Как правильно извлечь трансформатор из микроволновки. Какие особенности имеет эта деталь. Как можно применить трансформатор от СВЧ-печи. Какие меры предосторожности нужно соблюдать при работе с ним.
Что представляет собой трансформатор из микроволновки
Трансформатор является ключевой деталью микроволновой печи, которая может пригодиться для создания различных самодельных устройств. Он состоит из следующих основных элементов:
- Сердечник из ферромагнитного материала
- Первичная обмотка с меньшим количеством витков толстого провода
- Вторичная обмотка с большим количеством витков тонкого провода
- Магнитные шунты для ограничения тока (в некоторых моделях)
Принцип работы трансформатора заключается в преобразовании напряжения. На первичную обмотку подается сетевое напряжение 220 В, а на вторичной обмотке формируется высокое напряжение порядка 2000-2500 В для питания магнетрона.
Особенности извлечения трансформатора из микроволновки
Чтобы правильно извлечь трансформатор из микроволновой печи, необходимо соблюдать следующую последовательность действий:

- Отключить микроволновку от электросети и разрядить высоковольтный конденсатор
- Снять внешний кожух СВЧ-печи
- Отсоединить все провода, идущие к трансформатору
- Аккуратно открутить крепежные винты или болты
- Осторожно извлечь трансформатор, не повредив обмотки
При извлечении важно действовать аккуратно, чтобы не повредить хрупкую изоляцию обмоток. Нельзя применять грубую физическую силу или острые инструменты.
Возможные применения трансформатора от микроволновки
Благодаря своим характеристикам, трансформатор из СВЧ-печи может использоваться для создания различных самодельных устройств:
- Сварочный аппарат для точечной сварки
- Источник питания для лампового усилителя
- Высоковольтный блок питания
- Зарядное устройство для аккумуляторов
- Преобразователь напряжения
Однако при любом применении необходимо учитывать, что данный трансформатор рассчитан на кратковременную работу и может сильно нагреваться при длительной нагрузке.
Меры предосторожности при работе с трансформатором от микроволновки
При использовании трансформатора из СВЧ-печи крайне важно соблюдать следующие меры безопасности:

- Не прикасаться к оголенным частям обмоток во включенном состоянии
- Обеспечить надежную электроизоляцию всех соединений
- Не допускать перегрева трансформатора
- Использовать защитные средства (диэлектрические перчатки, очки)
- Не оставлять работающее устройство без присмотра
Помните, что трансформатор может выдавать опасное для жизни высокое напряжение. Неосторожное обращение с ним может привести к серьезным травмам или летальному исходу.
Особенности перемотки трансформатора из микроволновки
Перемотка трансформатора позволяет изменить его характеристики под конкретные нужды. При этом необходимо учитывать следующие моменты:
- Количество витков определяет выходное напряжение
- Сечение провода влияет на максимальный ток
- Важно обеспечить качественную изоляцию обмоток
- Необходимо точно рассчитать параметры новой обмотки
Перемотку лучше доверить специалисту, так как неправильное выполнение может привести к выходу трансформатора из строя или сделать его опасным в эксплуатации.
Ограничения по применению трансформатора от СВЧ-печи
При использовании трансформатора из микроволновки следует учитывать ряд ограничений:

- Рассчитан на кратковременный режим работы
- Имеет относительно небольшую мощность (600-1000 Вт)
- Может сильно нагреваться при длительной нагрузке
- Не предназначен для работы с высокими токами
- Требует дополнительного охлаждения при длительной эксплуатации
Эти особенности необходимо учитывать при проектировании устройств на базе данного трансформатора, чтобы обеспечить их надежную и безопасную работу.
Альтернативы трансформатору из микроволновки
Хотя трансформатор от СВЧ-печи удобен для самоделок, в некоторых случаях лучше использовать альтернативные варианты:
- Сварочный трансформатор промышленного изготовления
- Импульсный блок питания нужной мощности
- Автотрансформатор с плавной регулировкой
- Инверторный преобразователь напряжения
- Готовый лабораторный блок питания
Выбор конкретного варианта зависит от требуемых характеристик, бюджета и навыков конструктора. В ряде случаев покупка готового устройства может оказаться более целесообразной, чем самостоятельная доработка трансформатора от микроволновки.

применение, особенности детали и его правильное извлечение
Наверное, каждый любитель авто или человек, у кого любимым хобби является ремонт чего-либо, мечтает об отличном сварочном аппарате. На рынке можно найти множество различных моделей сварочного прибора, но не каждому он будет по карману. Но если есть желание, то, что делать? Если дома имеется сломанная микроволновка, то не стоит ее сразу выбрасывать. Необходимы лишь время и силы, чтобы создать из поломанной детали функционирующий сварочный аппарат.
Аппарат точечной сварки
В данной статье будет обсуждаться, что представляет собой трансформатор от микроволновки, и его применение.
Трансформатор
В микроволновой печи находится трансформатор, который очень пригодится для создания устройства для сварки. Эта важная деталь состоит из двух обыкновенных катушек из медного провода, который намотан на сердечник. Есть первичная и вторичная обмотки. Катушки с обмоткой обладают разным количеством проволочных витков. Это необходимо для того, чтобы во время подключения к первичной обмотке было напряжение, а внутри второй появлялся ток из-за индукции, который имеет более маленькое напряжение. Сила тока должна возрастать.
Извлечение трансформатора
Извлечение
Для самодельного устройства для сварки используется трансформатор, который обладает средней мощностью 750 Вт. C использованием такого прибора можно проводить соединение металлических листов толщиной до одного миллиметра. Это электромагнитное устройство относится к повышающим устройствам. Чтобы обеспечить питание магнетрона, он способен вырабатывать напряжение, которое равняется 4000 В.
Мощный электронный прибор (магнетрон), который имеет абсолютно любая микроволновая печь, для нормального функционирования просит высокое напряжение. Поэтому трансформатор, который подключен к магнетрону, обладает на первой обмотке меньшим количеством витков. На вторичной обмотке витков больше, здесь создается напряжение, равное 2000 В. Но потом напряжение увеличивается в два раза, благодаря применению специально предназначенного удвоителя. Поэтому проводить измерения напряжения не имеет какого-либо смысла.
Производить извлечение трансформатора из микроволновой печи нужно осторожно и аккуратно. Использовать молоток или какие-либо другие тяжелые предметы не следует. Сначала необходимо открутить основу этого кухонного аппарата, после чего надо убрать все крепления. После этого проводится аккуратное извлечение трансформатора с места, где он установлен. Из «внутренностей» сверхвысокочастотной печи (СВЧ) вам пригодятся магнитопровод, первичная обмотка. Первичная обмотка обладает проводом большой толщины и меньшим числом витков.
Вторичная обмотка не нужна, поэтому ее демонтируют. Эту процедуру можно провести при помощи молотка или зубила. Следует действовать предельно аккуратно, иначе можно нанести повреждения первичной обмотке. Если во время данной процедуры обнаружится, что в трансформаторе имеются шунты, которые являются ограничением для силы тока, от них следует избавиться.
Если магнитопровод – это не клееная конструкция, а сварная, то устранение вторичной обмотки необходимо производить с использованием столярного инструмента (стамеска).
Использование стамески
Заменой стамески может быть обыкновенная ножовка. В том случае, если обмотка является плотно набитой в окно магнитного провода, то следует разрезать провода, а затем провести ее извлечение, высверлив ее. В течение работы надо соблюдать аккуратность, иначе магнитопровод можно деформировать.
После окончания демонтирования надо произвести намотку новой вторичной обмотки. Для этого процесса пригодится провод, который обладает диаметром один сантиметр. Если провода с данным диаметром нет, то его надо приобрести. Не следует заморачиваться на том, что провод должен быть многожильным, можно применить пучок, состоящий из отдельных проводников. Главное, чтобы был подходящий диаметр. По окончанию монтирования вторичной обмотки обновленный трансформатор сможет делать выработку силы тока, которая будет равняться 1 кА.
Если нужно сделать сварочное устройство с большей мощностью, то использования одного электромагнитного прибора вряд ли будет достаточно. Придется применить два устройства.
Особенности апгрейда трансформатора
Для того чтобы создать вторичную обмотку, требуется выполнить намотку двух или трех витков на сердечник. Это поможет получить выходное напряжение, которое будет равняться 2 В. И даст 0,8 кА силы кратковременного тока. Данных показателей хватает для полноценного функционирования прибора точечной сварки.
Из-за намотки данного числа витков могут возникнуть проблемы, если провод обладает толстым изоляционным слоем. Устранить ее достаточно легко. Надо произвести снятие стандартной изоляции, после чего обмотать провод изолентой. Изолента должна состоять из хлопчатобумажной ткани.
Положение новой вторичной обмотки
Провод, который используется для вторичной обмотки, должен обладать минимально возможной длиной. Это не позволит сделаться его сопротивлению больше, следовательно, сила тока не станет меньше.
Если вам нужно проводить сварку металлических листов, которые имеют толщину до пяти миллиметров, то для этих целей требуется устройство, обладающее гораздо большей мощностью. Чтобы создать такой агрегат, надо соединить в одну цепь целых два электромагнитных устройства. Чтобы это сделать, нужно строго придерживаться правил. Если будет неверно выполнено подключение выводов первичных и вторичных обмоток, возникнет проблема в виде короткого замыкания. Для того чтобы проверить, правильно ли сделано соединение, нужно воспользоваться измерительным аппаратом напряжения.
После верного соединения обмоток двух электромагнитных устройств, нужно узнать показатель силы тока. Чаще всего, для трансформаторов, предназначающихся для аппаратов точечной сварки, которые запланированы для применения дома, делают ограничения силы тока. Она не превышает 2 кА. В том случае, если показатель будет превышать данное значение, то будут происходить перебои в функционировании электросети. Следует воспользоваться амперметром.
Советы при соединении двух приборов
Допустим, есть два одинаковых трансформатора, имеющих следующие параметры:
- Значение мощности – 500 Вт;
- показатель входного напряжения – 220 В;
- показатель выходного напряжения – 2 В;
- показатель силы тока – 250 А.
Если провести правильное соединение, то получится удвоенный показатель силы тока, то есть 0,5 кА.
Также произойдет увеличение кратковременного тока. Но при создании кратковременного тока, можно будет увидеть потери. Это является следствием огромного сопротивления электроцепи. Нужно провести соединение обоих концов вторичной обмотки с электродами агрегата, который предназначается для точечной сварки.
Первая схема
Бывает так, что при наличии двух трансформаторов большой мощностью выходного напряжения не совсем достаточно для создания аппарата. В данной ситуации надо произвести соединение их вторичных обмоток. Они должны обладать одинаковым числом витков.
Во время их соединения необходимо наблюдать за тем, чтобы направленность витков была согласованной. Если данное условие не будет выполнено, то создастся протифаза, а значение выходного напряжение будет равняться практически нулю.
Вторая схема
Определение одноименных выводов
Возможно, что выводы обмоток электромагнитных приборов, которые должны быть объединены, не имеют маркировки. Поэтому нужно определить одноименные. Первичные и вторичные обмотки нужно соединить последовательно. После этого на вход подается напряжение, к выходу надо осуществить подключение измерительный прибор переменного напряжения.
Измеритель может проявлять себя с разных сторон, это зависит от того, какое направление подключения.
Измерительный аппарат может регистрировать следующее:
- Показать напряжение.
- Не регистрировать напряжения в цепи.
Если прибор для измерения дает показания, это означает то, что в цепи есть разноименные выводы. Это соединение было выполнено неверно, поэтому здесь можно наблюдать следующие явления:
- Значение напряжения, которое подается на вход первичных обмоток, становится меньше наполовину.
- На вторичных показатель становится больше
Поэтому измеритель покажет суммарное напряжение, которое равняется удвоенному показателю входного.
Выводы трансформаторов
Если аппарат для измерения регистрирует нулевое значение, это говорит о том, что напряжения, которые выходят из вторичных обмоток, являются равными, но обладают различными знаками. Они являются компенсацией друг друга. Одна пара обмоток точно соединена одноименными выводами.
Поэтому при верном соединении необходимо ориентироваться на вольтметр и его показатели.
Электроды
Установка электродов
При выборе электродов необходимо обратить свое внимание на диаметр, который должен соответствовать диаметру провода, потому что электроды будут соединены с этим проводом. Для этого можно воспользоваться прутками из меди. Если создается аппарат небольшой мощности, то можно использовать жала от паяльников.
Во время работы электроды сильно изнашиваются. Поэтому их надо регулярно подтачивать. Конечно, со временем их нужно будет заменить.
Итак, провод необходимо присоединить к электроду, делается это при помощи наконечника из меди. Наконечник соединен с помощью пайки.
Совмещение наконечника и электрода проводится с помощью болтового соединения. Это соединение должно отличаться надежностью, потому что при увеличении сопротивления в участке ненадежного контакта приведет к тому, что аппарат потеряет свою мощность. Чтобы избежать этой проблемы, необходимо сделать отверстие в электроде и наконечнике. Эти отверстия должны обладать одинаковым диаметром.
Болты лучше выбирать медные, потому что они имеют минимальное электрическое сопротивление.
Монтирование корпуса
Корпус
Корпус может выполнен из дерева. Задняя часть панели должна быть оборудована выключателем и проводом питания. Для этих элементов необходимо сделать отверстия.
После этого проводятся шлифовка, грунтовка и покраска. После чего – сборка. Потом понадобятся 2 провода из меди, которые нужно отрезать. Длина проводов должна составлять два с половиной сантиметра. Медные провода – это электроды. Далее проводится монтирование выключателя. Затем закрепляется трансформатора на дерево. Это крепление производится при помощи обыкновенных саморезов. Для обеспечения безопасности и удобства необходимо смонтировать микрик. Это кнопка закрепляется к верхнему рычагу. Не забудьте провести изоляцию соединений.
Создать агрегат для точечной сварки, имеющей в своем составе трансформатор от старой микроволновой печи, достаточно легко. Главное – соблюдать определенные правила и нюансы, и все получится.
Трансформатор от микроволновки: сварка, применение, перемотка
Важная деталь-трансформатор
В микроволновой печи есть только одна важная деталь, способная пригодиться в создании аппарата — трансформатор. Трансформатор в микроволновке представляет собой обычные две катушки из медного провода, намотанного на сердечник. Имеются две обмотки – первичная и вторичная. Катушки с обмоткой имеют разное количество витков проволоки: для того чтобы подключая к первичной обмотке напряжение, во второй катушке из-за индукции возникал ток с меньшим напряжением, а сила тока при этом возросла.
Извлечение
Для извлечения трансформатора из СВЧ печи необходимо аккуратно отсоединить крепеж на корпусе микроволновки, не повредив при этом обмотку трансформатора. При резком или сильно грубом извлечении может возникнуть разрыв в цепи, и тогда появятся лишние проблемы по перемотке катушки с обмоткой. Далее требуется произвести чистку катушек и сердечника от мелких стружек или мусора, попавшего во время разборки. Для проведения чистки можно использовать обычную щетку для покраски, главная чтобы она была сухая и чистая, как на фото.
Подготовка
Каждый сварщик знает, что если сварочный аппарат выдаёт малую силу тока, то это может сказаться на качестве сварного шва. Стоит заметить, что при увеличении ампеража в процессе сварки может возникнуть прожигание металла электродом. Попросту детали будут не свариваться между собой, а резаться. На вторичной обмотке трансформатора микроволновки возникает напряжение в 2 тыс. вольт, что довольно много. Для этого требуется перемотка вторичной обмотки проводом большего сечения. Для этого хорошо подойдёт повод типа ПВ-3 с сечением в 4 квадрата, он обладает хорошей гибкостью и не придется долго выгибать провод вокруг катушки. Производить перемотку требуется очень аккуратно, во избежание сделать повреждения на первичной обмотке. Для начала следует перекусить обмотку в нескольких местах и извлечь её из катушки. Затем, внимательно намотать каждый виток из нового провода. Число витков напрямую зависит от мощности трансформатора, так как микроволновки существуют с разными техническими характеристиками, соответственно трансформаторы монтируются согласно параметрам СВЧ печи. Когда перемотка завершена, следует нанести токоизоляционый лак на поверхность новой обмотки.
Монтирование
Берём во внимание, если мощность трансформатора 600–800 ватт, то будущий сварочный аппарат сможет производить сварку металла толщиной не более одного миллиметра. Если планируется сваривать более толстый металл, можно прибегнуть к соединению между собой двух трансформаторов, что значительно повысит мощность сварочного аппарата. Когда процесс перемотки закончен, и лак хорошо просох на новой обмотке, приступаем к соединению, учитывая, что у нас два трансформатора – первичные обмотки следует соединять параллельно, вторичные соответственно последовательно. Необходимо правильно соединить между собой выводы контактов обмоток, иначе возможно короткое замыкание.
Электроды для аппарата
Сварочный аппарат, как и споттер от микроволновой печи, осуществляет работу под средством электрода. Стержни для надёжной работы следует тщательно обработать, слегка подточив, в противном случае они легко утратят свою форму. Кабель, подходящий к электродам, должен иметь как можно меньшую длину и наименьшее количество соединений, чтобы не было потерь в мощности. На каждом из концов провода следует прикрепить медные наконечники. В процессе сварки возможно окисление меди, неспаянные участки будут давать лишнее сопротивление, что приведёт к потере мощности.
Монтирование корпуса
Будущий сварочный аппарат для безопасности следует поместить в прочный корпус, предварительно проделав по периметру ряд отверстий (чем больше, тем лучше) для осуществления должного охлаждения аппарата во время сварки. Для большего эффекта можно прикрепить с торцов корпуса два вентилятора. Для этого отлично подойдут кулеры охлаждения от системного блока персонального компьютера. Также очень часто такие трансформаторы применяют для создания катушки тесла и лампового усилителя.
Это интересно:
Мощный блок питания из трансформатора микроволновки своими руками
Этот мастер-класс буден немного противоречив и вызовет не одно разрозненное мнение. Я хочу поделиться тем, как сделать из трансформатора микроволной печи мощный выпрямитель — блок питания, на необходимое мне напряжение.
Очень часто микроволновки выходят из строя и выбрасываются на помойку. У меня сломалась недавно ещё одна и я решил дать вторую жизнь её трансформатору.
Трансформатор там повышающий и обычно преобразует 220 В в высокое напряжение 2000-2500 В, необходимое для возбуждения магнетрона.
Я видел как много людей переделывают данные трансформаторы либо под аппарат для контактной сварки, либо аппарат для дуговой сварки. Но никогда не видел чтобы из него делали мощные блоки питания.
Ведь трансформатор очень мощный, порядка 900 Вт, а это не мало. Вообщем я покажу вам как перемотать трансформатор под необходимое для вас напряжение.
Разбираем трансформатор от микроволновой печи
Обычно трансформатор микроволновки содержит три обмотки. Самая многочисленная, намотанная самым тонким проводом — это повышающая, вторичная, на выходе у которой 2000-2500 В. Она нам не нужна, мы ее удалим. Вторая обмотка, более толстая, с меньшим количеством проволоки по сравнению с вторичкой — это сетевая обмотка на 220 В. Ещё, между этими двумя массивными обмотками, есть самая маленькая, которая состоит из нескольких витков провода. Это низковольтовая обмотка примерно на 6-15 В, выдающее напряжение на накал магнетрона.
Срезаем швы магнитопровода
Необходимо спилить швы, удерживающие между собой «Ш»-образные пластины и «I»-образные. Швы китайского производителя на так крепки как кажутся. Спилить их можно болгаркой или вообще расколоть зубилом с молоткам. Я использовал болгарку, это гуманный способ.
Снимаем катушки
Снимаем все катушки. Если они очень крепко засели — постучите аккуратно резиновым молотком. Нам пригодиться только обмотка на 220 В, остальные удаляем. Ставим обратно первичную обмотку на 220 В и помещаем её вниз «Ш»-образного сердечника.
Расчет вторичной обмотки
Теперь нам необходимо рассчитать количество витков вторичной обмотки. Для этого нужно узнать коэффициент трансформации. Обычно, в таких трансформаторах он равен единице, следовательно один виток провода будет выдавать один вольт. Но это не всегда так и нужно это перепроверить.
Берем любой провод и наматываем 10 витков провода на сердечник. Затем собираем сердечник и зажимаем его струбциной, чтобы он не развалился. Обязательно через предохранитель подаем 220 В на первичную обмотку. А в это время замеряем напряжение на выходе 10 -ти витковой обмотки. В теории должно быть 10 В. Если нет, значит коэффициент трансформации не такой как обычно и вам нужно производить расчеты для вычисления напряжения для вашей обмотки. Все это не сложно, математика пятый класс.
У меня имеется в наличии два трансформатора. Один я буду делать на 500 В, другой на 36 В. Вы же можете сделать на любое другое напряжение.
Намотка катушки трансформатора на 500 В
Коэффициент трансформации у моего экземпляра один к одному. И чтобы намотать обмотку на 500 В мне нужно соответственно сделать 500 витков провода на катушке. Берем провод.
Конечно не такой, а смотанный на барабане. Прикидываем силу тока и объем катушки. Из этих значений выбираем диаметр провода.
Вот такое простенькое приспособление я собрал для намотки катушки. Сам сердечник из дерева, боковины из оргстекла. Закрепить его можно на дрель или шуруповерт.
Намотал, собрал, подключил. Замеряю выходное напряжение, почти попал — 513 В, что для меня приемлемо.
Трансформатор на 36 В
Обмотку на 36 В можно намотать и вручную, взяв соответствующий провод. Чтобы одеть и распрямить обмотку на сердечнике можно использовать такие клинья, смотрите фото.
После того как обмотка вся натянется, в образовавшиеся отверстия, после снятия клиньев положите плотно спрессованную бумагу. Это мой примитивный способ. Обмотку потом рекомендую пропитать эпоксидкой, иначе будет сильно гудеть.
Работа над ошибками
Я перемотал обмотку, чтобы сделать её более плотной и мощной. Для этого я намотал её двойным проводом, вместо одного толстого. В конце я их соединю.
После того как все обмотки закреплены, пришло время собрать сердечник трансформатора. Для этого закрепляем всю конструкцию струбциной и свариваем дуговой сваркой те же места что и были раньше. Делать толстый шов не нужно, все должно выглядеть как и было.
Далее, для моего выпрямителя мне понадобятся:Я буду нагружать выпрямитель на 20 А, естественно диодный мост нужно установить на радиатор.
Так же, если вы будете использовать металлический корпус как и я, то не забудьте его заземлить.
О безопасности
Будьте осторожный при подключении трансформатора, никогда не торопитесь и все дважды проверяйте. Подключайте трансформатор только через предохранитель, чтобы избежать возможного замыкания цепи. Не дотрагивайтесь до токоведущих частей во время работы трансформатора.
Также при обработке металла обязательно будьте внимательны и используйте средства защиты органов зрения.
Помните, что все действия вы делаете на свой страх и риск!
Всего доброго!
Original article in EnglishТрансформатор СВЧ микроволновки — БП УМ передатчика — Вспомогательные устройства — Радиосвязь
Устройство для уменьшения тока холостого хода трансформатора от СВЧ печи
——————————————В.МИРОНЕНКО, EW1RT. г.МИНСК ————————————————-
В KB усилителе мощностью до 500 Вт изготовление источника питания анодной цепи генераторной лампы особых трудностей не вызывает. А вот более мощный усилитель потребует громоздкого и довольно дорогого силового трансформатора, поэтому понятен интерес радиолюбителей к любым другим решениям, в том числе, с использованием силового трансформатора от СВЧ печи (СВЧТ). Малые габариты такого трансформатора достигаются за счет большого тока в первичной обмотке, но при этом ухудшается тепловой режим и возрастает расход энергии.
Недавно мне случайно и недорого достался один из таких трансформаторов (TR-91531485/3). На бирке была указана его мощность — 1500 Вт! Разумеется, возникло желание попробовать применить этот трансформатор в усилителе мощности.
Известно, что такие трансформаторы сильно греются. Для снижения тока холостого хода некоторые радиолюбители доматывают первичную обмотку. Однако это приводит к уменьшению габаритной мощности трансформатора и напряжения на вторичной обмотке. Кроме того, не все трансформаторы от СВЧ печей можно разобрать — как правило, их пластины сварены. Выключать трансформатор в паузах при передаче практически невозможно. Это можно сделать только при переходе в режим приема, но каждое включение в режим передачи будет происходить с задержкой и сопровождаться броском тока.
В несколько раз уменьшить энергопотребление и нагрев СВЧТ можно с помощью несложной схемы автоматики (рис.1). В авторском варианте применялся СВЧТ с магнитными шунтами.
Когда усилитель не потребляет мощность по анодной цепи, за счет включения дополнительного реактивного сопротивления(дросселя L1) в цепи первичной обмотки СВЧТ ток холостого хода уменьшается примерно в 10 раз, а напряжение на вторичной обмотке — только в 2 раза. При появлении сигнала на входе усилителя мощности за счет шунтирования дросселя контактами реле К2.1 трансформатор переходит в штатный режим, обеспечивая требуемую мощность. Одновременно к датчику входного сигнала (резистору R1) подключается дополнительный резистор R5. За счет этого суммарное сопротивление датчика уменьшается. Теперь, как только будет снята нагрузка, и ток в первичной обмотке уменьшится до штатного тока холостого хода — 2,44 А (с магнитными шунтами) для данного трансформатора, его можно переключить в дежурный режим. Момент перехода регулируется с помощью резистора R6.
Если в СВЧТ шунты удалены, то придется уточнить данные трансформатора Т1 и сопротивление резисторов R1 и R5. Транзисторы VT1 и VT2 работают в режиме переключения. Транзистор VT1 открывается, когда на резисторе R1 создается падение напряжения за счет тока в первичной обмотке трансформатора Т2 при появлении нагрузки в цепи вторичной обмотки. Порог открывания VT1 регулируется с помощью резистора R2. Контакты К1.1 подключают резистор R3, соединенный с базой транзистора VT2, к «плюсу» источника питания, открывая VT2. Когда контакты К2.1 реле К2 шунтируют дроссель L1, на первичной обмотке Т2 появляется полное напряжение 220 В. Мощность резисторов R1 и R5 (в данном случае 2 — 3 Вт) определяется, как обычно, максимальным током, протекающим через них. Напряжение насыщения транзистора VT1 — 0,2 В. При переходе трансформатора в рабочий режим на резисторе R1 падают сотые доли вольта, поэтому трансформатор Т1 используется для повышения напряжения.
При повторении устройства прежде всего надо определить ток в первичной обмотке силового трансформатора Т2 (СВЧТ) при разных нагрузках. Для этого собирается испытательная установка, схема которой приведена на рис.2.
Вторичная обмотка трансформатора Т2 подключается к вторичной обмотке нагрузочного трансформатора ТЗ габаритной мощностью 1 кВт. Первичная обмотка этого трансформатора нагружается лампами накаливания разной мощности, а его вторичная обмотка уже является заметной нагрузкой для трансформатора Т2, что объясняется меньшим количеством витков вторичной обмотки ТЗ по сравнению с Т2. Поэтому на первичной обмотке ТЗ напряжение составляет 255 В. В СВЧТ установлены 2 магнитных шунта, ограничивающих ток. Измерения проводились с шунтами и без них. Шунты расположены между первичной и вторичной обмотками и закреплены затвердевшим герметиком. Тем не менее, их легко удалить. Для этого СВЧТ закрепляется в тисках за боковые поверхности, шунты выбиваются сильными ударами с помощью пробойника. Если перед этим не удалить накальную обмотку магнетрона, ее можно повредить! Так, в рассматриваемом случае шунт вышел вместе с обмоткой, при этом все 4 витка обмотки были разорваны.
После удаления шунтов трансформатор Т2 в течение 0,5 часа испытывался на нагрев при токе 5,4 А в первичной обмотке. Нагрев составил 70°С. Результаты измерений приведены в таблице.
Итак, можно сделать несколько выводов:
— шунты ограничивают ток до 50% в зависимости от нагрузки;
— не всегда шунты следует удалять, как рекомендуется в [1]. Если трансформатор используется не на полную мощность (например, при работе SSB), и «просадка» напряжения еще находится в допустимых пределах, то их удаление приведет к заметному ухудшению теплового режима;
— после удаления шунтов повышается напряжение, возможно, выше, чем требуется для питания анода лампы. Для снижения напряжения в [1] рекомендуется домотать первичную обмотку, а это по эффекту равнозначно установке магнитного шунта ;
— принудительное охлаждение трансформатора (особенно с удаленными шунтами) при длительном включении под нагрузкой является обязательным;
— потребляемая мощность на холостом ходу без шунтов составляет почти 800 Вт, поэтому затраты на ограничение мощности на холостом ходу быстро окупаются.
Первичная обмотка трансформатора Т1 (рис.1) содержит 50 витков, вторичная —250, диаметр провода — 0,2 мм. «Железо» может быть любым (подойдет, например, от трансформаторов транзисторных приемников). Конденсатор С1 — оксидно-полупроводниковый (К53-16), имеющий минимальную утечку. Следует выбирать диоды VD1 — VD4 с минимальными прямым падением напряжения. В схеме применены диоды Шотки (1N5819), но это не обязательно. Кроме транзистора МП21В, успешно были испытаны МП42Б и МП16, но можно применить другие германиевые транзисторы. При использовании транзистора МП42Б напряжение питания на него подавалось от источника 24 В через делитель напряжения 330 0м/470 Ом на резисторах мощностью 1 Вт (этот вариант на рис.1 не показан). Транзистор VT1 следует выбирать с возможно меньшим напряжением насыщения и большим коэффициентом передачи тока в режиме малого сигнала. Транзистор VT2 — КТ829А. Гальваническая развязка позволяет применить любой другой подходящий транзистор, в этом случае надо уточнить сопротивление резистора R4 для надежного и быстрого перехода транзистора в режим насыщения.
Реле К1 — РЭС-15 на напряжение 10 В или герконовое, подходящее по напряжению срабатывания и сопротивлению обмотки. Конденсаторы С1 и С2 устраняют «дребезг» контактов реле. Реле К2 — К4 — малогабаритные (RP010024, производства Австрии). Их выбор ничем не ограничен — все зависит от возможности приобрести подходящие реле (важно, чтобы они были одинаковыми). Диоды VD5 и VD6 — Д220, но с выбранными реле и транзисторами применять их не обязательно. Параметры дросселя L1 определяются конкретным экземпляром силового трансформатора. В авторском варианте используется магнитопровод УШ 14×21. Число витков — 500. Диаметр провода определяется по формуле:
d = 0,02*кв.кор I,
где d — в миллиметрах;
I— в миллиамперах.
Для тока 320 мА диаметр должен составлять 0,357 мм. За 1 час работы дроссель нагревается до 40 — 45°С. Увеличив число витков, можно пропорционально уменьшить ток.
Интересно, что при токе 320 мА через час работы на холостом ходу повышение температуры «железа» СВЧТ практически не наблюдается, в то время как в [1] отмечается, что «40…45 градусов (на холостом ходу через час) сердечник СВЧТ достигает лишь при холостых токах менее 200 мА. Возможно, расхождение связано с влиянием на нагрев габаритной мощности трансформатора, маркой электротехнической стали или общими теоретическими предположениями, которые в данном случае не подтверждаются практикой.
Ток холостого хода СВЧТ без шунтов с дросселем L1 составил 360 мА, при этом напряжение на вторичной обмотке Т2 — 1600 В.
Испытания подтвердили работоспособность схемы, но некоторые вопросы остались:
— долговечность работы контактов реле К2;
— кратковременный и не всегда проявляющийся «дребезг» контактов К2.1 из-за разброса времени срабатывания реле К2 — К4, хотя решается эта проблема просто — применением реле с тремя группами контактов (например, реле Р15 польского призводства) или тщательной отладкой схемы;
— аварийное шунтирование дросселя L1 в случае несрабатывания контактов К2.1 в рабочем режиме (хотя это вряд ли случится — скорее, контакты К2.1 «залипнут» в положении шунтирования дросселя L1).
ЛИТЕРАТУРА
1. БП из трансформатороа СВЧ печей (http://dl2kq.de/)
Проверка компонентов печи Предостережение Отключайте сетевой шнур печи от питающей розетки каждый раз перед тем, как снять кожух. Начинайте любые работы внутри печи только после того, как разрядите высоковольтный конденсатор и отключите провода от первичной обмотки высоковольтного трансформатора. При проверке и настройке микроволнового блока печи ее следует нагрузить, вставив чашу с 1 литром воды в печь. Проверка выходной мощности печи 1. Поместите емкость с 200 мл воды (температура 10…18 °С) на вращающийся поднос. 2. Установите полную выходную мощность печи и включите ее на 5 минут. 3. Для исправной печи температура воды после этого должна превышать 80 °С. Для проверки работы гриля: 1. Поместите пищу, подходящую для приготовления грилем, и включите гриль на 5 мин. 2. При исправном гриле после этого его поверхность должна быть красного цвета. Магнетрон Сопротивление между выводами накала должно быть менее 1 Ом. Сопротивление утечки накал -корпус должно быть «бесконечность» (прибор включен на предел x 1000). Если ремонт был связан с демонтажем или заменой магнетрона, при обратной установке магнетрона в печь обратите особое внимание на отсутствие повреждений и правильную установку изолирующей прокладки. Высоковольтный конденсатор Обратите внимание Измеряется утечка между выводами конденсатора и каждым выводом и корпусом конденсатора. Во всех случаях мультиметр должен показывать бесконечность. Высоковольтный диод Измеряется его сопротивление в прямом и обратном направлении. При этом мультиметр включается в режим Кх1000. При подсоединении «+» вывода мультиметра к аноду диода (измерение сопротивления диода в прямом направлении) прибор должен показать конечную величину сопротивления. При подключении « -» вывода мультиметра к аноду диода (измерение сопротивления диода в обратном направлении) прибор должен показать бесконечность. Следует использовать измеритель с источником питания не менее 9 В. Косвенным признаком, указывающим на возможную неисправность высоковольтного диода, является нагрев высоковольтного конденсатора. В этом случае, если высоковольтный конденсатор исправен, следует заменить высоковольтный диод. Высоковольтный трансформатор Традиционным методом проверки исправности трансформатора является измерение напряжений на его обмотках. Однако, в случае с высоковольтными трансформаторами СВЧ — печей такой подход неприменим из — за присутствия опасного напряжения величиной около 2 кВ на вторичной обмотке трансформатора.
Для измерения сопротивлений обмоток трансформатор следует отключить от всех подходящих к нему проводов и проверить соответствие сопротивления его обмоток приведенному в таблице отдельно для каждого вида печи. Кроме того, следует проверить мегомметром (либо тестером, включенным на предел измерения сопротивления х1000) сопротивление изоляции между обмотками трансформатора, а также сопротивление изоляции между обмотками трансформатора и шасси. Признаками, указывающими на неисправность трансформатора, являются : гул; чрезмерный нагрев трансформатора; обугливание катушки трансформатора; запах гари из высоковольтной части печи. Часто такое состояние может быть вызвано отказом высоковольтного диода или конденсатора либо пробоем внутри магнетрона. Поэтому замена трансформатора производится только после проверки всех высоковольтных элементов печи. Важно Еще один способ проверки качества высоковольтного трансформатора сводится к измерению тока холостого хода. При этом от трансформатора отключаются провода, подходящие к накальной и вторичной обмотке, а последовательно с первичной обмоткой включается амперметр переменного тока. Амперметр устанавливается на диапазон измерения 1 А. После этого на первичную обмотку трансформатора через амперметр подают номинальное питающее напряжение 220 В, 50 Гц. В исправном трансформаторе (без межслойных и межобмоточных замыканий) ток холостого хода первичной обмотки должен быть в диапазоне 0,3. ..0,5 А. Превышение током холостого хода величины 1 …2 А свидетельствует о неисправности трансформатора. Предохранитель Мультиметр должен показывать сопротивление предохранителя, близкое к нулю. Если предохранитель сгорел, следует до замены предохранителя проверить первичный, вторичный и защитный выключатель. Если предохранитель сгорел из — за неправильной работы выключателя, следует заменить выключатель до установки нового предохранителя. Следует устанавливать предохранитель только того же типа и номинала, что и у сгоревшего. Нагреватель | Древние люди открыли огонь и с его помощью согрелись, защитились и приготовили еду. В плане готовки процесс приготовления пищи не менялся тысячелетиями. Прорыв произошел в двадцатом веке, когда придумали генератор сверх высоких частот (СВЧ) размером с кулак. Тогда решили, что можно приготовить еду и с помощью СВЧ. Электромагнитная волна заставляет колебаться молекулы воды, которые из-за трения разогреваются. Процесс разогревания пищи стал быстрым и СВЧ вошли в нашу жизнь. Бытует мнение, что в СВЧ можно готовить, а не только разогревать. Это мнение ошибочно, т.к. в процессе кипения, жаренья одни химические вещества в пище переходят в другие. Микроволнами этот процесс заменить нельзя. Суть работы СВЧ в том, что генератор, он же магнетрон, генерирует высокую частоту порядка 2,4 ГГц под действием большого управляющего напряжения около 4,2 кВ. Магнетрон по сути лампа. В любой лампе есть нагревательная спираль, которая разогревается и служит источником электронов. Напряжение нагревательной спирали 3 В при токе 20 А. Чтобы электроны пришли в движение нужно электромагнитное поле, которое генерируется трансформатором и составляет 2,1 кВ.
Микроволновка прочно вошел в нашу жизнь. Очень обидно, когда этот прибор ломается. Схема микроволновки не сложная, поэтому весь ремонт можно сделать самому, но следует соблюдать осторожность – напряжение на вторичной обмотке трансформатора 2,1 кВ. Табличка с паспортными данными на задней стороне печи сообщает, что напряжение в сети не должно превышать 230 В. Советская энергосистема допускает колебания напряжения в сети от 198 В (10% от 220) до 231 В (105% от 220). Частота тока в сети постоянная и составляет 50 Гц. Обратите внимание Печь потребляет от сети 1200 Вт из которых только 800 Вт идет на разогревание пищи. Оставшиеся 400 Вт тратятся на потери в трансформаторе и раскачку магнетрона. Кожух СВЧ закреплен тремя саморезами. Видимо из целей экономии решили не делать крепление под еще один саморез. Саморезы расположены несимметрично за счет чего и достигается надежное крепление кожуха. После выкручивания саморезов и сдергивания на себя кожуха обнажаются внутренности печки. Самое почетное место занимает магнетрон – лампа-излучатель для ультракоротких волн. Под магнетроном располагается трансформатор. Немного слева виден большой в виде свертка конденсатор от которого на корпус выведен диод. Видно, что магнетрон имеет два вывода. Один вывод — провод от низковольтной обмотки трансформатора, а второй — и с низкой и с высокой. Если вскрыть магнетрон, то можно увидеть что контакт с высоковольтной обмотки уходит глубже в сам резонатор. Менять местами концы проводов на магнетрон нельзя.
VD1 – диодный столб, состоящий из нескольких тысяч последовательно соединенных диодов, поэтому тестером прозвонить этот диод нельзя. FU1 – предохранитель, который срабатывает при ненормальной работе конденсатора, магнетрона и диода. В самом начале цепи микроволновки стоит фильтр с предохранителем. Фильтр гасит все высокочастотные составляющие, которые проникают из трансформатора в электрическую сеть. Предохранитель защищает по большому счету первичную обмотку трансформатора. Важно Микроволны большой мощности являются очень опасными, поэтому в печке существует достаточно много всяких блокировок. Блокировки объединяют открывание дверцы, регулятор уровня мощности и времени, двигатель поворота блюда в один узел. Если хотя бы одна из этих блокировок не сработает, то печь не включится и лампочка освещения не засветится. В современных СВЧ-печах вместо большого и тяжелого трансформатора вставляют более легкий и компактный импульсный блок питания. Но у меня печь с трансформатором, поэтому чинить я буду именно ее. Входная обмотка трансформатора (слева) выполнена тонкими проводами, а две вторичные обмотки (справа) имеют толстую высоковольтную изоляцию. В красном разборном контейнере размещается высоковольный предохранитель. Для того чтобы убедиться в исправности трансформатора нужно вначале прозвонить все обмотки. Вторичная высоковольная обмотка должна прозваниваться на корпус. Один конец выведен на предохранитель, а второй – прикручен к корпусу. Вторичная низковольная обмотка и первичная не должны прозваниваться на корпус. Если под рукой есть высоковольный вольтметр, то можно смело подключить трансформатор к сети 220 В и проверить на вторичной обмотке 2100 В. Если такого тестера нет, то можно изготовить делитель напряжения. Такой делитель уменьшит все показания в 10 раз (9+1). Тогда померив напряжение показания прибора должны быть примерно 210 В. Только резисторы нужно брать высоковольтные. Еще один способ измерить выходное напряжение трансформатора – подать меньшее переменное напряжение на вход трансформатора и по расчету вычислить напряжение на вторичной обмотке. У меня под рукой был трансформатор на 36 В. Измерив его напряжение при нагрузке на трансформатор от СВЧ получилось 38,4 В. Выходное напряжение получилось 380 В, а напряжение для нагрева спирали магнетрона – 0,6 В. Составив пропорцию я получил полную картину напряжений трансформатора СВЧ. 38,4 – 220 380 – X 0,6 – Y X = 380X220/38,4 = 2183 В Y = 0,6X220/38,4 = 3,45 В Если под рукой нет трансформатора для проверки можно использовать свойство сетевого трансформатора, заключающееся в обратимости входа трансформатора. Если на вход сетевого трансформатора подается 220 В, а снимается с высоковольтного выхода 2 кВ, то значит вторичная высоковольтная обмотка способна выдержать высокое напряжение без поломок. Совет Значит, для проверки сетевого повышающего трансформатора можно подать напряжение Uф=220 В из розетки на высоковольтный выход и измерить наведенные напряжения на низковольтных входах (24,2 В и 0,38 В). Проблема в том, что у трансформатора СВЧ один вывод вторичной обмотки выведен на корпус. Подключать 220 В нужно к корпусу и выводу с предохранителем при этом на корпусе будет потенциал. Тестеровать трансформатор нельзя на проводящей поверхности и нельзя прикасаться к корпусу трансформатора при включенном напряжении. Лучше всего вначале подключить тестер, а затем включить напряжение на трансформатор. Составив пропорцию я получил полную картину напряжений трансформатора СВЧ. 220 – 2000 24,2 – X 0,38 – Y X = 24,2X2000/220 = 220 В Y = 0,38X2000/220 = 3,46 В Если в микроволновке используется импульсный блок питания — маленький, легкий и на транзисторах, то не нужно подавать 220 В на его выход. Также, не нужно подавать 220 В на обмотку накала магнетрона (3,5 В), она не выдержит и сгорит. Высоковольный предохранитель располагается в разборном корпусе. Сам предохранитель состоит из стеклянной колбы с подпружиненной вставкой на 550 мА. Предохранитель вставляется в латунные держатели. Часто латунные держатели припаяны к контактным предохранителям.
Проверить работу магнетрона довольно сложно, поэтому вначале нужно прозвонить два вывода магнетрона на корпус. Ни один из выводов магнетрона на корпус прозваниваться не должен, т.е. сопротивление должно быть очень большим. Сами выводы между собой прозваниваются практически накоротко, образуя подогревающую обмотку с током 20 А при напряжении 3 В. Сама лампа спрятана в корпусе с алюминиевыми радиаторами, которые охлаждают магнетрон во время работы. Обратите внимание На торце расположен сам излучатель прикрытый стальным колпачком. Под ним скрывается конец стальной сплющенной трубки в которой зажат отвод от лампы. Чтобы контакт между корпусом магнетрона и корпусом лампы был надежным, вставляют плетеное кольцо из медной проволоки. Колпачок является важной деталью — создает направленный луч из магнетрона в камеру печи. Иногда при включении СВЧ-печи из места где расположен магнетрон сыплются искры и слышны хлопки. Причиной этого может быть пробой колпачка. Колпачок стоит снять, почистить все нагары и установить. Не стоит заливать колпачок изоляционными материалами — на таких частотах они не могут быть диэлектриками. После снятия кожуха, крепящегося на винтах обнаруживается магнит, который усиливает поле магнетрона. Точно такой же магнит стоит и в противоположном конце магнетрона. Магниты крепятся завальцованной пластиной, которая подковыривается отверткой и снимается.
Дальше разборка возможна только при помощи молотка. Если отбить керамику со стороны контактов, то из магнетрона вынимается два скрепленных контакта. Один более длинный, другой – короче. Оба контакта заканчиваются чашечками. Между чашечками должна стоять нихромовая спираль. Именно она прозванивается, если измерять сопротивление между контактами магнетрона. На картинке спираль отсутствует. Но по тому звонится или не звонится спираль нельзя делать вывод о работоспособности магнетрона. Спираль нужна только для нагрева среды внутри лампы. Вместе с контактами вынимается и омедненная стальная пластина. Со стороны сплющенной трубки можно рассмотреть медную полоску, соединяющую корпус лампы и трубку. Важно Сам корпус сделан из меди и внутри разделен на отсеки. Точность в изготовлении довольно высокая, что вероятно определяют и стоимость магнетрона в 30$. Конденсатор имеет емкость 0,98 МкФ при входном напряжении 2100 В. У конденсатора есть один вход и два спаренных выхода для подключения диодного столба и магнетрона. Можно прозвонить конденсатор с помощью омметра. Как рабочий так и не рабочий оба набирали заряд. Емкость конденсатора в принципе не критична. Лампа в СВЧ питается напряжением 220 В и имеет мощность 25 Вт. Лампа впаивается напрямую в контактную пластину. Можно использовать лампу для холодильника на 15 Вт. От такой лампы нужно срезать цоколь и припаять выводы в пластину. В моем случае печь не грела. Магнетрон не прозванивался на корпус, конденсатор набирал заряд, все предохранители были целы. Вначале заменил магнетрон (30$), но греть не стала, зато перегорел высоковольный предохранитель. Вторым элементом я заменил конденсатор (5$). После этого печь заработала. Заодно, раз уж все детали итак новые поменял диодный столб. Из этого можно уяснить, что если выбивает высовольтный предохранитель и магнетрон не коротит на корпус нужно заменить конденсатор. Если просто не греет и все цепи исправны – заменить магнетрон, но перед этим нужно заменить диодный столб.
|
Дымит трансформатор в микроволновке
Высоковольтный трансформатор обеспечивает питание магнетрона микроволновки. При неисправности повышающего трансформатора питание на высоковольтную часть устройства не поступает, СВЧ печь перестает генерировать микроволны и соответственно греть продукты.
Какие признаки неисправного трансформатора:
- Микроволновка гудит, вибрирует во время работы
- Появился едкий запах гари, или дыма
- Микроволновка работает, но не греет
Причины неисправности трансформатора
- Межвитковое замыкание обмоток
- Обгорел контакт на разъеме
- Обрыв контакта на в месте соединения клем с обмоткой
1. Межвитковое замыкание.
Самая распространенная причина неисправности трансформатора это межвитковое замыкание, в следствии разрушения изоляции из-за перегрева. Визуальные признаки межвиткового замыкания трансформатора – это сильное потемнение высоковольтной обмотки трансформатора, следы нагара.
Работа микроволновки сопровождается громким гулом, и запахом гари, при этом обмотка трансформатора сильно греется.
Видимые признаки неисправного трансформатора Обгоревшая обмотка трансформатора Сгоревший трансформатор
Для предотвращения подобных неисправностей, рекомендуется не перегревать микроволновку, после длительной работы давать ей «отдохнуть» около 15-20 мин. чтоб она могла остыть.
2. Обгорел контакт на разъеме.
Частая причина неисправного трансформатора – это отсутствие контакта в месте соединения клем и разъемов трансформатора. Происходит это в результате плохого обжима разъемов. Место плохого контакта начинает искрить, контактная поверхность разъема сильно греется и выгорает, в итоге контакт пропадает вовсе. Последствия плохого обжима разъемов изображены на фото.
3. Обрыв в месте соединения клем с обмоткой.
В случае, если видимых повреждений трансформатора нет, но трансформатор не работает, возможно произошла потеря контакта в месте соединения обмотки с одной из клем. Это случается довольно редко, в основном по причине не качественной заводской пайки.
Схема трансформатора СВЧ
Силовой трансформатор микроволновки имеет первичную обмотку на 220 Вольт и две вторичных обмотки, одна из них повышающая с 220 Вольт до
2000 Вольт, необходимая для питания высоковольтной цепи магнетрона, вторая понижающая с 220 В до
3,1 В, так называемая «накальная обмотка», необходима для питания анода магнетрона.
Схема высоковольтной части СВЧ
Как проверить высоковольтный трансформатор мультиметром
Наличие контакта можно проверить омметром. Для проверки соединения необходимо «прозвонить» сопротивление его первичной и вторичной и накальной обмоток. Прежде чем производить измерения, нужно отсоединить все клеммы от трансформатора.
Проверка первичной обмотки: от 2 до 4 Ом. При этом, клеммы первичной обмотки не должны «звонится» на корпус трансформатора. При наличии пробоя первичной обмотки на корпус – трансформатор неисправен.
Проверка вторичной обмотки: от 120 до 200 Ом. Один из выводов вторичной обмотки закреплен на корпус трансформатора, поэтому при «прозвонке» вторичной обмотки одним из щупов тестера касаемся металлического корпуса трансформатора, а вторым – клеммы вторичной обмотки.
Проверка накальной обмотки: от 0,1 до 1 Ом. При исправной накальной обмотке не должно быть обрыва.
Сопротивление обмоток трансформатора микроволновки
Измеряемая цепь | Сопротивление |
Первичная обмотка | от 2 до 4 Ом |
Вторичная обмотка | от 120 до 200 Ом |
Накальная обмотка | от 0,1 до 1 Ом |
Замена трансформатора микроволновки
Для замены неисправного высоковольтного трансформатора необходимо подобрать аналогичную деталь. Трансформаторы микроволновки имеют общий принцип работы, но они отличаются классом (смотрите маркировку 200, 220, 250 class) мощностью и расположением посадочных креплений. Мощность трансформатора должна быть согласована с мощностью подключенного магнетрона.
Если мощность нового трансформатора будет меньше (100-200 Ватт), то печь будет немного недогревать, необходимо увеличить время нагрева. Если мощность будет больше – ничего страшного не произойдет, немного увеличиться запас мощности и соответственно ресурс трансформатора.
1″ :pagination=pagination :callback=loadData :options=paginationOptions>
Высоковольтный трансформатор обеспечивает питание магнетрона микроволновки. При неисправности повышающего трансформатора питание на высоковольтную часть устройства не поступает, СВЧ печь перестает генерировать микроволны и соответственно греть продукты.
Какие признаки неисправного трансформатора:
- Микроволновка гудит, вибрирует во время работы
- Появился едкий запах гари, или дыма
- Микроволновка работает, но не греет
Причины неисправности трансформатора
- Межвитковое замыкание обмоток
- Обгорел контакт на разъеме
- Обрыв контакта на в месте соединения клем с обмоткой
1. Межвитковое замыкание.
Самая распространенная причина неисправности трансформатора это межвитковое замыкание, в следствии разрушения изоляции из-за перегрева. Визуальные признаки межвиткового замыкания трансформатора – это сильное потемнение высоковольтной обмотки трансформатора, следы нагара.
Работа микроволновки сопровождается громким гулом, и запахом гари, при этом обмотка трансформатора сильно греется.
Видимые признаки неисправного трансформатора Обгоревшая обмотка трансформатора Сгоревший трансформатор
Для предотвращения подобных неисправностей, рекомендуется не перегревать микроволновку, после длительной работы давать ей «отдохнуть» около 15-20 мин. чтоб она могла остыть.
2. Обгорел контакт на разъеме.
Частая причина неисправного трансформатора – это отсутствие контакта в месте соединения клем и разъемов трансформатора. Происходит это в результате плохого обжима разъемов. Место плохого контакта начинает искрить, контактная поверхность разъема сильно греется и выгорает, в итоге контакт пропадает вовсе. Последствия плохого обжима разъемов изображены на фото.
3. Обрыв в месте соединения клем с обмоткой.
В случае, если видимых повреждений трансформатора нет, но трансформатор не работает, возможно произошла потеря контакта в месте соединения обмотки с одной из клем. Это случается довольно редко, в основном по причине не качественной заводской пайки.
Схема трансформатора СВЧ
Силовой трансформатор микроволновки имеет первичную обмотку на 220 Вольт и две вторичных обмотки, одна из них повышающая с 220 Вольт до
2000 Вольт, необходимая для питания высоковольтной цепи магнетрона, вторая понижающая с 220 В до
3,1 В, так называемая «накальная обмотка», необходима для питания анода магнетрона.
Схема высоковольтной части СВЧ
Как проверить высоковольтный трансформатор мультиметром
Наличие контакта можно проверить омметром. Для проверки соединения необходимо «прозвонить» сопротивление его первичной и вторичной и накальной обмоток. Прежде чем производить измерения, нужно отсоединить все клеммы от трансформатора.
Проверка первичной обмотки: от 2 до 4 Ом. При этом, клеммы первичной обмотки не должны «звонится» на корпус трансформатора. При наличии пробоя первичной обмотки на корпус – трансформатор неисправен.
Проверка вторичной обмотки: от 120 до 200 Ом. Один из выводов вторичной обмотки закреплен на корпус трансформатора, поэтому при «прозвонке» вторичной обмотки одним из щупов тестера касаемся металлического корпуса трансформатора, а вторым – клеммы вторичной обмотки.
Проверка накальной обмотки: от 0,1 до 1 Ом. При исправной накальной обмотке не должно быть обрыва.
Сопротивление обмоток трансформатора микроволновки
Измеряемая цепь | Сопротивление |
Первичная обмотка | от 2 до 4 Ом |
Вторичная обмотка | от 120 до 200 Ом |
Накальная обмотка | от 0,1 до 1 Ом |
Замена трансформатора микроволновки
Для замены неисправного высоковольтного трансформатора необходимо подобрать аналогичную деталь. Трансформаторы микроволновки имеют общий принцип работы, но они отличаются классом (смотрите маркировку 200, 220, 250 class) мощностью и расположением посадочных креплений. Мощность трансформатора должна быть согласована с мощностью подключенного магнетрона.
Если мощность нового трансформатора будет меньше (100-200 Ватт), то печь будет немного недогревать, необходимо увеличить время нагрева. Если мощность будет больше – ничего страшного не произойдет, немного увеличиться запас мощности и соответственно ресурс трансформатора.
1″ :pagination=pagination :callback=loadData :options=paginationOptions>
Если микроволновая печь сильно гудит, издает сладковатый запах горелой обмотки, не греет. Все эти признаки говорят о том что возможно неисправен высоковольтный (повышающий) трансформатор.
В таком случае его необходимо проверить и при необходимости провести ремонт микроволновки.
В этой статье мы произведем диагностику высоковольтного трансформатора микроволновой печи а также рассмотрим причины выхода из строя этого компонента.
Внимание!
Микроволновая печь способна поразить вас электрическим током
(напряжение до 5 киловольт) даже если она отключена от сети
Мы настоятельно рекомендуем обращаться за помощью к специалистам если вы не уверены в своих знаниях относительно мер техники безопасности при работе с электроприборами.
Трансформаторы в микроволновых печах могут отличатся: конфигурацией крепления к шасси, размерами, мощностью, классом, напряжением на выходе и сопротивлением обмоток.
Выходу из строя этого компонента могут способствовать скачки напряжения сети 220В, большая нагрузка, короткое замыкание проходного конденсатора магнетрона, брак производства.
Итак приступим.
Берем микроволновую печь с подозрением на неисправность трансформатора (печь сильно гудит, дымит, не нагревает продукты).
Откручиваем винты, снимаем кожух.
Обнаруживаем высоковольтный трансформатор.
Важно помнить что высоковольтный конденсатор в СВЧ печке может держать около 4000 Вольт на протяжении нескольких минут, а если в нем оборван резистор на 10 Мом, (который служит для разрядки) то опасный заряд может держаться на протяжении довольно длительного времени. По этому перед началом проверки конденсатор желательно разрядить, например отверткой на корпус либо замкнув контакты между собой пассатижами.
Добрались до трансформатора, будем проверять, для этого нам понадобится мультиметр и пассатижи.
Итак, проверяем первичную обмотку.
Аккуратно снимаем клеммы с выводов первичной обмотки трансформатора.
Ставим предел измерений на мультиметре 200 Ом.
Производим измерения.
Сопротивление обмотки как правило варьируется от 2 Ом до 4.5 Ом (зависит от класса трансформатора и от сечения провода обмотки). Если меньше двух или больше четырех с половиной Ом скорее всего проблема в первичной обмотке. Также при измерениях не стоит забывать про погрешность мультиметра. Для того чтобы узнать погрешность замкните щупы мультиметра на несколько секунд на пределе 200 Ом.
В нашем случае с первичной обмоткой все в порядке.
Переходим к следующей фазе измерений.
Меряем вторичную обмотку, предел прибора 2 кОм
Снимаем клеммы с одного вывода вторичной обмотки, вторым выводом является корпус трансформатора (так как корпус соединен болтами с шасси микроволновки, то можно звонить на корпус печи). Сопротивление вторичной обмотки может варьироваться от 140 Ом до 350 Ом (опять таки как говорилось ранее это зависит от класса и сечения обмотки) если показания превышают 350 Ом или же менее 140 Ом это говорит о том что скорее всего присутствует межвитковое замыкание вторичной обмотки.
Теперь проверим накальную обмотку, предел измерений 200 Ом.
Отсоединяем клеммы от магнетрона, и замеряем прибором выводы. Сопротивление накальной обмотки колеблется от 3.5 до 8 Ом.
Бывает так что прибор показывает сопротивление всех обмоток в пределах нормы а трансформатор все равно работает плохо, это происходит в том случае когда обмотка подгорела лишь слегка и проявляет себя только при нагрузке, в таком случае лучше всего подкинуть заведомо исправный высоковольтный трансформатор.
Также следует проверить поступает ли на трансформатор 220 вольт.
Для этого необходимо подсоединить мультиметр к клеммам которые подходят на первичную обмотку высоковольтного трансформатора включить микроволновку в сеть 220В и запустить программу подогрева микроволнами.
Удачи в ремонте!
Если вы не уверенны в своих познаниях в области электротехники, можете обратиться к нам чтобы вызвать мастера по ремонту микроволновок в Киеве. Приемлемые цены и качество гарантируем.
Мощный блок питания из трансформатора микроволновки
Трансформатор, который имеется в микроволновке, мощный (около 900 Вт), повышающий, преобразующий сетевое напряжение 220 Вв высокое (2000…2500), которым возбуждается магнетрон. Многие делают из него аппараты, с помощью которых выполняют дуговую или контактную сварку. Но из трансформатора можно получить и мощный блок питания.
Начинают работу с разборки трансформатора, который извлекают заранее из микроволновой печи. Как правило, он содержит три обмотки. Повышающей, вторичной, имеющей на выходе 2000…25000 В, является та, на которой больше всего витков провода и он тонкий. Ее удаляют.
Сетевая обмотка имеет меньшее количество витков, намотана более толстым проводом. К ней подключается сетевое напряжение 220 В. Третья обмотка на трансформаторе меньше всех и находится между двумя отмеченными ранее. В ней всего несколько витков провода. Она является низковольтной, рассчитанной на 6…15 В и выдает напряжение, которое «зажигает» накал магнетрона.
Дальше спиливают швы, которые в магнетроне соединяют Ш-образные и I-образные пластины между собой. Удаляют их, используя болгарку или зубило с молотком. После снимают все катушки. Используют в дальнейшем только ту, которая предназначена на 220 В – ее, как первичную, помещают в нижнюю часть Ш-образного сердечника.
Проводят расчет вторичной обмотки. Вначале берут любой провод и делают вокруг сердечника десять витков. К первичной обмотке подают (через предохранитель) напряжение 220 В и замеряют выходное на устроенной 10-витковой вторичной обмотке. Как правило, оно должно равняться 10 В, что говорит о коэффициенте трансформации равном единице. Если на выходе будет другое напряжение, нужно рассчитать коэффициент трансформации, от которого зависит сколько витков нужно делать на выходной обмотке. Зависимость линейная, потому несложная – по силам любому мастеру.
Если коэффициент трансформации оказался равным единице, то чтобы получить на выходе, к примеру, 500 В, на вторичной обмотке нужно намотать 500 витков провода. Если хотите иметь 36 В, то витков нужно сделать – 36.
Подготавливают приспособление. Можно сделать сердечник деревянным, боковины – из оргсетка. Дальше берут провод и наматывают на полученный «барабан» нужное количество витков, например, 500 – в итоге на выходе будет напряжение 500 В.
Дальше следует сборка трансформатора – перенос намотанного провода на сердечник. После подключения измеряют напряжение, которое «выходит» из вторичной катушки. Оно должно быть близким в 500 В. Расхождение обычно небольшое – до 13…15 В.
Подключение трансформатора нужно делать осторожно, не торопясь, дважды все проверяя. Выполнять его необходимо только через предохранитель, что убережет сеть при возможном коротком замыкании. Нельзя дотрагиваться до частей трансформатора во время его работы.
Принцип работы трансформатора СВЧ и устранение общих неисправностей
Каков принцип работы трансформатора для СВЧ-печи? Давай сначала понять устройство трансформатора для микроволновой печи. Микроволновая печь трансформатор имеет три обмотки, одна из которых является первичной обмоткой, и переменный ток 220В. на эту обмотку подается сетевое напряжение; множество листов кремнистой стали между первичной и вторичной обмотками вставляется определенная толщина, поэтому что в трансформаторе образуется высокое магнитное сопротивление.Магнитный зазор шунт. Итак, каков принцип работы трансформаторов СВЧ, и как устранять распространенные неисправности трансформаторов микроволновых печей? Давайте посмотрим на конкретная ситуация.
Каков принцип работы микроволновки трансформатора
Когда работает магнетрон трансформатора СВЧ, колеблющийся ток течет во вторичной высоковольтной обмотке трансформатора, вызывая железный сердечник для создания магнитного насыщения.Предполагая, что анодное напряжение магнетрона увеличивается, а анодный ток увеличивается из-за сетевого колебания, ток вторичной обмотки трансформатора также увеличивается, что углубляет магнитное насыщение и увеличивает утечку магнитный поток, который делает трансформатор вторичным высоким напряжением. Падение, что есть, анодное напряжение магнетрона уменьшается, а анодный ток равен уменьшается, иначе выполняется обратное, тем самым играя роль автоматическая регулировка анодного напряжения и тока и стабилизация выходная мощность микроволн.
Видно, что трансформатор микроволновой печи в основном поддерживает рабочий ток магнетрона за счет магнитного потока рассеяния, поэтому он также называется трансформатором магнитной утечки. Этот трансформатор может поддерживать стабильность анодного тока магнетрона в широком диапазоне городских мощностей колебания, поэтому он широко используется в микроволновых печах. За исключением специальных продукты, почти все микроволновые печи используют этот тип трансформатора.
Как устранить распространенные неисправности трансформаторов микроволновых печей
Распространенными неисправностями трансформаторов микроволновых печей являются: во-первых, микроволновая печь. не греется или работа нестабильна из-за плохого контакта штепсельной вилки; Есть запахи и другие явления; В-третьих, имеется обрыв цепи или частичное межвитковое замыкание в обмотке и утечка или короткое замыкание происходит между обмоткой и железным сердечником. Среди них короткое замыкание между витками и утечкой также заставит микроволновую печь увеличить рабочий ток и сжечь предохранитель.
Трансформаторы СВЧ имеют открытые обмотки или межвитковые замыкания. схемы. Чтобы отремонтировать их вручную, железный сердечник необходимо разобрать и перемотать. Однако сердечник этого высоковольтного трансформатора отличается от ядро обычных трансформаторов. Для повышения надежности производитель открыл в общей сложности 4 горизонтальных паза с обеих сторон сердечник и сварили все листы кремнистой стали вместе сварочными стержнями.Из-за высокая твердость шва, 4 шва нужно снять ножовкой, напильником, или даже шлифовальный круг и т. д., чтобы разобрать кремний железного сердечника стальной лист, и в то же время заусенец, вызванный листом кремнистой стали необходимо отполировать и разгладить. . Потому что железный сердечник микроволновой печи трансформатор очень толстый, есть много слоев кремнистой стали, и он требуется только много времени для удаления сердечника и выхода из кремнистой стали лист.Кроме того, при перемотке обмотки и повторной сборке железного сердечника необходимо учитывать уровень жаропрочности и электрическая прочность высоковольтного трансформатора, а также обеспечение технической и материальные гарантии. Поэтому ремонтировать его нужно самостоятельно. Требуется высокий навыки обслуживания, а также требует определенного фундамента в специальных инструментах и электрические материалы.
О принципе работы микроволновки трансформатора и как правильно отремонтировать общие неисправности трансформатора СВЧ, мы поделились так много для всех.Фактически, для ответа на вопрос, как устранить распространенные неисправности трансформаторов для микроволновых печей, простой способ Реализация заключается в обновлении трансформатора микроволновой печи, но мы хотим Напомним, что предпочтение отдается однотипному трансформатору для СВЧ. Если вы используете другие модели для замены, тогда необходимо внимательно изучить вопрос согласования мощности и вывода напряжения.
Как работают микроволновые печи?
В современном мире практически у каждого есть микроволновая печь.Но сколько людей задумываются, что именно делают и как работают микроволновые печи? Для любого, кто жил в течение последних нескольких десятилетий, микроволновые печи так же нормальны, как и все остальное; тем не менее, для человека, родившегося столетие назад, они будут сочтены чрезвычайно футуристическими. Эта статья объяснит, что делают микроволновые печи, и перечислит детали, которые заставляют микроволновые печи работать, чтобы читатели могли оценить науку об этих чудесных устройствах.
Что делают микроволновые печи
Причина, по которой микроволновые печи предпочтительнее обычных, заключается в том, что микроволновые печи готовят пищу целиком, а не за счет конвекции.В то время как тепло, выделяемое в обычной духовке, поглощается внешней частью пищевого продукта и медленно передается его сердцевине, тепло, производимое в микроволновой печи, проходит через весь пищевой продукт сразу. Это связано с тем, что микроволны проходят через обычные предметы, но превращаются в тепло при воздействии жира, жидкостей и сахара.
Магнетрон
Магнетрон — довольно крупное устройство, которое встроено в каждую микроволновую печь. Магнетрон состоит из двух больших магнитов, расположенных на противоположных концах анода.Анод состоит из катода, окруженного высокочастотными полями с полостями, через которые проходят электроны. Когда электричество проходит через магнетрон, электроны управляются таким образом, чтобы создать микроволновое излучение, которое передается в камеру печи.
Камера духовки
Камера духовки — это зона, в которой пища готовится в микроволновой печи. Камера духового шкафа состоит из стеклянной пластины, которая устанавливается поверх вращающегося механизма, так что пища вращается во время приготовления.Это позволяет готовить более толстые блюда, например мясо. Камеры духовки также обычно включают в себя какой-либо свет, чтобы пользователи могли видеть, что они делают, помещая еду в микроволновую печь.
Волновод
Волновод — это полая металлическая трубка, которая позволяет микроволнам проходить от магнетрона в камеру печи. Волноводы важны для направления микроволн по определенному пути, так что излучение не попадает туда, где ему не место. Без волноводов микроволны свободно распространялись бы во всех направлениях, повреждая магнетрон, трансформатор и всех, кто стоял рядом.
Трансформатор
Микроволновые печи производят большое количество микроволнового излучения, что означает, что для правильного приготовления пищи требуется много энергии. Чтобы избежать увеличения счета за электроэнергию, микроволновые печи оснащены собственными трансформаторами. Трансформатор отвечает за преобразование электроэнергии, поступающей от источника питания, в гораздо более высокое напряжение. Это работает аналогично тому, как можно использовать бокалы для вина с мокрым наконечником, чтобы вызвать вибрацию других бокалов, когда присутствует высокий шум.
Цепь управления высоким напряжением
Цепь управления высоким напряжением — это электронная плата, которая отвечает за управление чрезвычайно высокими напряжениями, с которыми работают микроволновые печи. Из-за сложной природы как магнетрона, так и трансформатора, особенно из-за того, что они расположены так близко друг к другу и в таком небольшом пространстве, трансформатор теоретически может перегрузиться и взорваться, загореться или вызвать другие повреждения. Цепь управления высоким напряжением способна предотвратить такую перегрузку, отключив трансформатор от источника питания в случае, если что-то пойдет не так.
Источник питания
Микроволновые печи используют переменный ток напряжением 120 В (В), который подается от стандартной домашней розетки. Это стандартное количество электроэнергии, которое используют большие приборы, такие как холодильники и блендеры. К сожалению, микроволновые печи по-прежнему слишком велики и громоздки, чтобы использовать в качестве источника питания что-либо, кроме полупостоянной розетки. Однако в разработке есть несколько идей для портативных микроволновых печей, которые работали бы от батарей.
Обновление трансформатора для микроволновой печи
Испытание на обрыв цепи (потери в стальном сердечнике и намагничивание)
Трансформатор с разомкнутой вторичной обмоткой можно смоделировать, как показано на схеме ниже. Для тестового случая разомкнутой цепи, R 1 , R 2 , X 1 и X 2 можно игнорировать, оставив только R w (потери в сердечнике сопротивление) и X м (реактивное сопротивление потерь намагничивания).Испытание обрыва цепи проводится путем оставления вторичной обмотки. открыт, в то время как полное номинальное первичное напряжение подается на первичную обмотку. На данный момент E o , I o и P o сняты показания.
Потери в сердечнике, измеренные ваттметром,
\ (\ begin {выровнено}
П_о = Э_о. И_о. cos \ phi_o
\ конец {выровнено} \)
Коэффициент мощности без нагрузки, \ (\ begin {выровнено} cos \ phi_o = \ frac {P_o} {E_o.I_o} \ конец {выровнено} \)
Составляющая тока потерь в сердечнике, \ (\ begin {выровнено} I_w = I_o. cos \ phi_o \ конец {выровнено} \)
Составляющая тока потерь на намагничивание, \ (\ begin {выровнено} I_m = I_o. грех \ phi_o \ конец {выровнено} \)
Сопротивление потерь в сердечнике, \ (\ begin {выровнено} R_w = \ frac {E_o} {I_w} \ конец {выровнено} \)
Реактивное сопротивление потерь на намагничивание, \ (\ begin {выровнено} X_m = \ frac {E_o} {I_m} \ конец {выровнено} \)
Полное сопротивление без нагрузки, \ (\ begin {выровнено} Z_o = \ sqrt {R_w ^ 2 + X_m ^ 2} = R_w + jX_m \ конец {выровнено} \)
Измерения / расчеты разомкнутой цепи
Напряжение сети подается на первичную обмотку, а вторичная цепь разомкнута.Снимаются значения E o , I o и P o .
\ (\ начало {выровнено} E_o = 240 В, \ text {} I_o = 2,72 A, \ text {} P_o = 53 Вт. \ конец {выровнено} \)
\ (\ начало {выровнено} cos \ phi_o = \ frac {53} {240 \ times 2,72} = 0,081 \ конец {выровнено} \)
\ (\ начало {выровнено} I_w = 2.72 \ раз 0,081 = 0,221 А \ конец {выровнено} \)
\ (\ начало {выровнено} I_m = 2,72 \ раз 0,997 = 2,711А \ конец {выровнено} \)
\ (\ начало {выровнено} R_w = \ frac {240} {0,221} = 1087 \ Omega \ конец {выровнено} \)
\ (\ начало {выровнено} X_m = \ frac {240} {2.711} = 89 \ Omega \ конец {выровнено} \)
\ (\ начало {выровнено} Z_o = \ sqrt {1087 ^ 2 + 89 ^ 2} = 1090 \ Omega \ конец {выровнено} \)
Испытание на короткое замыкание (медь и вихретоковые / гистерезисные потери)
Трансформатор с короткозамкнутой вторичной обмоткой можно смоделировать, как показано на схеме ниже.Для тестового случая короткого замыкания R w и X m можно не учитывать. 1 и 2 объединяются как рандов c . (сопротивление потерь в меди), а X 1 и X 2 объединяются как X i (вихретоковый / реактивное сопротивление потерь на гистерезис). Испытание на короткое замыкание проводится путем короткого замыкания вторичной обмотки, при этом первичное напряжение постепенно увеличивается с помощью вариакла до тех пор, пока не будет достигнут максимальный номинальный первичный ток.2} \ конец {выровнено} \)
Коэффициент мощности при полной нагрузке, \ (\ begin {выровнено} cos \ phi_s = \ frac {R_c} {Z_s} \ конец {выровнено} \)
Измерения / расчеты короткого замыкания
Variac увеличивается до тех пор, пока не будет достигнут максимальный первичный ток, при вторичном коротком замыкании. Снимаются показания E s , I s и P s .2} = 20,7 \ Омега \ конец {выровнено} \)
\ (\ начало {выровнено} cos \ phi_s = \ frac {16.8} {26.6} = 0,63 \ конец {выровнено} \)
Jochen’s High Voltage Page: Трансформаторы для микроволновых печей
Jochen’s High Voltage Page: Трансформаторы для микроволновых печейМикроволновые печи содержат очень мощный трансформатор высокого напряжения (MOT = трансформатор для микроволновой печи), см. Фото.Типичное выходное напряжение составляет 2 кВэфф при мощности около 1000 Вт. Это эквивалентно примерно 0,5 А выходного тока eff при выходном напряжении 2 кВ eff . Ток короткого замыкания еще выше.
ТО. Трансформатор из СВЧ печи. Первичная обмотка (нижняя, толстый провод) 230В, вторичная обмотка (верхняя, тонкий провод) 2кВ. Несколько витков очень толстой проволоки, намотанной поверх вторичной обмотки, подают около 3 В на несколько ампер на нить накала магнетрона. |
Однако MOT не ограничены внутренним током (как OBIT).А поскольку дуга представляет собой короткое замыкание для вторичной обмотки, выходной ток должен быть ограничен извне с целью образования дуги. Это можно сделать, вставив резистивную или индуктивную нагрузку в первичную или вторичную цепь, см. Рисунок. При использовании трансформатора (например, другого МОТ) в качестве индуктивной нагрузки вторичная обмотка этого трансформатора может быть замкнута накоротко, чтобы уменьшить его индуктивное сопротивление. Без ограничения тока велика вероятность того, что сетевой предохранитель перегорит при возникновении дуги.С ограничением тока или без него вторичная обмотка, вероятно, будет перегреваться, если дуга будет продолжаться в течение длительного времени.
На рисунке (а) показано ограничение тока на вторичной стороне с использованием второй МОЛ (с закороченной первичной обмоткой) в качестве балласта. На рисунке (b) показано ограничение тока первичной стороны с помощью нагревательного элемента (чем больше, тем лучше). |
При использовании ограничения тока вторичной стороны помните, что ограничивающий элемент находится на полном выходном напряжении! В частности, при использовании трансформатора с заземленной обмоткой, как показано на рисунке, сердечник трансформатора также находится под высоким напряжением и его нельзя касаться. |
Несмотря на то, что ток не был заметно ограничен, со всеми MOT, которые я тестировал до сих пор, я мог зажечь дугу без сгорания предохранителя, но обмотка нагревается за секунды!
При подключении ТО к сети (т. Е. При включении) в течение очень короткого времени может быть очень высокий ток. Этого может хватить, чтобы сгорел предохранитель. Этой проблемы можно избежать, используя так называемую схему ограничения тока включения, см. Рисунок. Такая схема используется во всех микроволновых печах, и ее тоже следует беречь при каннибализации такого устройства.После включения резистор ограничивает ток до разумного значения на короткое время, необходимое для переключения реле.
Простая схема ограничения тока включения. Реле должно подходить для прямого управления напряжением сети и иметь возможность переключения в несколько ампер. Резистор должен быть мощным (с проволочной обмоткой) мощностью не менее нескольких ватт. |
Правильное заземление важно для ТО. Внутренний конец вторичной обмотки, который находится рядом с сердечником, должен быть соединен с железным сердечником.Во многих ТО это уже так. Причина в том, что изоляция между сердечником и обмоткой обычно недостаточна для выдерживания полного выходного напряжения. Поэтому, как и OBIT, MOT нельзя подключать последовательно для увеличения выходного напряжения. Только два MOT могут использоваться для двойного выходного напряжения, когда жилы соединены, а первичные обмотки антипараллельны, см. Рисунок ниже. Однако, в принципе, можно подключать произвольно много MOT параллельно для более высокого выходного тока (хотя обычно не более двух могут работать на одной и той же сетевой розетке).
Схема с двумя MOT, дающая выходное напряжение 4 кВ между двумя вторичными обмотками. Обратите внимание, что между каждым из выходов и землей остается только 2 кВ. Каждый из двух блоков, отмеченных пунктирными линиями, символизирует одну MOT, один конец которой вторичной обмотки подключен к сердечнику. Вместе они действуют как один трансформатор с вторичной обмоткой с отводом от средней точки. |
МОТ очень опасны из-за их большого выходного тока.Прикосновение к высоковольтной клемме, вероятно, приведет к смерти, по крайней мере, к очень серьезным ожогам. Хотя напряжение не очень высокое, оно достаточно велико, чтобы преодолеть воздушный зазор, и, таким образом, правило «одной рукой в кармане» становится бесполезным. |
Этот документ защищен авторским правом. Все права защищены. Никакая часть этого документа не может быть воспроизведена без моего разрешения. Разрешение на копирование и публикацию этого документа или его частей в WWW предоставляется до явного отзыва при условии, что он сопровождается этим или аналогичным уведомлением об авторских правах, включая мое имя и исходный URL-адрес.
(PDF) Производство сильноточных низковольтных источников питания с использованием Mot (трансформатора для микроволновой печи)
Arman Hidayat Sirait et al. Int J Sci Res Sci Eng & Technol. Июль-август-2020; 7 (4): 301-306
Трансформатор (трансформатор) или сокращенно
Трансформатор, используемый для источника питания постоянного тока, представляет собой понижающий трансформатор Step-
, который понижает напряжение
в соответствии с потребностями электронных компонентов
. содержится в цепи адаптера (источник питания DC
).Трансформатор работает на основе принципа электромагнитной индукции
, который состоит из 2 основных частей в виде обмотки
, а именно первичной обмотки и вторичной обмотки
. Первичная обмотка — это вход трансформатора
, а выход — вторичная обмотка
. Несмотря на то, что напряжение было понижено,
выходной сигнал трансформатора все еще представляет собой переменный ток
(переменный ток), который необходимо обработать дальше
.
На самом деле трансформатор никогда не бывает идеальным, всегда возникает тепловая энергия
. Таким образом, электрическая энергия, поступающая
в первичную катушку, всегда больше, чем энергия на выходе
вторичной катушки. В результате первичная мощность на
больше вторичной. Пониженная мощность
иэлектрической энергии в трансформаторе определяется КПД трансформатора
. Отношение между
вторичной энергии
и первичной мощностью или отношение
вторичной энергии к первичной энергии, выраженное в
процентах, называется КПД трансформатора.КПД трансформатора
выражается в η. КПД трансформатора
можно сформулировать следующим образом:
.
η = x 100% η = x
100% η = x 100%
II. ПРОЦЕДУРА ИССЛЕДОВАНИЙ
Микроволновая печь Transfomer или, чаще всего,
, сокращенно MOT, в MOT Сердечники трансформатора
соединяются только двумя очень тонкими сварными швами. Этот инструмент
преобразует низкое напряжение в большие токи, а именно,
меняя вторичную обмотку, при этом шаги
следующие 1.MOT распил на вторичной обмотке
, затем снимите вторичную обмотку, 2.
Затем используйте молоток, долото, чтобы удалить вторичную обмотку
, будьте осторожны, чтобы не ударить первичную обмотку
, потому что первичный слой все еще 3. Затем соскоблите
сердечник трансформатора зубилом так, чтобы на
не осталось клея и бумаги, 4. Откатите сердечник трансформатора
с помощью кабеля с большим количеством витков, что
будет нужно, затем приклейте ТО
намотанный вокруг кабеля, 5.Затем подключите ток 220 В к PSA
и драйверу 6. Затем подайте ток 220 В на МОП-транзистор
IRF, чтобы подать ток на протекание, который
получает сигнал с помощью ШИМ (широтно-импульсной модуляции),
7. Выходное напряжение на МОП подается на
МОТ для преобразования высокого напряжения в большие токи
. 8. Выход кабельной катушки
подключен к нагрузке, чтобы узнать, сколько тока
течет по отношению к напряжению в соответствии с требуемым значением
.Трансформатор
не имеет охладителя, поэтому пользователь
должен следовать правильной рабочей процедуре, чтобы не было помех и сбоев в работе
. Это испытание проводится с использованием одного МОТ
, которое подключено непосредственно к МОТ
без электрического тока, и с использованием кабеля типа
NYA диаметром 240 мм 2. Целью данного испытания
является сравнение значения, содержащиеся в
MOT с использованием разомкнутой цепи
Таблица 2.1 открытый однодиапазонный тест
Как безопасно разобрать микроволновую печь и что делать с деталями
Микроволновые печи повсеместно используются на кухнях с 1980-х годов, но в последнее время бесстрашные мастера разбирали их, чтобы собрать детали для своих собственных проектов. Здесь есть настоящая золотая жила деталей для домашних изобретателей DIY, от высокомощных сверхмощных компонентов, которые можно использовать для изготовления катушки Тесла, до основных прочных деталей для всех видов хобби-проектов Arduino или домашней автоматизации Raspberry Pi.
К счастью, общая установка микроволновой печи не сильно изменилась за эти годы, что значительно упростило идентификацию и безопасное извлечение деталей. В этой статье мы расскажем, как безопасно разбирать микроволновую печь, и покажем некоторые проектные идеи, которые придумали различные изобретатели, используя эти детали.
Прежде чем мы начнем, нам нужно остановиться на трех важных моментах:
- Микроволны — это приборы высокого напряжения серии , которые нельзя разбирать, пока они подключены к сети.Кроме того, цветовые обозначения проводки могут отличаться от страны к стране. Обязательно знайте, на что вы смотрите!
- Конденсатор высокого напряжения может вызвать смертельный удар даже после того, как микроволновая печь была отключена от сети в течение нескольких месяцев. В этой статье мы покажем вам, как безопасно разрядить эти конденсаторы, но их необходимо соблюдать.
- Магнетрон внутри микроволновой печи может содержать оксид бериллия в своих керамических изоляторах, может быть смертельным при попадании в легкие.Просто удалить его безопасно, но никогда не пытайтесь его разобрать. Не стоит!
Каждый раз, когда вы сознательно возитесь с большой мощностью, на ваш страх и риск и потенциально смертельны. Короче будь осторожен! Живи, чтобы повозиться в другой день! Теперь, с учетом сказанного, давайте начнем.
Приобретено в микроволновой печи
Первый шаг — найти свою микроволновую печь. У вас может быть старый, который заменили — в моем случае соседи избавлялись от своего и оставили его у нас на лестничной клетке.Стоит отметить, что данная разборка не подходит для инверторных микроволн , так как они работают иначе.
Для этой разборки не нужно много инструментов, хотя в разных конструкциях микроволновых печей это может отличаться. Я счел этого достаточно:
- Крестовая отвертка с изолированной ручкой.
- Плоскогубцы с изолированными ручками.
- Сверхмощные изолированные рабочие перчатки.
Я обнаружил, что перчатки здесь служат двойной цели: они не только защищают меня, но и служат хорошим барьером между моими руками и скопившейся за годы грязью внутри ящика для микроволновой печи. Мне также было удобно иметь рядом небольшую емкость для хранения всех винтов.
Прежде чем начать, проверьте корпус, чтобы узнать, есть ли на нем какая-либо полезная информация.Многие микроволновые печи имеют полные принципиальные схемы, доступные для загрузки в Интернете, которые являются отличным способом узнать о схемотехнике, поэтому обязательно записывайте любые номера моделей, которые вы найдете. Для получения дополнительной информации об изучении электроники своими руками ознакомьтесь с этим замечательным ресурсом.
В данном случае производитель любезно разместил схему внутренней электроники на задней стороне корпуса.
На всякий случай, если вам понадобится напоминание в ближайшее время, вам не нужно понимать немецкий, чтобы знать, что что-то с «Achtung» и «Warnung» потенциально может быть опасным!
Винт здесь, винт там
Убедитесь, что микроволновая печь отключена от сети.
Проверьте еще раз.
Я серьезно. Проверять. Мы можем подождать.
Теперь начните с удаления всех винтов, которые вы видите на внешнем кожухе. Вы можете обнаружить, что сначала можно снять верхнюю часть корпуса с помощью винтов по краям, что даст вам достаточный доступ для сбора деталей, не разбирая их полностью, хотя в некоторые модели взломать сложнее, чем в другие.
Как только вы снимете внешний кожух, вы сможете увидеть компоненты.Хотя компоновка может отличаться, почти все микроволновые печи имеют одинаковый набор основных частей.
- Трансформатор (обычно обозначается как MOT).
- Конденсатор высокого напряжения.
- Поклонник.
- Компактный термостат большой мощности (маленький черный круглый компонент).
- Магнетрон.
- Реле.
- Передняя панель.
Первое, что нужно найти, — это конденсатор. В этой модели он был частью блока вентилятора, хотя это может отличаться. Ни в коем случае не прикасайтесь к контактам конденсатора ! Если изображение выше нечеткое, это то, что вы ищете:
Если возможно, перед снятием конденсатора следует разрядить его.В этом случае конденсатор был заключен в блок вентилятора, поэтому его нужно было снять перед разрядкой. Надев перчатки и придерживая изолированную ручку, используйте отвертку или плоскогубцы, чтобы замкнуть оба контакта конденсатора. Подержите его там несколько мгновений, убедившись, что он точно касается обоих контактов. В этом случае вы можете увидеть вспышку или услышать громкий хлопок, так что будьте готовы!
Магнетрон, двигайся!
Магнетроны могут быть невероятно опасными, в то время как вы защищены от радиации, когда на них не подается питание, керамические изоляторы могут содержать оксид бериллия, который может быть смертельным при вдыхании.Если Магнето — враг Людей Икс, то магнетрон — враг всех легких повсюду.
Мы будем осторожно извлекать его из корпуса, но только для того, чтобы получить доступ к винтам, удерживающим трансформатор на месте. Если вы можете снять трансформатор, не снимая магнетрон, оставьте его на месте.
Большинство магнетронов выглядят так и крепятся к основному корпусу микроволновой печи четырьмя винтами.Осторожно удалите его, заверните и отложите, чтобы потом безопасно выбросить.
Трансформатор Время
Высоковольтный трансформатор (широко известный как трансформатор для микроволновой печи или MOT) — настоящий приз в этой разборке. MOT подает сетевое питание переменного тока (здесь 240 В, оно может быть другим для вас) в первичную катушку и через ступени электромагнитной индукции, которые включают питание, так что от 1800 до 2800 вольт выходят из вторичной катушки.Чем больше у вас обмоток на вторичной обмотке, тем выше напряжение и ниже токи, и наоборот.
Трансформаторы высокого напряжения могут быть дорогостоящими предметами для покупки для хобби или домашнего использования, но при тщательной модификации МОТ можно использовать для обеспечения широкого диапазона различных требований к мощности.
МОТ тяжелая, поэтому почти всегда крепится к нижней части корпуса двумя или четырьмя винтами. Осторожно удалите провода и винты и вытащите свой приз.
С этим чудовищем можно сделать несколько фантастических проектов, о которых мы поговорим позже в этой статье.
Удаление остатков
Теперь, когда у вас есть более крупные компоненты, медленно удалите все остальное по частям. Возможно, вам будет легче, если вы сначала удалите всю проводку.
Не забудьте снять нижнюю панель, чтобы снять мотор поворотного стола!
Как только у вас будет все готово, у вас должен быть целый набор компонентов:
В зависимости от того, насколько современна ваша микроволновая печь, ваш улов может немного отличаться.В этом случае мы получили:
- 1 x мощный полюсный двигатель 240 В переменного тока от вентилятора.
- 1 мотор-редуктор 240В от поворотного стола.
- 1 х маленькая лампа на 240 В с фитингом.
- 5 микропереключателей.
- 3 х переключателя термостата высокого напряжения.
- 1 резистор 20 Вт 20 Ом.
- 1 x электрический нагревательный элемент (эта конкретная микроволновая печь имела функцию гриля).
- 1 реле на 12 В.
- Трансформатор с 240 перем. Тока на 12 В.
- 1 х трансформатор высокого напряжения.
- Различные отрезки высоковольтного провода и сетевой шнур.
Наряду с этим мы также получили различные резисторы меньшего размера, диоды, конденсаторы и индуктивность.
Я также снял переднюю панель микроволновой печи целиком. Он содержит двигатель для таймера и еще два микровыключателя. Это устройство уже автономно и компактно, и, как вы увидите позже, его можно использовать для других целей.
Теперь, когда у вас есть все необходимое, соберите части, которые вы не собираетесь оставлять для утилизации. Практический способ сделать это — собрать внешний корпус с магнетроном внутри, а затем доставить все устройство в местный центр утилизации для безопасной утилизации. В разных местах действуют разные правила утилизации бытовых приборов. Обязательно соблюдайте местные правила и нормы.
Что теперь?
Теперь у нас есть все эти части, что нам с ними делать? Некоторые из них достаточно специализированы и могут понадобиться только в определенных ситуациях.Однако некоторые из них можно использовать здесь и сейчас.
Микропереключатели, которые мы собрали, — это мгновенные нормально разомкнутые (NO), нормально замкнутые (NC) или селекторные переключатели, которые рассчитаны на ток до 16A 250 В (помните, ваш может варьироваться в зависимости от вашей страны).
Несмотря на то, что они способны работать при высоком напряжении, они также отлично подходят для небольших проектов, так как они подпружинены, их можно легко установить на дверные и оконные рамы вместо герконов в составе домашней системы безопасности.Если вы новичок в работе с микроконтроллерами, они также отлично работают в проектах Arduino для начинающих.
В качестве дополнительного бонуса я обнаружил, что восстановленная проводка идеально входит в отверстия на макетной плате.
Ретранслируемое сообщение
Мы уже говорили об использовании реле 5В с микроконтроллерами, и те же принципы могут быть применены к реле, которое мы спасли.
Реле, которое мы сняли с микроволновки, рассчитано на катушку 12 В, хотя многие реле работают при более низком напряжении. Реле, которое я снял в этом случае, отлично работает только с 9 В, что делает его идеальным реле для использования в проекте микроконтроллера, и, поскольку реле здесь способно принимать до 250 В, 16 А можно будет использовать практически в любой домашней автоматизации. параметр.
Вы можете найти спецификации для большинства компонентов, выполнив поиск по марке и номеру модели.
Хомунколосс, участник Instructables, предоставил простое руководство по подключению реле 12 В к Arduino.
Вентилятор
Двигатель, прикрепленный к вентилятору, представляет собой полюсный двигатель, который работает от 240 В переменного тока. Его преимущество в том, что он очень мощный, но при этом остается довольно тихим.
Это делает его идеальным для использования в качестве самодельного вытяжного вентилятора, который должен быть у каждого, у кого есть паяльник.
Изменив эту конструкцию Джоном Уордом для использования вентилятора, вы можете создать мощный экстрактор с ограниченным бюджетом.
Джон подсчитал, что эта сборка стоила 75 фунтов стерлингов, хотя без дополнительных затрат на вентилятор и с умным повторным использованием других собранных деталей это идеальный бюджетный (и заботящийся о здоровье) проект DIY.
Конечно, вы можете использовать вентилятор, чтобы сделать веера! Пользователь Instructables profpat прикрепил вентилятор от старой микроволновой печи к старой подставке для монитора, чтобы получить прочный настольный вентилятор, который абсолютно ничего не стоил!
Кредит изображения: profpat через InstructablesПередняя панель
Передняя панель микроволновой печи, представленной выше, была одной из старых моделей с двигателем, который ведет обратный отсчет перед выключением микровыключателя, хотя у вас может быть более новый цифровой дисплей.Это устройство можно использовать как таймер обратного отсчета — идеально, чтобы напоминать вам встать и потянуться после некоторого времени перед компьютером!
Внутренний микровыключатель также можно использовать для управления прибором. Пользователь Instructables Koil_1 использовал цифровой таймер для создания таймера отключения нескольких устройств.
Кредит изображения: Koil_1 через InstructablesУвеличьте мощность
Двигатель поворотного стола в микроволновой печи очень медленно движется от источника переменного тока.Это означает, что двигатель с высоким крутящим моментом способен генерировать мощность при ручном вращении. В удивительно простом проекте пользователь Instructables ahmedebeed555 создал зарядное устройство для телефона с ручным управлением, практически не используя никаких деталей!
MOT Time
Ранее в статье я упоминал, что ТО была наиболее ценной частью, которую нужно было извлечь из микроволновой печи, и быстрый поиск в Google покажет почему. Эти трансформаторы были переделаны для создания множества странных, дурацких, а иногда и откровенно опасных изобретений — от самодельных электрических дуг до литейных заводов, точечных и сварочных аппаратов.
У изобретателя YouTube Гранта Томпсона есть серия видеороликов, охватывающих большинство этих проектов, и, хотя все они являются отличными идеями, его видеоролики о создании самодельного сварочного аппарата ARC дают четкие инструкции о том, как создать собственную сварочную установку с небольшим бюджетом.
Уборка мусора за день
В этой статье рассказано лишь о некоторых вещах, которые вы можете сделать из старой, больше не нужной микроволновой печи, и даже более мелкие детали, которые не используются немедленно, входят в ваш набор инструментов для будущих проектов.Уборка и переработка старых приборов — отличный способ узнать об электронике и сократить количество производимых нами отходов.
Перед тем, как уйти, еще раз: всегда соблюдайте осторожность при работе с мощной электроникой. Обязательно соблюдайте соответствующие меры предосторожности и при необходимости используйте защитное снаряжение!
Вы сделали какие-нибудь удивительные изобретения из разобранных деталей из микроволновки? Вы разбирали другие устройства и создавали из них свои собственные новые машины? Дайте нам знать в разделе комментариев ниже!
Кредит изображения: Сергей Казаков / Shutterstock
Как рассчитать простой и сложный процентЗнание простых и сложных процентов и способов их расчета выведет вашу игру по программированию на новый уровень.Вот как это сделать.
Читать далее
Об авторе Ян Бакли (Опубликовано 215 статей)Ян Бакли — независимый журналист, музыкант, исполнитель и видеопродюсер, живущий в Берлине, Германия.Когда он не пишет или на сцене, он возится с электроникой или кодом своими руками в надежде стать безумным ученым.
Более От Яна БаклиПодпишитесь на нашу рассылку новостей
Подпишитесь на нашу рассылку, чтобы получать технические советы, обзоры, бесплатные электронные книги и эксклюзивные предложения!
Нажмите здесь, чтобы подписаться
|