Тиристор как работает: Что такое тиристор, как работает, типы, применения, преимущества и недостатки

Что такое тиристор, как работает, типы, применения, преимущества и недостатки

В этом посте мы попытаемся понять, что такое тиристор, как он работает, его характеристики, режимам работы, применения, преимущества и недостатки.

Тиристор в основном представляет собой двухпозиционный переключатель для управления выходной мощностью электрической цепи путем включения и выключения цепи нагрузки в определенные промежутки времени.

Содержание

Что такое тиристор

Тиристор представляет собой однонаправленное полупроводниковое твердотельное устройство с четырьмя слоями чередующегося материала P и N-типа. Он состоит из трех электродов: анода, катода и затвора. Анод — это положительный конец, а катод — это отрицательный конец.

Вход контролируют поток тока между анодом и катодом. Он используется в электронных устройствах и оборудовании для контроля электроэнергии или тока. Он действует как выпрямитель и может передавать ток только в одном направлении.

Первый тиристор был выпущен в 1956 году. Самым распространенным типом тиристоров является кремниевый управляемый выпрямитель (SCR).

Символ на схеме Тиристора

Купить тиристор на Алиэкспресс вы можете нажав на картинку ниже:

Символ на схеме ТиристораСимвол на схеме Тиристора

Как работает тиристор

Тиристор действует как диод. Он состоит из двух слоев полупроводников, а именно p-типа и n-типа, расположенных между собой для образования соединения. Анод соединен с внешним p-слоем, катод с внешним n-слоем и затвором с внутренним p-слоем. Он имеет 3 соединения, а именно J1, J2, J3.

принципиальная слойная схема тиристорапринципиальная слойная схема тиристора

Когда анод имеет положительный потенциал относительно катода, на затвор не подается напряжение. Соединения J1, J3 смещены в прямом направлении, а J2 — в обратном. Так что никакой проводимости здесь не происходит.

Теперь, когда положительный потенциал увеличивается за пределами напряжения пробоя, происходит пробой соединения J2, и он начинает проводить ток. Как только происходит пробой, он продолжает проводить независимо от напряжения на затворе, пока потенциал на аноде не будет удален или ток через устройство не станет меньше, чем ток удержания.

Теперь, когда положительный потенциал приложен к клемме затвора по отношению к катоду, происходит пробой соединения J2. Чтобы быстро включить тиристор, необходимо выбрать соответствующее значение потенциала.

Вход действует как управляющий электрод. Когда небольшое напряжение, известное как импульс затвора, подается на его затвор, устройство переключается в состояние проводимости. Это продолжается до тех пор, пока напряжение на устройстве не изменится или не будет снято.

Ток запуска затвора изменяется обратно пропорционально напряжению затвора, и для его запуска требуется минимальный заряд затвора. Таким образом, переключением тиристоров можно управлять через его импульс затвора.

Двухтранзисторная аналогия тиристора

Ток коллектора от NPN-транзистора подается непосредственно на базу PNP-транзистора, а ток коллектора PNP-транзистора подается на базу NPN-транзистора. Эти соединенные транзисторы полагаются друг на друга для проводимости.

Таким образом, для проведения одного из транзисторов требуется базовый ток. Когда анодный вывод тиристора является отрицательным по отношению к катоду, NP-переход становится смещенным вперед, а PN-переход становится обратным смещением.

На картинке два транзисторных аналога тиристора На картинке два транзисторных аналога тиристора Два транзисторных аналога тиристора

Здесь поток обратного тока блокируется до тех пор, пока не будет приложено напряжение пробоя. После пробивного напряжения оно начинает проводить без подачи сигнала затвора. Это одна из отрицательных характеристик тиристоров, так как она запускает проводимость при обратном разрыве напряжения.

Когда анодный вывод сделан положительным по отношению к катоду, внешние переходы смещены в прямом направлении, а центральный переход NP смещен в обратном направлении и блокирует прямой ток. Таким образом, чтобы вызвать его в проводимости, положительный ток прикладывается к базе транзисторов.

Два транзистора соединены в регенеративном контуре, и это заставляет транзистор проводить насыщение. Таким образом, можно сказать, что тиристоры блокируют ток как в направлении источника переменного тока в выключенном состоянии, так и могут включаться путем приложения положительного тока к базе транзистора.

Характеристики Тиристора

Тиристоры могут иметь прямое или обратное смещение. Посмотрим, как это работает в обоих направлениях.

Тиристоры в состоянии смещения вперед

Когда анод становится положительным, PN-соединения на концах смещены вперед, а центральное соединение (NP) становится смещенным назад. Он будет оставаться в заблокированном (ВЫКЛ) режиме (также известном как этап прямой блокировки) до тех пор, пока он не будет вызван импульсом тока затвора или приложенное напряжение не достигнет напряжения прямого отключения.

Запуск по импульсу тока затвора  Когда он запускается импульсом тока затвора, он начинает проводить и будет действовать как переключатель замыкания. Тиристоры остаются во включенном состоянии, то есть остаются в заблокированном состоянии. Здесь вход теряет контроль, чтобы выключить устройство.

Запуск по напряжению прямого отключения — Когда подается прямое напряжение, ток утечки начинает протекать через блокировку (J2) в среднем соединении тиристоров. Когда напряжение превышает прямое отключение перенапряжения или критического предела, то J2 выходит из строя и достигает состояния ON.

Когда ток затвора (Ig) увеличивается, он уменьшает площадь блокировки и, таким образом, уменьшается прямое отключающее напряжение. Он включится, когда будет поддерживаться минимальный ток, называемый запирающим током.

Когда ток затвора Ig = 0 и ток анода падают ниже определенного значения, называемого удерживающим током, во время состояния ВКЛ, он снова достигает своего состояния прямой блокировки.

на графике амплитуда напряжения Характеристики тиристорана графике амплитуда напряжения Характеристики тиристора

Тиристоры в обратном смещенном состоянии

Если анод является отрицательным по отношению к катоду, то есть с приложением обратного напряжения, оба PN-перехода на конце, то есть J1 и J3, становятся смещенными в обратном направлении, и центральное соединение J2 становится смещенным в прямом направлении. Через него протекает только небольшой ток утечки. Это режим блокировки обратного напряжения или выключенное состояние тиристора.

Когда обратное напряжение увеличивается еще больше, то при определенном напряжении происходит лавинный пробой J1 и J2, и он начинает проводить в обратном направлении. Максимальное обратное напряжение, при котором тиристор начинает проводить ток, называется обратным напряжением пробоя.

  • Тиристор блокирует напряжение как в прямом, так и в обратном направлении, и, таким образом, образуется симметричная блокировка.
  • Тиристор включается при приложении положительного тока затвора и выключается, когда напряжение на аноде падает до нуля.
  • Небольшой ток от затвора к катоду может запустить тиристор, изменив его с разомкнутой цепи на короткое замыкание.

Режимы работы тиристора

Тиристор имеет три режима работы:

  • Блокировка вперед
  • Обратная блокировка
  • Прямая проводимость
Блокировка вперед

В этом состоянии или режиме прямая проводимость тока блокируется. Верхний диод и нижний диод смещены в прямом направлении, а соединение в центре — в обратном направлении. Таким образом, тиристор не включается, поскольку затвор не срабатывает, и через него не протекает ток.

Обратная блокировка

В этом режиме соединение анода и катода меняется на обратное, и через него по-прежнему не протекает ток. Тиристоры могут проводить ток только в одном направлении, и он блокирует в обратном направлении, поэтому поток тока блокируется.

Прямая проводимость

При подаче тока на затвор срабатывает тиристор, и он начинает проводить ток. Он остается включенным до тех пор, пока прямой ток не упадет ниже порогового значения, и этого можно достичь, отключив цепь.

Типы тиристоров

Основываясь на возможностях включения и выключения и физической структуре, тиристоры классифицируются как:

  • Тиристоры с силиконовым управлением (SCR)
  • Тиристор отключения эмиттера (ETO)
  • Тиристоры с быстрым переключением (SCR)
  • Светоактивированные кремниевые выпрямители (LASCR)
  • Ворота отключают тиристоры (GTO)
  • Тиристоры с обратной проводимостью (RCT)
  • Тиристоры с управлением FET (FET-CTH)
  • MOS-контролируемый тиристор (MTO)
  • Двунаправленные фазово-управляемые тиристоры (BCT)

Применение тиристора

Тиристор используется в различных применениях, таких как:

  • В основном используется в двигателях с переменной скоростью.
  • Используется для управления электроприводом высокой мощности.
  • Используется в основном в двигателях переменного тока, светильниках, сварочных аппаратах и ​​т. Д.
  • Используется в ограничителе тока короткого замыкания и выключателе.
  • Быстрая скорость переключения и низкая проводимость возможны в тиристоре ETO.
  • Используется в качестве диммеров на телевидении, в кинотеатрах.
  • Используется в фотографии для вспышек.
  • Может использоваться в охранной сигнализации.
  • Используется в регулировании скорости вращения электрического вентилятора.
  • Используется в автомобильных зажиганиях.

Преимущества тиристора

Преимущества тиристора включают в себя:

  • Бюджетный.
  • Может быть защищен с помощью предохранителя.
  • Может обрабатывать большое напряжение / ток.
  • Способен контролировать мощность переменного тока.
  • Очень легко контролировать.
  • Легко включить.
  • Тиристор GTO или Gate Turnoff обладает высокой эффективностью.
  • Занимает меньше времени на работу.
  • Тиристорные выключатели могут работать с большой частотой.
  • Требует меньше места по сравнению с механическими переключателями.
  • Может использоваться для надежных операций.
  • Стоимость обслуживания тиристора очень меньше.
  • Очень прост в использовании для сложного управления.
  • Грузоподъемность очень хорошая.
  • Может использоваться в качестве генератора в цифровых цепях.
  • Может быть подключен параллельно и последовательно для обеспечения электронного управления на высоких уровнях мощности.
  • Тиристоры проводят ток только в одном направлении.
  • Он может использоваться как защитное устройство, как предохранитель в линии электропередачи.

Недостатки тиристора

К недостаткам тиристора можно отнести:

  • Не может использоваться для более высоких частот.
  • В цепи переменного тока тиристор должен быть включен на каждом цикле.
  • SCR требуется время для включения и выключения. Это вызывает задержку или повреждение в нагрузке.
  • Он может остановить двигатель при подключении, но не может удерживать его в неподвижном состоянии.
  • Скорость отклика тиристора очень низкая.
  • Не часто используется в цепях постоянного тока, так как тиристор нельзя отключить, просто сняв привод затвора.
  • Низкая эффективность.
  • Ток фиксации и удержания больше в тиристоре GTO.
  • Возможность обратной блокировки напряжения меньше возможности прямой блокировки.
  • Надежность тиристора TRIAC меньше, чем SCR.
  • TRIAC имеют более низкий рейтинг dv / dt по сравнению с SCR.

что это, принцип работы, свойства, применение

Чтобы понять как работает схема, необходимо знать действие и назначение каждого из элементов. В этой статье рассмотрим принцип работы тиристора, разные виды и режимы работы, характеристики и виды. Постараемся объяснить все максимально доступно, чтобы было понятно даже для начинающих. 

Содержание статьи

Что такое тиристор, его устройство и обозначение на схеме

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

Так выглядят тиристоры

Так выглядят тиристоры

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Два вида тиристоров - современные и советские, обозначение на схемах

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Принцип работы тиристора простыми словами

Рассмотрим принцип работы тиристора. Стартовое состояние элемента — закрыто. «Сигналом» к переходу в состояние «открыто» является появление напряжения между анодом и управляющим выводом. Вернуть тиристор в состояние «закрыто» можно двумя способами:

  • снять нагрузку;
  • уменьшить ток ниже тока удержания (одна из технических характеристик).

В схемах с переменным напряжением, как правило, сбрасывается тиристор по второму варианту. Переменный ток в бытовой сети имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. В схемах, питающихся от источников постоянного тока, надо либо принудительно убирать питание, либо снимать нагрузку.

После снятия отпирающего напряжения, тиристор остается в открытом состоянии (лампочка горит)

После снятия отпирающего напряжения, тиристор остается в открытом состоянии (лампочка горит)

То есть, работает тиристор в схемах с постоянным и переменным напряжением по-разному. В схеме постоянного напряжения, после кратковременного появления напряжения между анодом и управляющим выводом, элемент переходит в состояние «открыто». Далее может быть два варианта развития событий:

  • Состояние «открыто» держится даже после того, как напряжение анод-выход управления пропало. Такое возможно если напряжение, поданное на анод-управляющий вывод,  выше чем неотпирающее напряжение (эти данные есть в технических характеристиках).  Прекращается прохождение тока через тиристор, фактически только разрывом цепи или выключением источника питания. Причем выключение/обрыв цепи могут быть очень кратковременными. После восстановления цепи, ток не течет до тех пор, пока на анод-управляющий вывод снова не подадут напряжение.
  • После снятия напряжения (оно меньше чем отпирающее) тиристор сразу переходит в состояние «закрыто».

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без. Но чаще применяют по первому типу — когда он остается открытым.

Если говорить о внутреннем устройстве, то это три перехода P-N-P-N

Если говорить о внутреннем устройстве, то это три перехода P-N-P-N

Принцип работы тиристора в схемах переменного напряжения отличается. Там возвращение в запертое состояние происходит «автоматически» — при падении силы тока ниже порога удержания. Если напряжение на анод-катод подавать постоянно, на выходе тиристора получаем импульсы тока, которые идут с определенной частотой. Именно так построены импульсные блоки питания. При помощи тиристора они преобразуют синусоиду в импульсы.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден. Проверка тиристора при помощи мультиметра

    Проверка тиристора при помощи мультиметра. На левом рисунке на табло отображается «1», т.е. сопротивление между анодом и катодом слишком велико и прибор не может его зафиксировать. На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках.

Схема проверки работоспособности тиристора мультиметром

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.
Тиристоры могут управляться как с анода, так и с катода

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Различают в основном, по типу проводимости и способу управления

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.
Основное назначение - включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Характеристики и их значение

Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:

  • Максимальный прямой ток. Значение тока, который может протекать через анод-катод. У мощных моделей он может достигать сотен Ампер.
  • Максимально допустимый обратный ток. Указывается не для всех видов, только у обратно-проводящих.
  • Прямое напряжение. Это максимально допустимое падение напряжения в открытом состоянии при прохождении максимального тока.
  • Напряжение включения. Минимальный уровень управляющего сигнала, при котором тиристор сработает. Пример характеристик

    Пример характеристик

  • Удерживающий ток. Если ток, протекающий через анод-катод ниже этого значения, устройство переходит в запертое состояние.
  • Минимальный ток управляющего сигнала. При подаче тока ниже этого значения, элемент не откроется.
  • Максимальный ток управления. Если превысить этот параметр, p-n переход выйдет из строя.
  • Рассеиваемая мощность. Определяет величину подключаемой нагрузки.

Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.

принцип действия, обозначение, основные характеристики и применение

История изобретенияВ электронике существует такое понятие, как «электронные ключи». Это приборы, имеющие два устойчивых состояния. Одним из их представителей является тиристор, представляющий, по сути, полупроводниковый элемент. Его работа задаётся с помощью тока или напряжения, поступающего на специальный вывод. Применение устройства позволяет управлять мощной нагрузкой, используя слаботочные цепи. При этом его конструкция проста, а принцип работы довольно понятен.

История изобретения

Суть устройстваИзобретение тиристора стало возможным после открытия полупроводников и исследования их свойств. После обнаружения в 1600 году английским физиком Уильямом Гилбертом электричества многие инженеры и ученые посвятили себя изучению этого явления. Выдающими людьми, изучающими электромагнетизм в разное время, были: Эрстед, Ампер, Вольт, Фарадей, Максвелл, Кюри, Яблочков. Благодаря их исследованиям и теоретическим догадкам было установлено, что все окружающие твёрдые тела можно разделить на три группы:

  • проводники — вещества, обладающие большим количеством свободных носителей зарядов и способные практически без потерь проводить электрический ток;
  • диэлектрики — физические тела, плохо проводящие ток;
  • полупроводники — материалы, у которых в кристаллической решётке концентрация подвижных зарядов намного ниже, чем количество атомов.

Типичным признаком полупроводников является зависимость их проводимости от изменения температуры или другого внешнего воздействия, например, света, электромагнитного поля.

Принцип работыВ 1947 году американцы Бардин, Бреттейн и Шокли создали первый транзистор, что и послужило толчком к бурному развитию полупроводниковой техники. В разных странах начались исследования этих материалов. Так, русским инженером Лошкарёвым была выявленная биполярная диффузия. А Красиловым и Мадояном разработаны образцы германиевых элементов.

В 60-х годах полученные исследования позволили создать чипы, которые содержали несколько объединённых транзисторов. Начали создаваться компании и заводы, выпускающие серийно электронные компоненты. В процессе изучения свойств полупроводников было установлено, что структура монокристаллов, то есть тел, имеющих непрерывную кристаллическую решётку, может иметь три и более p-n переходов. В зависимости от уровня напряжения, подаваемого на один из них, изменялись состояния других.

Изучая монокристаллы полупроводников, учёные компании Белла выявили их технические характеристики. В дальнейшем её инженеры смогли создать прибор, имеющий третий вывод. С помощью его и происходило управление процессом прохождения тока через весь элемент. Через некоторое время в Дженерал Электроникс анонсировали устройство, получившее название «триак» (thyristor).

Суть устройства

Термин «тиристор» произошёл из-за слияния двух слов: греческого hýra — дверь или вход и английского resistor — сопротивляющийся. Этим названием было названо полупроводниковое устройство, изготавливаемое на основе монокристалла полупроводникового вещества и обладающего тремя и более p-n переходами. При работе этот прибор может иметь два устойчивых положения:

  • закрытое — соответствующее низкой проводимости;
  • открытое — неоказывающее сопротивление прохождению тока.

Характеристики и параметрыТо есть, перефразируя определения, можно сказать, что тиристор работает как ключ, по аналогии с дверью. В одном его состоянии замок на дверях открыт, и через неё могут свободно проходить люди (электрический ток), а в другом закрыт и дверь заперта. Поэтому нередко его называют электронный выключатель. Выражаясь же научным языком, его правильное название звучит как полупроводник с управляемым вентилем (диодом).

Принятие элементом одного из устойчивых состояний происходит быстро, но не мгновенно. Чтобы сменить одно на другое, используется напряжение. Когда оно есть, тиристор находится в открытом состоянии, а когда нет — закрывается. Для этого используется специальный дополнительный вывод. Поэтому прибор имеет три выхода и по виду похож на транзистор. При этом их принцип действия схож, только в отличие от транзистора тиристор либо полностью пропускает ток, либо препятствует его прохождению.

Принцип работы

Конструкция прибораТиристоры по своей сути — это переключающие приборы. Структура простого элемента состоит из n-p-n-p слоёв и имеет три перехода. Два из них работают в прямом направлении, а один в обратном. Прибор имеет две крайние области, называемые анодом (p) и катодом (n). Для понимания принципа действия тиристора его можно представить в виде сдвоенных транзисторов: n-p-n и p-n-p. При этом средняя зона второго транзистора (n) соединена с крайней зоной первого.

В результате получится, что крайние зоны будут являться эмиттерными переходами, а средние — коллекторными. Область базы же первого элемента будет совпадать с коллектором второго и наоборот. Исходя из этого коллекторный ток транзисторов, одновременно будет являться и базовым.

Маркировка радиодеталиФизические процессы, происходящие в элементе, можно описать следующим образом. При существовании лишь одного перехода в устройстве бы возникал лишь обратный ток, вызванный неосновными носителями заряда. Если к эмиттерному переходу приложить прямое напряжение, то ток коллектора увеличится, а напряжение на нём уменьшится. В транзисторе для перехода его в режим насыщения (максимальная пропускная способность) на эмиттер подаётся прямое напряжение, при этом оно между базой и коллектором снижается до единичных значений.

Так и в тиристоре. Через переходы анода и катода инжектируются неосновные заряды, приводящие к снижению сопротивления управляющего электрода. При приложении прямого напряжения, то есть к катоду — минусовой потенциал, а к аноду — плюсовой, через прибор начинает протекать небольшой ток. Это состояние соответствует закрытому положению.

Повышение напряжения приводит к инжекции носителей в управляемый переход. В итоге, с одной стороны, увеличивается его сопротивление из-за обеднения основными носителями, так как переход получается включённым в обратном направлении, а с другой — обогащение, связанное с поступлением в его область новых зарядов.

При достижении напряжением определённого значения эти два явления уравновешиваются, и даже возрастание на небольшую величину напряжения приводит к возникновению лавинообразного процесса отпирания тиристора. Это состояние напоминает режим насыщения транзистора. Сопротивление перехода становится минимальным, а величина тока определяется нагрузочным сопротивлением.

Характеристики и параметры

Тиристор — это прибор, одновременно совмещающий в себе три функции: выпрямителя, выключателя и усилителя. Основные свойства, характеризующие прибор можно представить в виде следующих пунктов:

  • тиристор по подобию диода пропускает ток только в одном направлении, то есть работает как выпрямитель;
  • прибор переключается из одного состояния в другое при помощи напряжения;
  • величина тока, необходимая для переключения тиристора, составляет порядка нескольких миллиампер, при этом он может пропускать через себя десятки ампер;
  • изменяя время приложенного сигнала к управляющему выводу, можно регулировать среднее значение тока, протекающего через нагрузку, другими словами — управлять мощностью.

Главной же функцией, описывающей работу прибора, является вольт-амперная характеристика (ВАХ). Представляет она из себя плоскую систему координат по оси Y, на которой откладывается ток нагрузки, а по оси X — напряжение на управляющем электроде. По виду нелинейности соответствия этих двух величин ВАХ относится к S-типу устройств.

На характеристике используются буквенные обозначения, соответствующие ключевым точкам в работе тиристора. Так, координата (Vbo; IL) соответствует моменту включения, а точка с координатами (Vн; Iн) — открытому состоянию. Зона, лежащая на отрезке с координатами (Vbo; IL) и (Vн; Iн) считается переходной, то есть неустойчивой.

Тиристорный прибор, кроме ВАХ, характеризуется рядом параметров:

  1. Классификация и различияНаибольшее постоянное обратное напряжение — значение, при превышении которого наступает пробой перехода.
  2. Напряжение включения — величина сигнала, при достижении которой происходит отпирание элемента.
  3. Допустимый ток — максимальное значение, которое может через себя пропустить радиоприбор без изменения своих характеристик.
  4. Ток удержания — это ток, текущий через анод и провоцирующий запирание элемента.
  5. Применение электронных переключателейПадение напряжения — показывает величину энергии, которая рассеивается на приборе (0,5 -1 В).
  6. Максимальна мощность — определяется допустимым током и максимально возможным напряжением, приложенным к управляемым выводам, то есть характером нагрузки.
  7. Время отключения — промежуток времени, за который тиристор полностью закроется. Составляет микросекунды.
  8. Отпирающий постоянный ток управления — обозначает значение, которое необходимо для поддержания устройства в открытом состоянии (анод-катод). Обычно составляет порядка 100 мА.

Конструкция прибора

Тиристор принцип работыЛюбой тиристорный прибор имеет как минимум три вывода: анод, катод и вход. Выпускаются они различными производителями и могут иметь форму таблетки или штыря. Как правило, материалом для их изготовления служит кремний. Он обеспечивает хорошую теплопроводность и может выдерживать большую мощность.

Эмиттерные переходы выполняются по сплавной технологии, а коллекторные — методом диффузии. Используется также и планарная технология. Концентрация примесей в эмиттерных областях делается значительно большей, чем в базовых. При этом самым толстым слоем является центральный. Эти два фактора — толщина и низкая концентрация — позволяют прибору выдерживать довольно большое обратное напряжение (порядка сотен вольт). Анод прибора соединяется с корпусом изделия, что в итоге положительно сказывается на отводе тепла.

Тиристор

Немного другую конструкцию имеют асимметричные тиристоры. В их конструкции катод соединяется с n+ и p зоной, а анод с p+ и n областью. Такие соединения называются анодным или катодным коротким замыканием. Их использование приводит к появлению дополнительного сопротивления межу переходами. Такое подключение уменьшает переходные процессы и время жизни основных носителей.

В простейшую конструкцию тиристора входит основание, соединённое с полупроводниковым кристаллом и являющееся анодом, вывода катода и управляющего электрода. Сверху кристалл накрывается изолятором и крышкой, способствующей защите прибора от механических повреждений и одновременно служащей теплоотводом.

Маркировка радиодетали

Тиристор принцип работыСогласно системе, указанной в ГОСТ 10862–72, для обозначения тиристора используется буквенно-цифровой код, состоящий из четырёх символов. Первый элемент кода указывает на вид материала, из которого сделано устройство. Например, Г — германий, К — кремний, А — арсенид галлия. Второй обозначает принадлежность устройства — Н-динистор, У-триак. Третий элемент характеризует функциональность, возможности и номер партии.

Так, числа с 101 до 199 обозначают диодные и незапираемые триодные тиристоры малой мощности, а интервал от 401 до 499 — триодные запираемые тиристоры средней мощности. Последняя буква указывает на тип устройства.

Но после 1989 года была принята новая система обозначений. Поэтому тиристоры, выпускаемые с начала 1989 года, маркировались уже согласно ГОСТ 20859.1.89. В основе этого обозначения используется многозначный код, состоящий из следующих элементов:

  1. На первом месте стоит буква, указывающая тип устройства. Например, ТО — оптотиристор, ТЗ — тиристор запираемый и так далее.
  2. На втором — буква, определяющая тип цепи, в которой может работать тиристор (Ч — высокочастотная, Б — быстродействующая, И — импульсная).
  3. Третья цифра — обозначает порядковый номер.
  4. Четвёртый знак — характеризует габариты корпуса прибора.
  5. Пятый — конструктивное исполнение.
  6. Шестой — допустимый ток.
  7. Седьмой — полярность. Так, буква Х указывает на то, что катод соединён с корпусом.
  8. Восьмой — класс устройства, соответствующий импульсной разности потенциалов для закрытого состояния.
  9. Последующие цифры образуют сочетание классификационных параметров.

На схемах и в литературе тиристор подписывается латинскими буквами VS. Графически же изображается наподобие диода, то есть равностороннего треугольника с вертикальной полосой у его вершины. Через середину основания и вершину проходит линия, символизирующая электрическую цепь. Но в отличие от диода у тиристора от нижней стороны треугольника дополнительно отводится прямая линия, обозначающая управляющий электрод (У).

Классификация и различия

Выпускаемые тиристоры различаются не только по тому, как выглядят, и своим характеристикам, но и по виду проводимости, а также количеству выводов. Существует довольно большое их количество, но при этом их можно классифицировать по следующим признакам:

  1. Способу управления. Разделяют на приборы, управление которыми происходит путём подачи импульса напряжения на анод-катод (динисторы) или тока на управляющей вывод (тринисторы). В свою очередь, последние можно разделить на управляющиеся по аноду или катоду. А также существует ещё один тип приборов, управляемый квантами света (оптотиристор).
  2. Типом обратной проводимости. Существует три вида: проводящие, непроводящие, симметричные (симисторы) — проводящие ток в обоих своих направлениях.
  3. Быстродействию. Существуют как сверхбыстрые приборы, так и обыкновенные.

Существенных отличий между динистором и тринистором нет. Но если в первом отпирание происходит при достижении определённого значения напряжения, то во втором это напряжение может быть совсем несущественным, а переключение происходит из-за подачи импульса определённого значения на дополнительный электрод.

Переключение состояний классических тиристоров происходит снижением величины тока либо в случае динистора изменением полярности. Запирающий же тип отличается тем, что через дополнительный вывод понадобится пропустить ток обратной полярности. Поэтому, пропуская через такой тиристор переменный ток, его работа будет соответствовать импульсному режиму.

Применение электронных переключателей

Характеристики приборов способствуют их применению в различных электротехнических областях. Такой элемент, как тиристор нужен там, где возникает необходимость управлять мощной нагрузкой. Поэтому основным назначением устройства считается коммутация нагрузки путём использования малых токов.

Например, устройства могут применяться в гирлянде с бегущими огнями, импульсных генераторах тока, выпрямительных узлах. Их используют в схемах преобразования постоянного тока в токи промышленного значения, при этом они могут изменять и частоту сигнала. Они применяются при управлении асинхронным двигателем, в системе индукционного нагрева. На тиристорах создаются источники питания повышенной частоты для автономного потребления различными устройствами.

Преобразователи на этом элементе в несколько раз превосходят по технико-экономическим показателям конструкции, выполненные на ионных приборах. Их стоимость и масса меньше, а скорость срабатывания в несколько раз выше.

Использование тиристоров позволяет автоматизировать многие процессы, например, оптотиристором управляют открытием ширмы в театре, а симистором регулируют плавно мощность паяльников или источников освещения. А также с помощью них можно создавать датчики, регистрирующие появление света, тока или напряжения.

Важной особенность элементов является то, что они пропускают через себя высокочастотный и низкочастотный сигнал. Поэтому, собрав мостовую схему из этих устройств, можно сконструировать «трансформатор», например, для сварочного аппарата.

Схема включения

Зачем нужны тиристоры, можно понять, разобравшись в их принципе работы. Для этого есть смысл рассмотреть включение элемента в простейшей схеме. Тиристор в ней используется как электронный ключ.

Как работает тиристорК аноду тиристора подсоединяется лампочка L, служащая нагрузочным сопротивлением. К ней через кнопку К2 подключается положительная клемма источника питания GB, а его минус подводится к катоду полупроводникового элемента. Подача тока на управляющий электрод выполняется через ограничительный резистор R и кнопку K1.

При замыкании переключателя К2 к аноду и катоду полупроводника будет приложено напряжение, соответствующее величине ЭДС источника питания. При этом прибор будет заперт, ток через него не потечёт, а лампочка не загорится. Чтобы в цепи VS – L появился ток, понадобится отпереть тиристор.

Делается это путём замыкания первого выключателя К1. В этом случае ток от блока питания через К2, К1, R поступит на управляющий электрод тиристора. Элемент изменит своё состояние на открытое, и через него начнёт протекать ток, поступающий с батареи GB. Итогом будет загоревшая лампочка.

Дальнейшее нажатие кнопки K1 никоим образом не будет влиять на состояние схемы. Для того чтобы потушить лампочку, понадобится разорвать цепь кнопкой K2 или отсоединить источник питания. Но при этом тиристор может закрыться и при снижении напряжения на аноде до определённой величины, определяемой параметрами тиристора.

Таким образом, тиристор — это полупроводниковый элемент, использующийся в схемах как электронный ключ. Это возможно благодаря свойствам p-n переходов. При этом, осуществляя коммутацию больших токов, сам прибор имеет небольшие габариты, а его корпус может выдерживать значительную тепловую мощность. Но всё же для предотвращения его повреждения тепловым пробоем часто совместно с элементом используется теплоотвод, представляющий собой, в зависимости от мощности нагрузки, простую алюминиевую пластинку или массивного вида радиатор.

Тиристор принцип работы | Практическая электроника

Структура тиристора

Тиристор это четырёхслойный полупроводниковый прибор, слои расположены последовательно их типы проводимости чередуются: p‑n‑p‑n. p‑n‑переходы между слоями на рисунке обозначены как «П1», «П2» и «П3». Контакт присоединенный к внешнему p‑слою называется анодом, к внешнему n‑слою — катодом. В принципе тиристор может иметь до двух управляющих электродов, присоединённых к внутренним слоям. Но обычно изготавливаются тиристоры с одним управляющим электродом, либо вообще без управляющих электродов (такой прибор называется динистором).

Для включения тиристора достаточно кратковременно подать сигнал на управляющий электрод — тиристор откроется и будет оставаться в этом состоянии пока ток через тиристор не станет меньше тока удержания.

Итак, главный принцип работы тиристора и схем на его основе — открываем тиристор подачей сигнала на усправляющий электрод, закрываем снижая ток анод-катод.

Как и в биполярном транзистор главную роль в принципе действия играют неосновные носители заряда (ННЗ) и обратно-смещенный p-n- переход. Пока неосновных носителей мало переход закрыт, но стоит подкинуть ННЗ к переходу и он откроется.
В тиристоре есть два основных способа добавить ННЗ:
1) закачать ток в управляющий электрод;
2) поднять напряжение настолько чтобы возник лавинный пробой.

Динисторное включение тиристора

Для начала рассмотрим второй случай, то есть когда управляющий электрод тиристора отключен.

При подаче напряжения прямой полярности, крайние переходы смещаются в прямом направлении, а средний – в обратном. При значительном увеличении напряжения на силовых электродах, через крайние (П1 и П3), примыкающие к среднему, переходы начинают перемещаться неосновные носители, уменьшая его сопротивление. Процесс происходит медленно, а сопротивление остается большим, но лишь до определенного момента. При некотором значении напряжения (как правило, несколько сотен вольт) процесс становится лавинным(точка 1 на ВАХ), неосновные носители заряда заменяются основными, отпирая средний переход (П2) и уменьшая сопротивление анод-катод. Тиристор отпирается, а падение напряжения между силовыми электродами падает до единиц Вольт (точка 2 на ВАХ).

Дальнейший рост тока ведет только к небольшому росту падения напряжения на тиристоре участок ВАХ от точки 2 до точки 3, это рабочий режим открытого тиристора.

Чтобы закрыть тиристор нужно снизить протекающий ток ниже тока удержания. Причем падение напряжения соответствующее этому току многократно ниже отпирающего напряжения.

Но зачем тиристору управляющий электрод? Какие преимущества есть у тиристора перед динистором? Дело в том, что подавая напряжение через резистор на управляющий электрод можно увеличивать концентрацию неосновных носителей заряда, что в свою очередь будет снижать величину напряжения включения тиристора.

А при какой-то величине тока управляющего электрода больше не будет горба на ВАХ, т.е. ВАХ тиристора станет похожа на ВАХ диода, кстати этот ток называют током спрямления.

Режим обратного запирания тиристора

При обратном включении тиристора крайние переходы (П1 и П3) смещаются в обратном направлении, а средний в прямом (П2). Тиристор остается закрытым пока не наступит тепловой пробой.

Физические процессы

Если пары по физическим основам электроники на которых рассматривался транзистор я ещё как-то выдерживал, то энергетические зонные диаграммы объясняющие принцип работы тиристора уже были слишком сложны. Очень много ньюансов в концетрациях носителей заряда, толщинах слоев и уровне легирования.
Конечно, чтобы изготовить тиристор с хорошими характеристиками физические процессы протекающие в кристалле полупроводника нужно знать и понимать. Но для разработки электронных схем достаточно знать вольт-амперную характеристику тиристора и его транзисторную модель.

Одну четрехслойную полупроводниковую структуру можно представить как две трехслойные, если посмотреть на рисунок, то в трехслойных структурах можно увидеть два биполярных транзистора n-p-n и p-n-p структуры.

Пока оба транзистора закрыты, ток через них не протекает. Но стоит открытся хоть одному из них, то он тут же откроет второй. Ток коллектора первого транзистора поступит в базу второго и откроет его, а ток коллектора второго, будет являтся базовым для первого и будет поддерживать открытым первый транзистор. Получаетя что оба транзистора поддерживают друг друга в открытом состоянии. И чтобы они закрылись, нужно снизить ток через ниж ниже определенной величины, так называемого тока удержания.

Тиристоры. Виды и устройство. Работа и применение. Особенности

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров
  • Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток.
  • Прямое напряжение. Это падение напряжения при максимальном токе.
  • Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода. Он необходим для включения тиристора.
  • Максимально допустимый ток управления.
  • Максимально допустимая рассеиваемая мощность.
Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

По способу управления разделяют на:
  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.
Триодные тиристоры в свою очередь разделяются:
  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.
Запирание тиристора производится:
  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.
По обратной проводимости тиристоры делятся:
  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

  • Полупроводниковый диод VD.
  • Переменный резистор R1.
  • Постоянный резистор R2.
  • Конденсатор С.
  • Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

Похожие темы:
что это такое, принцип работы, ВАХ, разновидности и маркировка

Тиристор – это отдельный тип переключающих полупроводниковых радиодеталей. Ток в этом случае пропускается только в одну сторону. Они нашли свое широкое использование в различных устройствах, основанных на полупроводниковом эффекте, а также в самых разнообразных токовых преобразователях. Тиристоры используются в регуляторах, частотных преобразователях тока, управляющих схемах синхронных двигателях и других приборах.

Главная задача тиристора – подача силовой при соответствующем сигнале управления. В данной статье будет подробно рассмотрены все особенности строения, какие материалы используются, а также из чего состоят тиристоры. Дополнением служат два видеоролика, а также одна научная статья.

Устройство и назначение.

Тиристором называется управляемый трехэлектродный полупроводниковый прибор с тремя p–n -переходами, обладающий двумя устойчивыми состояниями электрического равновесия: закрытым и открытым.

Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают три основных свойства тиристора:

  • Тиристор, как и диод, проводит ток в одном направлении, проявляя себя как выпрямитель;
  • Тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния.
  • Управляющий ток, необходимый для перевода тиристора из «закрытого» состояния в «открытое», значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока.

Тиристор – это переключающий полупроводниковый прибор, пропускающий ток в одном направлении.

Принцип работы тиристора и его устройство.

Принцип работы тиристора и его устройство.

Устройство и основные виды

Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n , содержащий три последовательно соединённых p-n -перехода J1, J2, J3. Контакт к внешнему p -слою называется анодом, к внешнему n -слою – катодом.

Тиристоры типа КУ

В общем случае p-n-p-n -прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным иристором или динистором.

Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором (иногда просто тиристором, хотя это не совсем правильно).

Что такое тиристоры?

В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как ихВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется также симистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов , часто применяются их интегральные аналоги, обладающие лучшими параметрами.

Характеристики тиристоров

Таблица основных характеристик тиристоров.

Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.

Условное обозначение тиристора на схеме

Условное обозначение тиристора на схеме

Вольтамперная характеристика

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

  • Между точками 0 и (Vвo,IL) находится участок, соответствующий высокому сопротивлению прибора – прямое запирание (нижняя ветвь).
  • В точке Vво происходит включение тиристора (точка переключения динистора во включённое состояние).
  • Между точками (Vво, IL) и (Vн,Iн) находится участок с отрицательным дифференциальным сопротивлением-неустойчивая область переключения во включённое состояние. При подаче разности потенциалов между анодом и катодом тиристора прямой полярности больше Vно происходит отпирание тиристора (динисторный эффект).
  • Участок от точки с координатами (Vн,Iн) и выше соответствует открытому состоянию (прямой проводимости)

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 2 тем, что кривая в третьей четверти графика повторяет участки 0-3 симметрично относительно начала координат. По типу нелинейности ВАХ тиристор относят к S-приборам.

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

  1. Падение напряжения при максимальном токе анода (VT или Uос).
  2. Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
  3. Обратное напряжение (VR(PM) или Uобр).
  4. Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
  5. Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
  6. Обратный ток (IR) — ток при определенном обратном напряжении.
  7. Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
  8. Постоянное отпирающее напряжение управления (VGT или UУ).
  9. Ток управления (IGT).
  10. Максимальный ток управления электрода IGM.
  11. Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Интересно по теме: Как проверить стабилитрон.

Назначение устройства

Тиристорами называются полупроводниковые приборы с тремя (и более) р-п -переходами, предназначенными для использования в качестве электронных ключей в схемах переключения электрических токов. Они переключают электрические цепи, регулируют напряжение, преобразуют постоянный ток в переменный.

По устройству и принципу работы он очень похож на полупроводниковый диод, но в отличие от него тиристор управляемый. “Ключевой” характер действия тринистора позволяет использовать его для переключения электрических цепей там, где для этой цели до этого служили только электромагнитные реле.

Полупроводниковые переключатели легче, компактнее и во много раз надежнее в работе, чем электромагнитные реле с механически замыкаемыми контактами. В отличие от таких реле они производят переключение с очень большой скоростью – сотни и тысячи раз в секунду, а если нужно – еще быстрее. Тринисторы используют в современной аппаратуре электрической связи, в быстродействующих системах дистанционного управления, в вычислительных машинах и в энергетических устройствах.

Как проверить тиристор тестером

Как проверить тиристор тестером

Классификация

В зависимости от конструктивных особенностей и свойств тиристоры делят на диодные и триодные.

В диодных тиристорах различают:

  • тиристоры, запираемые в обратном направлении;
  • проводящие в обратном направлении;
  • симметричные.

Триодные тиристоры подразделяют:

  • на запираемые в обратном направлении с управлением по аноду или катоду;
  • проводящие в обратном направлении с управлением по аноду или катоду;
  • симметричные (двунаправленные).

Наиболее распространены динисторы – тиристоры с двумя выводами и тринисторы – приборы с тремя выводами. Кроме того, различают группу включаемых тиристоров.

Тиристорный модуль.

Тиристорный модуль.

Принцип действия

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора. Другой способ – это подать кратковременный импульс на управляющий электрод.

Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии. После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение.

То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше. Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно. После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор.

После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах. Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Что такое тиристоры?

Свойства и характеристики

По сути это аналог самоблокирующегося реле с одним нормально разомкнутым контактом, роль которого выполняет полупроводниковая структура, расположенная между анодом и катодом. Отличие от реле состоит в том, что для этого полупроводникового прибора может быть применено несколько способов включения и выключения. Все эти способы объясняются транзисторным эквивалентом тринистора.

Два эквивалентных транзистора охвачены положительной обратной связью. Она многократно усиливает любые изменения тока в их полупроводниковых переходах. Поэтому существует несколько видов воздействия на электроды тринистора для его включения и выключения. Первые два способа позволяют выполнить включение по аноду.

  • Если напряжение на аноде увеличивать, при его определённом значении начнут сказываться эффекты начинающегося пробоя полупроводниковых структур транзисторов. Появившийся начальный ток лавинообразно усилится положительной обратной связью и оба транзистора включатся.
  • При достаточно быстром увеличении напряжения на аноде происходит заряд межэлектродных ёмкостей, которые присутствуют в любых электронных компонентах. При этом в электродах появляются зарядные токи этих ёмкостей, которые подхватывает положительная обратная связь и всё заканчивается включением тринистора.

Если перечисленные выше изменения напряжения отсутствуют, включение обычно происходит током базы эквивалентного n-p-n транзистора. Выключить тринистор можно одним из двух способов, которые также становятся понятны из-за взаимодействия эквивалентных транзисторов. Положительная обратная связь в них действует, начиная с некоторых величин токов, протекающих в структуре p-n-p-n. Если величину тока сделать меньше этих величин, положительная обратная связь сработает на быстрое исчезновение токов.

Что такое тиристоры?

Другой способ выключения использует прерывание положительной обратной связи импульсом напряжения, который меняет полярность на аноде и катоде. При таком воздействии направления токов между электродами изменяется на противоположные и тринистор выключается.

Поскольку для полупроводниковых материалов характерно явление фотоэффекта, существуют фото- и оптотиристоры, у которых включение может быть обусловлено освещением либо приёмного окошка, либо светодиодом в корпусе этого полупроводникового прибора. Существуют ещё и так называемые динисторы (неуправляемые тиристоры). В этих полупроводниковых приборах нет управляющего электрода конструктивно.

По своей сути это тринистор с одним отсутствующим выводом. Поэтому их состояние зависит только от напряжения анода и катода и они не могут включиться управляющим сигналом. В остальном процессы в них аналогичны обычным тринисторам. То же относится и к симисторам, которые по сути являются двумя тринисторами соединёнными параллельно. Поэтому они применяются для управления переменным током без дополнительных диодов.

Интересно почитать: инструкция как прозвонить транзистор.

Запираемые тиристоры

Если определённым образом изготовить области структуры p-n-p-n вблизи баз эквивалентных транзисторов можно достичь полной управляемости тиристором со стороны управляющего электрода. Такая конструкция структуры p-n-p-n показана на изображении слева. Включать и выключать такой тиристор можно соответствующими сигналами в любой момент времени подавая их на управляющий электрод. Остальные способы включения, применяемые к тринисторам, для запираемых тиристоров так же годятся.

Однако эти способы не применяются к таким полупроводниковым приборам. Они наоборот исключаются теми или иными схемотехническими решениями. Целью является получение надёжного включения и выключения только по управляющему электроду. Это необходимо для использования таких тиристоров в мощных инверторах повышенной частоты. GTO работают на частотах до 300 Герц, а IGCT способны на существенно более высокие частоты, достигающие 2 кГц. Номинальные значения токов могут быть несколько тысяч ампер, а напряжение – несколько киловольт.

Тиристоры изготавливаются для широкого диапазона токов и напряжений. Конструкция их определяется размерами структуры p-n-p-n и необходимостью получения надёжного отвода тепла от неё. Современные тиристоры, а также их обозначения на электрических схемах показаны на изображениях ниже. Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

Запираемый тиристор.

Запираемый тиристор.

С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено». Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр , то есть величину напряжения пробоя тиристора.

Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U < Uпр) , если подать импульс напряжения положительной полярности между управляющим электродом и катодом.  В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • если уменьшить напряжение между анодом и катодом до U = 0 ;
  • если снизить анодный ток тиристора до величины, меньше тока удержания Iуд .
  • подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности "Программное обеспечение вычислительной техники и автоматизированных систем", МИФИ, 2005–2010 гг.

Написано статей

Более подробно о тиристорах рассказано в статье Все о тиристорах. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки статьи:

www.elenergi.ru

www.elektrovesti.net

www.my-multi.ru

www.geekmatic.in.ua

www.radioprog.ru

Предыдущая

ПолупроводникиЧто такое симистор (триак)

Следующая

ПолупроводникиВиды и устройство оптронов (оптопар)

принцип работы, проверка, особенности и характеристики :: SYL.ru

В переключательных схемах часто используется тиристор, принцип работы которого напоминает электронный ключ. Он представляет собой полупроводниковый прибор, имеющий три или несколько взаимодействующих выпрямляющих переходов. Однако тиристор не способен перейти в состояние закрытого типа, поэтому его называют ключом, который является не полностью управляемым.

Тиристор: принцип работы

Устройство и виды полупроводниковых приборов

Прежде чем рассматривать принцип работы тиристоров в цепях, необходимо разобраться с тем, как они устроены, какие виды существуют. Состоят они из четырех последовательно соединенных слоев, которые имеют разный тип проводимости. С внешней стороны есть контакты – анод и катод. Приборы могут обладать двумя управляющими электродами, прикрепленными к внутренним слоям. Изменения состояния удается добиться за счет подачи сигнала непосредственно на проводник.

Различают два основных вида тиристоров:

  1. Динисторы представляют собой диодные полупроводниковые приборы. В данном случае открывание осуществляется посредством подачи высокого напряжения между контактами.
  2. Тринисторы – это триодные аналоги. Их удается открывать за счет воздействия управляющего тока на электрод.

Процесс запирания может производиться двумя способами. Первый из них подразумевает снижение электрического тока ниже уровня удержания. Вариант применим для всех видов тиристоров. Второй способ заключается в нагнетании запирающего напряжения непосредственно на управляющий контакт. Он используется только для тринисторов запираемого типа.

Возможность обратной проводимости

Рассматривая принцип работы тиристора, следует понимать, что элементы могут быть классифицированы по обратному напряжению.

Тиристор: принцип работы для "чайников"

Всего существует четыре варианта изделий:

  1. Обратно-проводящие приборы обладают небольшим обратным напряжением. Оно составляет всего несколько вольт.
  2. Элементы, не проводящие напряжение в обратном направлении в закрытом состоянии.
  3. Симисторы представляют собой симметричные приборы, которые коммутируют электрические токи в том или ином направлении.
  4. Изделия с ненормированным напряжением обратного направления.

Используя симисторы, необходимо помнить, что они функционируют симметрично лишь на первый взгляд. При подаче отрицательного (на анод) и положительного (на управляющий электрод) напряжения они не способны открываться, а в некоторых случаях могут выходить из строя.

В электронике симисторы относят к управляемым тиристорам, принцип работы которых заключается в коммутации цепей переменного тока. При проектировании таких схем, необходимо изучать документацию конкретного изделия, чтобы определить, какие сигналы допустимы. Отдельные виды симисторов могут иметь некоторые ограничения.

Работа в цепи постоянного тока

Если объяснять принцип работы тиристора простым языком, то он заключается во включении полупроводникового прибора посредством подачи импульса электрического тока непосредственно в цепь управления положительной полярности. На продолжительность переходного процесса существенно влияет характер производимой нагрузки, а также другие факторы:

  • скорость и амплитуда созданного импульса;
  • температура полупроводниковой конструкции;
  • передаваемое напряжение;
  • ток нагрузки.
Принцип работы тиристора простым языком

В цепи с тиристором при увеличении прямого напряжения не должно фиксироваться завышенных значений скорости нарастания. В противном случае может происходить непреднамеренное включение прибора без подачи сигнала. Однако крутизна производимого импульса не должна быть низкой.

Выключение элементов может происходить естественным или принудительным образом. В первом случае коммутация в системах переменного тока осуществляется в момент падения электрического тока до минимума. Что касается вариантов принудительного выключения, то оно может быть весьма разнообразным:

  1. Подключение специализированной цепи с наличием заряженного конденсатора вызывает возникновение разряда на проводящий элемент. Встречный поток снижает ток до нуля, поэтому прибор выключается.
  2. Подключение контура, вызывающего колебательный разряд, позволяет пропустить электричество через тиристор на встречу прямому току. При достижении равновесия происходит выключение.
  3. Переходный процесс может вызываться при оказании комплексной нагрузки. При наличии определенных параметров возникает колебательный характер, подразумевающий изменение полярности.
Тиристоры: принцип работы, характеристики

Функционирование в цепи переменного тока

Теперь следует рассмотреть принцип работы тиристора в цепи, которая пропускает переменный ток. При его внедрении можно производить включение и отключение электрических сетей с активной нагрузкой, а также осуществлять изменение среднего и текущего значений тока путем регулировки подачи сигнала.

Не новость даже для чайников – принцип работы тиристора заключается в пропускании электричества в одном направлении, поэтому в цепях с переменным током осуществляется встречно-параллельное включение. Значения могут варьироваться путем изменения самого момента подачи на приборы открывающих сигналов. Углы регулируются за счет системы управления.

  1. Фазовый метод регулировки с принудительной коммутацией предполагает применение специальных узлов.
  2. Широтно-импульсное управление подразумевает отсутствие сигнала в закрытом состоянии и его наличие в открытом положении, когда к нагрузке приложено определенное напряжение.
Тиристор: принцип работы в цепях

Режим обратного запирания

Рассказывая о принципе работы триодного тиристора, нельзя не отметить, что оно может работать в разных режимах. При обратном запирании непосредственно к аноду полупроводника приложено отрицательное напряжение по отношению к катодному контакту. Переходы при таком варианте смещены в противоположном направлении.

Существуют факторы, ограничивающие применение подобного режима. Первый из них – это лавинный пробой, а второй – прокол обедненной области. Это объясняется тем, что существенная часть напряжения снижается на одном из переходов. Возникает их смыкание или происходит пробой.

Режим прямого запирания

Принцип работы тиристора в режиме прямого запирания предполагает обратное смещение одного из переходов. Противоположные слои сдвинуты в прямом направлении. Основная часть приложенного напряжения снижается на единичном переходе. Через остальные слои в соприкасающиеся области инжектируются носители, позволяющие уменьшить сопротивление на проводящем элементе. Происходит увеличение проходящего тока. Падение напряжения уменьшается.

Тиристор: принцип работы для студентов

Увеличение прямого напряжения приводит к медленному росту электрического тока. В таком режиме полупроводник считается запертым, что связано с повышенным сопротивлением единичного перехода. При некотором показателе напряжения процесс начинает приобретать лавинообразный характер. Прибор переходит во включенное состояние, в нем устанавливается электрический ток, который зависит от источника и сопротивления цепи.

Двухтранзисторная модель

Для объяснения устройства и принципа работы тиристора в режиме прямого запирания применяется двухтранзисторная модель. Данный полупроводниковый прибор можно рассматривать как два совмещенных транзистора с противоположными выводами. Переход в центре используется в качестве коллектора дырок и электронов, которые инжектируются определенными переходами.

Соотношения не изменяются при протекании токов в противоположном направлении. При повышении коэффициента в замкнутой петле происходит лавинообразный процесс, подразумевающий увеличение тока непосредственно через структуру. Электрический ток ограничен лишь сопротивлением наружной цепи.

Чем различаются динисторы и тринисторы

Принципиальных отличий между характеристиками и принципом работы тиристоров нельзя найти. Однако открытие динистора производится при наличии определенного напряжения между двумя основными выводами. Оно зависит от типа используемого устройства. В случае с тринистором напряжение открытия удается снизить принудительным образом. Это можно сделать, если подать импульс электрического тока необходимой величины непосредственно на управляющий электрод. Тринисторы получили наибольшее распространение среди приборов из категории тиристоров.

Основные характеристики

При выборе тиристоров обращают внимание на определенные параметры:

  1. Напряжение включения позволяет перевести полупроводниковый прибор в рабочее состояние.
  2. Временной интервал задержки запуска и остановки изделия.
  3. Уровень обратного тока при максимальном значении обратного напряжения.
  4. Показатель общей рассеивающей мощности.
  5. Прямое напряжение при предельном токе анода.
  6. Пиковый ток электрода, обеспечивающего управление.
  7. Обратное напряжение в закрытом состоянии.
  8. Максимальный открытый ток в открытом положении.
Принцип работы управляемого тиристора

При выборе тиристора не следует забывать о предназначении прибора. На это непосредственное влияние оказывает временной интервал перехода в открытое или закрытое состояние. Как правило, период включения является более коротким, чем промежуток выключения.

Схемы с применением тиристоров

Тиристорные схемы подразделяются на четыре категории:

  1. Пороговые изделия используют возможности перехода полупроводников из одного положения в другое при наличии определенного напряжения. К таковым относятся генераторы колебаний и фазовые регуляторы нагрузки.
  2. Силовые ключи отличаются низкой мощностью. Ток рассеивается элементами в переключательных схемах в открытом состоянии. В закрытом положении электричество не пропускается.
  3. Коммутация постоянного напряжения вполне возможна при использовании приборов с большой мощностью. Есть несколько способов, позволяющих закрывать незапираемые элементы.
  4. Некоторые экспериментальные устройства работают с применением полупроводниковых приборов в переходных режимах, где имеются участки с отрицательным уровнем сопротивления.

В качестве заключения

Чаще всего рассказывают о принципах работы тиристоров для студентов специализированных училищ, которые готовят специалистов в области электротехники. Однако не помешает изучить информацию об устройстве и функционировании универсальных полупроводниковых приборов простым людям, проявляющим интерес к проектированию различных электрических схем.

Как работают тиристоры? | Тиристоры и транзисторы по сравнению

Крис Вудфорд. Последнее обновление: 11 апреля 2020 г.

Транзисторы

- это крошечные электронные компоненты который изменил мир: вы найдете их в все от калькуляторов и компьютеры для телефоны, радио и слуховые аппараты. Они удивительно универсальны, но это не значит, что они могут делать все. Хотя мы можем использовать их для включения крошечных электрических токов и выключен (это основной принцип работы компьютерной памяти), и превратить небольшие токи в несколько большие (вот как усилитель работает), они не очень полезны, когда дело доходит до обработки гораздо большие токи.Еще одним недостатком является то, что они выключаются в целом, как только ток переключения будет удален, что означает они не так полезны в устройствах, таких как сигналы тревоги, где вы хотите Схема, чтобы вызвать и остаться на неопределенное время. Для тех видов работ, мы можем обратиться к несколько похожему электронному компоненту под названием тиристор, имеющий общие черты с диоды, резисторы, и транзисторы. Триристоры достаточно просты для понимания, хотя большинство объяснений, которые вы найдете в Интернете, излишне сложный и часто запутанный за пределами веры.Так что это наш старт точка: давайте посмотрим, сможем ли мы дать ясный и простой взгляд на то, что тиристоры, как они работают, и какие вещи, для которых мы можем их использовать!

Artwork: Типичный тиристор выглядит как транзистор и работает в тесно связанный путь.

Что такое тиристоры?

Во-первых, давайте прибегнем к терминологии. Некоторые люди использовать термин кремниевый выпрямитель (SCR) взаимозаменяемо с «тиристором». На самом деле, кремний-контролируемый выпрямитель - это торговая марка, представленная General Electric опишите один конкретный вид тиристора, который он сделал.Есть различные другие виды тиристоров (в том числе называемые дьяки и триаки, которые предназначены для работы с переменным током), поэтому условия не являются полностью синонимы. Тем не менее, эта статья о хранении вещей просто, так что мы будем просто говорить о тиристорах в самом общем Термины и предполагают, что SCR это одно и то же. Мы будем называть их тиристорами повсюду.

Фото: тиристоры широко используются в электронных схемах управления питанием, подобных этой.

Три соединения

Так что же такое тиристор? Это электронное компонент с тремя выводами, называемыми анодом (положительный вывод), катод (отрицательный конец) и ворота. Это несколько аналогично три провода на транзисторе, которые вы помните, называются эмиттер, коллектор и база (для обычного транзистора) или исток, сток и затвор (в полевом транзисторе или полевом транзисторе). В обычном транзисторе действует один из трех выводов (базы) в качестве контроля, который регулирует, сколько тока течет между другими два отведенияТо же самое относится и к тиристору: ворота управляют ток, который течет между анодом и катодом. (Стоит отметить, что вы можете получить тристоры с двумя или четырьмя отведениями, а также с тремя отведениями. Но мы продолжаем Здесь все просто, поэтому мы просто поговорим о наиболее распространенном разнообразии.)

Транзисторы против тиристоров

Если транзистор и тиристор выполняют одну и ту же работу, какая разница между ними? С транзистором, когда маленький ток течет в базу, это делает больший ток между эмиттер и коллектор.Другими словами, он действует как переключатель и усилитель одновременно:

Как работает транзистор: небольшой ток, протекающий в базу, увеличивает ток между эмиттером и коллектором. Это транзистор n-p-n с красным цветом, обозначающим кремний n-типа, синим цветом, обозначающим p-тип, черными точками, представляющими электроны, и белыми точками, представляющими дыры.

Аналогичная вещь происходит внутри полевого транзистора, за исключением того, что мы прикладываем небольшое напряжение к затвору, чтобы произвести электрическое поле, которое помогает течению тока от источника к процедить.Если мы удалим небольшой ток у основания (или затвора), большой ток немедленно прекращает течь от эмиттера к коллектору (или от истока к стоку в полевом транзисторе).

Сейчас часто это не то, чего мы хотим. В что-то вроде цепи сигнализации нарушителя (где, возможно, нарушитель шаги на прижимной подушке и звон колоколов), мы хотим малый ток (активируется прижимной подушкой) для отключения большего ток (звон колоколов) и для большего тока, чтобы продолжать течь даже когда меньший ток прекращается (поэтому колокола все еще звонят, даже если наш злополучный злоумышленник осознает свою ошибку и отступает)В тиристоре это именно то, что происходит. Небольшой ток в воротах вызывает много больший ток между анодом и катодом. Но даже если мы тогда удалить ток затвора, больший ток продолжает течь из анод к катоду. Другими словами, тиристор остается («защелки») на и остается в этом состоянии, пока цепь не будет сброшена.

Где транзистор обычно имеет дело с крошечным электронным токи (в миллиамперах), тиристор может выдерживать реальные (электрические) силовые токи (обычно несколько сотен вольт и 5–10 ампер).Вот почему мы можем использовать их в таких вещах, как заводские выключатели питания, регуляторы скорости для электродвигателей, бытовые диммеры, выключатели зажигания автомобиля, сетевые фильтры и термостаты. Время переключения практически мгновенно (измеряется в микросекундах), и эта полезная функция, в сочетании с отсутствием движущихся частей и высокой надежностью, поэтому тиристоры часто используются как электронные (твердотельные) версии реле (электромагнитные выключатели).

Как работает тиристор?

Тиристоры

являются логическим продолжением диодов и транзисторы, поэтому давайте кратко резюмируем эти компоненты.Если вы не знакомы с полупроводниковой электроникой, у нас есть больше и более четкие объяснения того, как работают диоды и и как работают транзисторы, который вы могли бы прочитать в первую очередь.

Тиристор похож на два диода

Напомним, что диод состоит из двух слоев полупроводника (p-тип и n-тип), помещенные вместе, чтобы произвести соединение где происходят интересные вещи. Согласно тому, как вы подключили диод, ток будет либо течь через него, либо нет, что делает его электронный эквивалент улицы с односторонним движением.С положительной связью к p-типу (синий) и отрицательному соединению к n-типу (красный), диод смещение вперед, поэтому электроны (черные точки) и дыры (белые точки) движутся счастливо через соединение и нормальный ток течет:

Смещенный вперед диод: ток протекает через переход между p-типом (синий) и n-типом (красный), переносимый электронами (черные точки) и дырками (белые точки).

В противоположной конфигурации, с положительным подключением к n-типу и Отрицательный к р-типу, диод с обратным смещением: соединение становится огромной пропастью, которую электроны и дыры не могут пересечь и нет тока течет:

Диод с обратным смещением: при подключенном аккумуляторе «зона истощения» на стыке становится шире, поэтому ток не течет.

В транзисторе у нас есть три слоя полупроводника, расположенные попеременно (или p-n-p или n-p-n), давая два перекрестка, где могут происходить интересные вещи. (FET немного другой, с дополнительными слоями металла и оксида, но все же по существу, сэндвич n-p-n или p-n-p.) Тиристор - просто следующий шаг в последовательность: четыре слоя полупроводника, снова расположенные попеременно дайте нам p-n-p-n (или n-p-n-p, если вы поменяете местами) с тремя перекрестки между ними. Анод соединяется с внешним р-слоем, катод к внешнему n слою, а затвор к внутреннему р слой, как это:

Тиристор похож на два соединительных диода, соединенных вместе, но с дополнительным соединением с одним из внутренних слоев - «затвором»."

Вы можете видеть, что это напоминает два соединительных диода, соединенных последовательно, но с дополнительным соединением затвора внизу. Тиристор, как и диод, является выпрямителем: он ведет только в одном направлении. Вы не можете сделать тиристор, просто подключив два диода последовательно: дополнительное соединение затвора означает, что это еще не все. Если вы хорошо знакомы с электроникой, вы заметите сходство между тиристором и диодом Шокли (своего рода двойной диод с четыре чередующихся полупроводниковых слоя, изобретенных пионером транзисторов Уильямом Шокли в 1956 году).Тиристоры развились из транзисторной и диодной работы Шокли, который был далее развит Джуэллом Джеймсом Эберсом, который разработал двухтранзисторную модель, которую мы рассмотрим дальше.

Тиристор похож на два транзистора

Что менее очевидно, так это то, что четыре слоя работают как два транзисторы (н-р-н и р-н-р), которые соединены вместе, чтобы выход из одного формирует вход для другого. Ворота служат как своего рода «стартер» для их активации.

Тиристор также похож на два транзистора, соединенных вместе, поэтому выход каждого из них служит входом для другого.

Три состояния тиристора

Так как же это работает? Мы можем поместить его в три возможных состояния, во всех трех из которых оно либо полностью выключено, либо полностью включено, что означает, что это по сути двоичное цифровое устройство. Чтобы понять, как работают эти состояния, полезно помнить о диодах и транзисторах:

Передняя блокировка

Обычно, когда ток не поступает в затвор, тиристор отключается: ток не может течь из анод к катоду.Зачем? Думайте о тиристоре как о двух соединенных диодах все вместе. Верхний диод и нижний диод оба смещены вперед. Тем не менее, это означает, что соединение в центре смещено в обратном направлении, поэтому ток не может пройти весь путь сверху вниз. Это состояние называется вперед блокировки. Хотя это похоже на прямое смещение в обычном диоде, ток не течет.

обратная блокировка

Предположим, мы поменяли местами соединения анод / катод. Теперь вы, вероятно, можете видеть, что оба верхний и нижний диоды смещены в обратном направлении, поэтому ток все равно не проходит через тиристор.Это называется обратной блокировкой (и аналогично обратному смещению в простом диоде).

Прямое ведение

Третье состояние действительно интересное. Нам нужен анод, чтобы быть положительный и катод отрицательный. Затем, когда ток течет в затвор, он включает нижний транзистор, который включает верхний, который включает нижний и так далее. Каждый транзистор активирует другой. Мы можем думать об этом как о некой внутренней положительной обратной связи, в которой два транзистора продолжают подавать ток друг на друга пока они оба полностью не активируются, в этот момент ток может течь через них как от анода к катоду.Это состояние называется прямой проводкой, и это как Тиристор "защелкивается" (остается постоянно) включенным. Как только тиристор защёлкивается так, вы не можете отключить его, просто удалив ток в Ворота: в этот момент ток затвора не имеет значения - и вы должны прервать основной ток, протекающий от анода к катод, часто отключая питание всей цепи. Не следите за этим? Проверьте анимацию в поле ниже, которое, я надеюсь, прояснит.

Типы тиристоров

Несколько упрощенно, вот в чем суть тиристор работает.Есть множество вариаций, в том числе устройства выключения (GTO) (который может быть включен или выключен действием затвора), AGT (анодный затвор тиристора) устройства с затвором, идущим на внутренний слой n-типа рядом с анодом (вместо слоя p-типа рядом с катодом), фотоэлектрические тиристоры, в которых основание активируется светом, и всякие другие. Но все они работают примерно одинаково, с затвором, отключающим один транзистор, который затем отключает другой.

Узнать больше

На этом сайте

Вам могут понравиться эти другие статьи на нашем сайте, посвященные сходным темам:

Книги

Тиристорные книги

Не беспокойтесь, что эти книги "старые": в общем, физика полупроводников никогда не датируется.

  • Данные тиристорных устройств: Motorola, 1988. Подробный сборник технических данных и многое другое.
  • Тиристорная Физика Adolph Blicher, Springer, 1976. Подробный взгляд на физику твердого тела тиристоров. Вы можете прочитать весь текст онлайн, если вы «позаимствуете» книгу практически из интернет-архива.
  • 110 тиристорных проектов Р.М. Marston, Newnes, 1972. Огромная коллекция практических тиристорных схем, включая проекты по переключению питания, аварийные сигналы, схемы с временной задержкой, контроллеры ламп, контроллеры нагревателей и контроллеры двигателей.
  • Руководство по выпрямителю с кремниевым управлением от General Electric, 1964. Это исчерпывающее (на 400 страниц) руководство по собственной марке тиристоров GE.
Общие учебники

Статьи

  • Как Б. Джаянт Балига Трансформированные силовые полупроводники Дэвид Шнайдер. IEEE Spectrum, 27 апреля 2014 года. Празднование работы Б. Джаянта Балиги, лауреата Почетной медали IEEE 2014 года, по разработке тиристоров и других силовых полупроводников.
  • Попробуйте триак Чарльза Платта.Сделайте, 10 января 2014 года. Узнайте о триаке с помощью этого практического светодиодного проекта.
  • Кремниевый переключатель p-n-p-n и управляемый выпрямитель (тиристор). Автор - Ник Холоняк, мл. IEEE Transactions по силовой электронике, январь 2001 г., том 16, выпуск 1, стр. 8–16. Эта интересная статья (изобретатель светодиода) описывает историческое развитие тиристоров Уильяма Шокли, Джима Эберса и других.
  • Ранняя история силового полупроводника в GE: Музей полупроводников представляет раннюю историю кремниевого управляемого выпрямителя, как рассказал в устной истории один из его пионеров, Ф.В. "Билл" Гуцвиллер.

Патенты

,
Учебник по основам тиристора - Силовая электроника от А до Я

Введение:
Тиристор - это трехконтактное устройство с четырьмя слоями чередующихся материалов типа P и N (три соединения P-N). Три терминала - это Анод, Катод и Ворота.

  • Тиристор упоминается как кремниевый управляемый выпрямитель (SCR), так как он состоит из кремния и работает как управляемый выпрямитель.
  • Тиристор по своей природе является медленным коммутирующим устройством по сравнению с BJT или MOSFET из-за длительного срока службы несущей, используемого для низких потерь во включенном состоянии, и из-за большого количества накопленного заряда.
  • Поэтому он обычно используется на более низких частотах переключения.
  • Имеет большие токи обратного восстановления.

Типы тиристоров:

Однонаправленный тиристор

  • Тиристоры, которые работают только в прямом направлении, известны как однонаправленные тиристоры
  • Пример: SCR- Выпрямитель с кремниевым управлением Выпрямитель с регулируемым током
    Силикон
    LASR

    Двунаправленный тиристор:

    • Тиристоры, которые могут проводить как в прямом, так и в обратном направлении, известны как двунаправленные тиристоры
    • Пример: TRIAC - Переключатель переменного тока TRIode

    Инициирующие устройства:

        Генерация управляющего сигнала для переключения устройства из непроводящего в проводящее состояние называется пусковым устройством.
      • Пример: Diode AC Switch-DIAC,
        UJT - Однопереходный транзистор
        SUS - Кремниевый односторонний переключатель
        SBS - Кремниевый двухсторонний переключатель

      Символ:
      Символ тиристора содержит традиционный символ диода с клеммой затвора.

      Структура:

      Тиристор имеет уникальную четырехслойную конструкцию чередующихся областей P-типа и N-типа. Это дано ниже:
      SCR выглядит как два PNP-транзистора, соединенных последовательно.

      Это можно понять со ссылкой на рисунок выше.

      Работа и характеристика ВП тиристора:
      Работа SCR объясняется с помощью четырех режимов.

      1. прямой режим блокировки
      2. прямой проводящий режим
      3. обратный режим блокировки
      4. обратный проводящий режим

      прямой режим блокировки [V AK = + ve & V G = 0]

      • Когда на анод подается положительное напряжение по отношению к катоду, соединения J1 и J3 смещены в прямом направлении, а соединение J2 - в обратном направлении.
      • SCR находится в состоянии прямой блокировки. В это время сигнал Gate не применяется.
      • Слой обеднения сформирован в соединении J2, и ток не течет от анода к катоду.
      • Как показано в характеристике VI, через устройство протекает небольшая величина тока, называемая током прямой утечки .

      Прямой режим проводимости [V AK = + ve & V G = + ve]

      • Когда небольшое количество положительного напряжения приложено к клемме затвора, тогда как положительное напряжение приложено к аноду относительно к катоду, соединение J3 становится смещенным вперед.
      • Таким образом, SCR действует как замкнутый переключатель и проводит большое значение прямого тока с небольшим падением напряжения.
      • С применением стробирующего сигнала SCR перешел из состояния прямой блокировки в состояние прямой проводки. Он называется с фиксацией .
      • Без стробирующего сигнала SCR изменен с состояния прямой блокировки на состояние прямой проводки при напряжении пробоя (V fbd ) .
      • Когда значение сигнала затвора увеличивается, происходит фиксация при низких напряжениях V и , как указано на рисунке.
      • При наличии прямого тока (т.е. после включения тиристора подходящим напряжением затвора) он не отключится даже после снятия напряжения затвора. Тиристор отключится только тогда, когда прямой ток упадет ниже удерживающего тока.
      • Ток удержания определяется как минимальный ток, необходимый для удержания SCR в состоянии прямой проводимости.

      Режим обратной блокировки [V AK = -ve]

      • Когда на анод подается отрицательное напряжение по отношению к катоду, соединения J1 и J3 имеют обратное смещение, но соединение J2 имеет прямое смещение ,
      • SCR находится в состоянии обратной блокировки. то есть он действует как разомкнутый переключатель.
      • Как показано на рисунке, небольшое количество тока обратной утечки протекает через устройство.

      Режим обратной проводимости:

      • При дальнейшем увеличении обратного напряжения при напряжении обратного пробоя (V BR ) Лавинный пробой происходит на стыке J1 и J3.
      • SCR действует как замкнутый переключатель в обратном направлении.
      • Большой ток дает больше потерь в SCR, рассеивая в виде тепла, тем самым повреждая SCR.

      Характеристики переключения SCR объясняют потери при включении и выключении устройства, что является очень важным фактором, который следует учитывать при выборе устройства.

      Процесс включения тиристора называется триггерным. Нажмите здесь, чтобы узнать больше о различных методах запуска…
      Процесс выключения SCR известен как коммутация. Нажмите здесь, чтобы узнать больше о методах выключения SCR ...
      SCR должен работать в указанных пределах. Нажмите здесь, чтобы узнать больше о различных защитах SCR…

      Параметры тиристоров:
      Ток фиксации (I L ):
      Это минимальный ток анода, необходимый для переключения (защелкивания) SCR из состояния ВЫКЛ. В состояние ВКЛ. ,

      Ток удержания (I H ):
      Это минимальный ток анода, необходимый для удержания SCR во включенном состоянии.
      (ИЛИ)
      Это минимальный ток, ниже которого устройство переходит из состояния ВКЛ. В состояние ВЫКЛ.

      Пиковое обратное напряжение:
      Это максимальное напряжение, которое может быть подано на SCR в обратном смещенном состоянии.

      Пиковое обратное напряжение:
      Это максимальное напряжение, которое устройство может безопасно выдержать в выключенном состоянии.

      Напряжение в состоянии «включено»:
      Напряжение, которое появляется на устройстве во время его состояния «включено», называется напряжением в состоянии «включено».

      Скорость нарастания напряжения dv / dt:
      Скорость, с которой напряжение на устройстве повышается без запуска устройства, называется его скоростью нарастания напряжения.

      Номинальный ток:
      Токовая пропускная способность устройства известна как его текущий рейтинг.

      Преимущества SCR:

      • SCR с высоким напряжением и током доступны.
      • По состоянию потери в СКР снижаются.
      • Требуется очень небольшое количество привода затвора, так как SCR является регенеративным устройством.

      Недостатки SCR:

      • Ворота не контролируются после включения SCR.
      • Внешние цепи необходимы для выключения SCR.
      • Рабочие частоты очень низкие.
      • Снабберные цепи необходимы для защиты DV / DT.

      Применение SCR:

      • SCR используются для управляемых выпрямителей.
      • Регуляторы переменного тока, освещения и отопления.
      • Двигатель постоянного тока управляет большими блоками питания и электронными автоматическими выключателями.

      Спасибо за чтение….Пожалуйста, подпишитесь, чтобы получать обновления вашего почтового идентификатора…

      .
      Как работает тиристор / СКВ? Основные операции »Электроника Примечания

      Тиристор / SCR можно рассматривать как два транзистора вплотную, чтобы объяснить его работу и как она работает.


      Triac, Diac, SCR Учебное пособие включает в себя:
      Основы тиристора Структура тиристорного устройства Тиристорная операция Ворота выключить тиристор, гто Тиристорные характеристики Что такое триак Triac технические характеристики Обзор Diac


      При проектировании и использовании цепей тиристора или SCR помогает понять, как работает тиристор.

      По существу, работа тиристора / SCR может быть объяснена с помощью фиксирующего переключателя. После настройки током на затворе требуется, чтобы напряжение на катоде и аноде было снято до того, как он прекратит проводить.

      To explain how a thyristor works, its operation can be explained in terms of the equivalent circuit consisting of back to back transistors

      Тиристорная операция: основы

      При работе тиристор / СКВ имеет три состояния, в которых он может находиться в любой момент времени:

      • Обратная блокировка: В этом режиме или состоянии тиристор блокирует ток таким же образом, как и ток с обратным смещенным диодом.Тиристор / СКВ могут проводить только в одном направлении и блокировать в обратном направлении.
      • Прямое блокирование: В этом режиме или состоянии работа тиристора такова, что он блокирует прямую проводимость тока, которая обычно переносится диодом с прямым смещением. В этом состоянии тиристор / SCR не находится в состоянии «включения», поскольку затвор не срабатывает.
      • Прямая проводка: В этом режиме тиристор / SCR был запущен в проводимость током на затворе.Он останется проводящим независимо от состояния ворот. Ток нужно только приложить к воротам, чтобы запустить тиристор / SCR, и он останется проводящим. Устройство перестанет проводить, когда прямой ток упадет ниже порогового значения, известного как «ток удержания».

      Тиристор состоит из четырех полупроводниковых областей: P N P N. Внешняя P-область образует анод, а внешняя n-область образует катод, как показано ниже.

      Basic structure of a thyristor or SCR - silicon controlled rectifier showing junctions J1, J2, J3 Базовая структура тиристора / SCR

      Чтобы посмотреть, как работает тиристор, полезно использовать упрощенную эквивалентную схему.Он состоит из двух транзисторов, как показано ниже.

      Транзистор с эмиттером, подключенным к катоду тиристора, является устройством NPN, тогда как транзистор с эмиттером, подключенным к аноду SCR, представляет собой разновидность PNP. Затвор соединен с базой NPN-транзистора.

      Equivalent circuit of a thyristor / SCR Эквивалентная схема тиристора

      Такое расположение образует контур положительной обратной связи в тиристоре. Выход одного транзистора подается на вход второго.В свою очередь выход второго транзистора подается обратно на вход первого. В результате видно, что общее усиление тока устройства превышает единицу. Это означает, что когда ток начинает течь, он быстро накапливается, пока оба транзистора не будут полностью включены или насыщены.

      Когда на тиристор подается напряжение, ток не течет, потому что ни один из транзисторов не является проводящим. В результате нет полного пути через устройство. Если небольшой ток пропускается через электрод затвора, это включит «транзистор» TR2.Когда это происходит, это приводит к падению коллектора TR2 в направлении напряжения на эмиттере, то есть катоде всего устройства. Когда это произойдет, это приведет к току через базу TR1 и включит этот транзистор «вкл». Снова это теперь попытается тянуть напряжение на коллекторе TR1 к его напряжению эмиттера. Это заставит ток течь в эмиттере TR2, вызывая поддержание его «включенного» состояния. Таким образом, для включения тиристора требуется только небольшой импульс запуска на затворе.После включения тиристор можно отключить только путем снятия напряжения питания.

      Работа тиристора, рассматриваемая таким образом, относительно проста для понимания.

      Больше электронных компонентов:
      Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители РЧ разъемы Клапаны / Трубы батареи Выключатели Реле
      Вернуться в меню компонентов., ,

      .

      Тиристор | электроника | Britannica

      Тиристор , любой из нескольких типов транзисторов, имеющий четыре полупроводниковых слоя и, следовательно, три соединения p - n ; тиристор является твердотельным аналогом тиратронной вакуумной трубки, и его название происходит от сочетания двух слов тиратрон и транзистор . Распространенной формой тиристора является управляемый кремнием выпрямитель (SCR), используемый для преобразования переменного тока в постоянный ток (DC) и широко используемый в качестве компонента устройств, которые контролируют скорости двигателя, уровни жидкости, температуры и давления.

      Британика Викторина

      Гаджеты и технологии: факты или вымысел?

      Цифровые камеры используют пленку.

      Тиристоры представляют собой семейство полупроводниковых устройств, которые обладают бистабильными характеристиками и могут переключаться между состоянием с высоким сопротивлением, низким током «выключено» и состоянием с низким сопротивлением, сильным током «включено».Работа тиристоров тесно связана с биполярным транзистором, в котором электроны и дырки участвуют в процессе проводимости ( см. полупроводник: электронные свойства). Из-за их двух стабильных состояний (вкл. И выкл.) И низкого рассеивания мощности в этих состояниях тиристоры используются в приложениях, начиная от регулирования скорости в бытовых приборах до переключения и преобразования мощности в высоковольтных линиях электропередачи. Доступно более 40 000 типов тиристоров с номинальным током от нескольких миллиампер до более 5000 ампер и номинальным напряжением до 900 000 вольт.

Отправить ответ

avatar
  Подписаться  
Уведомление о