Tda7294 характеристики: Микросхема TDA7294 в схема усиления: datasheet, характеристики и аналоги

интегральный усилитель НЧ на 100 Ватт , схема и характеристики

Радиоэлектроника, схемы, статьи и программы для радиолюбителей.
  • Схемы
    • Аудио аппаратура
      • Схемы транзисторных УНЧ
      • Схемы интегральных УНЧ
      • Схемы ламповых УНЧ
      • Предусилители
      • Регуляторы тембра и эквалайзеры
      • Коммутация и индикация
      • Эффекты и приставки
      • Акустические системы
    • Спецтехника
      • Радиомикрофоны и жучки
      • Обработка голоса
      • Защита информации
    • Связь и телефония
      • Радиоприёмники
      • Радиопередатчики
      • Радиостанции и трансиверы
      • Аппаратура радиоуправления
      • Антенны
      • Телефония
    • Источники питания
      • Блоки питания и ЗУ
      • Стабилизаторы и преобразователи
      • Защита и бесперебойное питание
    • Автоматика
      • На микроконтроллерах
      • Управление и контроль
      • Схемы роботов
    • Для начинающих
      • Эксперименты
      • Простые схемки
    • Фабричная техника
      • Усилители мощности
      • Предварительные усилители
      • Музыкальные центры
      • Акустические системы
      • Пусковые и зарядные устройства
      • Измерительные приборы
      • Компьютеры и периферия
      • Аппаратура для связи
    • Измерение и индикация
    • Бытовая электроника
    • Автомобилисту
    • Охранные устройства
    • Компьютерная техника
    • Медицинская техника
    • Металлоискатели
    • Оборудование для сварки
    • Узлы радиаппаратуры

TDA7294 — Усилитель звука — DataSheet

ВЫСОКОЕ РАБОЧЕЕ НАПРЯЖЕНИЕ (±40В)

ДМОП УСИЛИТЕЛЬ МОЩНОСТИ

ВЫСОКАЯ ВЫХОДНАЯ МОЩНОСТЬ (ДО 100Вт ЗВУКОВОЙ МОЩНОСТИ)

ФУНКЦИЯ РЕЖИМА ОЖИДАНИЯ

НЕТ ШУМА ПЕРЕКЛЮЧАТЕЛЯ ВКЛ/ВЫКЛ

НЕТ BOUCHEROT ЯЧЕЕК

ОЧЕНЬ НИЗКИЙ УРОВЕНЬ ИСКАЖЕНИЙ

ОЧЕНЬ НИЗКИЙ УРОВЕНЬ ШУМА

ЗАЩИТА ОТ КОРОТКОГО ЗАМЫКАНИЯ

ОТКЛЮЧЕНИЕ ПРИ ПЕРЕГРЕВЕ

ОПИСАНИЕ

TDA7294 это монолитная интегральная схема в исполнении Multiwatt15, предназначенная для использования в HI-FI усилителях класса AB (Home Stereo, автономных акустических системах, высококлассных ТВ-приемниках). Благодаря широкому диапазону напряжений и высокой токонесущей способности, она способна поддерживать максимальную мощность для обеих нагрузок 4 Ом и 8 Ом даже при плохом источнике питания. Встроенная функция задержки включения упрощает дистанционное управление, избегая шумов при переключении режимов вкл/выкл. 

Рисунок 1. Схема подключения и проверки

Схема включения Распиновка TDA7294

 

Блок схема TDA 7294

Блок-схема TDA7294

Абсолютные максимальные значения

Обозначение Параметр Значение Ед. изм.
Vs Напряжение питания ± 50 В
Io Выходной пиковый ток 10 А
Ptot Рассеиваемая мощность Tcase=70oC 50 Вт
Top Диапазон рабочих температур окружающей среды от 0 до 70 o
C
Tstg, Tj Температура сохранения и перехода 150 oC
Rth j-case Тепловое сопротивление кристалл-корпус 1.5 oC/Вт

Электрические характеристики (Параметры указаны для тестовой цепи VS = ±35 В, RL = 8 Ом, GV = 30dB;
Rg = 50 Ом; Tamb = 25°C, f = 1 кГц; если не указано иное.

Обозначение Параметр Условия испытаний Мин. Тип. Макс. Ед. изм.
VS Напряжение питания ±10 ±40 В
Iq Ток покоя 20 30 60 мА
Ib Ток смещения 500 нА
VOS Напряжение смещения ±10 мВ
IOS Ток смещения ±100 нА
PO Постоянная среднеквадратичная мощность d = 0.5%:
VS = ± 35 В, RL = 8 Ом 60 70 Вт
VS = ± 31 В, RL = 6 Ом 60 70 Вт
VS = ± 27 В, RL = 4 Ом 60 70 Вт
Музыкальная мощность(среднеквадратичная) по правилам IEC268.3 — t = 1 сек. (*) d = 10%
RL = 8 Ом ; VS = ±38 В 100 Вт
RL = 6 Ом ; VS = ±33 В 100 Вт
RL = 4 Ом ; VS = ±29 В (***) 100 Вт
d Суммарные гармонические искажения (**) PO = 5 Вт; f = 1 кГц 0.005 %
PO = 0.1 Вт — 50 Вт; f = 20 Гц — 20 кГц 0.1
VS = ±27 В, RL = 4 Вт:
PO = 5 Вт; f = 1 кГц
0.01 %
PO = 0.1 Вт — 50 Вт; f = 20 Гц — 20 кГц 0.1
SR Скорость нарастания выходного напряжения 7 10 В/мкс
GV Усиление напряжения в разомкнутой цепи 80 dB
GV Усиление напряжения в замкнутой цепи 24 30 40 dB
eN Общий выходной шум A = curve(кривая) 1 мкВ
f = 20 Гц — 20 кГц 2 5
fL, fH Частотная характеристика (-3dB) PO = 1 Вт от 20 Гц до 20 кГц
Ri Входное сопротивление 100 кОм
SVR Отклонение напряжения питания f = 100 Гц; Vripple = 0.5 Vrms 60 75 dB
TS Тепловая защита 145 °C
STAND-BY ФУНКЦИЯ (Ref: -VS или GND)
VSTon Порог включения 1.5 В
VST off Порог отключения 3.5 В
ATTst-by Затухание 70 90 dB
Iq st-by Ток покоя 1 3 мА
MUTE ФУНКЦИЯ (Ref: -VS или GND)
VMon Порог включения 1.5 В
VMoff Порог отключения 3.5 В
ATTmute Затухание 60 80 dB

(*) Музыкальная мощность — это максимальная мощность, которую усилитель способен выдавать через номинальное сопротивление нагрузки (в независимости от нелинейности) после подачи на вход синусоидального сигнала 1 кГц в течении 1 сек.

(**) Протестировано с оптимизированной монтажной платой.

(***) Ограничено максимально допустимым током.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Горький опыт покупки микросхем TDA7293

Те, кто занимается созданием домашнего аудио или самостоятельно собирают усилители наверняка встречали описание микросхем ST TDA7293. Если не встречали, обязательно поищите и прочитайте. С помощью этих довольно простых чипов можно собрать усилитель весьма высокого класса.
Я встраиваю такой усилитель в стенную нишу, оборудую скрытую проводку и встроенную акустику. Это позволяет избежать лишних проводов в комнате, стоящих по углам колонок и установки обязательной полочки или тумбочки под телевизором.
Изначально я заказал плату усилителя 5.1 но, к сожалению, его дизайн и схемотехника оказались плохими. Все каналы усилителя возбуждались на длинных проводах, а разводка платы была ужасная. Пытаясь хоть как-то исправить эту китайскую поделку, делалось множество доработок. Во время одной из них я перепутал плюс и минус питания, и все микросхемы TDA7293 с хлопками, напоминающими петарды, выгорели.
После этого я изменил подход на модульность и использовав проверенную схему и заказал под нее печатные платы, разведенные самостоятельно, под необходимые мне размеры. Разумеется, вместе с платами заказал и детали, в том числе микросхемы TDA7293.

Понимая, что велик риск нарваться на подделку я поискал отличительные признаки подлинных микросхем от ST.
Оказывается, что для проверки подлинности достаточно измерить сопротивление между металлическим ушком (плюсовой провод) и выводами 5, 10 и 11 (минусовой провод тестера). Для подлинных микросхем сопротивление должно быть около 3 Мом. В противоположной полярности тестера измеряемое сопротивление должно быть бесконечным.

Получив первый заказ, из довольно крупного магазина с высоким рейтингом я понял, что получил фальшивку. Впрочем, фальшивка была неплохо оформлена и мало отличалась по внешнему виду от оригинала.

Второй заказ из другого крупного и проверенного магазина оказался таким же поддельным. Более того в полученных микросхемах не звонился ни один вывод кроме 8-го и ушка. Остальные показывали бесконечное сопротивление в любом направлении.
Третий и четвертый заказы оказались грубыми подделками внешне, но некоторые выводы звонились, хотя и не так как должны быть у оригинальных микросхем.
К этому моменту я уже собрал тестовую плату с панелькой под TDA7293:

С определенными мерами предосторожности протестировал весь накопившийся запас. Как и следовало ожидать ни одна из микросхем не заработала:

Сейчас я жду еще двух заказов, и хочу поделиться опытом как отличить поддельный TDA7293 от настоящего.

В китайских магазинах микросхема TDA7293 (или ее подделка) стоит дешевле двух долларов. Так зачем же подделывать такой копеечный товар? Все просто, наши китайские коллеги научились делать это массово, недорого и почти из ничего. Ничего личного. Просто это их бизнес.

Все началось с того, что выпускались TDA7293 и TDA7294. Последние обладают чуть меньшим функционалом и худшими характеристиками по мощности. Так вот первые поддельные TDA7293 это были перемаркированные TDA7294. Цоколевка микросхем практически совпадает и в большинстве случаев перемаркирвованые TDA7294 работали вместо TDA7293 весьма успешно. Разве что иногда случайно перегорали.
Но дальше наш любимый Шаолинь обнаглел окончательно. В перемаркировку пошли любые микросхемы в корпусах Multiwatt15. А таких выпускались сотни разновидностей.
Так вот видимо на китайских помойках или складах неликвидов их закупают в огромных количествах. Но как же быть с другими названиями, ведь они нанесены лазерной гравировкой? Все просто: корпуса шлифуют, стачивая названия вместе с пластиком.
Здесь и возникает первое и важнейшее отличие оригинала от подделки. Присмотритесь к фотографии, слева оригинальная (перегоревшая) микросхема, а все остальные перемаркированные:

Шлифовка изменяет поверхность корпуса микросхемы. Она становится более гладкой чем у оригинала, это делается что бы скрыть царапины от абразива при шлифовке. Поэтому если вы видите, что боковые поверхности пластика у микросхемы отличаются по фактуре от лицевой стороны, это 100% подделка. Кроме того, при шлифовке стираются совсем или становятся менее заметными штампованные кружки с цифрами. Их отсутствие или отсутствие цифр в них второй верный признак фальшивки.
Но в своем мастерстве подделки китайцы пошли дальше. Корпуса микросхем после шлифовки стали обрабатывать пескоструйным инструментом. Это придает корпусу некую текстуру напоминающую оригинальную отливку. Вторая слева микросхема именно так и сделана:

Но пескоструйная обработка не щадит и штампов на корпусе, в них тоже образуется текстура, чего нет на оригинале.

Надпись на шлифованные корпуса наносится на лазерном гравере, подобном оригинальному, поэтому отличить ее непросто. Но возможно. Компания ST Microelectronics которая и создала ST TDA7293 свой логотип штампует на видном месте посередине:

Поэтому если вы видите логотип ST в углу корпуса или он вообще отсутствует это гарантированная подделка:

Но даже если надпись посередине это еще не гарантия подлинности. Прежде всего смотрите на поверхность корпуса. Кстати, на оригинальных микросхемах металлическое ушко покрыто равномерным матовым слоем металла, а в поддельных встречаются следы гальваники напоминающие пятна или следы шлифовки, видимо, для придания мусорным подделкам товарного вида.

И последнее: лазерная гравировка на оригинальных микросхемах и подделках отличается. На подделках надписи выполнены чуть более тонкими линиями. Возможно мощность лазера у жуликов не такая, как на заводе. И присматривайтесь (когда позволяет освещение) к цвету надписи. На подделках она может быть чуть желтоватая. Причина в том, что при самопальный лазерный гравер оплавляет пластмассу и тем самым возникает желтоватый след. Самое интересное, что после промывки такой надписи органическим растворителем (например, бензином Калоша) она становится бесцветной. Надеюсь китайцы не читают этот текст 🙂

Возможно еще измерить толщину корпуса и почти наверняка у подделок она будет меньше из-за шлифовки. Читайте про это во второй части обзора.

Будьте внимательны не попадайтесь на подделки! Всегда открывайте спор и никогда не отзывайте его взамен на обещание выслать вам чего-то другое взамен. Только так можно обезопасить себя от потери денег. Потерянное время вам не возместит никто. Поэтому надеюсь изложенное здесь вам поможет.

UPD по вопросам в комментариях:
Все 28 (двадцать восемь) заказанных на E-bay и Aliexpress микросхем (то есть 100% от числа заказанных) оказались поддельными и полностью не рабочими. Не звонились по указанной методике, не работали (либо грелись, но не работали) в тестовой плате. Перепроверял всё по 10 раз.

E-bay и Aliexpress вернули деньги по всем открытым спорам. В качестве доказательства публиковал фотографии измерения тестером сопротивления между 5-м или 11-м выводом и металлическим ушком. За самый первый заказ (брал на пробу две штуки) на Ebay деньги я не получил, поскольку не знал как проверить подлинность, и упустил время открытия спора.

Очень забавные ответы бывают у китайских продавцов в спорах. Вот пример «аргументации» продавца в последнем выигранном мной споре на Aliexpress:
Hi!Sir
The goods are in transit!
You can wait for time!
You cancel the dispute!
I can extend the receipt time for you!Add 15 days!
Thank you!
You can cancel the dispute!Thank you very much!

Разумеется отвечать на такое не надо, а уж тем более ругаться. Надо спокойно напомнить суть претензии и спросить есть ли что ответить по существу.

Еще один очень интересный момент: Обращали ли вы внимание, что в описании товаров (в частности микросхем и другой комплектации) есть поле: «Brand name» (название производителя). Если нет, то обратите внимание, что НИКОГДА продавцы не указывают оригинальный бренд. Например, вот тут вместо ST или ST Microelectronics указан CazenOveyi. Этого по правилам Aliexpress достаточно чтобы обвинить продавца в подделке. Ведь вы получаете микросхему с логотипом ST, а заказывали CazenOveyi 🙂
И еще, если продавец на фото затирает или размывает логотип производителя — жди подделки. Наглой или хитрой, но жди…

Оригинальных микросхем ST TDA7293 пока на просторах Ebay и Aliexpress не обнаружил (не получил). Возможно они есть, приведу пример: После второго заказа и спора я написал продавцу на E-bay подробный отзыв с фотографиями тестов. Разумеется это ему не понравилось, но он честно признался, что не разбирается в аутентичности микросхем, а просто торгует ими. Обещался прислать мне на замену новые, чтобы я отозвал отзыв. Но обманул, ничего не прислал.
Самое интересное, что после этого лот с TDA7293 по два доллара был снят с продажи, а спустя некоторое время появился такой же лот с TDA7293, но уже по семь долларов. Видимо столько стоят настоящие в их закупке или продавец решил страховаться заградительной ценой.

Чип и Дип действительно выход, но поскольку заказывал много чего из комплектации на Ebay и Aliexpress, то на магазин «под боком» не обращал внимания. Если в двух заказанных партиях, что пока в пути будет подделка, то поеду закупаться в Чип и Дип.
Для справедливости надо отметить, что некоторые позиции у местных продавцов взяты из Китая, но стоят в две цены.

P.S. За качество фотографий извиняюсь, но оборудования для макросъемки нет. Старался как мог: дождался солнышка, разложил микросхемы на белой бумаге (что бы не было проблем с балансом) и долго подбирал угол и выбирал из полученных фото.

P.P.S. Кому интересно, информацию о проверке на подлинность прозвонкой взял отсюда. Разумеется 100% гарантии может дать только тестовая плата. В моем случае результаты проверки тестером и на плате совпали полностью.

P.P.P.S Проверенная схема взята отсюда. А вот так выглядят платы на которых тестировались микросхемы:

К сожалению ошибок в платах не обнаружилось. Разумеется проверял всё с осциллографом. И даже с тестовым радиатором (чтобы избежать хлопков и дыма). Резистор R6 был выпаян для гарантированного unmute. Дорожка от 12-й ноги TDA7293 перерезана для возможности тестирования TDA7294 (перемычка с обратной стороны платы).

Если что таких плат собрано еще 10:

Ждут своего часа (подлинных TDA7293) 🙂

По поводу «подделок» или «реплик». Допустим в Китае производятся реплики (то есть полно или неполно-функциональные копии) оригинальных микросхем ST TDA7293. Производство микросхем в гараже не наладишь. Это должна быть большая фабрика с много миллионным оборудованием и большим персоналом. Оборудование для производства микросхем производится большей частью не в Китае. Его (оборудование) поставляют известные фирмы под известные условия контрактов. Разумеется, обязательство не печатать кристаллы с нарушением авторских прав это один из пунктов поставки такого оборудования. Вам же, как частному лицу, не продадут станки для печати денег. А государства их приобретают.
Но предположим, что в Китае беспредел. И китайцы купив (или скопировав) американские или европейские линии производства начали печатать что хотят. И назвали это «реплики». Но раз эти микросхемы печатаются на заводе, зачем им потом стирать названия с корпусов и гравировать новые? Поэтому существование «реплик» возможно, но я в такую историю не очень верю. Не логичная она. Представьте себя на месте владельца фабрики: у вас сервисные контракты на обслуживание на много-много миллионов, а вы рискуя расторжением контрактов и потерей денег будете штамповать (пусть сотнями тысяч) микросхемы по одному доллару. Очень рискованный и опасный бизнес. Деньги печатать проще. Фальшивки тоже можно назвать «репликами». :))

Поэтому все что в пиленных корпусах надо называть своим именем: подделка или фальшивка. В терминологии Алиэкспресс это «контрафакт».

Удачи и внимания!

TDA7293 TDA7294 TDA7295 схема включкения, описание, рекомендации и советы по эксплуатации

УСИЛИТЕЛЬ МОЩНОСТИ НА TDA7294, TDA7293

    Микросхема TDA7293 является логическим продолжением TDA7294, и не смотря на то, что цоколевка почти совпадает, имеет некоторые отличия, выгодно выделяющие ее от предшественницы. Прежде всего увеличено напряжение питания и теперь оно может достигать величины ±50В, введены защиты от перегрева кристалла и короткого замыкания в нагрузке, а так же реализована возможность параллельного включения нескольких микросхем, что позволяет в широких пределах изменять выходную мощность. THD при 50Вт не превышает 0,1% в диапазоне 20…15000Гц (типовое значение 0,05%). Напряжение питания ±12…±50В, ток выходного каскада в пике достигает 10А. Все эти данные были взяты из даташника. Однако!!! Бесконечные апгрейды стационарных усилителей мощности выявили ряд некоторых весьма интересных вопросов...


Рисунок 1

      На рисунке 1 приведена типовая схема включения TDA7293. На рисунке 2 приведена схема мостового включения 2-х микросхем, что позволяет при заниженном напряжении питания получать мощность в четыре раза большую, чем при типовом, однако следует учесть, что на кристалл микросхемы будет нагрузка в 4 раза большей и в любом случае она не должна превышать 100Вт на один корпус микросхемы TDA7293.


Рисунок 2

      На рисунке 3 приведена схема параллельного включения TDA7293. Здесь верхняя микросхема работает в режиме "master", а нижняя в режиме "slave". В этом варианте выходные каскады разгружаются, заметно снижаются нелинейные искажения и возможно увеличение выходной мощности в n раз, где n - количество используемых микросхем. Однако следует учесть, что в момент включения на выходах микросхем могут сформироваться броски напряжения, а поскольку системы защиты еще не пришли в рабочий режим, то возможен выход из строя всей линейки включенных параллельно микросхем. Чтобы избежать этой неприятности настоятельно рекомендуется ввести в схему таймер, соединяющий, при помощи контактов реле, выхода микросхем не ранее чем через 2…3 сек с момента подачи питания на микросхемы. Хотя на эту тему завод производитель упорно умалчивает и многие уже попались на "удочку" неограниченных мощностей. Тем не менее, тестовые проверки одинарных вариантов усилителей на TDA7293 показывают устойчивую работу, но стоило одинарные варианты перевести в режим "slave" и подключить к "master"...
      При включении - не обязательно первом - микросхемы просто разрывало до самого теплоотводящего фланца, причем всю запараллеленную линейку. И подобное происходило с TDA7293 не единожды, поэтому можно говорить о закономерности и если у Вас нет лишних денег на повторение наших опытов, то поставте таймерок и реле.
      Что же касается параллельного включения, то тут даташник абсолютно прав - да, действительно TDA7293 может работать в этом режиме и при использовании 12-ти микросхем TDA7293, включенных по 6 шт. параллельно и при включении этих линеек в мостовую схему, теоретически можно получить до 600Вт выходной мощности на нагрузке в 4 Ома. Реально опробывалось по 3 микросхемы в плече моста, при питании ±35 В было получено около 260 Вт на нагрузку 4 Ома.
      Принцип параллельного включения TDA7293 основан на использовании только оконечного каскада микросхем, работающих в режиме SLAVE. Для перевода в этот режим у микросхемы необходимо соединить иневертирующий, не инвертирующий входа и общий сигнальный выводы микросхемы между собой и подать на них МИНУС напряжения питания (выводы 2, 3 и 4). В этом случае внутренний коммутатор отключит перварительные усилительные каскады. Подавая уже усиленый сигнал на вывод 11 на выходе получится уже усиленный по току выходной сигнал.
      Тут следует обратить внимание на то, что вывод 11 микросхемы работающей в режиме MASTER как раз и используется для разводки по корпусам, работающим в режиме SLAVE. Так же необходимо выводы MUTE и STBY микросхем SLAVE подключить к соответствующим выводам микросхемы MASTER.
      Разумеется, что данная сборка должна состоять из микросхем одной партии, поскольку только в этом случае у транзисторов оконечного каскада будут максимально возможно одинаковые параметры, что распределить нагрузку на все микросхемы равномерно.
      Еще разик стоит упомянуть, что выхода микросхем стоит соединять вместе через 1...1,5 сек после включения, поскольку именно в момент включения данные сборки довольно частовы выходили из строя.
      А по большому счету параллельное включение рекомендовать к широкому использованию язык не поворачивается, поскольку подобное схемотехническое решение обычно вызывает восторг у начинающих паяльщиков. Более опытные, или те, кто действительно хочет заниматься звукотехникой будут использовать усилители на дискретных элментах, если необходима мощность более 70-80 Вт, а для получения НАДЕЖНОГО усилителя с данной микросхемы более 60 Вт брать не рекомендуется. В этом случае вероятность перегрева кристалла сводится с минимуму и при наличии соответствующего радиатора усилитель мощности на TDA7293 получится действительно ОЧЕНЬ надежным.


Рисунок 3

      Более извращенный вариант использования - мостовое включение параллеьно работающих микросхем. Разумеется, что в этом случае можно получить довольно приличные мощности сравнительно не дорого, но скупой платит дважды - в случае выхода из строя хотя бы одной микросхемы все включенные параллельно микросхемы TDA7293 тоже выгорают. кроме этого есть довольно большая вероятность того, что и второму плечу данного моста тоже достанется.
      Параллельно-мостовое включения осуществляется точно так же как и обычное мостовое, только в качестве одного плеча используется уже гирлянда из TDA7293, работающая в не инвертирующем включении, а второе плечо должно работать в инвертирующем режиме (рисунок 2, нижняя микросхема).
      Для такого варианта можно развести специальную печатную плату, либо воспользоваться универсальной печатной платой, на которой предусмотрены все необходимые контактные площадки для перевода в тот или иной режим работы. Читать по универсальному модулю ЗДЕСЬ.
     

Техничекие характеристики TDA7293

Параметр

Условия

Значение

Выходная мощность при одинарном включении

Rн - 4 Ома     Uип - ±30В
Rн - 8 Ом    Uип - ±45В

80Вт (110Вт макс)
110Вт (140Вт макс)

Выходная мощность при параллельном включении

Rн - 4 Ома     Uип - ±27В
Rн - 8 Ом    Uип - ±40В

110Вт
125Вт

Скорость нарастания выходного напряжения

15V/nS

Диапазон частот при неравномерности 3дБ

С1 не менее 1,5мкФ

6...200000Гц

Искажения

при мощности 5Вт, нагрузке 8Ом и частоте 1кГц
от 0,1 до 50Вт от 20 до 15000Гц не более

0,005%
0,1%

Напряжение питания

±12...±50В

Ток потребления в режиме STBY  

0,5мА

Ток покоя оконечного каскада  

35мА

Пороговое напряжение срабатывания устройств блокировки входного и выходного каскадов

"Включено"
"Выключено"

+1,5 В
+3,5 В

Тепловое сопротивление кристалл-корпус, град.  

1,5С/Вт


РЕКОМЕНДАЦИИ ПО ВЫБОРУ БЛОКА ПИТАНИЯ
для одного канала

Напряжение вторичной обмотки трансформатора, В

Напряжение после выпрямителя, В

Минимальная емкость сглаживающих конденсаторов на плечо питания, мкФ (мост)

Минимальная мощность трасформатора для Rн 4Ома (мост), ВА

Минимальная мощность трасформатора для Rн 8Ом , ВА (мост)

Выходная мощность одного корпуса на 4Ома (мост), Вт

Выходная мощность одного корпуса на 8Ом (мост), Вт

Выходная мощность 2-х корпусов, включенных параллельно на 4Ома (мост), Вт

Выходная мощность 2-х корпусов, включенных параллельно на 8 Ом (мост), Вт

2х12

±16

2200 (3300)

27 (87)

13 (43)

19 (62)

9 (31)

24 (84)

12 (42)

2х14

±19

2200 (4700)

39 (137)

20 (69)

28 (98)

14 (49)

35 (125)

18 (62)

2х16

±22

3300 (6800)

56 (199)

28 (99)

40

20 (71)

48 (173)

24 (87)

2х18

±24

3300 (6800)

74 (270)

38 (136)

53

27 (97)

63 (230)

32 (115)

2х20

±27

4700 (10000)

97 (354)

48 (176)

69

34 (126)

80 (295)

40 (147)

2х22

±30

4700 (10000)

122 (448)

60 (224)

87

43

99 (368)

49 (184)

2х24

±33

6800 (10000)

148 (554)

74 (277)

106

53

120 (448)

60 (224)

2х26

±35

10000 (15000)

179 (672)

90 (336)

64

143 (537)

71 (268)

2х28

±38

10000 (22000)

211 (799)

106 (400)

76

167 (634)

84 (317)

2х30

±41

15000 (47000)

248 (939)

123 (469)

88

194 (738)

97 (369)

2х32

±44

15000 (47000)

287 (1089)

143 (545)

102

223 (851)

112 (425)

2х34

±47

22000 (68000)

328 (1252)

164 (626)

117

254 (972)

127 (486)

2х35

±48,5

22000 (68000)

350 (1337)

175 (668)

125

270 (1035)

135 (518)

ОРАНЖЕВЫМ обозначены режимы близкие к перегрузке, поэтому использовать их настоятельно не рекомендуем, перейдите на вариант параллельного включения
СИНИМ ТЕМНЫМ обозначны режимы для платы из двух микросхем TDA7293, включенных параллельно в одном плече моста
СИНИМ обозначены режимы для для платы из трех микросхем TDA7293, включенных параллельно в одном плече моста
СИНИМ СВЕТЛЫМ обозначны режимы для платы из четырех микросхем TDA7293, включенных параллельно в одном плече моста
ЗЕЛЕНЫМ ТЕМНЫМ обозначны режимы для платы из пяти микросхем TDA7293, включенных параллельно в одном плече моста
ЗЕЛЕНЫМ обозначны режимы для платы из шести микросхем TDA7293, включенных параллельно в одном плече моста
ЗЕЛЕНЫМ СВЕТЛЫМ обозначны режимы для платы из семи микросхем TDA7293, включенных параллельно в одном плече моста
КОРИЧНЕВЫМ ТЕМНЫМ обозначны режимы для платы из восьми микросхем TDA7293, включенных параллельно в одном плече моста
КОРИЧНЕВЫМ обозначны режимы для платы из девяти микросхем TDA7293, включенных параллельно в одном плече моста
КРАСНЫМ обозначны режимы для платы из десяти микросхем TDA7293, включенных параллельно в одном плече моста
            Тут следует сразу оговорится - у микросхемы не очень хороший такой параметр, как тепловое сопротивление кристалл-корпус, поэтому при использовании микросхем в режиме "вроде должны выдержать" лучше не рисковать, а поставить еще один корпус в параллель имеющимся, тем более для него никакой "обвязки" не требуется...

            Ну и наконец были проведены тесты еще некоторых особенностей TDA7293, но уже Китайского (а может и не Китайского... Короче говоря эта тайна покрыта мраком) производства:
      Система защиты от короткого замыкания сработала с первого раза - раздался сухой хлопок и микросхема приобрела совершенно защищенный вид:

      Комментарии пожалуй излишни. Что касается защиты от перегрева, то на схему было подано питание ±30 вольт, микросхема TDA7293 была закреплена на теплоотводе заведомо недостаточной площади и нагружена на акустическую систему RADIOTEHNIKA S-70. В течении полутора часов усилитель работал на максимальной громкости и как только температура теплоотводящего фланца (температура измерялась цифровым прибором DT-838) достигла 92-х градусов Цельсия сработала тепловая защита. Таким образом перегрева окружающей среды не произошло, поскольку началось интенсивное охлаждение открытого кристала микросхемы:

      Маркировка у этих чудесных микросхем была выполнена лазером, однако шрифт надписи был несколько иной, причем пока усилитель работал его работоспособность от нормально маркированной TDA7293 практически не отличалась во всех режимах включения. Кстати сказать, микросхемы эти уже практически вытеснили старые образцы, поэтому некоторые поставщики на "раритет" серьезно увеличили цену. Мы же уже торгуем "новыми" микросхемами и нареканий пока не выявленно, поскольку всех усиленно предупреждаем, что "новые" TDA7293 (впрочем как и TDA7294 - тоже уже "новые") не стоит проверять на живучесть, а в режимах нормальной эксплуатации они себя очень даже себя хорошо чувствуют...


Нормальная маркировка.


Немного статистики по "новым" TDA7293, проверялось по 50 штук каждого вида.

Потребление на холостом ходу более 3А с характерным нагревом корпуса

4

Потребление на холостом ходу более 3А с характерным нагревом корпуса

0

Потребление на холостом ходу более 1А с характерным нагревом корпуса

1

Потребление на холостом ходу более 1А с характерным нагревом корпуса

0

Отказалось издавать звук

2

Отказалось издавать звук

1

Результаты проверки на КЗ на фото выше   Результаты проверки на КЗ - пока не проверяли  
К дополнительным приметам можно отнести несколько зеленоватый оттенок корпуса, оранжевые разводы на фланце и отсутствие значка рядом с логотипом фирмы. К дополнительным приметам можно отнести черноватый оттенок корпуса, лазерная маркировка и значка логотипа и самой микросхемы более объемная, под углом к свету просматривается намного четчке.

      Что касается маркировки TDA7293 приведенной ниже, то эти микросхемы даже не стоит и покупать, поскольку кроме как для изготовления брелков они ни на что не пригоды, поскольку даже ток не потребляют...

      Умолчать еще об одном проведенном опыте было бы не справедливо, поскольку это может заинтересовать многих - TDA7293 прекрасно работает и от однополярного питания, необходимо лишь ей имитировать среднюю точку резисторами. Принципиальная схема включения приведена ниже:

      Не проставленные номиналы как в типовой схеме включения.

      На последок остается добавить, что TDA7293 можно использовать с плавающим питанием, принципиальная схема приведена на рисунке 4. Этот вариант позволяет развить до 200Вт на 4 Ома при типовых искажениях.


Рисунок 4

      На рисунке 5 приведены габариты микросхемы TDA7293.


Рисунок 5

      Ну и наконец как можно закрепить микросхему TDA7293 на радиаторе. Можно использовать изолирующие шайбы, которые не дадут коротнуть теплоотводящий фланец микросхемы с радиатором - ведь на нем "МИНУС" напряжения питания, а можно использовать "хвостики" от наших транзисторов типа КТ818. "Хвостик" необходимо вложить между полосками стеклотекстолита, с которых удалена фольга, предварительно смазав их хороша размешанным эпоксидным клеем. Если нет желания долго ждать полимеризацию клея, то можно использовать кусочек ваты, пропитанной ЛЮБЫМ "СУПЕР КЛЕЕМ" - через 15 мин. она уже полностью затвердеет.
      Как только клей затвердеет, обточить напильником края, просверлить отвертия в полоске-кронштейне и в радиаторе, причем в радиаторе лучше нарезать резьбу М3. Слюду, с обоих сторон промазать термопастой! Ну а как будет это выглядеть видно на рисунке 6.


Рисунок 6.

        TDA 7293. Данное видео показывает как самостоятельно собрать интегральный усилитель мощности на микросхеме TDA7293 с пояснениями назначения элементов. В видео есть описание руглятора оборотов вентилятора принудительного охлаждения.

ТЕКСТОВЫЙ ВАРИАНТ

 

    Подробно о том, какой мощности нужен блок питания для усилителя мощности можно помотреть на видео ниже. Для примера взят усилитель STONECOLD, однако данный замер дает понимание тог, что мощность сетевого трансформатора может быть меньше мощности усилителя примерно на 30%.

    Купить запаянную плату с усилителем мощности на TDA7293 или саму микросхему TDA7293 можно ЗДЕСЬ.
    Купить запаянную плату с усилителем мощности на TDA7294 или саму микросхему TDA7294 можно ЗДЕСЬ.
    Модули (конструкторы) имеют различную конфигурацию, от платы с деталями на один канал, но запаянной платы у силителем мощности с выпрямителем и сглаживающими конденсаторами по питанию.

 


Адрес администрации сайта: [email protected]
   

НЕ НАШЕЛ, ЧТО ИСКАЛ? ПОГУГЛИ:

              СТРОКА ПОЛЬЗОВАТЕЛЬСКОГО ПОИСКА

 

Усилители мощности на интегральных микросхемах TDA7293 и TDA7294

Как не странно, но сначала европейский производитель вылупил на свет микросхему TDA7294 с максимальной музыкальной мощностью 100Вт при напряжении питания ±40V, а спустя несколько лет со словами: «маловато будет» разродился и ИМС TDA7293, с увеличенной до 120Вт мощностью и максимальным значением напряжения питания ±50V.

За счёт применения полевых транзисторов в выходных каскадах микросхем, играют они субъективно несколько приятнее и мягче, чем LM3886 - американский конкурент со схожими параметрами, но построенный на биполярных транзисторах.

С тех пор прошло не мало лет, в журналах и на форумах горели страсти по улучшению и без того приличных характеристик микросхемы, а пронырливые китайские коммерсанты вовсю клепали готовые модули на TDA7293/TDA7294 в строгом соответствии с datasheet-ом производителя, причём особо продвинутые снабжали их симпатичными писюльками, выполненными в стиле промышленной радиотехники.

tda7293

А вот так выглядят готовые изделия.

tda7293tda7293

Типовая схема включения TDA7294 отличается от указанной для TDA7293 только изменением подключения минусового вывода конденсатора 22,0 Мкф (не к 12 ножке микросхемы, ввиду её незадействованности, а к 14).

Данными схемами я бы и рекомендовал воспользоваться при желании самостоятельно соорудить усилительный агрегат. Все факультативные ухищрения по увеличению мощности, снижению нелинейных искажений, введению токовых обратных связей, не предусмотренные производителем, кроме приключений на собственную задницу никакого существенного эффекта не дадут.

Теперь, что касается мощности. Конечно, и 120 Вт у TDA7293, и 100 Вт у TDA7294 - от лукавого.
Посмотрим документацию на более мощную TDA7293.

tda7293tda7293

Из графиков видно, что максимальная мощность, ограниченная 1%-ом нелинейных искажений, составляет 80 Вт на 4 Омной нагрузке и 90 Вт - на 8 Омной. Далее идёт резкий, практически лавинный рост параметра TDH вплоть до 10%.
А почему изображённая на правом графике характеристика приведена для значения напряжения питания ±40 В при максимальном - ±50 В?
Это напряжение ограничено допустимым нагревом микросхемы и в значительной степени зависит от сопротивления нагрузки. Зависимость допустимого напряжения питания микросхемы от сопротивления нагрузки сведём в таблицу.

 Сопротивление нагрузки    4 Ом    6 Ом    8 Ом  
 Максимальное напряжение питания TDA7293   ±29 В ±34 В ±40 В
 Максимальное напряжение питания TDA7294   ±27 В ±31 В ±35 В

Тогда на кой казан-чурек сдались нам эти ±50V, указанные в datasheet-е на TDA7293?
Ну, во-первых - для 16-ти Омной нагрузки.
Во-вторых, производитель предусмотрел для TDA7293 возможность параллельного включения двух или нескольких микросхем. Вот при таком включении и напряжении питания ±50V для 4 Омной нагрузки микросхемы будут работать в штатном режиме и развивать мощность как минимум вдвое большую, чем мощность, выдаваемая одной микросхемой, если конечно, запараллеленные микросхемы не накроются медным тазом в момент подачи напряжения.
А такое, к сожалению, иногда случается, хотя и не должно - режим штатный, рекомендованный именитым производителем. По всему получается - китайский пошив не лучшим образом сказывается на качестве европейской коллекции.
Для минимизации этих рисков, раздаются робкие голоса в пользу замыкания выходов микросхем с задержкой через коммутирующие реле, но, а буржуйские радиолюбители, либо вообще демонстративно не обращают на это дело никакого внимания, либо (наверно тоже сэкономив на оригинальных изделиях) подключают выходы микросхем к нагрузке через резисторы, номиналом 0,2 Ома.

Ну и поскольку параллельное соединение TDA7293 не сводится к лубочному перемыканию входов и выходов, а предусматривает работу микросхем в режиме MASTER - SLAVE, как ни крути, а придётся приводить схему данного включения из datasheet-а.

tda7293 tda7293

Плавно переходим к следующему штатному режиму включения микросхем TDA7293/TDA7294 для увеличения выходной мощности - мостовому.

tda7293 tda7293

Тут, что для TDA7293, что для TDA7294 - всё одинаково: 9,10 выводы микросхем объединяются, вход нижнего блока заземляется, а выход верхнего через резистор сопротивлением 22 кОм подключается ко 2-му выводу нижней микросхемы.
При этом крайне важно для сохранения высоких характеристик усилителя, соблюдать точное равенство номинала этого резистора со значением резистора, подключённого между 2 и 14 выводами нижней микросхемы!

Для данного режима производитель ограничился диаграммами зависимости нелинейных искажений от Pвых только для микросхемы TDA7294.

tda7294tda7294
В принципе, для TDA7293 картина не сильно отличалась бы от приведённой.
И что мы наблюдаем?
Рвых = 115 Вт для TDA7294 при напряжении питания ±25V и Rн = 8 Ом, либо Рвых = 125-130 Вт при напряжении питания ±28V для TDA7293 - результат не слишком убедительный на фоне Рвых = 80 Вт при стандартном (одиночном) включении ИМС. А выше повышать это напряжение не рекомендуется, опять же из-за пресловутого ограничения, связанного с допустимым нагревом микросхемы.

4 Омная нагрузка вообще не предполагается к использованию с мостовой схемой включения данных микросхем, во избежание скоропостижной кончины последних.

Итого, что мы имеем в сухом остатке?
Для микросхемы TDA7293 и величин сопротивлений нагрузки 4-8 Ом предпочтительной является параллельная схема включения. Теоретически, при напряжении питания ±50V и сопротивлении нагрузки 4 Ома, возможно увеличение выходной мощности до 250-300 Вт.
При этом важно понимать, что во избежание теплового пробоя микросхем, пропускать через них мощность более 100 Вт на корпус не следует. Поэтому для получения подобных высоких значений Рвых, следует соединять по 3-4 штуки параллельно.

А вот если сопротивление нагрузки 16 Ом, то вполне можно рекомендовать мостовое включение микросхем и смело их запитывать максимально допустимым для данного включения напряжением ±40V.

Достаточно распространённым вариантом умощнения микросхем TDA7293/TDA7294 является так же использование дополнительного выходного каскада на мощных транзисторах. Однако не каждому такому каскаду дано удачно вписаться в конструкцию усилителя и не подгадить приличные характеристики, заложенные производителем ИМС.
Подобные схемотехнические решения мы с Вами рассмотрим на странице -   Ссылка на страницу .

tda7294

 

Мой усилитель «Mad Feedback 1» на TDA7294 в корпусе

Наверное, любой радиолюбитель знаком с микросхемой TDA7294: простая схема, хорошее качество звука, невысокая цена. Недавно я решил взглянуть на TDA7294 с другой стороны, вновь наткнувшись на статью об усилителе «MF-1» от Lincor.

Это моя первая статья, она предназначена начинающим любителям хорошего звука. Также представлен чертёж ПП и вариант изготовления корпуса усилителя.

Содержание / Contents

Знакомство с TDA7294 у меня прошло не очень гладко. В то время попадалось очень много подделок. Горели они иногда сразу при первой подаче питания, а если и запускались, выдавали не звук, а что-то отдаленно его напоминающее, из за чего хотелось облить плату бензином и поджечь избавиться от этого УНЧ и никогда о нём не вспоминать. Может виной тому послужила ещё и моя неопытность, а может топология платы собственного изготовления размером 35×45 мм (при воспоминании о той плате у автора пробегают по телу крупнопупырчатые мурашки).

После прочтения статьи о «Mad Feedback 1» было принято решение о сборке по следующим критериям:
1) чистый оконечник без регулятора громкости (усилитель работает в связке с ПК, с него же и регулируется звук),
2) 2 канала усиления по схеме двойное моно (были 2 трансформатора от УМ Вега,
3) более низкий коэфф. взаимного проникновения каналов и красивое стерео),
4) принудительное охлаждение с помощью 2х компьютерных кулеров и вентиляторов на малых оборотах,
5) и всё это обязательно в корпусе в виде законченной конструкции, которую не стыдно выложить на Датагор. smile

smile
Мой вариант ПП

Корпусом послужил, как это ни странно, самодельный усилитель моего соседа, бывшего радиолюбителя, собраный в корпусе неизвестного лабораторного прибора. Усилок был выставлен на лестничную площадку, т.к. был ему уже без надобности, а в мусор выбрасывать жаль. Об этом корпусе я и вспомнил, когда решил собрать «MF-1».

В процессе доработки корпуса использовались простые и недорогие детали:
• Уголок алюминиевый 15×15 х 1 мм, купил в «ХоумЦентре».
• Болты М3 с потайной шляпкой, гайки.
• Металлические проставки с резьбой М3.

И вот что у нас получилось:

smile
Трансформаторы и фильтр

smile
Выпрямители

smile
Оконечники с кулерами

Настал черед панелей. Т.к. охлаждение у нас вентилятором, воздух должен куда-то выходить и откуда-то заходить. Первым делом начал пилить заднюю панель с отверстием для выхода воздуха:

smile

Все делалось с помощью дрели, электролобзика, гравера и надфилей. Теперь вырезаем решетку из корпуса компьютерного БП, зачищаем края отверстия:

smile smile

Теперь берем паяльную кислоту, паяльник мощностью не менее 100 Вт и припаиваем решетку к панели в нескольких местах:

smile smile

Размещаем на панели входные и выходные разъемы, ОБЯЗАТЕЛЬНО ИЗОЛИРУЯ ИХ от корпуса:

smile smile

Припаиваем вывод экранировки корпуса к панели. Это будет ЕДИНСТВЕННОЕ место соединения корпуса с общим проводом питания. Соединяем корпус с земляными контактами входных разъемов через резисторы 1-2 Вт номиналом 1,5-2 Ом. Эти меры нужны для того, чтобы не схватить «земляную петлю», которая будет гадить нам в виде фона 50 Гц.

smile

Задняя панель на месте:

smile

Теперь переносим цепь Цобеля с платы на выходные разъемы УМ. На плате ей не совсем место, т.к. она (цепь) является резонансной системой:

smile

Теперь дело за передней панелью. На ней расположен только тумблер питания. Сама панель из алюминия, за ней вплотную расположена фальшпанель из в меру мягкого пластика, на котором можно закрепить что угодно винтами М3 с потайными головками. Кнопку использовал от старой мертвой кассетной деки Wilma-104-Stereo:

Панель крепится на жестяных уголках с помощью болтов под шестигранник. Вот и все, усилитель готов!

smileПро звук я написал комментарий еще в теме про «Mad Feedback 1»: Ребята, я НЕ узнал TDA7293! Не думал что когда-нибудь скажу такое, но это так! Приятный мягкий бас, отчетливые высокие (теперь я различаю перкуссию и хлопки в ладоши на треках, которые наизусть знаю), и все это удовольствие на самодельных трехполосных ЗЯ с басовиками на 8".
Всех, кого отталкивает повышенный уровень ВЧ, хочу успокоить: на слух это ощущается не как подъем высоких, а как повышение качества источника, увеличение «прозрачности».
И я до сих пор не отказываюсь от своих слов. За несколько месяцев усилитель мне нисколько не надоел, как у меня часто бывает. Звук не раздражает, хочется слушать всё и помногу, не важно, на малой или высокой громкости.
Кстати, про малую громкость. Есть у этого УНЧ приятная особенность: на любом уровне громкости слушатель не испытывает недостатка НЧ, что можно сравнить с использованием ТКРГ, только с плавной (правильной) регулировкой и без завала СЧ.

В моём варианте плата немного переделана. Выбор режимов «mute» и «standby» выкинут за ненадобностью, основной банк ёмкости конденсаторов перенесен ближе к МС.

Питание 2×23 В. В выпрямителе используются диоды КД213Б. Электролиты зашунтированы емкостью 100 нФ, вторички трансформатора — 47 нФ.
Каждая МС изолирована от радиаторов слюдяной пластиной, радиаторы же в свою очередь заземлены на корпус.
Все провода скручены между собой с целью уменьшения помех.

Фона не слышно даже с открытым входом даже вплотную у динамика. Цель, так сказать, достигнута!
Далее в планах просверлить отверстия для забора воздуха в правой части нижней крышки корпуса, изготовить устройство регулировки оборотов вентилятора с контролем температуры радиаторов, возможно встроить предусилитель с регулятором тембров, ну и покрасить корпус.

• Аудио усилитель MF-1 на TDA7294/93 с гибридной ООС
• Даташит TDA7293 pdf datasheet
• Даташит TDA7294 pdf datasheet
• Подключение блоков внутри усилителя (подключение усилителя к источнику питания и колонкам)
• Как правильно соединить земли в усилителеЧертежи печатных плат усилителя и БП.
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

smile

Александр (Alexverb)

РФ, г. Оренбург

Инженер эксплуатации сотовой сети связи, радиолюбитель с малых лет, любимое направление в электронике - звуковоспроизведение и акустика. Люблю работать с деревом, делать мебель своими руками

 

Hi-Fi инвертирующий усилитель на TDA7293 / 7294 с Т-образной ООС

Новое, гораздо более полное описание с выбором номиналов элементов для получения требуемых характеристик находится по ссылке: Hi-Fi усилитель на микросхеме TDA7294 / TDA7293.

Загрузить ZIP-архив (~220 кБ), содержащий схему усилителя, разводку платы в программе Sprint-Layaut 4.0 и размещение элементов.

Зачем оно нужно – инвертирующее включение? Тут две причины: во-первых избавиться от электролитического конденсатора в цепи ООС, который на звук нехорошо влияет; во-вторых ослабить влияние неидеальности входного дифкаскада микросхемы (в нем сигнал ООС вычитается из входного сигнала и если дифкаскад плохой, то и ООС работает плохо). В интегральном исполнении дифференциальный усилитель на самом деле получается очень хорошим: из-за того, что транзисторы, расположенные на кристалле на расстоянии 0,05…0,2 мм друг от друга имеют практически одинаковые характеристики, и из-за того, что можно не бояться использовать хорошую схему на двадцати транзисторах. Тем не менее, даже с таким дифкаскадом инвертирующее включение позволит выжать максимум из качества звучания, избавившись от всех его погрешностей вообще.

Схема усилителя подходит для любой из микросхем, как TDA7294, так и TDA7293:

Усилитель на TDA7294 (TDA7293) схема.

Очень важно! Резистор разделения земель R10 может ухудшить работу усилителя, если он неправильного сопротивления! Постоянка на выходе, неустойчивая работа, повышенный шум – признаки неправильного сопротивления. Наиболее частые проблемы – плохой контакт в пайке; неправильный резистор (1кОм вместо 1 Ом). Довольно часто случается, что на резисторе написано 1,5 Ома, а реальное сопротивление у него не такое. Или при пайке перегрели. Резистор можно заменить перемычкой, это ухудшит звучание совсем-совсем капельку (а если повезет, то никак не ухудшит, но следите за земляными петлями в усилителе в целом!), но если сопротивление велико, или плохая пайка – это будет намного хуже!!!

Больше, чем 3,3 ом R10 ставить нельзя.

Усилитель получился просто класс (выжал из микросхемы все, что можно)! Все электролиты шунтированы пленочными конденсаторами, улучшающими их работу на высоких частотах. Входной фильтр R1С1 ослабляет влияние высокочастотных помех (которые есть всегда и везде!), а выходная цепочка R9С4 повышает устойчивость усилителя при работе на реальную нагрузку. Тип микросхемы (TDA7293 или TDA7294) выбирается установкой перемычки, идущей от конденсаторов С5С6.

Почему я рекомендую микросхему TDA7293? Потому, что она немного лучше, чем TDA7294. Кроме того, что у нее больше допустимое напряжение питания и выходная мощность, у нее более сложная схема, дающая бОльшие возможности. Например, специальный усилитель для вольтодобавки, который отключает эту цепь от выхода и снижает искажения. Еще очень полезная цепь – клип-детектор, дающий информацию о перегрузке, когда на слух ее еще не заметно.

Важный момент: входной конденсатор С2 задает нижнюю рабочую частоту усилителя по уровню -3 дБ. Выбирайте такую, как хотите. Хоть 5 Гц! Но помните, что такую частоту не воспроизведет ни одна колонка. И если на колонки подать очень низкие частоты даже небольшой величины (а они есть в реальном сигнале, особенно идущем с LP-плеера виниловых пластинок), то колонки будут перегружаться и создавать большие искажения. Так что С2 работает как сабсоник-фильтр, обрезая те частоты, которые уже не воспроизводятся. Обычно входной конденсатор настраивается на частоту в 2…3 раза ниже реальной нижней рабочей частоты колонок.

У вывода 5 сделана контактная площадка для подключения клип-детектора.

Несколько слов по поводу Т-образной ООС. Если бы я зарабатывал на всем этом деньги, я бы рассказал, какая это волшебная ООС, какой чудесный звук она дает, и как ее нужно правильно заклинать (в полночь у амбара с кузнецом!.. пардон, это, кажется, из другой оперы!). Т-образная ООС – это такая же обратная связь, как и всякая другая, в ней нет ничего необыкновенного. И ее применение здесь не самоцель – она позволяет в данном конкретном случае получить немного лучшие параметры усилителя, чем “обычная”. На самом деле, идея проста. В инвертирующем усилителе входное сопротивление определяется резистором R2 (цепь R1C1 я отбрасываю для простоты, да и влияет она очень мало). Если бы ООС была обыкновенной, то резисторов R4,R5 небыло бы, а правый по схеме вывод R3 был бы подключен к выходу усилителя. Тогда коэффициент усиления Ку=R3/R2. Поскольку Ку=25…30, то для его получения потребовалось бы либо уменьшать R2, а значит и входное сопротивления (т.е. заметно нагружать источник сигнала), либо сильно повышать R3. Но при большом значении R3 возникает много плохого: лезут помехи, начинает влиять влажность и запыленность воздуха (если плата не залита лаком), влияет емкость монтажа и близкорасположенных предметов. А делать усиление меньше, чем 20…25 раз нельзя – микросхема может возбуждаться, т.к. она скорректирована именно под такое усиление.

Для того, чтобы и нужное усиление получить, и сопротивление резистора не увеличивать и добавляются R4 и R5, которые образуют делитель и ослабляют сигнал ООС перед подачей его на R3. Теперь R3 должен обработать (ослабить) более слабый сигнал, а значит не должен быть таким большим. Вот и получается Т-обраная схема: резисторы R3,R4,R5 на вид образуют перевернутую букву Т. Недостаток этой схемы – несколько большее выходное постоянное напряжение смещения, потому что теперь глубина ООС по постоянному току не 100%, как в “обычной” ООС, а немного меньнше. Насколько это плохо? Примерно в двух десятках экземпляров усилителя оно было на уровне 60…160 мВ. Это значит, что на колонки придется по 1…6 милливатт мощности постоянного тока. Вам страшно? Мне – нет!

Итак, по сравнению с “обычным” инвертирующим включением мы получили “правильную” величину входного сопротивления и избавились от высокоомных резисторов. По сравнению с распространенной неинвертирующей схемой мы избавились от электролитического конденсатора в цепи сигнала и от неидеальности входного дифференциального усилителя.

И кстати, такую вот Т-образную ООС изобрел не я (к сожалению ), она известна уже лет 70, а может и больше и обязательно описывается в хороших учебниках схемотехники.

Некоторое время спустя (примерно через год, после изготовления нескольких десятков таких усилителей), я придумал как чуть-чуть улучшить эту схему. На самом деле в этой схеме улучшать и нечего – все и так очень хорошо. Но всегда хочется сделать систему хоть чуть-чуть, но лучше. Это очень небольшая доработка и на слух изменения в звучании абсолютно незаметно. Но все же я предлагаю сделать это, потому что с такой доработкой микросхема будет чуть-чуть лучше работать. Что улучшится:

1. Улучшатся переходные процессы в микросхеме.

2. Увеличится устойчивость при работе на трудную нагрузку.

3. Микросхему станет труднее перегрузить по скорости нарастания. Теперь (совместно с цепочкой R1C1) никакой реальный сигнал не вызовет динамических искажений – мы от них застрахованы совершенно! (Но это не значит, что теперь можно будет напускать в усилитель кучу помех!)

Вся доработка сводится к установке небольшого керамического конденсатора на 47 пикофарад (допустимо от 33 до 68 пФ) параллельно резистору R3 в цепи ООС. На схеме это конденсатор Сх. О качестве конденсатора можно не бесспокоиться – такие конденсаторы обычно делают из хорошего диэлектрика и искажений они не вносят. Этот конденсатор увеличивает глубину ООС и линейность микросхемы на самых высоких частотах (выше 20 кГц). На слух абсолютно незаметно, но работать будет чуть-чуть лучше, что приятно осознавать. Вот как изменяются амплитуды гармоник и Кг при усилении синусоиды 15 кГц.

Без конденсатора:

С конденсатором:

И интермодуляционные искажения при подаче двух частот 18 кГц и 19 кГц. Это очень жесткий тест для усилителя, на Западе обычно пользуются более щадащим тестом, он дает “более красивые цифирки”, которые удобнее использовать для рекламы. Зато приведенный тест – это практически “испытание на выживание”, он позволяет увидеть все огрехи работы усилителя на самых высоких частотах (где усилителю работать труднее всего и он дает наибольшие искажения). Кстати, искажения довольно маленькие, такими интермодуляционными искажениями не всякий дорогой усилитель может похвастаться (я конечно не имею ввиду усилители за $100 000).

Без конденсатора:

С конденсатором:

Тут интермодуляция на частоте 1 кГц не изменилась (еще бы, конденсатор начинает работать на частотах выше 50 кГц), а вот на частотах 35…38 кГц уменьшилась более чем вдвое. Это означает, что в реальном мнногочастотном музыкальном сигнале высокочастотные продукты интермодуляций будут самую капельку меньше влиять на звук (имеется ввиду взаимодействие этих вот частот 35…38 кГц с сигналом). В результате получаем уменьшение перегрузки микросхемы высокими частотами.

Обратите внимание – и без конденсатора усилитель демонстрирует отличные параметры. Но всегда хочется самого-самого, вот я этот конденсатор и добавил.

Важное дополнение. В инвертирующей схеме нет смысла включать режим Mute, поскольку он замыкает на землю неинвертирующий вход, который здесь и так заземлен. Управление питанием производится режимом StdBy (см. Режимы Mute и StandBy в микросхеме TDA7294). И тут есть маленький мерзкий нюанс – включение этого режима сопровождается небольшими помехами на выходе микросхемы (почему-то когда включен Mute их нет). Поэтому емкость конденсатора С3, задающего длительность включения/выключения лучше не увеличивать (также как и сопротивления резисторов R6, R7) – тогда помехи будут непродолжительными и малозаметными.

Внешний вид усилителя: компоновка и разводка платы очень-преочень хорошая и правильная (практически идеальная).

Вход максимально отдален от выхода и с обеих сторон “прикрыт” земляными проводниками (т.е. практически экранирован). Вся силовая земля соединяется в одной точке (в которую подводится питание). А к ней через резистор разделения земли подключена сигнальная земля. Широкие и короткие дорожки имеют мизерное сопротивление и индуктивность (особенно это важно для проводников питания). Кроме того они хорошо держат тяжелые детали.

В плате есть несколько “лишних” отверстий, чтобы можно было устанавливать конденсаторы разных габаритов. При монтаже сначала устанавливаются перемычки, причем при установке микросхемы не замкните ее выводы с перемычкой!

Дополнительный конденсатор Сх припаивается на плату с обратной стороны, при этом он не должен касаться корпусом дорожки или пайки. В новой плате для этого конденсатора предусмотрено посадочное место на лицевой стороне платы.

Звучание усилителя – просто замечательное! Это максимум, что можно из нее выжать, а микросхема-то – неплохая!

Наладка схемы и прочее описаны в статье про неинвертирующий усилитель на TDA7294. Туда читателя и отсылаю.

В настоящее время у меня имеется несколько плат, изготовленных промышленным способом. Как заказать – см. здесь.

18.06.2009

Total Page Visits: 1164 - Today Page Visits: 12

TDA7294 - 100 В, 100 Вт DMOS усилитель звука с отключением звука и режимом ожидания

TDA7294 - это монолитная интегральная схема в корпусе Multiwatt15, предназначенная для использования в качестве усилителя аудио класса AB в полевых Hi-Fi приложениях (домашняя стереосистема, динамики с автономным питанием, Topclass TV). Благодаря широкому диапазону напряжений и возможности высокого выходного тока он способен подавать самую высокую мощность как на нагрузки 4 Ом, так и на 8 Ом даже при плохой регулировке питания с подавлением высокого напряжения питания.

Встроенная функция отключения звука с задержкой включения упрощает удаленное управление, избегая шумов при включении и выключении.

Основные характеристики

  • ТЕПЛОВОЕ ОТКЛЮЧЕНИЕ
  • ЗАЩИТА ОТ КОРОТКОГО ЗАМЫКАНИЯ
  • ОЧЕНЬ НИЗКОЕ ИСКАЖЕНИЕ
  • БУШЕРО КЛЕЙ
  • ОЧЕНЬ ВЫСОКИЙ ДИАПАЗОН РАБОЧЕГО НАПРЯЖЕНИЯ (± 40 В)
  • ВЫСОКАЯ МОЩНОСТЬ (ДО 100 Вт МУЗЫКАЛЬНОЙ МОЩНОСТИ)
  • СТУПЕНЬ ПИТАНИЯ DMOS
  • NO SWITCH ON / OFF NOISE
  • ОЧЕНЬ НИЗКИЙ ШУМ
  • ФУНКЦИИ ОТКЛЮЧЕНИЯ / РЕЖИМА ОЖИДАНИЯ
.

TDA7294 Распиновка аудиоусилителя, характеристики, эквивалент и техническое описание

Конфигурация контактов

Контактный №

Имя контакта

Контакт Описание

1

Режим ожидания GND

Stand-By GND, выход подключается к земле

2

Инвертирующий вход

Инвертирующий вход

3

Неинвертирующий вход

Неинвертирующий вход

4

SVR

Подавление напряжения питания, используемое для подавления пульсаций источника питания или помех

5

Н.С.

Не подключен

6

Бутстрап

Используется для увеличения платы

7

+ против поставки

Положительное питание

8

-Vs Поставка

Отрицательное питание

9

В режиме ожидания

Вывод управления режимом ожидания используется для режима низкого энергопотребления, выход работает в режиме низкого тока

10

Без звука

Звук отключен на выходе

11

Н.С.

Не подключен

12

Н.З.

Не подключен

13

+ против мощности

Положительный источник питания

14

из

Выходной контакт

15

-Vs Мощность

Отрицательный блок питания

Характеристики

  • Диапазон очень высокого рабочего напряжения: ± 40 В
  • Силовой каскад DMOS
  • Высокая выходная мощность (музыкальная мощность до 100 Вт)
  • Функции отключения звука / ожидания
  • Нет шума при включении / выключении
  • Без ячеек Бушро
  • Очень низкие искажения
  • Очень низкий уровень шума
  • Защита от короткого замыкания
  • Тепловое отключение

TDA7294 Электрические характеристики

  • Максимальное напряжение питания VS (без сигнала) ± 50 В
  • Максимальный пиковый выходной ток ввода-вывода 10 A
  • Максимальный диапазон максимальной рабочей температуры окружающей среды от 0 до 70 ° C
  • Максимальная температура Tstg, Tj хранения и перехода 150 ° C
  • VS Диапазон питания: минимум ± 10 В и максимальное значение ± 40 В
  • Усиление напряжения разомкнутого контура 80 дБ
  • Коэффициент усиления по напряжению в замкнутом контуре минимум 24 дБ, обычно 30 дБ и максимум 40 дБ
  • Ib Входной ток смещения 500 нА

TDA7294 эквивалент

NTE7165

TDA7294 Альтернатива

TDA7293, TDA7295, LM3886

Краткое описание TDA7294

TDA7294 - это монолитная интегральная схема в корпусе Multiwatt15, предназначенная для использования в качестве усилителя аудио класса AB в полевых устройствах Hi-Fi (домашняя стереосистема, динамики с автономным питанием, телевизор высшего класса).Благодаря широкому диапазону напряжений и возможности высокого выходного тока он способен подавать максимальную мощность как на нагрузки 4 Вт, так и на 8 Вт даже при плохой регулировке питания с подавлением высокого напряжения питания. Встроенная функция отключения звука с задержкой включения упрощает удаленное управление, избегая шумов при включении и выключении.

TDA7294 - это монолитный МОП-усилитель мощности, который может работать при напряжении питания 80 В (100 В без подачи сигнала), обеспечивая при этом выходные токи до ± 10 А.Металлический язычок TDA7294 подключен к выводу -Vs изнутри.

Где использовать TDA7294?

TDA7294 может использоваться в схемах, требующих применения усилителей высокой мощности и высокой эффективности.

Как пользоваться TDA7294?

R1 - входное сопротивление, рекомендуемое значение 22 кОм. R2 = 680 Ом и R3 = 22 кОм определяет усиление контура усилителя.R4 = 22 кОм и C4 = 10 мкФ определяют продолжительность времени включения / выключения в режиме ожидания. R5 = 10 кОм и C3 = 10 мкФ используются для определения постоянной времени отключения звука. Вход DC

Используемая развязка C1 = 0,47 мкФ. C2 = 22 мФ - постоянный ток обратной связи. C5 = 22 мФ, загрузка. C6, C8 = 1000 мФ и C7, C9 0,1 мФ используются для байпаса напряжения питания.

How to Use TDA7294

TDA7294 Приложения

  • HI-FI
  • АВТО-РАДИО
  • Мостовая прикладная цепь
  • Усилитель аудио класса AB
  • Стереосистема
  • Сабвуфер

2D-модель ( Multiwatt15V)

TDA7294 2D Model

.

Отправить ответ

avatar
  Подписаться  
Уведомление о