Существует белый светодиод: Белый светодиод — Википедия

Содержание

Белый светодиод — Википедия

Мощный белый светодиод.

Бе́лый светодио́д — многокомпонентный полупроводниковый прибор, излучающий свет, вызывающий в силу особенностей психофизиологии восприятия цвета человеком (метамерия) ощущение света, близкого к белому.

Различают два вида белых светодиодов:

  • Многокристальные светодиоды, чаще — трёхкомпонентные (RGB-светодиоды), имеющие в своём составе три полупроводниковых излучателя красного, зелёного и синего свечения, объединённые в одном корпусе.
  • Люминофорные светодиоды, создаваемые на основе синего, фиолетового или ультрафиолетового светодиода, имеющие в своём составе слой специального люминофора, преобразующего в результате фотолюминесценции часть излучения светодиода в свет в относительно широкой спектральной полосе с максимумом в области жёлтого (наиболее распространённая конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды жёлтого и зелёного цвета свечения. Световой выход этих, в то время ещё малоэффективных, устройств к 1990 году достиг уровня в один люмен. В 1993 году Сюдзи Накамура, инженер компании Nichia (Япония), создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зелёный цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем технология быстро развивалась, и к 2005 году световая отдача светодиодов достигла значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и ставшими уже традиционными люминесцентными лампами. Началось использование светодиодных осветительных устройств в быту, во внутреннем и уличном освещении

[1].

RGB-светодиоды

Типичный спектр RGB-светодиода

Белый свет может быть создан путём смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические[2][3][4] и более многоцветные[5] варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники, лампы, кластеры) имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель. Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности, такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики[6]. Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток, поскольку световая отдача каждого чипа неизвестна заранее и подвержена изменениям в процессе работы. Для установки нужных оттенков RGB светильники иногда оснащают специальными регулирующими устройствами[7].

Спектр RGB светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путём изменения тока каждого светодиода, входящего в «триаду», регулировать цветовой тон излучаемого ими белого света прямо в процессе работы — вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость световой отдачи и цвета от температуры за счёт различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы[8][9]. Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки[10][11], в электронных табло[12] и в видеоэкранах.

Люминофорные светодиоды

Спектр одного из вариантов люминофорного светодиода

Комбинирование синего (чаще), фиолетового[13] или ультрафиолетового (не используются в массовой продукции) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространённая конструкция[14] такого светодиода содержит синий полупроводниковый чип нитрида галлия, модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета — иттрий-алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-сине-зелёного цвета.

В зависимости от состава люминофора выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путём комбинирования различных типов люминофоров достигается значительное увеличение индекса цветопередачи (CRI или R

a)[15][16]. На 2017 год уже существуют светодиодные панели для фото- и киносъёмки, где цветопередача критична, но такое оборудование дорого, а производители — единичны.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости — увеличение тока через полупроводниковый чип без увеличения его размеров — увеличение плотности тока. Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока электрические поля в объёме активной области снижают световой выход[17]. При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному[18], происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима, выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе[19].

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов — это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светоотдачи до 70 % от первоначального значения (L70)

[20]. То есть, светодиод, яркость которого в процессе эксплуатации снизилась на 30 %, считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке, используется в качестве оценки срока жизни уровень снижения яркости 50 % (L50).

Срок службы люминофорного светодиода зависит от многих параметров[21]. Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии отдаёт в виде излучения, часть в виде тепла. При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью, кроме того, материалы и конструкция корпуса обладают определённой неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии, изменению оптических свойств подложки. Всё это приводит к увеличению процента безызлучательной рекомбинации[22] и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также проводятся исследования с другими полупроводниковыми материалами или подложками

[23][24].

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются, и коэффициент преобразования, а также спектральные характеристики люминофора, ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора[25] и конструкции светодиодных ламп, в которых люминофор физически отделён от излучателя, позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве — вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Схема одной из конструкций белого светодиода. MPCB — печатная плата с высокой тепловой проводимостью.

Современный люминофорный светодиод — это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию[26][27]:

  • Светодиодный чип. Полупроводниковый материал, используемый в составе светодиодов, кроме собственно способности излучать свет с высокой эффективностью, должен иметь хорошую оптическую прозрачность (для обеспечения свободного выхода квантов света из активной области), иметь хорошую электрическую проводимость (для снижения активных потерь при прохождении тока) и ещё удовлетворять многим критериям технологичности в производстве.
  • Люминофор. Слой люминофора или смеси люминофоров подбирается весьма тщательно. Кроме достаточно широкого спектра переизлучения, активный материал и вещество, которое играет роль носителя, должны обеспечивать минимальный уровень безызлучательного поглощения. Особое внимание уделяется температурной стойкости и стабильности при длительной работе. Способ нанесения люминофора во многом определяет цветовые характеристики, в том числе угловые характеристики цвета и яркости[28].
  • Кристаллодержатель. Медный или другой материал, обработанный специальным образом для обеспечения хороших отражающих свойств и максимальной теплопроводности. Современные конструкции светодиодов позволяют обеспечить достаточно низкое тепловое сопротивление, например за счёт пайки на поверхность (SMD) теплопроводного элемента корпуса светильника. Кристаллодержатель обычно сочетает в себе и функцию отражателя света, поскольку часть переизлучённой энергии, а также часть рассеянного в слое люминофора света возвращается обратно.
  • Клей или эвтектический сплав. Способ крепления светодиодного чипа в корпусе должен обеспечивать прочность соединения, хороший и равномерный электрический контакт и отличную теплопроводность. Кроме этого, должен иметь хорошую отражающую способность и выдерживать длительное воздействие высокой температуры.
  • Отражатель. Форма и размер отражателя, совместно с оптической линзой, формируют необходимую диаграмму направленности светодиода. Для увеличения отражающей способности поверхность кристаллодержателя, отражателя и токоподводящих элементов имеют специальные покрытия из различных материалов, от простых вариантов из серебра и алюминия до сложных композитных покрытий, представляющих собой распределённый брэгговский отражатель[29].
  • Защитный компаунд, объединяющий собственно элемент, защищающий структуру светодиода от коррозии и воздействия окружающей среды, и линзу (в случае необходимости фокусирования светового потока).
  • Токоподводящие элементы. Проводники или токоподводящие нити подводят ток к верхней, направленной наружу, стороне полупроводникового чипа. Такой проводник и способ его крепления должен, с одной стороны, обеспечить хороший контакт и низкое активное сопротивление току, с другой стороны, не должен препятствовать выходу света.

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его световая отдача, то есть световой выход с каждого ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 190 лм/Вт[30]. Теоретический предел технологии оценивается более чем в 300 лм/Вт[31][32]. При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счёт КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре, тогда как температура чипа в процессе работы значительно выше.[источник не указан 212 дней] Это приводит к тому, что реальная эффективность излучателя ниже на 5—7 %, а светильника — зачастую вдвое.

Второй не менее важный параметр — качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

  • Цветовая температура, цветовая коррелированная температура (correlated color temperature, CCT) — характеризует оттенок цвета, даётся производителями для указания субъективного восприятия цветового оттенка света, производимого источником, в сравнении с Планковским чёрным телом, нагретым до указанной температуры (в Кельвинах). Для освещения жилых помещений преимущественно используют излучатели тёплого света (от 2700 K до 3000 K) и в некоторых случаях нейтрального (от 3500 K до 4000 K).
  • Индекс цветопередачи (color rendering index, CRI) — характеризует полноту спектра излучения, способность передавать правильно цвет предметов, по сравнению с солнечным светом. Определяется по стандарту опытным путём при сравнении цвета восьми эталонов, освещённых тестовым источником и максимально приближенным к идеальному. Считается, что источник бытового освещения должен иметь индекс цветопередачи не менее 80.
  • Качество света. Цветовая температура и индекс цветопередачи во многих случаях не могут адекватно передать качество производимого светодиодами света. Это в основном определяется особенностями спектра с резкими выбросами и провалами. Некоторые цвета, такие как глубокий красный, не анализируются по стандарту измерения CRI. Для более полной оценки качества света принимаются новые методики, например основанные не на восьми, а на девяти эталонах (с дополнительным девятым эталоном красного цвета R9), шкала качества цвета (Color Quality Scale, CQS), которая в будущем может заменить CRI[33][34].

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области[35], покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика. Этому есть три причины[источник не указан 1973 дня]: первая связана с тем, что разница между энергией падающего и излученного квантов при флюоресценции теряется (переходит в тепло), и в случае ультрафиолетового возбуждения она значительно больше. Вторая причина — в том, что часть УФ излучения, не поглощенная люминофором, не участвует в создании светового потока, в отличие от светодиодов на основе синего излучателя, а увеличение толщины люминофорного покрытия приводит к повышению поглощения в нём света люминесценции. И наконец, КПД ультрафиолетовых светодиодов значительно ниже КПД синих.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств[36]:

  • Основное преимущество белых светодиодов — высокий КПД. Низкое удельное энергопотребление позволяет применять их в длительно работающих источниках автономного и аварийного освещения.
  • Высокая надежность и длительный срок службы позволяют говорить о возможной экономии на замене ламп. Кроме того, использование светодиодных источников света в труднодоступных местах и уличных условиях позволяет снизить затраты на обслуживание. В совокупности с высокой эффективностью, можно сказать о существенной экономии средств при использовании светодиодного освещения в некоторых применениях.
  • Малый вес и размер устройств. Светодиоды отличаются малыми габаритами и пригодны для использования в труднодоступных местах и малогабаритных переносных устройствах.
  • Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вреда для человека и в специальных целях (например, для освещения раритетных книг или других подверженных влиянию света предметов), так как ультрафиолет губителен для тканей, живописи и кожи человека, а инфракрасное излучение дает много тепла и может привести к ожогам[37]. Однако безопасность видимого спектра также бывает переоценена[38].
  • Отличная работа при отрицательных температурах без снижения, а зачастую и с улучшением, параметров. Большинство типов светодиодов показывают бо́льшую эффективность и долговечность при снижении температуры, однако устройства питания, управления и элементы конструкции могут иметь противоположную зависимость.
  • Светодиоды — безынерционные источники света, они не требуют времени на прогрев или выключение, как, например, люминесцентные лампы и количество циклов включения и выключения не оказывает негативного влияния на их надежность.
  • Хорошая механическая прочность позволяет использовать светодиоды в тяжёлых условиях эксплуатации.
  • Легкость регулирования мощности как скважностью, так и регулированием тока питания без снижения параметров эффективности и надёжности.
  • Безопасность использования, нет опасности поражения электрическим током за счет низкого питающего напряжения.
  • Низкая пожароопасность, возможность использования в условиях взрывоопасности и опасности возгорания за счет отсутствия накальных элементов.
  • Влагостойкость, стойкость к воздействию агрессивных сред.
  • Химическая нейтральность, отсутствие вредных выбросов и отсутствие специальных требований к процедурам утилизации.

Но есть и недостатки:

  • Белые светодиоды в производстве значительно дороже и сложнее аналогичных по световому потоку ламп накаливания, хотя их цена постоянно снижается.
  • Обладают в большинстве невысоким качеством цветопередачи (индекс CRI, по сравнению с солнечным цветом), которое, однако, постоянно растет с развитием технологий производства светодиодов и их сочетаний в конечном продукте (лампы, светильники).
  • Существуют опасения о вреде светодиодных источников для подверженных влиянию света предметов, например, произведений искусства.[38][39] Также вероятно вредное воздействие на органы зрения.[40] Следует отметить, что подобные утверждения и исследования, как правило, относятся к холодным лампам (>5000 К, чей свет в значительной мере отличается от привычного солнечного спектра).
  • При переходе от бытовых к промышленным светильникам требуется продуманная и надёжная система охлаждения.
  • Принципиальная невозможность работы при повышенных температурах окружающей среды более 60 — 80 °C.
  • В силу значительной нелинейности вольт-амперной характеристики светодиоды не могут питаться напрямую от источников напряжения и требуют для сохранения высокого КПД всей системы применения достаточно сложных специализированных источников питания (обычно импульсных преобразователей — драйверов). В бытовых светодиодных лампах преобразователь встраивают в цоколь, что повышает требования к его охлаждению.

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например, направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Мощный белый светодиод 20 Вт в сравнении с индикаторным 50 мВт светодиодом.

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения, находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

  • Исследования и поиск более эффективных и качественных люминофоров. Коэффициент преобразования люминофора влияет на общую эффективность светодиода, кроме того, спектр переизлучения во многом определяет качество излучаемого света. КПД самого на сегодняшний день популярного люминофора ИАГ составляет немногим более 95 %[41]. Эффективность же других люминофоров, обеспечивающих лучший спектр белого света, существенно меньше. Получение более эффективного, долговечного и с нужным спектром люминофора является целью многочисленных исследований[42][43][44][45][46][47].
  • Комбинированные многокомпонентные светодиоды. Кроме комбинации полупроводниковых чипов различного цвета появляются светодиоды, содержащие несколько цветных чипов и люминофорный компонент[4]. Результирующий многокристальный светодиод получается ярким и хорошего качества, но его стоимость пока высока.
  • Белые светодиоды на квантовых точках. Использование в качестве конвертора квантовых точек позволяет создать светодиод с хорошим качеством света[48], однако, эффективность такого метода пока невысока.
  • Увеличение эффективности полупроводниковых излучающих материалов. Самый большой резерв эффективности — светодиодный чип. Квантовый выход для большинства полупроводниковых структур не превышает 50 %. Пока что самый высокий уровень эффективности достигнут у красных светодиодов и составляет чуть больше 60 %[49].
  • Переход на более дешёвые полупроводниковые структуры. Эпитаксиальные структуры на базе нитрида галлия (GaN) традиционно выращивают на подложке из сапфира. Использование в качестве основы других материалов, например, карбида кремния, чистого кремния, оксида галлия[50], позволяет существенно снизить стоимость светодиода[51]. Кроме попыток легирования нитрида галлия разными веществами, исследования ведутся с другими полупроводниковыми материалами — ZnSe, InN, AlN, BN.
  • Светодиоды без люминофора на базе эпитаксиальной структуры ZnSe на подложке ZnSe, активная область которой испускает голубой, а подложка одновременно (за счет того, что селенид цинка — эффективный люминофор сам по себе) — жёлтый свет[52].
  • Светодиоды с полупроводниковыми преобразователями излучения. Дополнительный слой полупроводника с меньшей шириной запрещенной зоны способен поглотить часть световой энергии, что приводит к вторичному излучению в области меньших значений энергии[53].

См. также

Примечания

  1. ↑ Philips, 2010, p. 19—20.
  2. ↑ Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  3. ↑ Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  4. 1 2 Многоцветные светодиоды XB-D и XM-L компании Cree (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  5. ↑ Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии : журнал. — 2009. — № 6. — С. 88—91.
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии : журнал. — 2007. — № 2.
  8. ↑ Шуберт, 2008, p. 404.
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии : журнал. — 2005. — № 9.
  10. ↑ Светодиоды для интерьерной и архитектурной подсветки (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  11. Сян Лин Ун (Siang Ling Oon). Светодиодные решения для систем архитектурной подсветки // Полупроводниковая светотехника : журнал. — 2010. — № 5. — С. 18—20.
  12. ↑ Светодиоды RGB для использования в электронных табло (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  13. ↑ High CRI LED Lighting | Yuji LED. yujiintl.com. Проверено 3 декабря 2016.
  14. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии : журнал. — 2011. — № 5.
  15. ↑ Светодиоды с высокими значениями CRI (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  16. ↑ Технология EasyWhite компании Cree (англ.). LEDs Magazine. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  17. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии : журнал. — 2008. — № 1.
  18. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии : журнал. — 2006. — № 3.
  19. ↑ Светодиоды с матричным расположением большого количества полупроводниковых чипов (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  20. ↑ Срок службы белых светодиодов (англ.). U.S. Department of Energy. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  21. ↑ Виды дефектов LED и методы анализа (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  22. ↑ Шуберт, 2008, p. 61, 77—79.
  23. ↑ Светодиоды компании SemiLEDs (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  24. ↑ GaN-on-Si Программа исследований светодиодов на кремниевой основе (англ.). LED Professional. Проверено 10 ноября 2012.
  25. ↑ Технология изолированного люминофора компании Cree (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  26. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника : журнал. — 2011. — № 5. — С. 28—33.
  27. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект : XII Всероссийское совещание: материалы докладов. — Томск: СПБ Графикс, 2011. — С. 74—77.
  28. ↑ Шуберт, 2008, p. 424.
  29. ↑ Отражатели для светодиодов на основе фотонных кристаллов (англ.). Led Professional. Проверено 16 февраля 2013. Архивировано 13 марта 2013 года.
  30. ↑ XLamp XP-G3 (англ.). www.cree.com. Проверено 31 мая 2017.
  31. ↑ Белые светодиоды с высоким световым выходом для нужд освещения (англ.). Phys.Org™. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  32. ↑ Cree First to Break 300 Lumens-Per-Watt Barrier (англ.). www.cree.com. Проверено 31 мая 2017.
  33. ↑ Основы светодиодного освещения (англ.). U.S. Department of Energy. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  34. Шаракшанэ А. Шкалы оценки качества спектрального состава света — CRI и CQS // Полупроводниковая светотехника : журнал. — 2011. — № 4.
  35. ↑ Ультрафиолетовые светодиоды SemiLED с длиной волны 390-420 нм. (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  36. ↑ Philips, 2010, p. 4—5.
  37. ↑ О светодиодах (недоступная ссылка)
  38. 1 2 LED lights may be bad for Van Gogh paintings
  39. ↑ What’s All this About Van Gogh and LEDs?
  40. ↑ Светодиодные лампы могут сделать нас слепыми
  41. Н.П.Сощин. Современные фотолюминофоры для эффективных приборов твердотельного освещения. Материалы конференции. (рус.) (february 1, 2010). Архивировано 27 октября 2012 года.
  42. О.Е.Дудукало, В.А.Воробьев. Синтез люминофора на основе алюмоиттриевого граната для источников белого света на основе сид методом горения. Материалы конференции. (рус.) (may 31, 2011). Архивировано 27 октября 2012 года.
  43. ↑ Тесты ускоренной температурной деградации люминофоров (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  44. ↑ Research and Markets Releases New 2012 Report on LED Phosphor Materials (англ.). LED Professional. Проверено 30 ноября 2012. Архивировано 10 декабря 2012 года.
  45. ↑ Intematix представил набор люминофоров для качественной цветопередачи (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  46. ↑ Lumi-tech предложил SSE люминофор для белых светодиодов (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  47. ↑ Красный фосфор от компании Intematix (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  48. ↑ Светодиоды на квантовых точках (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  49. ↑ Прототип красного всетодиода с длиной волны 609 нм компании Osram с эффективностью 61 % (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  50. ↑ Светодиоды на подложке из оксида галлия (англ.). LED Professional. Проверено 15 февраля 2013. Архивировано 13 марта 2013 года.
  51. ↑ Переход на структуру GaN-on-Si (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  52. Tim Whitaker. Joint venture to make ZnSe white LEDs (англ.) (December 6, 2002). Проверено 10 ноября 2012. Архивировано 27 октября 2012 года.
  53. ↑ Шуберт, 2008, p. 426.

Литература

Ссылки

Белый светодиод — Википедия. Что такое Белый светодиод

Мощный белый светодиод.

Бе́лый светодио́д — многокомпонентный полупроводниковый прибор, излучающий свет, вызывающий в силу особенностей психофизиологии восприятия цвета человеком (метамерия) ощущение света, близкого к белому.

Различают два вида белых светодиодов:

  • Многокристальные светодиоды, чаще — трёхкомпонентные (RGB-светодиоды), имеющие в своём составе три полупроводниковых излучателя красного, зелёного и синего свечения, объединённые в одном корпусе.
  • Люминофорные светодиоды, создаваемые на основе синего, фиолетового или ультрафиолетового светодиода, имеющие в своём составе слой специального люминофора, преобразующего в результате фотолюминесценции часть излучения светодиода в свет в относительно широкой спектральной полосе с максимумом в области жёлтого (наиболее распространённая конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды жёлтого и зелёного цвета свечения. Световой выход этих, в то время ещё малоэффективных, устройств к 1990 году достиг уровня в один люмен. В 1993 году Сюдзи Накамура, инженер компании Nichia (Япония), создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зелёный цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем технология быстро развивалась, и к 2005 году световая отдача светодиодов достигла значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и ставшими уже традиционными люминесцентными лампами. Началось использование светодиодных осветительных устройств в быту, во внутреннем и уличном освещении[1].

RGB-светодиоды

Типичный спектр RGB-светодиода

Белый свет может быть создан путём смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические[2][3][4] и более многоцветные[5] варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники, лампы, кластеры) имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель. Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности, такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики[6]. Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток, поскольку световая отдача каждого чипа неизвестна заранее и подвержена изменениям в процессе работы. Для установки нужных оттенков RGB светильники иногда оснащают специальными регулирующими устройствами[7].

Спектр RGB светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путём изменения тока каждого светодиода, входящего в «триаду», регулировать цветовой тон излучаемого ими белого света прямо в процессе работы — вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость световой отдачи и цвета от температуры за счёт различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы[8][9]. Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки[10][11], в электронных табло[12] и в видеоэкранах.

Люминофорные светодиоды

Спектр одного из вариантов люминофорного светодиода

Комбинирование синего (чаще), фиолетового[13] или ультрафиолетового (не используются в массовой продукции) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространённая конструкция[14] такого светодиода содержит синий полупроводниковый чип нитрида галлия, модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета — иттрий-алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-сине-зелёного цвета.

В зависимости от состава люминофора выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путём комбинирования различных типов люминофоров достигается значительное увеличение индекса цветопередачи (CRI или Ra)[15][16]. На 2017 год уже существуют светодиодные панели для фото- и киносъёмки, где цветопередача критична, но такое оборудование дорого, а производители — единичны.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости — увеличение тока через полупроводниковый чип без увеличения его размеров — увеличение плотности тока. Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока электрические поля в объёме активной области снижают световой выход[17]. При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному[18], происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима, выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе[19].

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов — это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светоотдачи до 70 % от первоначального значения (L70)[20]. То есть, светодиод, яркость которого в процессе эксплуатации снизилась на 30 %, считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке, используется в качестве оценки срока жизни уровень снижения яркости 50 % (L50).

Срок службы люминофорного светодиода зависит от многих параметров[21]. Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии отдаёт в виде излучения, часть в виде тепла. При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью, кроме того, материалы и конструкция корпуса обладают определённой неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии, изменению оптических свойств подложки. Всё это приводит к увеличению процента безызлучательной рекомбинации[22] и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также проводятся исследования с другими полупроводниковыми материалами или подложками[23][24].

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются, и коэффициент преобразования, а также спектральные характеристики люминофора, ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора[25] и конструкции светодиодных ламп, в которых люминофор физически отделён от излучателя, позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве — вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Схема одной из конструкций белого светодиода. MPCB — печатная плата с высокой тепловой проводимостью.

Современный люминофорный светодиод — это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию[26][27]:

  • Светодиодный чип. Полупроводниковый материал, используемый в составе светодиодов, кроме собственно способности излучать свет с высокой эффективностью, должен иметь хорошую оптическую прозрачность (для обеспечения свободного выхода квантов света из активной области), иметь хорошую электрическую проводимость (для снижения активных потерь при прохождении тока) и ещё удовлетворять многим критериям технологичности в производстве.
  • Люминофор. Слой люминофора или смеси люминофоров подбирается весьма тщательно. Кроме достаточно широкого спектра переизлучения, активный материал и вещество, которое играет роль носителя, должны обеспечивать минимальный уровень безызлучательного поглощения. Особое внимание уделяется температурной стойкости и стабильности при длительной работе. Способ нанесения люминофора во многом определяет цветовые характеристики, в том числе угловые характеристики цвета и яркости[28].
  • Кристаллодержатель. Медный или другой материал, обработанный специальным образом для обеспечения хороших отражающих свойств и максимальной теплопроводности. Современные конструкции светодиодов позволяют обеспечить достаточно низкое тепловое сопротивление, например за счёт пайки на поверхность (SMD) теплопроводного элемента корпуса светильника. Кристаллодержатель обычно сочетает в себе и функцию отражателя света, поскольку часть переизлучённой энергии, а также часть рассеянного в слое люминофора света возвращается обратно.
  • Клей или эвтектический сплав. Способ крепления светодиодного чипа в корпусе должен обеспечивать прочность соединения, хороший и равномерный электрический контакт и отличную теплопроводность. Кроме этого, должен иметь хорошую отражающую способность и выдерживать длительное воздействие высокой температуры.
  • Отражатель. Форма и размер отражателя, совместно с оптической линзой, формируют необходимую диаграмму направленности светодиода. Для увеличения отражающей способности поверхность кристаллодержателя, отражателя и токоподводящих элементов имеют специальные покрытия из различных материалов, от простых вариантов из серебра и алюминия до сложных композитных покрытий, представляющих собой распределённый брэгговский отражатель[29].
  • Защитный компаунд, объединяющий собственно элемент, защищающий структуру светодиода от коррозии и воздействия окружающей среды, и линзу (в случае необходимости фокусирования светового потока).
  • Токоподводящие элементы. Проводники или токоподводящие нити подводят ток к верхней, направленной наружу, стороне полупроводникового чипа. Такой проводник и способ его крепления должен, с одной стороны, обеспечить хороший контакт и низкое активное сопротивление току, с другой стороны, не должен препятствовать выходу света.

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его световая отдача, то есть световой выход с каждого ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 190 лм/Вт[30]. Теоретический предел технологии оценивается более чем в 300 лм/Вт[31][32]. При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счёт КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре, тогда как температура чипа в процессе работы значительно выше.[источник не указан 212 дней] Это приводит к тому, что реальная эффективность излучателя ниже на 5—7 %, а светильника — зачастую вдвое.

Второй не менее важный параметр — качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

  • Цветовая температура, цветовая коррелированная температура (correlated color temperature, CCT) — характеризует оттенок цвета, даётся производителями для указания субъективного восприятия цветового оттенка света, производимого источником, в сравнении с Планковским чёрным телом, нагретым до указанной температуры (в Кельвинах). Для освещения жилых помещений преимущественно используют излучатели тёплого света (от 2700 K до 3000 K) и в некоторых случаях нейтрального (от 3500 K до 4000 K).
  • Индекс цветопередачи (color rendering index, CRI) — характеризует полноту спектра излучения, способность передавать правильно цвет предметов, по сравнению с солнечным светом. Определяется по стандарту опытным путём при сравнении цвета восьми эталонов, освещённых тестовым источником и максимально приближенным к идеальному. Считается, что источник бытового освещения должен иметь индекс цветопередачи не менее 80.
  • Качество света. Цветовая температура и индекс цветопередачи во многих случаях не могут адекватно передать качество производимого светодиодами света. Это в основном определяется особенностями спектра с резкими выбросами и провалами. Некоторые цвета, такие как глубокий красный, не анализируются по стандарту измерения CRI. Для более полной оценки качества света принимаются новые методики, например основанные не на восьми, а на девяти эталонах (с дополнительным девятым эталоном красного цвета R9), шкала качества цвета (Color Quality Scale, CQS), которая в будущем может заменить CRI[33][34].

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области[35], покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика. Этому есть три причины[источник не указан 1973 дня]: первая связана с тем, что разница между энергией падающего и излученного квантов при флюоресценции теряется (переходит в тепло), и в случае ультрафиолетового возбуждения она значительно больше. Вторая причина — в том, что часть УФ излучения, не поглощенная люминофором, не участвует в создании светового потока, в отличие от светодиодов на основе синего излучателя, а увеличение толщины люминофорного покрытия приводит к повышению поглощения в нём света люминесценции. И наконец, КПД ультрафиолетовых светодиодов значительно ниже КПД синих.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств[36]:

  • Основное преимущество белых светодиодов — высокий КПД. Низкое удельное энергопотребление позволяет применять их в длительно работающих источниках автономного и аварийного освещения.
  • Высокая надежность и длительный срок службы позволяют говорить о возможной экономии на замене ламп. Кроме того, использование светодиодных источников света в труднодоступных местах и уличных условиях позволяет снизить затраты на обслуживание. В совокупности с высокой эффективностью, можно сказать о существенной экономии средств при использовании светодиодного освещения в некоторых применениях.
  • Малый вес и размер устройств. Светодиоды отличаются малыми габаритами и пригодны для использования в труднодоступных местах и малогабаритных переносных устройствах.
  • Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вреда для человека и в специальных целях (например, для освещения раритетных книг или других подверженных влиянию света предметов), так как ультрафиолет губителен для тканей, живописи и кожи человека, а инфракрасное излучение дает много тепла и может привести к ожогам[37]. Однако безопасность видимого спектра также бывает переоценена[38].
  • Отличная работа при отрицательных температурах без снижения, а зачастую и с улучшением, параметров. Большинство типов светодиодов показывают бо́льшую эффективность и долговечность при снижении температуры, однако устройства питания, управления и элементы конструкции могут иметь противоположную зависимость.
  • Светодиоды — безынерционные источники света, они не требуют времени на прогрев или выключение, как, например, люминесцентные лампы и количество циклов включения и выключения не оказывает негативного влияния на их надежность.
  • Хорошая механическая прочность позволяет использовать светодиоды в тяжёлых условиях эксплуатации.
  • Легкость регулирования мощности как скважностью, так и регулированием тока питания без снижения параметров эффективности и надёжности.
  • Безопасность использования, нет опасности поражения электрическим током за счет низкого питающего напряжения.
  • Низкая пожароопасность, возможность использования в условиях взрывоопасности и опасности возгорания за счет отсутствия накальных элементов.
  • Влагостойкость, стойкость к воздействию агрессивных сред.
  • Химическая нейтральность, отсутствие вредных выбросов и отсутствие специальных требований к процедурам утилизации.

Но есть и недостатки:

  • Белые светодиоды в производстве значительно дороже и сложнее аналогичных по световому потоку ламп накаливания, хотя их цена постоянно снижается.
  • Обладают в большинстве невысоким качеством цветопередачи (индекс CRI, по сравнению с солнечным цветом), которое, однако, постоянно растет с развитием технологий производства светодиодов и их сочетаний в конечном продукте (лампы, светильники).
  • Существуют опасения о вреде светодиодных источников для подверженных влиянию света предметов, например, произведений искусства.[38][39] Также вероятно вредное воздействие на органы зрения.[40] Следует отметить, что подобные утверждения и исследования, как правило, относятся к холодным лампам (>5000 К, чей свет в значительной мере отличается от привычного солнечного спектра).
  • При переходе от бытовых к промышленным светильникам требуется продуманная и надёжная система охлаждения.
  • Принципиальная невозможность работы при повышенных температурах окружающей среды более 60 — 80 °C.
  • В силу значительной нелинейности вольт-амперной характеристики светодиоды не могут питаться напрямую от источников напряжения и требуют для сохранения высокого КПД всей системы применения достаточно сложных специализированных источников питания (обычно импульсных преобразователей — драйверов). В бытовых светодиодных лампах преобразователь встраивают в цоколь, что повышает требования к его охлаждению.

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например, направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Мощный белый светодиод 20 Вт в сравнении с индикаторным 50 мВт светодиодом.

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения, находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

  • Исследования и поиск более эффективных и качественных люминофоров. Коэффициент преобразования люминофора влияет на общую эффективность светодиода, кроме того, спектр переизлучения во многом определяет качество излучаемого света. КПД самого на сегодняшний день популярного люминофора ИАГ составляет немногим более 95 %[41]. Эффективность же других люминофоров, обеспечивающих лучший спектр белого света, существенно меньше. Получение более эффективного, долговечного и с нужным спектром люминофора является целью многочисленных исследований[42][43][44][45][46][47].
  • Комбинированные многокомпонентные светодиоды. Кроме комбинации полупроводниковых чипов различного цвета появляются светодиоды, содержащие несколько цветных чипов и люминофорный компонент[4]. Результирующий многокристальный светодиод получается ярким и хорошего качества, но его стоимость пока высока.
  • Белые светодиоды на квантовых точках. Использование в качестве конвертора квантовых точек позволяет создать светодиод с хорошим качеством света[48], однако, эффективность такого метода пока невысока.
  • Увеличение эффективности полупроводниковых излучающих материалов. Самый большой резерв эффективности — светодиодный чип. Квантовый выход для большинства полупроводниковых структур не превышает 50 %. Пока что самый высокий уровень эффективности достигнут у красных светодиодов и составляет чуть больше 60 %[49].
  • Переход на более дешёвые полупроводниковые структуры. Эпитаксиальные структуры на базе нитрида галлия (GaN) традиционно выращивают на подложке из сапфира. Использование в качестве основы других материалов, например, карбида кремния, чистого кремния, оксида галлия[50], позволяет существенно снизить стоимость светодиода[51]. Кроме попыток легирования нитрида галлия разными веществами, исследования ведутся с другими полупроводниковыми материалами — ZnSe, InN, AlN, BN.
  • Светодиоды без люминофора на базе эпитаксиальной структуры ZnSe на подложке ZnSe, активная область которой испускает голубой, а подложка одновременно (за счет того, что селенид цинка — эффективный люминофор сам по себе) — жёлтый свет[52].
  • Светодиоды с полупроводниковыми преобразователями излучения. Дополнительный слой полупроводника с меньшей шириной запрещенной зоны способен поглотить часть световой энергии, что приводит к вторичному излучению в области меньших значений энергии[53].

См. также

Примечания

  1. ↑ Philips, 2010, p. 19—20.
  2. ↑ Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  3. ↑ Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  4. 1 2 Многоцветные светодиоды XB-D и XM-L компании Cree (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  5. ↑ Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии : журнал. — 2009. — № 6. — С. 88—91.
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии : журнал. — 2007. — № 2.
  8. ↑ Шуберт, 2008, p. 404.
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии : журнал. — 2005. — № 9.
  10. ↑ Светодиоды для интерьерной и архитектурной подсветки (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  11. Сян Лин Ун (Siang Ling Oon). Светодиодные решения для систем архитектурной подсветки // Полупроводниковая светотехника : журнал. — 2010. — № 5. — С. 18—20.
  12. ↑ Светодиоды RGB для использования в электронных табло (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  13. ↑ High CRI LED Lighting | Yuji LED. yujiintl.com. Проверено 3 декабря 2016.
  14. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии : журнал. — 2011. — № 5.
  15. ↑ Светодиоды с высокими значениями CRI (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  16. ↑ Технология EasyWhite компании Cree (англ.). LEDs Magazine. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  17. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии : журнал. — 2008. — № 1.
  18. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии : журнал. — 2006. — № 3.
  19. ↑ Светодиоды с матричным расположением большого количества полупроводниковых чипов (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  20. ↑ Срок службы белых светодиодов (англ.). U.S. Department of Energy. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  21. ↑ Виды дефектов LED и методы анализа (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  22. ↑ Шуберт, 2008, p. 61, 77—79.
  23. ↑ Светодиоды компании SemiLEDs (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  24. ↑ GaN-on-Si Программа исследований светодиодов на кремниевой основе (англ.). LED Professional. Проверено 10 ноября 2012.
  25. ↑ Технология изолированного люминофора компании Cree (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  26. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника : журнал. — 2011. — № 5. — С. 28—33.
  27. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект : XII Всероссийское совещание: материалы докладов. — Томск: СПБ Графикс, 2011. — С. 74—77.
  28. ↑ Шуберт, 2008, p. 424.
  29. ↑ Отражатели для светодиодов на основе фотонных кристаллов (англ.). Led Professional. Проверено 16 февраля 2013. Архивировано 13 марта 2013 года.
  30. ↑ XLamp XP-G3 (англ.). www.cree.com. Проверено 31 мая 2017.
  31. ↑ Белые светодиоды с высоким световым выходом для нужд освещения (англ.). Phys.Org™. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  32. ↑ Cree First to Break 300 Lumens-Per-Watt Barrier (англ.). www.cree.com. Проверено 31 мая 2017.
  33. ↑ Основы светодиодного освещения (англ.). U.S. Department of Energy. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  34. Шаракшанэ А. Шкалы оценки качества спектрального состава света — CRI и CQS // Полупроводниковая светотехника : журнал. — 2011. — № 4.
  35. ↑ Ультрафиолетовые светодиоды SemiLED с длиной волны 390-420 нм. (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  36. ↑ Philips, 2010, p. 4—5.
  37. ↑ О светодиодах (недоступная ссылка)
  38. 1 2 LED lights may be bad for Van Gogh paintings
  39. ↑ What’s All this About Van Gogh and LEDs?
  40. ↑ Светодиодные лампы могут сделать нас слепыми
  41. Н.П.Сощин. Современные фотолюминофоры для эффективных приборов твердотельного освещения. Материалы конференции. (рус.) (february 1, 2010). Архивировано 27 октября 2012 года.
  42. О.Е.Дудукало, В.А.Воробьев. Синтез люминофора на основе алюмоиттриевого граната для источников белого света на основе сид методом горения. Материалы конференции. (рус.) (may 31, 2011). Архивировано 27 октября 2012 года.
  43. ↑ Тесты ускоренной температурной деградации люминофоров (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  44. ↑ Research and Markets Releases New 2012 Report on LED Phosphor Materials (англ.). LED Professional. Проверено 30 ноября 2012. Архивировано 10 декабря 2012 года.
  45. ↑ Intematix представил набор люминофоров для качественной цветопередачи (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  46. ↑ Lumi-tech предложил SSE люминофор для белых светодиодов (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  47. ↑ Красный фосфор от компании Intematix (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  48. ↑ Светодиоды на квантовых точках (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  49. ↑ Прототип красного всетодиода с длиной волны 609 нм компании Osram с эффективностью 61 % (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  50. ↑ Светодиоды на подложке из оксида галлия (англ.). LED Professional. Проверено 15 февраля 2013. Архивировано 13 марта 2013 года.
  51. ↑ Переход на структуру GaN-on-Si (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  52. Tim Whitaker. Joint venture to make ZnSe white LEDs (англ.) (December 6, 2002). Проверено 10 ноября 2012. Архивировано 27 октября 2012 года.
  53. ↑ Шуберт, 2008, p. 426.

Литература

Ссылки

Белый светодиод — Википедия

Мощный белый светодиод.

Бе́лый светодио́д — многокомпонентный полупроводниковый прибор, излучающий свет, вызывающий в силу особенностей психофизиологии восприятия цвета человеком (метамерия) ощущение света, близкого к белому.

Различают два вида белых светодиодов:

  • Многокристальные светодиоды, чаще — трёхкомпонентные (RGB-светодиоды), имеющие в своём составе три полупроводниковых излучателя красного, зелёного и синего свечения, объединённые в одном корпусе.
  • Люминофорные светодиоды, создаваемые на основе синего, фиолетового или ультрафиолетового светодиода, имеющие в своём составе слой специального люминофора, преобразующего в результате фотолюминесценции часть излучения светодиода в свет в относительно широкой спектральной полосе с максимумом в области жёлтого (наиболее распространённая конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды жёлтого и зелёного цвета свечения. Световой выход этих, в то время ещё малоэффективных, устройств к 1990 году достиг уровня в один люмен. В 1993 году Сюдзи Накамура, инженер компании Nichia (Япония), создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зелёный цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем технология быстро развивалась, и к 2005 году световая отдача светодиодов достигла значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и ставшими уже традиционными люминесцентными лампами. Началось использование светодиодных осветительных устройств в быту, во внутреннем и уличном освещении[1].

RGB-светодиоды

Типичный спектр RGB-светодиода

Белый свет может быть создан путём смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические[2][3][4] и более многоцветные[5] варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники, лампы, кластеры) имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель. Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности, такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики[6]. Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток, поскольку световая отдача каждого чипа неизвестна заранее и подвержена изменениям в процессе работы. Для установки нужных оттенков RGB светильники иногда оснащают специальными регулирующими устройствами[7].

Спектр RGB светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путём изменения тока каждого светодиода, входящего в «триаду», регулировать цветовой тон излучаемого ими белого света прямо в процессе работы — вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость световой отдачи и цвета от температуры за счёт различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы[8][9]. Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки[10][11], в электронных табло[12] и в видеоэкранах.

Люминофорные светодиоды

Спектр одного из вариантов люминофорного светодиода

Комбинирование синего (чаще), фиолетового[13] или ультрафиолетового (не используются в массовой продукции) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространённая конструкция[14] такого светодиода содержит синий полупроводниковый чип нитрида галлия, модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета — иттрий-алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-сине-зелёного цвета.

В зависимости от состава люминофора выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путём комбинирования различных типов люминофоров достигается значительное увеличение индекса цветопередачи (CRI или Ra)[15][16]. На 2017 год уже существуют светодиодные панели для фото- и киносъёмки, где цветопередача критична, но такое оборудование дорого, а производители — единичны.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости — увеличение тока через полупроводниковый чип без увеличения его размеров — увеличение плотности тока. Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока электрические поля в объёме активной области снижают световой выход[17]. При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному[18], происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима, выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе[19].

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов — это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светоотдачи до 70 % от первоначального значения (L70)[20]. То есть, светодиод, яркость которого в процессе эксплуатации снизилась на 30 %, считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке, используется в качестве оценки срока жизни уровень снижения яркости 50 % (L50).

Срок службы люминофорного светодиода зависит от многих параметров[21]. Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии отдаёт в виде излучения, часть в виде тепла. При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью, кроме того, материалы и конструкция корпуса обладают определённой неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии, изменению оптических свойств подложки. Всё это приводит к увеличению процента безызлучательной рекомбинации[22] и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также проводятся исследования с другими полупроводниковыми материалами или подложками[23][24].

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются, и коэффициент преобразования, а также спектральные характеристики люминофора, ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора[25] и конструкции светодиодных ламп, в которых люминофор физически отделён от излучателя, позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве — вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Схема одной из конструкций белого светодиода. MPCB — печатная плата с высокой тепловой проводимостью.

Современный люминофорный светодиод — это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию[26][27]:

  • Светодиодный чип. Полупроводниковый материал, используемый в составе светодиодов, кроме собственно способности излучать свет с высокой эффективностью, должен иметь хорошую оптическую прозрачность (для обеспечения свободного выхода квантов света из активной области), иметь хорошую электрическую проводимость (для снижения активных потерь при прохождении тока) и ещё удовлетворять многим критериям технологичности в производстве.
  • Люминофор. Слой люминофора или смеси люминофоров подбирается весьма тщательно. Кроме достаточно широкого спектра переизлучения, активный материал и вещество, которое играет роль носителя, должны обеспечивать минимальный уровень безызлучательного поглощения. Особое внимание уделяется температурной стойкости и стабильности при длительной работе. Способ нанесения люминофора во многом определяет цветовые характеристики, в том числе угловые характеристики цвета и яркости[28].
  • Кристаллодержатель. Медный или другой материал, обработанный специальным образом для обеспечения хороших отражающих свойств и максимальной теплопроводности. Современные конструкции светодиодов позволяют обеспечить достаточно низкое тепловое сопротивление, например за счёт пайки на поверхность (SMD) теплопроводного элемента корпуса светильника. Кристаллодержатель обычно сочетает в себе и функцию отражателя света, поскольку часть переизлучённой энергии, а также часть рассеянного в слое люминофора света возвращается обратно.
  • Клей или эвтектический сплав. Способ крепления светодиодного чипа в корпусе должен обеспечивать прочность соединения, хороший и равномерный электрический контакт и отличную теплопроводность. Кроме этого, должен иметь хорошую отражающую способность и выдерживать длительное воздействие высокой температуры.
  • Отражатель. Форма и размер отражателя, совместно с оптической линзой, формируют необходимую диаграмму направленности светодиода. Для увеличения отражающей способности поверхность кристаллодержателя, отражателя и токоподводящих элементов имеют специальные покрытия из различных материалов, от простых вариантов из серебра и алюминия до сложных композитных покрытий, представляющих собой распределённый брэгговский отражатель[29].
  • Защитный компаунд, объединяющий собственно элемент, защищающий структуру светодиода от коррозии и воздействия окружающей среды, и линзу (в случае необходимости фокусирования светового потока).
  • Токоподводящие элементы. Проводники или токоподводящие нити подводят ток к верхней, направленной наружу, стороне полупроводникового чипа. Такой проводник и способ его крепления должен, с одной стороны, обеспечить хороший контакт и низкое активное сопротивление току, с другой стороны, не должен препятствовать выходу света.

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его световая отдача, то есть световой выход с каждого ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 190 лм/Вт[30]. Теоретический предел технологии оценивается более чем в 300 лм/Вт[31][32]. При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счёт КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре, тогда как температура чипа в процессе работы значительно выше.[источник не указан 212 дней] Это приводит к тому, что реальная эффективность излучателя ниже на 5—7 %, а светильника — зачастую вдвое.

Второй не менее важный параметр — качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

  • Цветовая температура, цветовая коррелированная температура (correlated color temperature, CCT) — характеризует оттенок цвета, даётся производителями для указания субъективного восприятия цветового оттенка света, производимого источником, в сравнении с Планковским чёрным телом, нагретым до указанной температуры (в Кельвинах). Для освещения жилых помещений преимущественно используют излучатели тёплого света (от 2700 K до 3000 K) и в некоторых случаях нейтрального (от 3500 K до 4000 K).
  • Индекс цветопередачи (color rendering index, CRI) — характеризует полноту спектра излучения, способность передавать правильно цвет предметов, по сравнению с солнечным светом. Определяется по стандарту опытным путём при сравнении цвета восьми эталонов, освещённых тестовым источником и максимально приближенным к идеальному. Считается, что источник бытового освещения должен иметь индекс цветопередачи не менее 80.
  • Качество света. Цветовая температура и индекс цветопередачи во многих случаях не могут адекватно передать качество производимого светодиодами света. Это в основном определяется особенностями спектра с резкими выбросами и провалами. Некоторые цвета, такие как глубокий красный, не анализируются по стандарту измерения CRI. Для более полной оценки качества света принимаются новые методики, например основанные не на восьми, а на девяти эталонах (с дополнительным девятым эталоном красного цвета R9), шкала качества цвета (Color Quality Scale, CQS), которая в будущем может заменить CRI[33][34].

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области[35], покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика. Этому есть три причины[источник не указан 1973 дня]: первая связана с тем, что разница между энергией падающего и излученного квантов при флюоресценции теряется (переходит в тепло), и в случае ультрафиолетового возбуждения она значительно больше. Вторая причина — в том, что часть УФ излучения, не поглощенная люминофором, не участвует в создании светового потока, в отличие от светодиодов на основе синего излучателя, а увеличение толщины люминофорного покрытия приводит к повышению поглощения в нём света люминесценции. И наконец, КПД ультрафиолетовых светодиодов значительно ниже КПД синих.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств[36]:

  • Основное преимущество белых светодиодов — высокий КПД. Низкое удельное энергопотребление позволяет применять их в длительно работающих источниках автономного и аварийного освещения.
  • Высокая надежность и длительный срок службы позволяют говорить о возможной экономии на замене ламп. Кроме того, использование светодиодных источников света в труднодоступных местах и уличных условиях позволяет снизить затраты на обслуживание. В совокупности с высокой эффективностью, можно сказать о существенной экономии средств при использовании светодиодного освещения в некоторых применениях.
  • Малый вес и размер устройств. Светодиоды отличаются малыми габаритами и пригодны для использования в труднодоступных местах и малогабаритных переносных устройствах.
  • Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вреда для человека и в специальных целях (например, для освещения раритетных книг или других подверженных влиянию света предметов), так как ультрафиолет губителен для тканей, живописи и кожи человека, а инфракрасное излучение дает много тепла и может привести к ожогам[37]. Однако безопасность видимого спектра также бывает переоценена[38].
  • Отличная работа при отрицательных температурах без снижения, а зачастую и с улучшением, параметров. Большинство типов светодиодов показывают бо́льшую эффективность и долговечность при снижении температуры, однако устройства питания, управления и элементы конструкции могут иметь противоположную зависимость.
  • Светодиоды — безынерционные источники света, они не требуют времени на прогрев или выключение, как, например, люминесцентные лампы и количество циклов включения и выключения не оказывает негативного влияния на их надежность.
  • Хорошая механическая прочность позволяет использовать светодиоды в тяжёлых условиях эксплуатации.
  • Легкость регулирования мощности как скважностью, так и регулированием тока питания без снижения параметров эффективности и надёжности.
  • Безопасность использования, нет опасности поражения электрическим током за счет низкого питающего напряжения.
  • Низкая пожароопасность, возможность использования в условиях взрывоопасности и опасности возгорания за счет отсутствия накальных элементов.
  • Влагостойкость, стойкость к воздействию агрессивных сред.
  • Химическая нейтральность, отсутствие вредных выбросов и отсутствие специальных требований к процедурам утилизации.

Но есть и недостатки:

  • Белые светодиоды в производстве значительно дороже и сложнее аналогичных по световому потоку ламп накаливания, хотя их цена постоянно снижается.
  • Обладают в большинстве невысоким качеством цветопередачи (индекс CRI, по сравнению с солнечным цветом), которое, однако, постоянно растет с развитием технологий производства светодиодов и их сочетаний в конечном продукте (лампы, светильники).
  • Существуют опасения о вреде светодиодных источников для подверженных влиянию света предметов, например, произведений искусства.[38][39] Также вероятно вредное воздействие на органы зрения.[40] Следует отметить, что подобные утверждения и исследования, как правило, относятся к холодным лампам (>5000 К, чей свет в значительной мере отличается от привычного солнечного спектра).
  • При переходе от бытовых к промышленным светильникам требуется продуманная и надёжная система охлаждения.
  • Принципиальная невозможность работы при повышенных температурах окружающей среды более 60 — 80 °C.
  • В силу значительной нелинейности вольт-амперной характеристики светодиоды не могут питаться напрямую от источников напряжения и требуют для сохранения высокого КПД всей системы применения достаточно сложных специализированных источников питания (обычно импульсных преобразователей — драйверов). В бытовых светодиодных лампах преобразователь встраивают в цоколь, что повышает требования к его охлаждению.

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например, направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Мощный белый светодиод 20 Вт в сравнении с индикаторным 50 мВт светодиодом.

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения, находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

  • Исследования и поиск более эффективных и качественных люминофоров. Коэффициент преобразования люминофора влияет на общую эффективность светодиода, кроме того, спектр переизлучения во многом определяет качество излучаемого света. КПД самого на сегодняшний день популярного люминофора ИАГ составляет немногим более 95 %[41]. Эффективность же других люминофоров, обеспечивающих лучший спектр белого света, существенно меньше. Получение более эффективного, долговечного и с нужным спектром люминофора является целью многочисленных исследований[42][43][44][45][46][47].
  • Комбинированные многокомпонентные светодиоды. Кроме комбинации полупроводниковых чипов различного цвета появляются светодиоды, содержащие несколько цветных чипов и люминофорный компонент[4]. Результирующий многокристальный светодиод получается ярким и хорошего качества, но его стоимость пока высока.
  • Белые светодиоды на квантовых точках. Использование в качестве конвертора квантовых точек позволяет создать светодиод с хорошим качеством света[48], однако, эффективность такого метода пока невысока.
  • Увеличение эффективности полупроводниковых излучающих материалов. Самый большой резерв эффективности — светодиодный чип. Квантовый выход для большинства полупроводниковых структур не превышает 50 %. Пока что самый высокий уровень эффективности достигнут у красных светодиодов и составляет чуть больше 60 %[49].
  • Переход на более дешёвые полупроводниковые структуры. Эпитаксиальные структуры на базе нитрида галлия (GaN) традиционно выращивают на подложке из сапфира. Использование в качестве основы других материалов, например, карбида кремния, чистого кремния, оксида галлия[50], позволяет существенно снизить стоимость светодиода[51]. Кроме попыток легирования нитрида галлия разными веществами, исследования ведутся с другими полупроводниковыми материалами — ZnSe, InN, AlN, BN.
  • Светодиоды без люминофора на базе эпитаксиальной структуры ZnSe на подложке ZnSe, активная область которой испускает голубой, а подложка одновременно (за счет того, что селенид цинка — эффективный люминофор сам по себе) — жёлтый свет[52].
  • Светодиоды с полупроводниковыми преобразователями излучения. Дополнительный слой полупроводника с меньшей шириной запрещенной зоны способен поглотить часть световой энергии, что приводит к вторичному излучению в области меньших значений энергии[53].

См. также

Примечания

  1. ↑ Philips, 2010, p. 19—20.
  2. ↑ Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  3. ↑ Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  4. 1 2 Многоцветные светодиоды XB-D и XM-L компании Cree (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  5. ↑ Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии : журнал. — 2009. — № 6. — С. 88—91.
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии : журнал. — 2007. — № 2.
  8. ↑ Шуберт, 2008, p. 404.
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии : журнал. — 2005. — № 9.
  10. ↑ Светодиоды для интерьерной и архитектурной подсветки (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  11. Сян Лин Ун (Siang Ling Oon). Светодиодные решения для систем архитектурной подсветки // Полупроводниковая светотехника : журнал. — 2010. — № 5. — С. 18—20.
  12. ↑ Светодиоды RGB для использования в электронных табло (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  13. ↑ High CRI LED Lighting | Yuji LED. yujiintl.com. Проверено 3 декабря 2016.
  14. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии : журнал. — 2011. — № 5.
  15. ↑ Светодиоды с высокими значениями CRI (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  16. ↑ Технология EasyWhite компании Cree (англ.). LEDs Magazine. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  17. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии : журнал. — 2008. — № 1.
  18. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии : журнал. — 2006. — № 3.
  19. ↑ Светодиоды с матричным расположением большого количества полупроводниковых чипов (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  20. ↑ Срок службы белых светодиодов (англ.). U.S. Department of Energy. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  21. ↑ Виды дефектов LED и методы анализа (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  22. ↑ Шуберт, 2008, p. 61, 77—79.
  23. ↑ Светодиоды компании SemiLEDs (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  24. ↑ GaN-on-Si Программа исследований светодиодов на кремниевой основе (англ.). LED Professional. Проверено 10 ноября 2012.
  25. ↑ Технология изолированного люминофора компании Cree (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  26. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника : журнал. — 2011. — № 5. — С. 28—33.
  27. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект : XII Всероссийское совещание: материалы докладов. — Томск: СПБ Графикс, 2011. — С. 74—77.
  28. ↑ Шуберт, 2008, p. 424.
  29. ↑ Отражатели для светодиодов на основе фотонных кристаллов (англ.). Led Professional. Проверено 16 февраля 2013. Архивировано 13 марта 2013 года.
  30. ↑ XLamp XP-G3 (англ.). www.cree.com. Проверено 31 мая 2017.
  31. ↑ Белые светодиоды с высоким световым выходом для нужд освещения (англ.). Phys.Org™. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  32. ↑ Cree First to Break 300 Lumens-Per-Watt Barrier (англ.). www.cree.com. Проверено 31 мая 2017.
  33. ↑ Основы светодиодного освещения (англ.). U.S. Department of Energy. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  34. Шаракшанэ А. Шкалы оценки качества спектрального состава света — CRI и CQS // Полупроводниковая светотехника : журнал. — 2011. — № 4.
  35. ↑ Ультрафиолетовые светодиоды SemiLED с длиной волны 390-420 нм. (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  36. ↑ Philips, 2010, p. 4—5.
  37. ↑ О светодиодах (недоступная ссылка)
  38. 1 2 LED lights may be bad for Van Gogh paintings
  39. ↑ What’s All this About Van Gogh and LEDs?
  40. ↑ Светодиодные лампы могут сделать нас слепыми
  41. Н.П.Сощин. Современные фотолюминофоры для эффективных приборов твердотельного освещения. Материалы конференции. (рус.) (february 1, 2010). Архивировано 27 октября 2012 года.
  42. О.Е.Дудукало, В.А.Воробьев. Синтез люминофора на основе алюмоиттриевого граната для источников белого света на основе сид методом горения. Материалы конференции. (рус.) (may 31, 2011). Архивировано 27 октября 2012 года.
  43. ↑ Тесты ускоренной температурной деградации люминофоров (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  44. ↑ Research and Markets Releases New 2012 Report on LED Phosphor Materials (англ.). LED Professional. Проверено 30 ноября 2012. Архивировано 10 декабря 2012 года.
  45. ↑ Intematix представил набор люминофоров для качественной цветопередачи (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  46. ↑ Lumi-tech предложил SSE люминофор для белых светодиодов (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  47. ↑ Красный фосфор от компании Intematix (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  48. ↑ Светодиоды на квантовых точках (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  49. ↑ Прототип красного всетодиода с длиной волны 609 нм компании Osram с эффективностью 61 % (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  50. ↑ Светодиоды на подложке из оксида галлия (англ.). LED Professional. Проверено 15 февраля 2013. Архивировано 13 марта 2013 года.
  51. ↑ Переход на структуру GaN-on-Si (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  52. Tim Whitaker. Joint venture to make ZnSe white LEDs (англ.) (December 6, 2002). Проверено 10 ноября 2012. Архивировано 27 октября 2012 года.
  53. ↑ Шуберт, 2008, p. 426.

Литература

Ссылки

Белый светодиод — Википедия. Что такое Белый светодиод

Мощный белый светодиод.

Бе́лый светодио́д — многокомпонентный полупроводниковый прибор, излучающий свет, вызывающий в силу особенностей психофизиологии восприятия цвета человеком (метамерия) ощущение света, близкого к белому.

Различают два вида белых светодиодов:

  • Многокристальные светодиоды, чаще — трёхкомпонентные (RGB-светодиоды), имеющие в своём составе три полупроводниковых излучателя красного, зелёного и синего свечения, объединённые в одном корпусе.
  • Люминофорные светодиоды, создаваемые на основе синего, фиолетового или ультрафиолетового светодиода, имеющие в своём составе слой специального люминофора, преобразующего в результате фотолюминесценции часть излучения светодиода в свет в относительно широкой спектральной полосе с максимумом в области жёлтого (наиболее распространённая конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды жёлтого и зелёного цвета свечения. Световой выход этих, в то время ещё малоэффективных, устройств к 1990 году достиг уровня в один люмен. В 1993 году Сюдзи Накамура, инженер компании Nichia (Япония), создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зелёный цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем технология быстро развивалась, и к 2005 году световая отдача светодиодов достигла значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и ставшими уже традиционными люминесцентными лампами. Началось использование светодиодных осветительных устройств в быту, во внутреннем и уличном освещении[1].

RGB-светодиоды

Типичный спектр RGB-светодиода

Белый свет может быть создан путём смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические[2][3][4] и более многоцветные[5] варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники, лампы, кластеры) имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель. Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности, такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики[6]. Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток, поскольку световая отдача каждого чипа неизвестна заранее и подвержена изменениям в процессе работы. Для установки нужных оттенков RGB светильники иногда оснащают специальными регулирующими устройствами[7].

Спектр RGB светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путём изменения тока каждого светодиода, входящего в «триаду», регулировать цветовой тон излучаемого ими белого света прямо в процессе работы — вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость световой отдачи и цвета от температуры за счёт различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы[8][9]. Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки[10][11], в электронных табло[12] и в видеоэкранах.

Люминофорные светодиоды

Спектр одного из вариантов люминофорного светодиода

Комбинирование синего (чаще), фиолетового[13] или ультрафиолетового (не используются в массовой продукции) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространённая конструкция[14] такого светодиода содержит синий полупроводниковый чип нитрида галлия, модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета — иттрий-алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-сине-зелёного цвета.

В зависимости от состава люминофора выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путём комбинирования различных типов люминофоров достигается значительное увеличение индекса цветопередачи (CRI или Ra)[15][16]. На 2017 год уже существуют светодиодные панели для фото- и киносъёмки, где цветопередача критична, но такое оборудование дорого, а производители — единичны.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости — увеличение тока через полупроводниковый чип без увеличения его размеров — увеличение плотности тока. Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока электрические поля в объёме активной области снижают световой выход[17]. При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному[18], происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима, выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе[19].

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов — это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светоотдачи до 70 % от первоначального значения (L70)[20]. То есть, светодиод, яркость которого в процессе эксплуатации снизилась на 30 %, считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке, используется в качестве оценки срока жизни уровень снижения яркости 50 % (L50).

Срок службы люминофорного светодиода зависит от многих параметров[21]. Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии отдаёт в виде излучения, часть в виде тепла. При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью, кроме того, материалы и конструкция корпуса обладают определённой неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии, изменению оптических свойств подложки. Всё это приводит к увеличению процента безызлучательной рекомбинации[22] и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также проводятся исследования с другими полупроводниковыми материалами или подложками[23][24].

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются, и коэффициент преобразования, а также спектральные характеристики люминофора, ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора[25] и конструкции светодиодных ламп, в которых люминофор физически отделён от излучателя, позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве — вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Схема одной из конструкций белого светодиода. MPCB — печатная плата с высокой тепловой проводимостью.

Современный люминофорный светодиод — это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию[26][27]:

  • Светодиодный чип. Полупроводниковый материал, используемый в составе светодиодов, кроме собственно способности излучать свет с высокой эффективностью, должен иметь хорошую оптическую прозрачность (для обеспечения свободного выхода квантов света из активной области), иметь хорошую электрическую проводимость (для снижения активных потерь при прохождении тока) и ещё удовлетворять многим критериям технологичности в производстве.
  • Люминофор. Слой люминофора или смеси люминофоров подбирается весьма тщательно. Кроме достаточно широкого спектра переизлучения, активный материал и вещество, которое играет роль носителя, должны обеспечивать минимальный уровень безызлучательного поглощения. Особое внимание уделяется температурной стойкости и стабильности при длительной работе. Способ нанесения люминофора во многом определяет цветовые характеристики, в том числе угловые характеристики цвета и яркости[28].
  • Кристаллодержатель. Медный или другой материал, обработанный специальным образом для обеспечения хороших отражающих свойств и максимальной теплопроводности. Современные конструкции светодиодов позволяют обеспечить достаточно низкое тепловое сопротивление, например за счёт пайки на поверхность (SMD) теплопроводного элемента корпуса светильника. Кристаллодержатель обычно сочетает в себе и функцию отражателя света, поскольку часть переизлучённой энергии, а также часть рассеянного в слое люминофора света возвращается обратно.
  • Клей или эвтектический сплав. Способ крепления светодиодного чипа в корпусе должен обеспечивать прочность соединения, хороший и равномерный электрический контакт и отличную теплопроводность. Кроме этого, должен иметь хорошую отражающую способность и выдерживать длительное воздействие высокой температуры.
  • Отражатель. Форма и размер отражателя, совместно с оптической линзой, формируют необходимую диаграмму направленности светодиода. Для увеличения отражающей способности поверхность кристаллодержателя, отражателя и токоподводящих элементов имеют специальные покрытия из различных материалов, от простых вариантов из серебра и алюминия до сложных композитных покрытий, представляющих собой распределённый брэгговский отражатель[29].
  • Защитный компаунд, объединяющий собственно элемент, защищающий структуру светодиода от коррозии и воздействия окружающей среды, и линзу (в случае необходимости фокусирования светового потока).
  • Токоподводящие элементы. Проводники или токоподводящие нити подводят ток к верхней, направленной наружу, стороне полупроводникового чипа. Такой проводник и способ его крепления должен, с одной стороны, обеспечить хороший контакт и низкое активное сопротивление току, с другой стороны, не должен препятствовать выходу света.

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его световая отдача, то есть световой выход с каждого ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 190 лм/Вт[30]. Теоретический предел технологии оценивается более чем в 300 лм/Вт[31][32]. При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счёт КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре, тогда как температура чипа в процессе работы значительно выше.[источник не указан 212 дней] Это приводит к тому, что реальная эффективность излучателя ниже на 5—7 %, а светильника — зачастую вдвое.

Второй не менее важный параметр — качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

  • Цветовая температура, цветовая коррелированная температура (correlated color temperature, CCT) — характеризует оттенок цвета, даётся производителями для указания субъективного восприятия цветового оттенка света, производимого источником, в сравнении с Планковским чёрным телом, нагретым до указанной температуры (в Кельвинах). Для освещения жилых помещений преимущественно используют излучатели тёплого света (от 2700 K до 3000 K) и в некоторых случаях нейтрального (от 3500 K до 4000 K).
  • Индекс цветопередачи (color rendering index, CRI) — характеризует полноту спектра излучения, способность передавать правильно цвет предметов, по сравнению с солнечным светом. Определяется по стандарту опытным путём при сравнении цвета восьми эталонов, освещённых тестовым источником и максимально приближенным к идеальному. Считается, что источник бытового освещения должен иметь индекс цветопередачи не менее 80.
  • Качество света. Цветовая температура и индекс цветопередачи во многих случаях не могут адекватно передать качество производимого светодиодами света. Это в основном определяется особенностями спектра с резкими выбросами и провалами. Некоторые цвета, такие как глубокий красный, не анализируются по стандарту измерения CRI. Для более полной оценки качества света принимаются новые методики, например основанные не на восьми, а на девяти эталонах (с дополнительным девятым эталоном красного цвета R9), шкала качества цвета (Color Quality Scale, CQS), которая в будущем может заменить CRI[33][34].

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области[35], покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика. Этому есть три причины[источник не указан 1973 дня]: первая связана с тем, что разница между энергией падающего и излученного квантов при флюоресценции теряется (переходит в тепло), и в случае ультрафиолетового возбуждения она значительно больше. Вторая причина — в том, что часть УФ излучения, не поглощенная люминофором, не участвует в создании светового потока, в отличие от светодиодов на основе синего излучателя, а увеличение толщины люминофорного покрытия приводит к повышению поглощения в нём света люминесценции. И наконец, КПД ультрафиолетовых светодиодов значительно ниже КПД синих.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств[36]:

  • Основное преимущество белых светодиодов — высокий КПД. Низкое удельное энергопотребление позволяет применять их в длительно работающих источниках автономного и аварийного освещения.
  • Высокая надежность и длительный срок службы позволяют говорить о возможной экономии на замене ламп. Кроме того, использование светодиодных источников света в труднодоступных местах и уличных условиях позволяет снизить затраты на обслуживание. В совокупности с высокой эффективностью, можно сказать о существенной экономии средств при использовании светодиодного освещения в некоторых применениях.
  • Малый вес и размер устройств. Светодиоды отличаются малыми габаритами и пригодны для использования в труднодоступных местах и малогабаритных переносных устройствах.
  • Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вреда для человека и в специальных целях (например, для освещения раритетных книг или других подверженных влиянию света предметов), так как ультрафиолет губителен для тканей, живописи и кожи человека, а инфракрасное излучение дает много тепла и может привести к ожогам[37]. Однако безопасность видимого спектра также бывает переоценена[38].
  • Отличная работа при отрицательных температурах без снижения, а зачастую и с улучшением, параметров. Большинство типов светодиодов показывают бо́льшую эффективность и долговечность при снижении температуры, однако устройства питания, управления и элементы конструкции могут иметь противоположную зависимость.
  • Светодиоды — безынерционные источники света, они не требуют времени на прогрев или выключение, как, например, люминесцентные лампы и количество циклов включения и выключения не оказывает негативного влияния на их надежность.
  • Хорошая механическая прочность позволяет использовать светодиоды в тяжёлых условиях эксплуатации.
  • Легкость регулирования мощности как скважностью, так и регулированием тока питания без снижения параметров эффективности и надёжности.
  • Безопасность использования, нет опасности поражения электрическим током за счет низкого питающего напряжения.
  • Низкая пожароопасность, возможность использования в условиях взрывоопасности и опасности возгорания за счет отсутствия накальных элементов.
  • Влагостойкость, стойкость к воздействию агрессивных сред.
  • Химическая нейтральность, отсутствие вредных выбросов и отсутствие специальных требований к процедурам утилизации.

Но есть и недостатки:

  • Белые светодиоды в производстве значительно дороже и сложнее аналогичных по световому потоку ламп накаливания, хотя их цена постоянно снижается.
  • Обладают в большинстве невысоким качеством цветопередачи (индекс CRI, по сравнению с солнечным цветом), которое, однако, постоянно растет с развитием технологий производства светодиодов и их сочетаний в конечном продукте (лампы, светильники).
  • Существуют опасения о вреде светодиодных источников для подверженных влиянию света предметов, например, произведений искусства.[38][39] Также вероятно вредное воздействие на органы зрения.[40] Следует отметить, что подобные утверждения и исследования, как правило, относятся к холодным лампам (>5000 К, чей свет в значительной мере отличается от привычного солнечного спектра).
  • При переходе от бытовых к промышленным светильникам требуется продуманная и надёжная система охлаждения.
  • Принципиальная невозможность работы при повышенных температурах окружающей среды более 60 — 80 °C.
  • В силу значительной нелинейности вольт-амперной характеристики светодиоды не могут питаться напрямую от источников напряжения и требуют для сохранения высокого КПД всей системы применения достаточно сложных специализированных источников питания (обычно импульсных преобразователей — драйверов). В бытовых светодиодных лампах преобразователь встраивают в цоколь, что повышает требования к его охлаждению.

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например, направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Мощный белый светодиод 20 Вт в сравнении с индикаторным 50 мВт светодиодом.

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения, находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

  • Исследования и поиск более эффективных и качественных люминофоров. Коэффициент преобразования люминофора влияет на общую эффективность светодиода, кроме того, спектр переизлучения во многом определяет качество излучаемого света. КПД самого на сегодняшний день популярного люминофора ИАГ составляет немногим более 95 %[41]. Эффективность же других люминофоров, обеспечивающих лучший спектр белого света, существенно меньше. Получение более эффективного, долговечного и с нужным спектром люминофора является целью многочисленных исследований[42][43][44][45][46][47].
  • Комбинированные многокомпонентные светодиоды. Кроме комбинации полупроводниковых чипов различного цвета появляются светодиоды, содержащие несколько цветных чипов и люминофорный компонент[4]. Результирующий многокристальный светодиод получается ярким и хорошего качества, но его стоимость пока высока.
  • Белые светодиоды на квантовых точках. Использование в качестве конвертора квантовых точек позволяет создать светодиод с хорошим качеством света[48], однако, эффективность такого метода пока невысока.
  • Увеличение эффективности полупроводниковых излучающих материалов. Самый большой резерв эффективности — светодиодный чип. Квантовый выход для большинства полупроводниковых структур не превышает 50 %. Пока что самый высокий уровень эффективности достигнут у красных светодиодов и составляет чуть больше 60 %[49].
  • Переход на более дешёвые полупроводниковые структуры. Эпитаксиальные структуры на базе нитрида галлия (GaN) традиционно выращивают на подложке из сапфира. Использование в качестве основы других материалов, например, карбида кремния, чистого кремния, оксида галлия[50], позволяет существенно снизить стоимость светодиода[51]. Кроме попыток легирования нитрида галлия разными веществами, исследования ведутся с другими полупроводниковыми материалами — ZnSe, InN, AlN, BN.
  • Светодиоды без люминофора на базе эпитаксиальной структуры ZnSe на подложке ZnSe, активная область которой испускает голубой, а подложка одновременно (за счет того, что селенид цинка — эффективный люминофор сам по себе) — жёлтый свет[52].
  • Светодиоды с полупроводниковыми преобразователями излучения. Дополнительный слой полупроводника с меньшей шириной запрещенной зоны способен поглотить часть световой энергии, что приводит к вторичному излучению в области меньших значений энергии[53].

См. также

Примечания

  1. ↑ Philips, 2010, p. 19—20.
  2. ↑ Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  3. ↑ Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  4. 1 2 Многоцветные светодиоды XB-D и XM-L компании Cree (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  5. ↑ Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии : журнал. — 2009. — № 6. — С. 88—91.
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии : журнал. — 2007. — № 2.
  8. ↑ Шуберт, 2008, p. 404.
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии : журнал. — 2005. — № 9.
  10. ↑ Светодиоды для интерьерной и архитектурной подсветки (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  11. Сян Лин Ун (Siang Ling Oon). Светодиодные решения для систем архитектурной подсветки // Полупроводниковая светотехника : журнал. — 2010. — № 5. — С. 18—20.
  12. ↑ Светодиоды RGB для использования в электронных табло (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  13. ↑ High CRI LED Lighting | Yuji LED. yujiintl.com. Проверено 3 декабря 2016.
  14. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии : журнал. — 2011. — № 5.
  15. ↑ Светодиоды с высокими значениями CRI (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  16. ↑ Технология EasyWhite компании Cree (англ.). LEDs Magazine. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  17. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии : журнал. — 2008. — № 1.
  18. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии : журнал. — 2006. — № 3.
  19. ↑ Светодиоды с матричным расположением большого количества полупроводниковых чипов (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  20. ↑ Срок службы белых светодиодов (англ.). U.S. Department of Energy. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  21. ↑ Виды дефектов LED и методы анализа (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  22. ↑ Шуберт, 2008, p. 61, 77—79.
  23. ↑ Светодиоды компании SemiLEDs (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  24. ↑ GaN-on-Si Программа исследований светодиодов на кремниевой основе (англ.). LED Professional. Проверено 10 ноября 2012.
  25. ↑ Технология изолированного люминофора компании Cree (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  26. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника : журнал. — 2011. — № 5. — С. 28—33.
  27. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект : XII Всероссийское совещание: материалы докладов. — Томск: СПБ Графикс, 2011. — С. 74—77.
  28. ↑ Шуберт, 2008, p. 424.
  29. ↑ Отражатели для светодиодов на основе фотонных кристаллов (англ.). Led Professional. Проверено 16 февраля 2013. Архивировано 13 марта 2013 года.
  30. ↑ XLamp XP-G3 (англ.). www.cree.com. Проверено 31 мая 2017.
  31. ↑ Белые светодиоды с высоким световым выходом для нужд освещения (англ.). Phys.Org™. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  32. ↑ Cree First to Break 300 Lumens-Per-Watt Barrier (англ.). www.cree.com. Проверено 31 мая 2017.
  33. ↑ Основы светодиодного освещения (англ.). U.S. Department of Energy. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  34. Шаракшанэ А. Шкалы оценки качества спектрального состава света — CRI и CQS // Полупроводниковая светотехника : журнал. — 2011. — № 4.
  35. ↑ Ультрафиолетовые светодиоды SemiLED с длиной волны 390-420 нм. (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 22 ноября 2012 года.
  36. ↑ Philips, 2010, p. 4—5.
  37. ↑ О светодиодах (недоступная ссылка)
  38. 1 2 LED lights may be bad for Van Gogh paintings
  39. ↑ What’s All this About Van Gogh and LEDs?
  40. ↑ Светодиодные лампы могут сделать нас слепыми
  41. Н.П.Сощин. Современные фотолюминофоры для эффективных приборов твердотельного освещения. Материалы конференции. (рус.) (february 1, 2010). Архивировано 27 октября 2012 года.
  42. О.Е.Дудукало, В.А.Воробьев. Синтез люминофора на основе алюмоиттриевого граната для источников белого света на основе сид методом горения. Материалы конференции. (рус.) (may 31, 2011). Архивировано 27 октября 2012 года.
  43. ↑ Тесты ускоренной температурной деградации люминофоров (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  44. ↑ Research and Markets Releases New 2012 Report on LED Phosphor Materials (англ.). LED Professional. Проверено 30 ноября 2012. Архивировано 10 декабря 2012 года.
  45. ↑ Intematix представил набор люминофоров для качественной цветопередачи (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  46. ↑ Lumi-tech предложил SSE люминофор для белых светодиодов (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  47. ↑ Красный фосфор от компании Intematix (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  48. ↑ Светодиоды на квантовых точках (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  49. ↑ Прототип красного всетодиода с длиной волны 609 нм компании Osram с эффективностью 61 % (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  50. ↑ Светодиоды на подложке из оксида галлия (англ.). LED Professional. Проверено 15 февраля 2013. Архивировано 13 марта 2013 года.
  51. ↑ Переход на структуру GaN-on-Si (англ.). LED Professional. Проверено 10 ноября 2012. Архивировано 23 ноября 2012 года.
  52. Tim Whitaker. Joint venture to make ZnSe white LEDs (англ.) (December 6, 2002). Проверено 10 ноября 2012. Архивировано 27 октября 2012 года.
  53. ↑ Шуберт, 2008, p. 426.

Литература

Ссылки

Как получить белый свет с использованием светодиодов?

09.06.2017

Современные светодиодные фонарики Fenix Мир бесповоротно изменился и сегодня фонарь из узкоспециализированного устройства превратился в элемент повседневного обихода. Прошло время громоздких и длинных тубусов с огромными батарейками и слабым светом. В линейке фонарей Fenix каждый может найти модель для своих нужд.

Подробнее

19.05.2017

Как выбрать нужный фонарь? Универсальный гид по выбору наиболее подходящего для вас фонаря. Мы собрали весь свой опыт общения с покупателями, и сделали концентрированную выжимку советов и рекомендаций, которая поможет вам ответить на массу вопросов, связанных с фонарной тематикой.

Подробнее

27.03.2017

Новые рекомендации по выбору фонаря Fenix Этой весной мы подобрали для вас рекомендации по самым актуальным фонарям Fenix - какую модель выбрать для туризма, кемпинга, охоты, спорта, велосипеда и другой активной деятельности. Также вы всегда можете обратиться за помощью к нашим специалистам.

Подробнее

23.03.2017

Рейтинг IP - что это такое и как его понимать? Что же такое рейтинг IP? Все эти IP67, IP68, IPX-8 и прочее. Оказывается всё очень просто и наглядно. А главное создано специально для удобства покупателей и помощи при выборе. Опираясь на информацию из нашей статьи вы легко во всём разберётесь.

Подробнее

15.03.2017

Отзыв о фонаре MecArmy SGN7 от нашего пользователя Выбирая подарок на Новый год для своей супруги, автор обзора, обратился к нам практически случайно, а узнав что у нас есть, и посмотрев варианты быстро нашёл подходящий ему по цене и функционалу фонарь. Его отзыв получился большим и практически художественным обзором фонаря и процесса его получения. Поэтому мы решили опубликовать его отдельно.

Подробнее

26.01.2017

Обзор Фонаря Fenix FD41 от эксперта CandlePower CandlePower это международный форум посвящённый фонарям и всему, что с ними связано. Естественно, эксперты сообщества не могли пройти мимо новинки от Fenix - лидера в производстве портативной светотехники. В этот раз на обзор попал фонарь Fenix FD41, главной отличительной чертой которого является изменяемая в широких пределах фокусировка луча. Недавно появившийся подробный обзор этого инновационного фонаря был переведён на русский язык и предлагается вашему вниманию.

Подробнее

Главная / Статьи / Как получить белый свет с использованием светодиодов?
Нет товаров
30.01.2012 Существует три способа получения белого света от светодиодов. Первый – смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет.

Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа.
И наконец в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой свето-диод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

Какой из трех способов лучше?
У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.

Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод.

Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.


Возврат к списку

(Голосов: 3, Рейтинг: 3.4)


Белый светодиод - это... Что такое Белый светодиод?

Мощный белый светодиод

Белый светодиод — светодиод, многокомпонентный полупроводниковый прибор, излучающий свет, вызывающий в силу особенностей психофизиологии восприятия цвета человеком (метамерия), ощущение света близкого к белому.

Различают два вида белых светодиодов:

  • Многокристальные светодиоды, чаще — трехкомпонентные (RGB-светодиоды), имеющие в своём составе три полупроводниковых излучателя красного, зелёного и синего свечения, объединённые в одном корпусе.
  • Люминофорные светодиоды, создаваемые на основе ультрафиолетового или синего светодиода, имеющие в своем составе слой специального люминофора, преобразующего в результате фотолюминесценции часть излучения светодиода в свет в относительно широкой спектральной полосе с максимумом в области жёлтого (наиболее распространенная конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды желтого и зеленого цвета свечения. Световой выход в начале малоэффективных устройств к 1990 году достиг уровня в один люмен. В 1993 году Суджи Накамура, инженер компании Nichia (Япония) создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зеленый цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем, технология быстро развивалась и к 2005 году световой выход светодиодов достиг значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и с ставшими уже традиционными люминисцентными лампами. Началось использование светодиодных осветительных устройств в быту, в внутреннем и уличном освещении[1].

RGB светодиоды

Типичный спектр RGB светодиода

Белый свет может быть создан путем смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические[2][3][4] и более многоцветные[5] варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники, лампы, кластеры) имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель. Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности, такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики[6]. Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток, поскольку световой выход каждого чипа неизвестен заранее и подвержен изменениям в процессе работы. Для установки нужных оттенков, RGB светильники иногда оснащают специальными регулирующими устройствами[7].

Спектр RGB светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путем изменения тока каждого светодиода, входящего в триаду, регулировать цветовой тон излучаемого ими белого света прямо в процессе работы — вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость светового выхода и цвета от температуры за счет различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы[8][9]. Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки[10][11], в электронных табло[12] и в видеоэкранах.

Люминофорные светодиоды

Спектр одного из вариантов люминофорного светодиода

Комбинирование синего (чаще) или ультрафиолетового (реже) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространенная конструкция[13] такого светодиода содержит синий полупроводниковый чип нитрида галлия, модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета — иттрий-алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-синезелёного цвета.

В зависимости от состава люминофора, выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путем комбинирования различных типов люминофоров, достигается значительное увеличение индекса цветопередачи (CRI или Ra)[14][15], что позволяет говорить о возможности применения светодиодного освещения в критических для качества цветопередачи условиях.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости — увеличение тока через полупроводниковый чип без увеличения его размеров — увеличение плотности тока. Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока, электрические поля в объеме активной области снижают световой выход[16]. При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному[17], происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима, выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе[18].

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов — это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светотдачи до 70% от первоначального значения (L70)[19]. То есть, светодиод, яркость которого в процессе эксплуатации снизалась на 30% считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке используется в качестве оценки срока жизни уровень снижения яркости 50% (L50).

Срок службы люминофорного светодиода зависит от многих параметров[20]. Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии излучает в виде излучения, часть в виде тепла. При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью, кроме того, материалы и конструкция корпуса обладают определенной неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия, недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии, изменению оптических свойств подложки. Всё это приводит к увеличению процента безизлучательной рекомбинации[21] и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также, проводятся исследования с другими полупроводниковыми материалами или подложками[22][23].

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются и коэффициент преобразования, а также спектральные характеристики люминофора ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора[24] и конструкции светодиодных ламп, в которых люминофор физически отделен от излучателя позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве — вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Схема одной из конструкций белого светодиода. MPCB — печатная плата с высокой тепловой проводимостью.

Современный люминофорный светодиод — это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию[25][26]:

  • Светодиодный чип. Полупроводниковый материал, используемый в составе светодиодов должен, кроме собственно способности излучать свет, иметь хорошую оптическую прозрачность (для обеспечения свободного выхода квантов света из активной области), обладать малой шириной запрещённой зоны (параметр, определяющий прямое пороговое напряжение, при котором светодиод испускает свет), иметь хорошую электрическую проводимость (для снижения активных потерь при прохождении тока) и ещё удовлетворять многим критериям технологичности в производстве.
  • Люминофор. Слой люминофора или смеси люминофоров подбирается весьма тщательно. Кроме достаточно широкого спектра переизлучения, активный материал и вещество, которое играет роль носителя, должны обеспечивать минимальный уровень безизлучательного поглощения. Особое внимание уделяется температурной стойкости и стабильности при длительной работе. Способ нанесения люминофора во многом определяет цветовые характеристики, в том числе угловые характеристики цвета и яркости[27].
  • Кристаллодержатель. Медный или другой материал, обработанный специальным образом для обеспечения хороших отражающих свойств и максимальной теплопроводности. Современные конструкции светодиодов позволяют обеспечить достаточно низкое тепловое сопротивление, например за счет пайки на поверхность (SMD) теплопроводного элемента корпуса светильника. Кристаллодержатель обычно сочетает в себе и функцию отражателя света, поскольку часть переизлученной энергии, а также часть рассеянного в слое люминофора света возвращается обратно.
  • Клей или эвтектический сплав. Способ крепления светодиодного чипа в корпусе должен обеспечивать прочность соединения, хороший и равномерный электрический контакт и отличную теплопроводность. Кроме этого, должен иметь хорошую отражающую способность и выдерживать длительное воздействие высокой температуры.
  • Защитный компаунд, объединяющий собственно элемент, защищающий структуру светодиода от коррозии и воздействия окружающей среды, и линзу (в случае необходимости фокусирования светового потока).
  • Токоподводящие элементы. Проводники или токоподводящие нити подводят ток к верхней, направленной наружу, стороне полупроводникового чипа. Такой проводник и способ его крепления должен, с одной стороны, обеспечить хороший контакт и низкое активное сопротивление току, с другой стороны, не должен препятствовать выходу света.

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его cветовая отдача, то есть световой выход с каждого Ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 150-170 лм/Вт. Теоретический предел технологии оценивается в 260-300 лм/Вт[28]. При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счет КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре. Тогда как температура чипа в процессе работы значительно выше. Это приводит к тому, что реальная эффективность излучателя ниже на 5 — 7%, а светильника зачастую — вдвое.

Второй не менее важный параметр — качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

  • Цветовая температура, цветовая кореллированная температура (correlated color temperature, CCT) — характеризует оттенок цвета, даётся производителями для указания субъективного восприятия цветового оттенка света, производимого источником в сравнении с Планковским чёрным телом, нагретым до указанной температуры (в Кельвинах). Для освещения жилых помещений, преимущественно используют излучатели тёплого света (от 2700K до 3000K) и в некоторых случаях нейтрального (от 3500K до 4000K).
  • Индекс цветопередачи (color rendering index, CRI) — характеризует полноту спектра излучения, способность передавать правильно цвет предметов, по сравнению с солнечным светом. Определяется по стандарту опытным путем при сравнении цвета восьми эталонов, освещённых тестовым источником и максимально приближенным к идеальному. Считается, что источник бытового освещения должен иметь индекс цветопередачи не менее 80.
  • Качество света. Цветовая температура и индекс цветопередачи во многих случаях не могут адекватно передать качество производимого светодиодами света. Это в основном определяется особенностями спектра с резкими выбросами и провалами. Некоторые цвета, такие как глубокий красный, не анализируются по стандарту измерения CRI. Для более полной оценки качества света принимаются новые методики, например основанные не на восьми, а на девяти эталонах (с дополнительным девятым эталоном красного цвета R9), шкала качества цвета (Color Quality Scale, CQS), которая в будущем, наверное заменит CRI[29][30].

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области[31], покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств[32]:

  • Основное преимущество белых светодиодов — высокий КПД. Низкое удельное энергопотребление позволяет применять их в длительно работающих источниках автономного и аварийного освещения.
  • Высокая надежность и длительный срок службы позволяют говорить о возможной экономии на замене ламп. Кроме того, использование светодиодных источников света в труднодоступных местах и уличных условиях позволяет снизить затраты на обслуживание. В совокупности с высокой эффективностью, можно сказать о существенной экономии средств при использовании светодиодного освещения в некоторых применениях.
  • Малый вес и размер устройств. Светодиоды отличаются малыми габаритами и пригодны для использования в труднодоступных местах и малогабаритных переносных устройствах.
  • Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вреда для человека и в специальных целях (например для освещения раритетных книг или других подверженных влиянию света предметов).
  • Отличная работа при отрицательных температурах без снижения, а зачастую и с улучшением параметров. Большинство типов светодиодов показывают бо́льшую эффективность и долговечность при снижении температуры, однако устройства питания, управления и элементы конструкции могут иметь противоположную зависимость.
  • Светодиоды — безинерционные источники света, они не требуют времни на прогрев или выключение, как например люминесцентные лампы и количество циклов включения и выключения не оказывает негативного влияния на их надежность.
  • Хорошая механическая прочность позволяет использовать светодиоды в тяжёлых условиях эксплуатации.
  • Легкость регулирования мощности как скважностью, так и регулированием тока питания без снижения параметров эффективности и надёжности.
  • Безопасность использования, нет опасности поражения электрическим током за счет низкого питающего напряжения.
  • Низкая пожароопасность, возможность использования в условиях взрывоопасности и опасности возгорания за счет отсутствия накальных элементов.
  • Влагостойкость, стойкость к воздействию агрессивных сред.
  • Химическая нейтральность, отсутствие вредных выбросов и отсутствие специальных требований к процедурам утилизации.

Но есть и недостатки:

  • Белые светодиоды в производстве значительно дороже и сложнее аналогичных по световому потоку ламп накаливания, хотя их цена постоянно снижается.
  • Обладают в большинстве невысоким качеством цветопередачи, которое, однако постоянно растет.
  • Требуют продуманной и надёжной системы охлаждения[33].
  • Принципиальная невозможность работы при повышенных температурах окружающей среды более 60 — 80°C.
  • В силу значительной нелинейности вольт-амперной характеристики, белые светодиоды не могут непосредственно питаться от распространённых источников энергии и требуют для сохранения высокого КПД всей системы применения достаточно сложных специализированных источников питания (обычно, импульсных преобразователей — драйверов).

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

  • Исследования и поиск более эффективных и качественных люминофоров. Коэффициент преобразования люминофора влияет на общую эффективность светодиода, кроме того, спектр переизлучения во многом определяет качество излучаемого света. КПД самого на сегодняшний день популярного люминофора ИАГ составляет немногим более 95 %[34]. Эффективность же других люминофоров, обеспечивающих лучший спектр белого света, существенно меньше. Получение более эффективного, долговечного и с нужным спектром люминофора является целью многочисленных исследований[35][36][37][38][39][40].
  • Комбинированные многокомпонентные светодиоды. Кроме комбинации полупроводниковых чипов различного цвета, появляются светодиоды, содержащие несколько цветных чипов и люминофорный компонент[4]. Результирующий многокристальный светодиод получается ярким и хорошего качества, но его стоимость пока высока.
  • Белые светодиоды на квантовых точках. Использование в качестве конвертора квантовых точек позволяет создать светодиод с хорошим качеством света[41]. Однако, эффективность такого метода пока невысока.
  • Увеличение эффективности полупроводниковых излучающих материалов. Самый большой резерв эффективности — светодиодный чип. Квантовый выход для большинства полупроводниковых структур не превышает 50 %. Пока что самый высокий уровень эффективности достигнут у красных светодиодов и составляет чуть больше 60 %[42].
  • Переход на более дешёвые полупроводниковые структуры. Эпитаксиальные структуры на базе нитрида галлия (GaN) традиционно выращивают на подложке из сапфира. Использование в качестве основы других материалов, например карбида кремния, чистого кремния, позволяет существенно снизить стоимость светодиода[43]. Кроме попыток легирования нитрида галлия разными веществами, исследования ведутся с другими полупроводниковыми материалами — ZnSe, InN, AlN, BN.
  • Светодиоды без люминофора на базе эпитаксиальной структуры ZnSe на подложке ZnSe, активная область которой испускает голубой, а подложка одновременно - желтый свет[44].
  • Светодиоды с полупроводниковими преобразователями излучения. Дополнительный слой полупроводника с меньшей шириной запрещенной зоны способен поглотить часть световой энергии, что приводит к вторичному излучению в области меньших значений энергии[45].

См. также

Примечания

  1. Philips, 2010, p. 19—20
  2. Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  3. Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  4. 1 2 Многоцветные светодиоды XB-D и XM-L компании Cree  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  5. Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии : журнал. — 2009. — № 6. — С. 88—91.
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии : журнал. — 2007. — № 2.
  8. Шуберт, 2008, p. 404
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии : журнал. — 2005. — № 9.
  10. Светодиоды для интерьерной и архитектурной подсветки  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  11. Сян Лин Ун (Siang Ling Oon) Светодиодные решения для систем архитектурной подсветки // Полупроводниковая светотехника : журнал. — 2010. — № 5. — С. 18—20.
  12. Светодиоды RGB для использования в электронных табло  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  13. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии : журнал. — 2011. — № 5.
  14. Светодиоды с высокими значениями CRI  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  15. Технология EasyWhite компании Cree  (англ.). LEDs Magazine. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  16. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии : журнал. — 2008. — № 1.
  17. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии : журнал. — 2006. — № 3.
  18. Светодиоды с матричным расположением большого количества полупроводниковых чипов  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  19. Срок службы белых светодиодов  (англ.). U.S. Department of Energy. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  20. Виды дефектов LED и методы анализа  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  21. Шуберт, 2008, p. 61, 77—79
  22. Светодиоды компании SemiLEDs  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  23. GaN-on-Si Программа исследований светодиодов на кремниевой основе  (англ.). LED Professional. Проверено 10 ноября 2012.
  24. Технология изолированного люминофора компании Cree  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  25. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника : журнал. — 2011. — № 5. — С. 28—33.
  26. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект : XII Всероссийское совещание: материалы докладов. — Томск: СПБ Графикс, 2011. — С. 74—77.
  27. Шуберт, 2008, p. 424
  28. Белые светодиоды с высоким световым выходом для нужд освещения  (англ.). Phys.Org™. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  29. Основы светодиодного освещения  (англ.). U.S. Department of Energy. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  30. Шаракшанэ А. Шкалы оценки качества спектрального состава света — CRI и CQS // Полупроводниковая светотехника : журнал. — 2011. — № 4.
  31. Ультрафиолетовые светодиоды SemiLED с длиной волны 390-420 нм.  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  32. Philips, 2010, p. 4—5
  33. Системы активного охлаждения кампании Nuventix  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  34. Н.П.Сощин Современные фотолюминофоры для эффективных приборов твердотельного освещения. Материалы конференции.  (рус.) (february 1, 2010). Архивировано из первоисточника 27 октября 2012.
  35. О.Е.Дудукало, В.А.Воробьев Синтез люминофора на основе алюмоиттриевого граната для источников белого света на основе сид методом горения. Материалы конференции.  (рус.) (may 31, 2011). Архивировано из первоисточника 27 октября 2012.
  36. Тесты ускоренной температурной деградации люминофоров  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  37. Research and Markets Releases New 2012 Report on LED Phosphor Materials  (англ.). LED Professional. Архивировано из первоисточника 10 декабря 2012. Проверено 30 ноября 2012.
  38. Intematix представил набор люминофоров для качественной цветопередачи  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  39. Lumi-tech предложил SSE люминофор для белых светодиодов  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  40. Красный фосфор от компании Intematix  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  41. Светодиоды на квантовых точках  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  42. Прототип красного всетодиода с длиной волны 609 нм компании Osram с эффективностью 61 %  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  43. Переход на структуру GaN-on-Si  (англ.). LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  44. Tim Whitaker Joint venture to make ZnSe white LEDs  (англ.) (December 6, 2002). Архивировано из первоисточника 27 октября 2012. Проверено 10 ноября 2012.
  45. Шуберт, 2008, p. 426

Литература

Ссылки

Что такое светодиод?

Интерес к светодиодам растет быстрее, чем территория их применения в светотехнике. Производители и потребители, продавцы и покупатели — все как будто замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю пользуются уникальными возможностями светодиодов. Давно прошло то время, когда светодиоды были интересны одним лишь ученым. Теперь светодиодная тема у всех на слуху. Говорят, за ними будущее. Но, может статься, ожидания преувеличены? Узнать бы поточнее!

светодиод, схема светодиод, светодиоды, сверхяркие светодиодыНастоящая публикация не случайно построена в форме вопросов и ответов (FAQ, frequently asked questions — часто задаваемые вопросы). Именно так заинтересованный человек подходит к новому для него объекту, с тем чтобы «пощупать» его с разных сторон и уж потом решить: нужен — не нужен. А мне задавать правильные вопросы и находить на них верные ответы помогал профессор МГУ Александр Эммануилович Юнович, один из ведущих российских специалистов по светодиодам.


1. Что такое светодиод?
Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение.
Кстати, по-английски светодиод называется light emitting diode, или LED.

2. Из чего состоит светодиод?
Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации. Конструкция мощного светодиода серии Luxeon, выпускаемой компанией Lumileds, схематически изображена на рисунке.

Строение светодиода, питание светодиодов, светодиоды фонарик, диод


3. Как работает светодиод?
Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.
Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.
Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

4. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче?
Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.

5. Чем хорош светодиод?
В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы может достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 5 — 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

6. Чем плох светодиод?
Только одним — ценой. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галогенной лампой. Но специалисты утверждают, что в ближайшие 2 — 3 года этот показатель будет снижен в 10 раз.

7. Когда светодиоды начали применяться для освещения?
Первоначально светодиоды применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии.
В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало светодиодов синего, сине-зеленого и белого цвета.
К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство составляло несколько десятков миллиардов.

8. От чего зависит цвет светодиода?
Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

9. Какие трудности пришлось преодолеть ученым, чтобы изготовить голубой светодиод?
Голубые светодиоды можно сделать на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. (Помните таблицу Менделеева?)
У светодиодов на основе SiC оказался слишком мал кпд и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и служили недолго. Оставалась надежда на нитриды.
Нитрид галлия GaN плавится при 2000 °С, при этом равновесное давление паров азота составляет 40 атмосфер; ясно, что растить такие кристаллы непросто. Аналогичные соединения — нитрилы алюминия и индия — тоже полупроводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от состава, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но... проблему не удавалось решить до конца 80-х годов.
Первым, еще в 70-х, голубой светодиод на основе пленок нитрида галлия на сапфировой подложке удалось получить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практических применений, однако руководство сказало: «Ну, это ж на сапфире — дорого и не так уж ярко, к тому же p-n-переход нехорош...» — и работы Панкова не поддержали.
Между тем группа Сапарина и Чукичева из МГУ обнаружила, что под действием электронного пучка GaN с примесью цинка становится ярким люминофором, и даже запатентовала устройство оптической памяти. Но тогда загадочное явление объяснить не удалось.
Это сделали японцы — профессор И. Акасаки и доктор X. Амано из университета Нагоя. Обработав пленку GaN с примесью магния электронным пучком со сканированием, они получили ярко люминесцирую-щий слой р-типа с высокой концентрацией дырок. Однако разработчики светодиодов не обратили должного внимания на их публикации.
Лишь в 1989 году доктор Ш. Накамура из фирмы Nichia Chemical, исследуя пленки нитридов элементов III группы, сумел воспользоваться результатами профессора Акасаки. Он так подобрал легирование (Мд, Zn) и термообработку, заменив ею электронное сканирование, что смог получить эффективно инжектирующие слои р-типа в GaN-гетероструктурах. Вот как был получен голубой светодиод.
Фирма Nichia запатентовала ключевые этапы технологии и к концу 1997 года выпускала уже 10 — 20 млн голубых и зеленых светодиодов в месяц, а в январе 1998 года приступила к выпуску белых светодиодов.

10. Что такое квантовый выход светодиода?
Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а ддя синих — 35%.
Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

11. Как получить белый свет с использованием светодиодов?
Существует три способа получения белого света от светодиодов. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И наконец в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой свето-диод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

12. Какой из трех способов лучше?
У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.
Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод.
Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.

13. Каковы электрические и оптические характеристики светодиодов?
Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1 А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).
При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5 В для одного светодиода.
Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.
Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует светодиод на повышение температуры?
Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.
Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через светодиод?
Как видно из рисунка, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

типичная вольт-амперная характеристика светодиода,  подключение светодиодов, яркие светодиоды, светодиоды купить
типичная вольт-амперная характеристика светодиода

16. Для чего светодиоду требуется конвертор?
Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

17. Можно ли регулировать яркость светодиода?
Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет.
Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

18. Чем определяется срок службы светодиода?
Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20 — 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

19. «Портится» ли цвет светодиода с течением времени?
Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.

20. Не вреден ли светодиод для человеческого глаза?
Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.
Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский — крупный специалист в области цветного зрения. Тема, за решение которой он взялся, называется так: «Психофизическое восприятие светодиодного освещения системой зрения человека».

21. Когда и как сверхъяркие светодиоды появились в России?
Об этом лучше всех расскажет профессор Юнович.
— Люминесценцию карбида кремния впервые наблюдал Олег Владимирович Лосев в Нижегородской радиотехнической лаборатории в 1923 г. и показал, что она возникает вблизи p-n-перехода. Первая научная статья о кристаллах нитрида галлия была опубликована профессором МГУ Г.С. Ждановым в 30-х гг. Люминесценцию в гетероструктурах на основе арсенида галлия впервые исследовали в лаборатории Ж.И. Алферова в 60-х гг. и показали, что можно создать структуры с внутренним квантовым выходом близким к 100%. Разработки структур и светодиодов на основе нитрида галлия велись в ленинградских Политехническом и Электротехническом институтах, в Калуге, в Зеленограде в 70-х гг., но они тогда не привели к созданию эффективных голубых светодиодов.
В 1995 году я прочел первые статьи Накамуры и понял, что «голубая проблема» в принципе решена. Тогда же я получил грант соросовского фонда. В декабре на эти деньги я смог поехать на конференцию в США, и там профессор Жак Панков познакомил меня с Ш. Накамурой. Я забросил наживку: мол, хочу приобщить студентов Московского университета к передовым достижениям в области голубых светодиодов и рассказать им о столь замечательном изобретении. Рыбка клюнула, и в феврале я получил от д-ра Ш. Накамуры из Японии бандеролью 10 светодиодов от фиолетового до зеленого. Все потом оказалось просто — фирма Nichia Chemical начинала выпуск светодиодов на рынок и была заинтересована в научной рекламе. В лаборатории МГУ мы их досконально исследовали, сняли все характеристики и получили новые научные результаты. Д-р Ш. Накамура дал любезное согласие на совместную публикацию наших первых статей.
Одновременно специалисты из группы Бориса Фера-понтовича Тринчука в Зеленограде продемонстрировали образцы зеленых светодиодов начальникам из ГАИ и получили положительный отзыв. Все дело в том, что эта группа сделала опытный образец светодиодного светофора, но у них не было хороших зеленых светодиодов. Светофоры с новыми сверхъяркими зелеными светодиодами намного превосходили светофоры с лампами, и московское правительство сделало заказ на 1000 светодиодных светофоров к 850-летию Москвы. Такое везение!
Как раз тогда у нас гостила киргизская скрипачка Райкан Карагулова — выпускница Московской консерватории, ученица моей жены, которая работала в Японии первым концертмейстером симфонического оркестра в Осаке. Выяснилось, что место ее работы находится неподалеку от фирмы Nichia Chemical! Б.Ф. Тринчук дал ей тысячу долларов и попросил купить на них и прислать на мой адрес 200 зеленых светодиодов. Из них были изготовлены первые светофоры из той юбилейной тысячи. Москва стала первым в мире городом с массовым применением светодиодных светофоров.
Наши ученые и инженеры в НИИ «Сапфир» пытались повторить достижение японцев и изготовить структуры на основе нитридов для голубых и зеленых светодиодов на старой эпитаксиальной установке, которую пришлось модернизировать, чтобы достичь более высоких температур и давлений. Но инициатива заглохла из-за отсутствия денег и интереса руководства.

22. Какие на сегодняшний день существуют технологии изготовления светодиодов и светодиодных модулей?
Что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области.
За один процесс, который длится несколько часов, можно вырастить структуры на 6 — 12 подложках диаметром 50 — 75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5 — 2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это — технология, требующая высокой культуры.
Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к п- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24x0,24 до 1x1 мм2.
Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости светоди-ода определяется этими этапами высокой технологии.
Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-техноло-гии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.
Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе.
Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.

технология СОВ, лампа светодиод, мощные светодиоды, мигающий светодиод, мощные светодиоды фонари
технология СОВ

 23. Где сегодня целесообразно применять светодиоды?

Светодиоды находят применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию и где высоки требования по электробезопасности.
В Москве в начале 2004 года была принята трехлетняя программа энергосберегающего освещения на базе светодиодных технологий. Координационный совет возглавил профессор Ю.Б. Айзенберг. Согласно этой программе предлагается использовать светодиоды в опытном строительстве, ЖКХ и других областях. Например, светодиодные светильники будут устанавливаться в подземных переходах, подъездах, на лифтовых площадках, то есть там, где не нужна большая освещенность, но требуется минимум обслуживания и энергозатрат, а также важна высокая вандалоустойчивость.

Алексей Рябов

История белых светодиодов | Hackaday

По сравнению с лампами накаливания светодиоды производят намного больше люмен на ватт входной мощности - они более эффективно излучают свет. Конечно, это означает, что лампы накаливания более эффективны в производстве тепла, и по мере того, как дни становятся короче, а ночи становятся холоднее, где-то у человека, решившего перейти на светодиодное освещение, есть печь, которая работает сверхурочно. И этот кто-то может также задаться вопросом, как мы попали сюда: мир, освещенный эзотерическими неорганическими полупроводниками, освещающими люминофоры.

Тот факт, что диоды излучают свет при определенных условиях, известен уже более 100 лет; первый светодиод был обнаружен в лабораториях Маркони в 1907 году в детекторе кошачьего уса, первом виде диода. Это открытие было просто научным любопытством, пока другое открытие в Texas Instruments не показало излучение инфракрасного света от туннельного диода, построенного на подложке из арсенида галлия. Этот инфракрасный светодиод был затем запатентован TI, и начался проект по производству этих инфракрасных светодиодов.

Но инфракрасный свет невидим для человеческого глаза и бесполезен для какой-либо индикации или освещения. Первый светодиод видимого спектра был построен в General Electric в 1962 году, а первые коммерчески доступные (красные) светодиоды были произведены компанией Monsanto в 1968 году. В том же году HP начала производство светодиодов, используя тот же фосфат арсенида галлия, который использовался Monsanto. Эти светодиоды HP нашли свое применение в очень крошечных семисегментных светодиодных дисплеях, используемых в калькуляторах HP в 1970-х годах.

От инфракрасных светодиодов начала 1960-х годов до красных светодиодов конца 1960-х годов 1970-е увидели оранжево-красные, оранжевые, желтые и, наконец, зеленые светодиоды.У этих событий есть тенденция, и она связана с электронными промежутками. Чтобы диод генерировал свет, вы должны сначала вложить энергию в электрон. Эта энергия заставляет электрон перескакивать из своего естественного состояния в валентной зоне в зону проводимости. Этой энергии недостаточно, чтобы удержать электрон в зоне проводимости, поэтому он в конечном итоге упадет обратно в дыру, оставленную в валентной зоне. При этом он снова высвобождает энергию в виде фотона.

Чем больше энергии требуется, чтобы переместить электрон в зону проводимости, тем больше энергии выделяется в виде фотона в виде более высокочастотного света.Причина, по которой инфракрасные светодиоды появились раньше красных светодиодов, а зеленые светодиоды появились после этого, заключается в том, что просто сложнее преодолеть эти запрещенные зоны и найти светодиодную подложку, которая будет излучать более высокие частоты света.

Инфракрасные, красные и даже зеленые светодиоды были «легкими», но синие светодиоды требуют гораздо большей ширины запрещенной зоны и, следовательно, требуют более экзотических материалов. Загадка создания синего светодиода высокой яркости была впервые решена в 1994 году в Nichia Corporation с использованием нитрида индия-галлия.В то же время Исаму Акасаки и Хироши Амано из Университета Нагоя разработали подложку из нитрида галлия для светодиодов, за которую они получили Нобелевскую премию по физике 2014 года. Что касается красных, зеленых и синих светодиодов, единственное, что мешало кому-либо создать белый светодиод, - это объединение всех этих цветов в один корпус.

Красные, зеленые, но в основном синие светодиоды

Светодиод RGB. Смешивая красный, зеленый и синий цвета, этот светодиод может излучать белый свет

Первые белые светодиоды не были явно белыми светодиодами .Вместо этого красный, зеленый и синий светодиоды были упакованы в единый светодиодный корпус. Однако, если вы смешаете красный, зеленый и синий свет, вы получите белый свет, на самом деле это просто вопрос получения правильных пропорций разноцветных фотонов.

Это остается стандартом для светодиодов RGB, и некоторые даже экспериментировали с улучшением диапазона цветов, которые могут воспроизводить эти светодиоды. Человеческий глаз чрезвычайно чувствителен к зеленым частотам света, и, добавив в комплект четвертый светодиод - его лучше всего назвать `` изумрудным '' или чуть более голубым оттенком зеленого, чем тот, к которому мы привыкли в зеленых светодиодах, вы можете сделать светодиод с более широким цветовым диапазоном или, если хотите, более белый белый.

Это был первый метод разработки белого светодиода, и хотя светодиодные лампочки, которые вы покупаете в строительном магазине, не имеют внутри отдельных красных, зеленых и синих светодиодов, это все еще фантастически популярный способ создания большего количества цветов. со светодиодами. Все эти неопиксели, WS2812 или APA101, имеют красный, зеленый и синий светодиоды, спрятанные внутри одного корпуса. Некоторые из более совершенных светодиодов RGB с индивидуальной адресацией даже добавляют четвертый светодиод для белого цвета. Но как же сделаны эти отдельные белые светодиоды?

Белый светодиод с полным преобразованием

Первые белые светодиоды, сделанные без трех отдельных светодиодов, были созданы с помощью магии люминофоров.Люминофор - это хорошо изученная наука, наиболее часто встречающаяся в осветительных приборах люминесцентных ламп. Флуоресцентные лампы не излучают белый свет сами по себе, они излучают ультрафиолетовый свет, возбуждая пары ртути. Однако, покрывая внутреннюю часть люминесцентной лампы порошком, этот ультрафиолетовый свет можно преобразовать в красный, зеленый и синий свет. В результате получилась люминесцентная лампа, которая освещает ваш гараж или мастерскую.

То же самое можно сделать и с помощью светодиодов. С помощью ультрафиолетового или фиолетового светодиода, помещенного в корпус с люминофорным покрытием, вы можете сделать белый светодиод.Это известно как белый светодиод с полным преобразованием.

Изображение [deglr6328], через Википедию Светодиоды полного преобразования неэффективны, поэтому к середине 90-х годов началась гонка за создание светодиода частичного преобразования. Этот тип светодиода будет освещать люминофор синим светом, и люминофор будет преобразовывать часть этого синего света во что-то в целом желтоватое, содержащее смесь красных и зеленых длин волн. Добавление большего количества красных люминофоров создает светодиоды «теплого белого цвета».

В 1996 году компания Nichia объявила о выпуске белых светодиодов, а остальное уже история.За последние двадцать лет мощность, эффективность и яркость этих светодиодов увеличились. Сейчас или в самом ближайшем будущем в домашнем освещении по умолчанию будут использоваться не лампы накаливания, а мощные светодиоды, потребляющие всего лишь часть энергии, которую потребляла бы старая лампа Эдисона, перекладывая большую часть задачи по поддержанию тепла в вашем доме на обогреватель. .

.

Как работает белый светодиод? | Вопросы

Светодиод - это светоизлучающий диод, который представляет собой полупроводниковое устройство, которое будет светиться, если вы пропустите через него ток. Полупроводник - это материал, который в своем естественном состоянии плохо проводит электричество, но если вы добавите небольшое количество других материалов, он будет проводить достаточно хорошо.

Обычно каждый атом в полупроводнике имеет 4 электрона, и нет ни одного свободного электрона, но если вы добавите несколько атомов с 5 электронами, появятся дополнительные электроны, которые могут легко перемещаться и переносить ток (полупроводник N-типа ).Точно так же, если вы добавите несколько атомов только с 3 электронами, а затем вы получите некоторые зазоры, в которые могут перемещаться другие электроны (полупроводник P-типа). Электроны теперь могут двигаться немного как плитки в мозаике из скользящих плиток, но легче представить себе положительно заряженное отверстие, движущееся через полупроводник.

N-тип с несколькими дополнительными электронами для переноса тока P-тип, в котором отсутствует несколько электронов, которые можно рассматривать как положительно заряженные «дырки» и могут переносить ток.

.Диод получается, если соединить кусок полупроводника P-типа с куском N-типа. Если вы сделаете область N-типа отрицательной, а область P-типа положительной, электроны и дырки будут двигаться к переходу, и там будет много носителей заряда, и может течь ток.

Но если вы сделаете область N-типа положительной, а область P-типа отрицательной, то электроны и дырки будут отводиться от перехода, оставляя соединение без ничего для протекания тока, поэтому он становится изолирующим, и ток не может течь.

Электроны и дырки подталкиваются к переходу, поэтому может течь ток. Электроны и дырки отводятся от перехода, оставляя его изолирующим.

Так при чем тут светодиоды?

Если через диод протекает ток, вы получите и электроны, и дырки в одной и той же части полупроводника, это означает, что они могут встретиться. Когда они это делают, электрон может заполнить отверстие, высвобождая некоторую энергию. В светодиодах это находится в форме света.

Энергия и, следовательно, цвет этого света фиксируются типом полупроводника, который вы используете, поэтому обычно все они одного цвета, поэтому светодиоды традиционно окрашены.На самом деле гораздо проще сделать светодиоды в красном конце спектра, чем в синем, поэтому синие светодиоды стали обычным явлением только недавно.

Белый свет, конечно же, представляет собой смесь цветов, и если бы вы использовали светодиоды сами по себе, вам потребовалось бы 3 светодиода для получения белого света. У производителей есть хитрый способ решить эту проблему: они используют люминофоры, которые преобразуют синий свет с высокой энергией в цвета с меньшей энергией, такие как красный, желтый и зеленый. Таким образом, если покрыть светодиод люминофором, синий светодиод может выглядеть белым.

Люминофоры в светодиодах поглощают синий / фиолетовый свет и излучают его разными цветами, создавая белый свет Ã?, © Дэйв Анселл Белый светодиод в действии

.

В чем разница между теплым белым и холодным белым светом?

Что касается светодиодов, то на самом деле существует много разных оттенков белого. А когда дело доходит до покупки светодиодных ламп, важно знать, какие именно лампы вы приобретаете.

Мы написали нижеприведенное руководство о разнице между теплым белым и холодным белым, но у нас также есть удобная инфографика по цветам светодиодов, объясняющая это. Просто нажмите ссылку внизу страницы, чтобы узнать подробности.

Если вы ищете светодиодные лампы и лампы, не забудьте, что у нас есть большой выбор, который можно купить прямо сейчас.

LED Difference between warm white cool white

Холодный белый

Хотя существует целый спектр, белые в целом можно разделить на теплый белый и холодный белый. Холодные белые светодиоды, как правило, придают вам более чистый вид, идеально подходят для современных кухонь, стиля скандинавского стиля и мест, где действительно имеет значение лучший свет, например, швейных комнат и гаражей.

Дневной свет

На дальнем конце спектра находятся лампы дневного света. Из них получаются идеальные рождественские огни и украшения, так как они напоминают лед и иней.Эти огни могут граничить с синим светом. В домашних условиях многие люди находят это слишком «клиническим» и предпочитают использовать теплые светодиоды или холодные светодиоды, поскольку излучаемый ими свет, как правило, более приятен для глаз.

теплый белый

Холодный белый цвет отлично смотрится на современных кухнях и там, где чем ярче, тем лучше, теплый белый лучше смотрится там, где вам нужен более мягкий свет. Он особенно хорошо подходит для гостиных, гостиных и традиционной кухни, например, в стиле кантри, где белый свет слишком сильно контрастирует с остальной частью комнаты.

Еще немного о светодиодах

LED-Bulb -Colour Лампы накаливания или традиционные лампы не позволяют выбирать оттенок белого. Причина кроется в науке, поскольку они работают, когда электричество передается по проводу к вольфрамовой нити внутри лампы. Когда становится жарко, он ярко светится, испуская свет. В большинстве случаев традиционные лампы и лампочки имеют теплый белый цвет.

В отличие от ламп накаливания и люминесцентных ламп, светодиоды по своей сути не являются источниками белого света, но белый свет необходим для того, чтобы они стали обычными источниками света.Есть два способа создать этот белый свет; либо путем смешивания источников света разных цветов для создания белого эффекта, либо путем нанесения люминофорного покрытия на синий светодиод. Это покрытие излучает желтый свет, который в сочетании с синим светом дает белый эффект.

Щелкните, чтобы узнать больше о цветовой температуре светодиодной лампы

Следовательно, цветовая температура светодиода или количество излучаемого красного, желтого, синего и белого света определяет цвет светодиодной лампы. Цветовая температура измеряется в градусах Кельвина (k), при этом лампа с температурой от 2700 до 3500 К классифицируется как «теплая», а светодиод с температурой от 6000 до 7000 К классифицируется как «холодная».Те, что находятся между ними, имеют цветовую температуру дневного или естественного света.

Тепло-белые светодиоды обычно используются в таких комнатах, как спальни и гостиные, где их мягкость способствует расслаблению. Белые светодиоды естественного и дневного света подходят для кухонь и ванных комнат, а также офисов, а холодные белые светодиоды часто используются в коммерческих помещениях и больницах. Также возможно смешивать и сочетать; например, теплый свет может создать уютную атмосферу на кухне, но холодные белые лампы могут понадобиться поверх рабочих поверхностей.

.

Что такое светодиод (светоизлучающий диод)?

Обновлено: 06.03.2020, Computer Hope

Сокращение от светодиода , Светодиод - это полупроводник, который загорается при прохождении через него электрического заряда. Светодиоды обычно зеленого, желтого или красного цвета, но могут быть и других цветов, так как они стали популярными для освещения корпусов. Ниже приведены примеры того, как светодиод можно использовать с компьютером.

  • Светодиоды клавиатуры
  • Мышь LED
  • Материнская плата LED
  • Индикатор сетевой карты, коммутатора и маршрутизатора
  • Индикатор гибких дисков, жестких дисков, компакт-дисков и других дисководов
  • Принтер, динамики, монитор и другие устройства
  • Значение светодиодов красного, желтого, зеленого, белого и синего цветов

Светодиоды клавиатуры

Примером светодиода являются светодиодные индикаторы состояния на клавиатуре для Num Lock, Caps Lock и Scroll Lock, как показано на рисунке.Синий светодиод на клавиатуре указывает на то, что Num Lock включен, но поскольку светодиоды Caps Lock и Scroll Lock отключены, это означает, что они не включены. Расположение этих индикаторов зависит от производителя клавиатуры. Чаще всего они находятся в верхней центральной или верхней правой части клавиатуры.

Как выключить и выключить светодиоды клавиатуры?

Для включения и выключения (включения и выключения) подсветки клавиатуры нажмите на клавиатуре клавишу Num Lock, Caps Lock или Scroll Lock. Имейте в виду, что светодиоды клавиатуры - это не то же самое, что клавиатура с подсветкой, где за всеми клавишами есть подсветка.

Заметка

Не все индикаторы num Lock, Caps Lock или Scroll Lock имеют идентификаторы, подобные тем, что показаны на рисунке. Если вы не уверены, какой светодиод к какой клавише подходит, нажмите клавишу Num Lock, Caps Lock или Scroll Lock, наблюдая за светодиодами, и посмотрите, какой из них загорится.

Наконечник Клавиатуры

Apple и некоторые другие имеют светодиодный индикатор Caps Lock на клавише Caps Lock и могут не иметь других индикаторов, потому что нет клавиш Scroll Lock или Num Lock.

Мышь LED

В большинстве современных компьютеров используется оптическая мышь, которая использует светодиодный индикатор для отслеживания курсора на экране.

Материнская плата LED

Многие материнские платы имеют встроенный светодиод, который позволяет пользователям узнать, что на материнской плате есть питание. Светодиод также может использоваться, чтобы сообщить пользователям об ошибках. На картинке изображен светодиод / светодиод, расположенный между слотами PCI на материнской плате.

Заметка

Не работайте внутри компьютера и не отсоединяйте внутренние разъемы, пока горит этот индикатор.

Наконечник

Когда шнур питания отсоединен от компьютера, светодиодный индикатор горит несколько секунд, а затем медленно гаснет, что является нормальным явлением.

Светодиодный индикатор сетевой карты, коммутатора и маршрутизатора

Светодиоды на сетевой карте, сетевом коммутаторе и сетевом маршрутизаторе показывают, когда установлено соединение и когда данные передаются. Например, без кабеля, подключенного к сетевой карте, горит оранжевый светодиод или нет. Однако, когда кабель подключен, светодиод горит зеленым. Когда карта используется (например, при просмотре Интернета), данные отправляются на сетевую карту и с нее, а светодиодный индикатор мигает, указывая на связь.

Индикатор гибких дисков, жестких дисков, компакт-дисков и других дисководов

Компьютерные дисководы для гибких дисков и CD-ROM имеют передние светодиодные индикаторы, указывающие, что данные либо считываются с этих носителей, либо записываются на них.

Жесткие диски не имеют светодиодных индикаторов. Однако материнская плата отправляет сигналы через соединительные кабели системной панели, в результате чего светодиод на передней панели компьютера мигает, когда он активен.

Принтер, динамики, монитор и другие устройства

Внешние устройства, требующие питания (например,g., монитор, принтер или динамики) также имеют светодиодный индикатор, указывающий, когда устройство включено, выключено или возникла ошибка.

Значение светодиодов красного, желтого, зеленого, белого и синего цветов

Существуют только стандарты де-факто при классификации значений цвета светодиода. Ниже приведены объяснения того, что может означать светодиод и его цвет.

Горит зеленым, синим или белым светодиодом

Горящий зеленый, синий или белый светодиод на передней панели компьютера, монитора или другого устройства часто является индикатором питания.Например, когда вы нажимаете кнопку питания на своем компьютере, если компьютер получает питание и работает, индикатор должен гореть и оставаться постоянным.

Мигающий зеленый, синий или белый светодиод

Мигающий зеленый, синий или белый светодиод указывает на то, что данные передаются или устройство работает.

Наконечник

Большинство мигающих светодиодов, независимо от цвета, указывают на то, что что-то работает, обрабатывается или что данные передаются.

Горит желтым или желтым светодиодом

Немигающий желтый или желтый светодиодный индикатор часто означает, что компьютер, монитор или другое устройство имеют питание, но не получают сигнал.Например, на мониторе отображается желтый светодиод без дисплея или черный экран, когда кабель передачи данных отключен.

Мигающий желтый или желтый светодиод

Желтый или желтый светодиоды указывают на то, что данные передаются через сетевую карту, модем, коммутатор или маршрутизатор. В случае маршрутизатора этот индикатор также может иногда мигать так быстро, что может казаться непрерывным.

Горит красный светодиод

Красный светодиод часто используется для уведомления или предупреждения. Например, на устройстве защиты от перенапряжения или ИБП (источник бесперебойного питания) красный светодиод указывает на то, что защита от перенапряжения работает и доступна.

Мигающий красный светодиод

Мигающий красный светодиод обычно используется только как предупреждение, чтобы уведомить пользователя о наличии проблемы.

Индикатор доступа, Янтарный, AMOLED, CCFL, Цветовые обозначения, Компьютерные сокращения, Диод, Термины для электроники, Зеленый, Термины для оборудования, OLED, Оранжевый, QLED, Красный

.

Отправить ответ

avatar
  Подписаться  
Уведомление о