Токи при параллельном соединении: Параллельное соединение — урок. Физика, 8 класс.

Соединение элементов в цепи переменного напряжения и тока

Всем доброго времени суток! В прошлой статье я рассказал о воздействии переменного напряжения на элементы цепи (сопротивление, индуктивность и ёмкость) и воздействие этих элементов на напряжение, ток и мощность. В данной статье я расскажу о последовательном и параллельном соединении элементов цепи и воздействии на такие цепи переменного напряжения и тока.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Последовательное соединение элементов цепи при переменном напряжении

Начнём с последовательного соединения сопротивления R, индуктивности L и ёмкости C и рассмотрим воздействие на неё переменного напряжения с частотой ω.


Последовательное соединение элементов цепи.

В данной цепи входное переменное напряжение U в соответствии со вторым законом Кирхгофа будет равно алгебраической сумме переменных напряжений на отдельных элементах

где UR, UL, UC – напряжение на элементах цепи, сопротивлении R, индуктивности L и ёмкости С, соответственно,

Im­ – амплитудное значение переменного тока.

Графическое изображение напряжений и токов на последовательно соединённых элементах цепи представлено ниже


Напряжения и токи при последовательном соединении.

Итоговое выражение является тригонометрической формой записи второго закона Кирхгофа для мгновенных напряжений и его можно переписать в виде

где R – активное сопротивление,

Х – реактивное сопротивление.

Значение активного сопротивления R всегда только положительно, а реактивное сопротивление Х может принимать, как положительное значение Х > 0, тогда оно имеет индуктивный характер, так и отрицательное значение X < 0, в этом случае реактивное сопротивление имеет ёмкостный характер.

В случае же нулевого значения реактивного сопротивления, имеет место резонанс напряжений

В этом случае сопротивление цепи представлено только активной нагрузкой R, а следовательно сдвиг фаз между напряжением и током будет нулевым.

При расчётах нас интересует не столько ток и напряжение на отдельных элементах, сколько ток и напряжение всей цепи. Для этого продолжим преобразовывать напряжение

где Z – полное сопротивление цепи,

ψ – разность фаз между напряжением и током.

Таким образом, амплитудное значение напряжения Um и амплитудное значение тока Im связаны между собой следующим соотношением

где Um­ – амплитудное значение переменного напряжения,

Im­ – амплитудное значение переменного тока,

Z – полное сопротивление цепи.

Параллельное соединение элементов цепи при переменном напряжении

Теперь рассмотрим параллельное соединение элементов цепи (сопротивления, индуктивности и ёмкости) и прохождение по ним переменного тока.


Параллельно соединение элементов цепи.

Подадим на вход такой цепи переменное напряжение U, тогда электрический ток в цепи I, в соответствии с первым законом Кирхгофа, будет равняться алгебраической суммы токов проходящей через элементы цепи

IR, IL, IC – токи в элементах цепи, сопротивлении R, индуктивности L и ёмкости С, соответственно,

Um­ – амплитудное значение переменного тока.

Графическое изображение напряжений и токов в параллельно соединённых элементах цепи представлено ниже


Напряжение и токи при параллельном соединении.

Аналогично второму закону Кирхгофа, для первого закона также существует тригонометрическая форма записи, которая соответствует получившемуся выражению. Выполним ещё одно преобразование данного выражения

где g – активная проводимость, b – реактивная проводимость.

Как видно из формулы, реактивная проводимость может быть положительной b > 0, тогда она имеет индуктивный характер, а может быть отрицательной b < 0, тогда реактивная проводимость имеет ёмкостный характер. А активная проводимость может быть только положительной.

Отдельный случай представляет собой реактивная проводимость равная нулю, то есть в этом случае проводимость индуктивности и ёмкости одинаковы

Такой случай называется резонансом токов, в этом случае общая проводимость будет определяться только активной проводимостью, а сдвиг фаз между напряжением и током в цепи будет нулевым.

Определим зависимость между напряжением и силой тока в параллельной цепи

где y – полная проводимость,

ψ – разность фаз между напряжением и током в цепи.

Тогда зависимость между напряжением и током в цепи с параллельно соединёнными элементами будет иметь вид

где Um­ – амплитудное значение переменного напряжения,

Im­ – амплитудное значение переменного тока,

y – полная проводимость цепи.

Чему равна мощность в цепи при синусоидальном напряжении?

Мощность является основной энергетической характеристикой, поэтому рассмотрим мощность в цепи переменного напряжения. Мгновенная мощность в цепи будет равна

Как видно из получившегося выражения, мгновенная мощность состоит из постоянной составляющей UIcos(φ) и переменной составляющей UIcos(2ωt – φ), изменяющейся с удвоенной частотой по сравнению с частотой напряжения (тока).

Теперь определим среднее значение мощности за период или активную мощность, которая будет равна

где U – действующее значение переменного напряжения,

I – действующее значение переменного тока,

cos(φ) – коэффициент мощности.

Таким образом, активная мощность в цепи переменного напряжения (тока), равна произведению действующих значений напряжения и тока на коэффициент мощности.

При разработке и проектировании цепей переменного напряжения стараются сделать коэффициент мощности как можно больше, в идеале должен быть равен единице cos(φ) = 1. При небольших значениях данного коэффициента для создания в цепи необходимой мощности Р необходимо повышать величину напряжения U (тока I).

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ

Основы теории цепей

Основы теории цепей
  

Основы теории цепей. Учебник для вузов. Изд.4-е, переработанное. М., «Энергия», 1975. — 752 с.

В книге излагаются общие методы анализа и синтеза и описание свойств линейных электрических цепей с сосредоточенными и распределенными параметрами при постоянных, переменных, периодических и переходных токах и напряжениях Рассматриваются свойства и методы расчета установившихся и переходных процессов в нелинейных электрических и магнитных цепях постоянного и переменного тока Все положения теории иллюстрируются практическими примерами.

Третье издание книги выпущено в 1965 г.

Книга является учебником для студентов электротехнических специальностей вузов.



Оглавление

ПРЕДИСЛОВИЕ К ЧЕТВЕРТОМУ ИЗДАНИЮ
ВВЕДЕНИЕ
Раздел первый. ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С СОСРЕДОТОЧЕННЫМИ ПАРАМЕТРАМИ
1-1. Элементы электрических цепей и электрических схем
1-2. Эквивалентные схемы для источников энергии
1-3. Закон Ома для участка цепи с э. д. с.
1-4. Распределение потенциала вдоль неразветвленной электрической цепи
1-5. Баланс мощностей для простейшей неразветвленной цепи
1-6. Применение законов Кирхгофа для расчета разветвленных цепей
1-7. Метод узловых потенциалов
1-8. Метод контурных токов
1-9. Уравнения состояния цепи в матричной форме
1-10. Преобразование линейных электрических схем
Глава вторая. ОСНОВНЫЕ СВОЙСТВА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПРИ ПОСТОЯННЫХ ТОКАХ И НАПРЯЖЕНИЯХ
2-2. Свойство взаимности
2-3. Входные и взаимные проводимости и сопротивления ветвей; коэффициенты передачи напряжений и токов
2-4. Применение топологических методов для расчета цепей
2-5. Топологические формулы и правила для определения передачи электрической цепи
2-6. Теорема о компенсации
2-7. Линейные соотношения между напряжениями и токами
2-8. Теорема о взаимных приращениях токов и напряжений
2-9. Общие замечания о двухполюсниках
2-10. Теорема об активном двухполюснике и ее применение для расчета разветвленных цепей
2-11. Передача энергии от активного двухполюсника к пассивному
Глава третья. ОСНОВНЫЕ ПОНЯТИЯ О ЦЕПЯХ СИНУСОИДАЛЬНОГО ТОКА
3-2. Понятие о генераторах переменного тока
3-3. Синусоидальный ток
3-4. Действующие ток, э. д. с. и напряжение
3-5. Изображение синусоидальных функций времени векторами и комплексными числами
3-6. Сложение синусоидальных функций времени
3-7. Электрическая цепь и ее схема
3-8. Ток и напряжения при последовательном соединении сопротивления, Индуктивности и емкости
3-9. Сопротивления
3-10. Разность фаз напряжения и тока
3-11. Напряжение и токи при параллельном соединении сопротивления, индуктивности и емкости
3-12. Проводимости
3-13. Пассивный двухполюсник
3-14. Мощности
3-15. Мощности в сопротивлении, индуктивности и емкости
3-16. Баланс мощностей
3-17. Знаки мощностей и направление передачи энергии
3-18. Определение параметров пассивного двухполюсника при помощи амперметра, вольтметра и ваттметра
3-19. Условия передачи максимальной мощности от источника энергии к приемнику
3-20. Понятие о поверхностном эффекте и эффекте близости
3-21. Параметры и эквивалентные схемы конденсаторов
3-22. Параметры и эквивалентные схемы индуктивных катушек и резисторов
Глава четвертая. РАСЧЕТ ЦЕПЕЙ ПРИ СИНУСОИДАЛЬНЫХ ТОКАХ
4-1. О применимости методов расчета цепей постоянного тока к расчетам цепей синусоидального тока
4-2. Последовательное соединение приемников
4-3. Параллельное соединение приемников
4-4. Смешанное соединение приемников
4-5. Сложные разветвленные цепи
4-6. Топографические диаграммы
4-7. Дуальность электрических цепей
4-8. Сигнальные графы и их применение для расчета цепей
Глава пятая. РЕЗОНАНС В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ
5-2. Частотные характеристики неразветвленной цепи
5-3. Резонанс в цепи с двумя параллельными ветвями
5-4. Частотные характеристики параллельного контура
5-5. Понятие о резонансе в сложных цепях
Глава шестая. ЦЕПИ С ВЗАИМНОЙ ИНДУКТИВНОСТЬЮ
6-2. Электродвижущая сила взаимной индукции
6-3. Последовательное соединение индуктивно связанных элементов цепи
6-4. Параллельное соединение индуктивно связанных элементов цепи
6-5. Расчеты разветвленных цепей при наличии взаимной индуктивности
6-6. Эквивалентная замена индуктивных связей
6-7. Передача энергии между индуктивно связанными элементами цепи
6-8. Трансформатор без стального сердечника (воздушный трансформатор)
Глава седьмая. КРУГОВЫЕ ДИАГРАММЫ
7-1. Комплексные уравнения прямой и окружности
7-2. Круговые диаграммы для неразветвленной цепи и для активного двухполюсника
7-3. Круговые диаграммы для любой разветвленной цепи
Глава восьмая. МНОГОПОЛЮСНИКИ И ЧЕТЫРЕХПОЛЮСНИКИ ПРИ СИНУСОИДАЛЬНЫХ ТОКАХ И НАПРЯЖЕНИЯХ
8-1. Четырехполюсники и их основные уравнения
8-2. Определение коэффициентов четырехполюсников
8-3. Режим четырехполюсника при нагрузке
8-4. Эквивалентные схемы четырехполюсников
8-5. Основные уравнения и эквивалентные схемы для активного четырехполюсника
8-6. Идеальный трансформатор как четырехполюсник
8-7. Эквивалентные схемы с идеальными трансформаторами для четырехполюсника
8-8. Эквивалентные схемы трансформатора со стальным магнитопроводом
8-9. Расчеты электрических цепей с трансформаторами
8-10. Графы пассивных четырехполюсников и их простейшие соединения
Глава девятая. ЦЕПИ С ЭЛЕКТРОННЫМИ И ПОЛУПРОВОДНИКОВЫМИ ПРИБОРАМИ В ЛИНЕЙНОМ РЕЖИМЕ
9-2. Эквивалентные схемы лампового триода
9-3. Транзисторы (полупроводниковые триоды)
9-4. Эквивалентные схемы транзисторов
9-5. Простейшие электрические цепи с невзаимными элементами и их направленные графы
Глава десятая. ТРЕХФАЗНЫЕ ЦЕПИ
10-2. Соединения звездой и многоугольником
10-3. Симметричный режим трехфазной цепи
10-4. Некоторые свойства трехфазных цепей с различными схемами соединений
10-5. Расчет симметричных режимов трехфазных цепей
10-6. Расчет несимметричных режимов трехфазных цепей со статической нагрузкой
10-7. Напряжения на фазах приемника в некоторых частных случаях
10-8. Эквивалентные схемы трехфазных линий
10-9. Измерение мощности в трехфазных цепях
10-10. Вращающееся магнитное поле
10-11. Принципы действия асинхронного и синхронного двигателей
Глава одиннадцатая. МЕТОД СИММЕТРИЧНЫХ СОСТАВЛЯЮЩИХ
11-2. Некоторые свойства трехфазных цепей в отношении симметричных составляющих токов и напряжений
11-3. Сопротивления симметричной трехфазной цепи для токов различных последовательностей
11-4. Определение токов в симметричной цепи
11-5. Симметричные составляющие напряжений и токов в несимметричной трехфазной цепи
11-6. Расчет цепи с несимметричной нагрузкой
11-7. Расчет цепи с несимметричным участком в линии
Глава двенадцатая. НЕСИНУСОИДАЛЬНЫЕ ТОКИ
12-2. Разложение периодической несинусоидальной кривой в тригонометрический ряд
12-3. Максимальные, действующие и средние значения несинусоидальных периодических э. д. с., напряжений и токов
12-4. Коэффициенты, характеризующие форму несинусоидальных периодических кривых
12-5. Несинусоидальные кривые с периодической огибающей
12-6. Действующие значения э. д. с., напряжений и токов с периодическими огибающими
12-7. Расчет цепей с несинусоидальными периодическими э. д. с. и токами
12-8. Резонанс при несинусоидальных э. д. с. и токах
12-9. Мощность периодических несинусоидальных токов
12-10. Высшие гармоники в трехфазных цепях
Глава тринадцатая. КЛАССИЧЕСКИЙ МЕТОД РАСЧЕТА ПЕРЕХОДНЫХ ПРОЦЕССОВ
13-2. Переходный, принужденный и свободный процессы
13-3. Короткое замыкание цепи r, L
13-4. Включение цепи r, L на постоянное напряжение
13-5. Включение цепи r, L на синусоидальное напряжение
13-6. Короткое замыкание цепи r, С
13-7. Включение цепи r, С на постоянное напряжение
13-8. Включение цепи r, С на синусоидальное напряжение
13-9. Переходные процессы в неразветвленной цепи r, С
13-10. Апериодический разряд конденсатора
13-11. Предельный случай апериодического разряда конденсатора
13-12. Периодический (колебательный) разряд конденсатора
13-13. Включение цепи r, С на постоянное напряжение
13-14. Общий случай расчета переходных процессов классическим методом
13-15. Включение пассивного двухполюсника на непрерывно изменяющееся напряжение (формула или интеграл Дюамеля)
13-16. Включение пассивного двухполюсника на напряжение любой формы
13-17. Временная и импульсная переходные характеристики
13-18. Запись теоремы свертки при помощи импульсной переходной характеристики
13-19. Переходные процессы при скачках токов в индуктивностях и напряжений на конденсаторах
13-20. Определение переходного процесса и установившегося режима при воздействии периодических импульсов напряжения или тока
Глава четырнадцатая. ОПЕРАТОРНЫЙ МЕТОД РАСЧЕТА ПЕРЕХОДНЫХ ПРОЦЕССОВ
14-2. Законы Ома и Кирхгофа в операторной форме
14-3. Эквивалентные операторные схемы
14-4. Переходные процессы в цепях с взаимной индуктивностью
14-5. Сведение расчетов переходных процессов к нулевым начальным условиям
14-6. Определение свободных токов по их изображениям
14-7. Формулы включения
14-8. Расчет переходных процессов методом переменных состояния
14-9. Определение принужденного режима цепи при воздействии на нее периодического несинусоидального напряжения
Глава пятнадцатая. ЧАСТОТНЫЙ МЕТОД РАСЧЕТА ПЕРЕХОДНЫХ ПРОЦЕССОВ
15-2. Законы Ома и Кирхгофа и эквивалентные схемы для частотных спектров
15-3. Приближенный метод определения оригинала по вещественной частотной характеристике (метод трапеций)
15-4. О переходе от преобразований Фурье к преобразованиям Лапласа
15-5. Сравнение различных методов расчета переходных процессов в линейных электрических цепях
Глава шестнадцатая. ЦЕПНЫЕ СХЕМЫ И ЧАСТОТНЫЕ ЭЛЕКТРИЧЕСКИЕ ФИЛЬТРЫ
16-2. Характеристическое сопротивление и постоянная передачи симметричного четырехполюсника
16-3. Вносимая и рабочая постоянные передачи
16-4. Цепные схемы
16-5. Частотные электрические фильтры
16-6. Низкочастотные фильтры
16-8. Полосные фильтры
16-11. Г-образный фильтр как пример несимметричного фильтра
16-12. Безындукционные (или r, C) фильтры
Глава семнадцатая. СИНТЕЗ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
17-2. Передаточная функция четырехполюсника. Цепи минимальной фазы
17-3. Входные функции цепей. Положительные вещественные функции
17-4. Реактивные двухполюсники
17-5. Частотные характеристики реактивных двухполюсников
17-6. Синтез реактивных двухполюсников. Метод Фостера
17-7. Синтез реактивных двухполюсников. Метод Кауэра
17-8. Синтез двухполюсников с потерями. Метод Фостера
17-9. Синтез двухполюсников с потерями. Метод Кауэра
17-10. Понятие о синтезе четырехполюсников
Раздел второй. ЛИНЕЙНЫЕ ЦЕПИ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ
Глава восемнадцатая. ГАРМОНИЧЕСКИЕ ПРОЦЕССЫ В ЦЕПЯХ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ
18-2. Уравнения однородной линии
18-3. Установившийся режим в однородной линии
18-4. Уравнения однородной линии с гиперболическими функциями
18-5. Характеристики однородной линии
18-6. Входное сопротивление линии
18-7. Коэффициент отражения волны
18-8. Согласованная нагрузка линии
18-9. Линия без искажений
18-10. Холостой ход, короткое замыкание и нагрузочный режим линии с потерями
18-11. Линии без потерь
18-12. Стоячие волны
18-13. Линия как четырехполюсник
Глава девятнадцатая. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЦЕПЯХ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ
19-2. Общее решение уравнений однородной линии
19-3. Возникновение волн с прямоугольным фронтом
19-4. Общие случаи нахождения волн, возникающих при переключениях
19-5. Отражение волны с прямоугольным фронтом от конца линии
19-6. Общий метод определения отраженных волн
19-7. Качественное рассмотрение переходных процессов в линиях, содержащих сосредоточенные емкости и индуктивности
19-8. Многократные отражения волн с прямоугольным фронтом от активного сопротивления
19-9. Блуждающие волны
Раздел III. НЕЛИНЕЙНЫЕ ЦЕПИ
Глава двадцатая. НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПРИ ПОСТОЯННЫХ ТОКАХ И НАПРЯЖЕНИЯХ
20-2. Графический метод расчета неразветвленных цепей с нелинейными элементами
20-3. Графический метод расчета цепей с параллельным соединением нелинейных элементов
20-4. Графический метод расчета цепей со смешанным соединением нелинейных и линейных элементов
20-5. Применение эквивалентных схем с источниками э. д. с. для исследования режима нелинейных цепей
20-6. Вольт-амперные характеристики нелинейных активных двухполюсников
20-7. Примеры расчета разветвленных электрических цепей с нелинейными элементами
20-8. Применение теории активных двухполюсника, четырехполюсника и шестиполюсника для расчета цепей с линейными и нелинейными элементами
20-9. Расчет разветвленных нелинейных цепей итерационным методом (методом последовательных приближений)
Глава двадцать первая. МАГНИТНЫЕ ЦЕПИ ПРИ ПОСТОЯННЫХ ТОКАХ
21-2. Расчет неразветвленных магнитных цепей
21-3. Расчет разветвленных магнитных цепей
21-4. Расчет магнитной цепи кольцевого постоянного магнита с воздушным зазором
21-5. Расчет неразветвленной неоднородной магнитной цепи с постоянным магнитом
Глава двадцать вторая. ОБЩАЯ ХАРАКТЕРИСТИКА НЕЛИНЕЙНЫХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА И МЕТОДОВ ИХ РАСЧЕТА
22-1. Нелинейные двухполюсники и четырехполюсники при переменных токах
22-2. Определение рабочих точек на характеристиках нелинейных двухполюсников и четырехполюсников
22-3. Явления в нелинейных цепях переменного тока
22-4. Методы расчета нелинейных цепей переменного тока
Глава двадцать третья. НЕЛИНЕЙНЫЕ ЦЕПИ С ИСТОЧНИКАМИ Э. Д. С. И ТОКА ОДИНАКОВОЙ ЧАСТОТЫ
23-2. Форма кривой тока в цепи с вентилями
23-3. Простейшие выпрямители
23-4. Формы кривых тока и напряжения в цепях с нелинейными реактивными сопротивлениями
23-5. Утроители частоты
23-6. Формы кривых тока и напряжения в цепях с терморезисторами
23-7. Замена реальных нелинейных элементов условно-нелинейными
23-8. Учет реальных свойств стальных магнитопроводов
23-9. Расчет тока в катушке со стальным магнитопроводом
23-10. Понятие о расчете условно-нелинейных магнитных цепей
23-11. Явление феррорезонанса
23-12. Стабилизаторы напряжения
Глава двадцать четвертая. НЕЛИНЕЙНЫЕ ЦЕПИ С ИСТОЧНИКАМИ Э. Д. С. И ТОКА РАЗЛИЧНЫХ ЧАСТОТ
24-1. Общая характеристика нелинейных цепей с источниками э. д. с. различных частот
24-2. Вентили в цепях с постоянными и переменными э. д. с.
24-3. Управляемые вентили в простейших выпрямителях и преобразователях постоянного тока в переменный
24-4. Катушки со стальными магнитопроводами в цепях с постоянными и переменными э. д. с.
24-5. Удвоитель частоты
24-6. Метод гармонического баланса
24-7. Влияние постоянной э. д. с. на переменную составляющую тока в цепях с нелинейными безынерционными сопротивлениядли
24-8. Принцип получения модулированных колебаний
24-9. Влияние постоянной составляющей на переменную в цепях с нелинейными индуктивностями
24-10. Магнитные усилители мощности
Глава двадцать пятая. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В НЕЛИНЕЙНЫХ ЦЕПЯХ
25-2. Включение катушки со стальным магнитопроводом на постоянное напряжение
25-3. Включение катушки со стальным магнитопроводом на синусоидальное напряжение
25-4. Импульсное воздействие в цепях с неоднозначными нелинейностями
25-5. Понятие о простейших запоминающих устройствах
25-6. Изображение переходных процессов на фазовой плоскости
25-7. Колебательный разряд емкости через нелинейную индуктивность
Глава двадцать шестая. АВТОКОЛЕБАНИЯ
26-1. Нелинейные резисторы со спадающим участком характеристики
26-2. Понятие об устойчивости режима в цепи с нелинейными резисторами
26-3. Релаксационные колебания в цепи с отрицательным сопротивлением
26-4. Близкие к синусоидальным колебания в цепи с отрицательным сопротивлением
26-5. Фазовые траектории процессов в цепи с отрицательным сопротивлением
26-6. Фазовые траектории процессов в генераторе синусоидальных колебаний
26-7. Определение амплитуды автоколебаний методом гармонического баланса
Приложение 1. Разложение периодических функций в тригонометрический ряд
Приложение 2. Таблица оригиналов и изображений (по Лапласу)
Приложение 3. Таблица функций и их частных спектров
Приложение 4. Таблица функций для трапеций
СПИСОК ЛИТЕРАТУРЫ

Параллельные цепи постоянного тока — цепи постоянного тока

Цепи постоянного тока

Параллельная цепь определяется как цепь, имеющая более одного путь, подключенный к общему источнику напряжения. Таким образом, параллельные цепи должны содержать два или более сопротивлений, не соединенных последовательно. Пример базовой параллельной схемы показан на рисунке ниже.

Пример базовой параллельной схемы.

Начните с источника напряжения ( В с ) и проследите по часовой стрелке вокруг схема. Можно выделить два полных и отдельных пути, в которых ток может течь. Прослеживается один путь от источника через сопротивление R 1 и обратно к источнику. Другой путь – от исток, через сопротивление R 2 , и обратно к истоку.

Напряжение в параллельной цепи

Вы видели, что напряжение источника в последовательной цепи делится на пропорционально каждому резистору в цепи. В параллельной цепи, одинаковое напряжение присутствует в каждой ветви. (Отделение – это участок цепь, которая имеет полный путь для тока.) На рисунке выше это напряжение равно приложенному напряжению ( В с ). Это может быть выражено в виде уравнения:

Измерения напряжения на резисторах параллельной цепи, как показано на рисунке ниже, проверьте это уравнение. Каждый метр показывает одинаковая величина напряжения. Обратите внимание, что напряжение на каждом резистор соответствует приложенному напряжению.

Сравнение напряжения в параллельной цепи.

Пример: Предположим, что ток через резистор параллельной цепи, как известно, составляет 4,5 мА, а значение резистора составляет 30 кОм. Определить напряжение источника. Схема показана на рисунке ниже.

Пример проблемы с параллельным подключением.

Дано: R 2 = 30 кОм, I R2 = 4,5 мА

Найти: В R2 = ?, В с = ?

Решение: Выберите правильное уравнение:

Замените известные значения:

Так как напряжение источника равно напряжению ответвления:

Ток в параллельной цепи

Закон Ома гласит, что сила тока в цепи обратно пропорциональна сопротивление цепи. Этот факт справедлив как для последовательных, так и для параллельных цепей.

В последовательной цепи ток проходит по одному пути. Сумма текущих определяется полным сопротивлением цепи и приложенным напряжением. В параллельной цепи ток источника делится между доступные пути .

Поведение тока в параллельных цепях будет показано серией иллюстрации на примерах цепей с разными значениями сопротивления при заданном значении приложенного напряжения.

Анализ тока в параллельной цепи.

В части (A) рисунка выше показана базовая последовательная схема. Здесь общий ток должен проходить через единственный резистор. Величину тока можно определить.

Данный:

В с = 50 В, Ч 1 = 10 Ом

Решение:

Часть (B) рисунка выше показывает тот же резистор ( R 1 ) с второй резистор ( R 2 ) равного значения, соединенные параллельно через источник напряжения. При применении закона Ома ток через каждый резистор оказывается таким же, как ток через одиночный резистор в части (A).

Данный:

В с = 50 В, R 1 = 10 Ом, R 2 = 10 Ом

Решение:

Очевидно, что если через каждую из двух цепей протекает ток силой 5 ампер. резисторы, должно быть общий ток 10 ампер, потребляемый от источник.

Общий ток 10 А, как показано на рисунке выше (часть B), оставляет положительный полюс аккумулятора и течет к точке b . С точки b — точка соединения двух резисторов, она называется развязка . На переходе b общий ток делится на два токи по 5 ампер каждый. Эти два тока протекают через свои соответствующие резисторы и воссоединиться на стыке и . Тогда полный ток течет от соединение и обратно к отрицательной клемме источника. Источник обеспечивает общий ток 10 А, и каждый из двух одинаковых резисторов несет половина полного тока.

Каждый отдельный путь тока в цепи на рисунке выше (часть B) называется филиалом . Каждая ветвь несет ток, равный часть общего тока. Две или более ветвей образуют сеть .

Из предыдущего объяснения характеристики тока в параллельном цепь можно выразить с помощью следующего общего уравнения:

Сравните часть (A) рисунка ниже с частью (B) схемы на рисунке. выше. Обратите внимание, что удвоение значения резистора второй ветви ( R 2 ) не влияет на ток в первом ветвь ( I 1 ), но уменьшает ток второй ветви ( I 2 ) до половины первоначальной стоимости. Общая схема ток падает до значения, равного сумме токов ветвей. Эти факты проверяются следующими уравнениями.

Поведение тока в параллельных цепях.

Данный:

В с = 50 В, R 1 = 10 Ом, R 2 = 20 Ом

Решение:

Величина протекающего тока в ответвленных цепях и общий ток в схема, показанная на рисунке выше (часть B), определяются следующие вычисления.

Данный:

В с = 50 В, R 1 = 10 Ом, R 2 = 10 Ом, R 3 = 10 Ом

Решение:

Обратите внимание, что сумма омических значений в каждой цепи, показанной на рисунке выше равно (30 Ом), и что приложенное напряжение такое же (50 В). Однако общий ток в части (B) (15 А) в два раза больше, чем в части (A). (7,5 А). Таким образом, очевидно, что способ, которым резисторы включенных в цепь, а также их действительные омические значения влияют на общее текущий.

Разделение тока в параллельной сети происходит по определенной схеме. Эта закономерность описывается Действующий закон Кирхгофа.

Параллельные цепи и применение закона Ома

В параллельных цепях разность напряжений на всех электрических компонентах одинакова. Это означает, что компонент использует одни и те же электрические узлы. Общий ток цепи равен сумме токов всех отдельных ветвей.

В этой статье мы обсудим параллельные соединения элементов схемы, а также напряжение, ток и сопротивление параллельных цепей. Основные характеристики параллельных цепей по отношению к напряжению, току и сопротивлению заключаются в следующем.

Напряжение

В параллельной цепи напряжение на всех электрических компонентах одинаково.

Ток

Ток, потребляемый электрическими компонентами, может быть одинаковым или неравным в зависимости от значения сопротивления цепи. Предположим, что два сопротивления равного сопротивления, соединенные параллельно, потребляют одинаковый ток, потому что напряжение на узлах равного сопротивления одинаково. Общий ток цепи можно найти, сложив отдельные токи, потребляемые каждым сопротивлением. Таким образом, общий электрический ток представляет собой сумму сопротивлений отдельных ветвей.

Сопротивление

Общее или эквивалентное сопротивление параллельной цепи меньше сопротивлений отдельных ответвлений. Например, если три сопротивления номиналом 5, 10 и 15 Ом соединены параллельно, то общее сопротивление цепи будет меньше 5 Ом.

Теперь мы обсудим три вышеупомянутых принципа, используя параллельную схему на рис. 1. Схема состоит из четырех сопротивлений, соединенных в параллельную комбинацию, и батареи.

Напряжение в параллельной цепи

Первый принцип параллельных цепей заключается в том, что напряжение одинаково на всех компонентах. Когда компоненты соединены в параллельной комбинации, существует два набора электрически общих точек, и если мы измеряем напряжение между набором общих точек или узлов, напряжение всегда будет одинаковым.

Теперь, если мы обратимся к рисунку 1, узлы 1,2,3,4 и 5 имеют одинаковый электрический потенциал. Точно так же узлы 6, 7, 8, 9 и 10 находятся в одном и том же электрическом потенциале или в одних и тех же электрических узлах. Следовательно, напряжение на каждом сопротивлении цепи равно напряжению батареи. Потенциал между узлами 1 и 6 равен напряжению батареи и, таким образом, напряжение на каждом сопротивлении равно напряжению батареи (12 вольт).

Напряжение на каждом резисторе равно напряжению батареи.

Определение тока в параллельных цепях с помощью закона Ома

В цепи на рисунке 1 мы можем найти ток, протекающий через каждый резистор, применяя закон Ома. Напряжение на каждом резисторе 12 вольт.

Ток через резистор (R 1 );

Ток через резистор (R 2 );

Ток через резистор (R 3 ) есть;

Ток через резистор (R 4 );

Однако на данный момент нам все еще нужно рассчитать общий ток или полное сопротивление для этой цепи. Понятно, что общий ток должен быть равен сумме токов отдельных ветвей.

Полный ток цепи возникает от положительной (+) клеммы аккумулятора в узле 1 и проходит по цепи, некоторая часть общего тока отводится в узле 2 и проходит через резистор R1, еще часть тока отводится в точке 3 и проходит через резистор R2, а часть тока отклоняется в узле 3 и проходит через резистор R3, а балансный ток проходит через R4. Этот процесс подобен разветвлению главной реки на несколько меньших ручьев, и общий расход всех ручьев должен равняться расходу основной реки.

Ток отдельной ветви снова встречается в узле 7, который равен сумме токов, протекающих через резисторы R1, R2, R3 и R4. Общий ток воссоединяется в узле 7 и течет обратно к отрицательной клемме батареи (- ) к точке 8.

То же самое происходит, когда токи через R 1 , R 2 и R 3  воссоединяются, чтобы течь обратно к отрицательной клемме аккумулятора (-) к точке 8. Ток течет от точки 7 до точки 8 должна равняться сумме токов ветвей через R 1 , R2 и R3.

Таким образом, общий ток в параллельной цепи равен;

Как рассчитать полное сопротивление в параллельной цепи?

Мы можем рассчитать общее эффективное сопротивление, если доступны данные о напряжении и полном токе. Применяя закон Ома, можно найти полное эффективное сопротивление.

Суммарный ток и напряжение составляют 13,6 мА и 12 вольт соответственно. Следовательно, полное эффективное сопротивление параллельной цепи равно;

Если вы наблюдаете это общее значение эффективного сопротивления, оно меньше любого из отдельных резисторов (10 кОм, 5 кОм, 3 кОм и 2 кОм). Отсюда можно сделать вывод, что общее сопротивление параллельной цепи всегда меньше, чем значение любого из отдельных резисторов.

В последовательной цепи общее эффективное сопротивление всегда больше любого из отдельных резисторов.

Но в случае параллельной схемы все наоборот. Причина этого в том, что каждый резистор, соединенный параллельно, уменьшает общее эквивалентное или эффективное сопротивление. Связь между эффективным сопротивлением и индивидуальным сопротивлением в параллельной цепи может быть выражена следующей математической формулой.

Проводимость цепи обратно пропорциональна сопротивлению. Проводимость параллельной цепи равна сумме проводимостей отдельных ветвей. Расчет упрощается при расчете проводимости в параллельной цепи.

Краткое изложение основ параллельной цепи:
  • Напряжение одинаково для всех электрических компонентов в параллельной цепи:
    • В 1  = В 2  = В 3 4 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *