, который содержит стабилитроны, смешанные с другими элементами, такими как фосфор. Расположение между этими атомами позволяет току течь, и вы можете найти мостовые выпрямители, управляющие широким диапазоном токов с помощью этих конструкций.

Что такое стабилитрон? — Определение и характеристики

Характеристики стабилитрона

Стабилитрон имеет два соединения: катод и анод.Иногда анод имеет форму болта (шпильки), поэтому диод можно легко прикрепить к печатной плате. Мы видим это в стабилитроне ECG 5182A.

Форма стабилитрона

Мы собираемся провести только два измерения напряжения с помощью портативного цифрового вольтметра. Эти измерения будут на «ВХОДЕ» и «ВЫХОДЕ». Батарея — это переменная батарея (источник питания постоянного тока).

Тестовая схема на бумаге

Если вы посмотрите на схему на бумаге (называемую «схемой») и сравните ее с реальной испытательной схемой, вы сможете идентифицировать разъем «IN», стабилитрон, резистор и Разъем OUT.

Батарея переменной емкости подключается к IN

Как выглядит тестовое измерение? Аккумулятор переменного тока подключается к «IN» тестовой цепи. Вольтметр имеет два щупа: черный щуп подключается к заземлению цепи, а красный щуп подключается к «IN» или «OUT».

-0,69 В измерено на OUT

На блоке питания постоянного тока есть ручка для регулировки напряжения.Измерьте напряжение на «IN» и запишите его. Например, -4,64В. Переместите щуп вольтметра на «ВЫХОД» цепи, снимите напряжение и запишите его. Мы измеряем -0,69В. Затем отрегулируйте источник питания постоянного тока на другое напряжение и повторите измерения. Вот и все.

Глядя на первый столбец измеренных данных, мы видим, что напряжение «IN» изменялось от -4,64 В до 15,32 В. Второй столбец — это напряжение, измеренное на «OUT».

Стабилитрон ECG 5182A рассчитан на 7.5В

7,5 В ± 5% — это 7,5 ± 0,375 или некоторое число от 7,125 В до 7,875 В. Это стабилитрон, который регулирует напряжение. Для положительных напряжений «IN» меньше 7,54 В, напряжение «OUT» очень похоже на напряжение «IN». Но когда входное напряжение начинает превышать 7,54 В, стабилитрон остается на уровне 7,54 В. Это похоже на то, как Фред пытается снять больше, пока банк регулирует и устанавливает максимальную сумму.

Стабилитрон

Вы видите стрелку в символе стабилитрона?

Стрелка в символе стабилитрона определяет направление тока. i обозначает ток через диод. Помните названия двух диодных соединений? Конец диода с буквой Z на его стороне является катодом. Другая сторона диода — анод. v обозначает напряжение на диоде, измеренное от анода до катода.

Теперь мы можем объяснить два других столбца чисел в наших данных. Крайний правый столбец помечен как «НАПРЯЖЕНИЕ». Условно это напряжение v на диоде, определяемое от анода к катоду.

Однако измеренное нами выходное напряжение в столбце 2 — это напряжение на диоде в противоположном смысле; от катода к аноду. Без проблем. Напряжение на диоде, v , просто отрицательное значение измеренного выходного напряжения.

Ток через диод i совпадает с током через резистор. Этот ток равен (» OUT » — » IN ») / R, где R = 1000 Ом. Выполнение математических вычислений дает нам столбец 3.

Теперь мы можем суммировать эти результаты с графиком i vs v .Это называется характеристической кривой .

точки — координаты номеров I и V.
Стабилитрон

очень похож на обычные старые диоды с P-N переходом. Оба диода позволяют току течь от анода к катоду (в направлении стрелки на символе), когда напряжение на переходе составляет не менее 0,7 вольт. Мы называем это областью прямого смещения . Напряжение больше или равно 0.7 В будет смещать диод в прямом направлении, и, как переключатель, диод включен.

Когда напряжение меньше 0,7 В, диод смещен в обратном направлении, и протекает лишь незначительное количество тока. Мы говорим, что диод выключен. Обычный диод с P-N переходом предназначен для работы в этих двух регионах.

У диодов есть регионы работы

Когда напряжение на диоде становится достаточно отрицательным, переход выходит из строя, и токи текут от катода к аноду; в противоположном смысле стрелки в символе.Это область поломки. Диоды с обычным P-N переходом не предназначены для пробоя, они могут самоуничтожиться при таком высоком напряжении.

Не так для стабилитрона . Этот диод предназначен для работы в области пробоя. Кроме того, стабилитрон имеет гораздо более низкое напряжение пробоя (так называемое напряжение стабилитрона ).

Использует

Применения стабилитронов включают блоки эффектов искажения, используемые музыкантами, где стабилитрон «фиксирует» амплитуды сигналов.Это преднамеренное искажение сигнала.

Мы также находим стабилитроны там, где нам нужно более низкое напряжение для питания определенных устройств. Например, 8-битный микроконтроллер CMOS требует напряжения от 2,0 до 5,5 В. Если бы мы хотели запитать это устройство от батареи 9 В, мы могли бы использовать стабилитрон 3,3 В.

Стабилитрон 1N5226, регулирующий напряжение на микроконтроллер PIC12F629

Еще одно применение стабилитронов — объединение их с другими компонентами для формирования опорного напряжения.В качестве источника опорного напряжения можно использовать схемы, сравнивающие напряжения.

Краткое содержание урока

Стабилитрон — это диод, предназначенный для работы в области пробоя и имеющий определенное отрицательное напряжение, называемое напряжением стабилитрона .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *