Устройство и принцип работы трансформатора. Часть 2
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с трансформатором. В первой части мы разобрались с принципом работы и начали изучать устройство трансформатора.
2.3. Конструкция магнитопроводов.
По конструкции магнитопровода определяется конструкция трансформатора и поэтому название магнитопровода переносится на название трансформатора. Промышленностью изготавливаются броневые, стержневые, тороидальные (кольцевые) магнитопроводы, а также магнитопроводы сложных (специальных) конфигураций.
Для изготовления большинства трансформаторов применяются магнитопроводы следующих типов: Ш – броневой магнитопровод; ШЛ – броневой ленточный магнитопровод; П – стержневой магнитопровод; ПЛ – стержневой ленточный магнитопровод; О – тороидальный магнитопровод; ОЛ – тороидальный (кольцевой) ленточный магнитопровод и т.д.
Для питания радиоэлектронной аппаратуры широкое применение нашли броневые
Пластины, из которых собирают броневые магнитопроводы, изготавливают из листовых электротехнических сталей путем резки или штамповки. Наиболее широко используются шихтовые (пластинчатые) магнитопроводы Ш-образной формы и ленточные магнитопроводы, состоящие из отдельных частей С-образной (U-образной) формы.
Толщина листов магнитных материалов зависит от частоты, на которую рассчитывается трансформатор. Чем меньше толщина листа, тем слабее частотная зависимость проницаемости и меньше потери в магнитопроводе, но тем выше стоимость материала. Так, например, уменьшение толщины проката электротехнической стали с 0,35 до 0,05 мм повышает ее стоимость в 5 раз.
Поэтому можно считать, что для каждого типа трансформатора и диапазона частот существует оптимальная толщина, при которой обеспечиваются необходимые параметры трансформатора при наименьшей стоимости. Для выбора толщины листов (мм) можно воспользоваться следующими ориентировочными данными:
50 Гц …. 0,35 – 0,5 мм
400 – 500 Гц …. 0,1 – 0,2 мм
1000 – 2500 Гц …. 0,05 – 0,1 мм
До 100 кГц …. 0,02 – 0,05 мм.
Более высоким частотам соответствуют меньшие значения толщины листов.
Сборка магнитопроводов из штампованных пластин выполняется двумя способами: встык (с зазором) или вперекрышку (в переплет).
Сборка встык применяется для получения определенного немагнитного зазора (∆), например, в дросселях или трансформаторах, работающих с постоянным подмагничиванием. Как правило, при сборке встык даже при очень плотном стягивании магнитопровода зазор между Ш-образными и прямоугольными пластинами получается в пределах 0,02 – 0,05 мм.
Сборка вперекрышку применяется когда такой зазор не нужен, т.е. когда необходимо уменьшить магнитное сопротивление магнитопровода. Пластины укладываются в ряд таким образом, чтобы места стыков перекрывались пластинами следующего слоя. Причем в каждом слое укладывают пластины двух типов – одну Ш-образную и одну прямоугольную.
Тороидальные (кольцевые) магнитопроводы собираются из отдельных штампованных колец.
Ленточные магнитопроводы изготавливают из узкой ленты электротехнической стали или специальных сплавов. Ленты набирают в пакеты разной длины и толщины, а затем пакеты гнут или навивают на оправку определенного размера: для тороидальных магнитопроводов навивают на круглую оправку, для броневых и стержневых на прямоугольную. Но из-за сложности изготовления обмоток для ленточных магнитопроводов их разрезают на две половины, что дает возможность наматывать обмотки трансформаторов отдельно и затем вставлять в них половинки магнитопровода, но при этом в магнитную цепь вводится неизбежный магнитный зазор.
Так как ленточные магнитопроводы собираются в стык, то для получения наименьшего магнитного сопротивления в местах стыка их торцевые поверхности шлифуют, а при сборке обе части склеиваются специальной ферромагнитной пастой. Применение пасты позволяет понизить требования к качеству механической обработки стыков и значительно упрощает их изготовление и сборку.
2.4. Обмотки трансформаторов. Виды обмоток.
Обмотки выполняется обмоточным проводом круглого сечения, покрытым эмалевой или эмалево-волокнистой изоляцией. В качестве обмоточного провода используют алюминий или медь, но в основном медь, которая обладает наименьшим сопротивлением по сравнению с другими проводниковыми материалами.
Существуют два различных способа выполнения обмоток – многослойная и галетная (дисковая).
Многослойная обмотка наматывается непрерывно до получения заданного количества витков и располагается по всей длине стержня магнитопровода или его части, отведенной для данной обмотки. Разновидностью многослойной обмотки является секционная обмотка, которая разбивается на ряд секций, где каждая секция занимает часть длины стержня, но все вместе они составляют единую обмотку.
Многослойная обмотка отличается простотой выполнения и может быть намотана на каркасе или быть бескаркасной. При намотке на каркас провод укладывают беспорядочным расположением витков – намотка «внавал» или укладывают правильными рядами – рядовая намотка.
Намотка внавал проще в производстве, но из-за возможного западания отдельных витков в толщу намотки может понизится электрическая прочность обмотки. Как правило, такая намотка используется при изготовлении броневых трансформаторов малой мощности. На рисунке показано схематичное заполнение каркаса витками обмоточного провода, а числами обозначена нумерация витков, показывающая, как витки провода могут укладываться при их намотке внавал.
При рядовой намотке провод укладывается виток к витку и каждый слой прокладывают изолирующей прокладкой, например, из конденсаторной или кабельной бумаги, что повышает электрическую и механическую прочности.
При рядовой намотке можно отказаться от сложного каркаса и производить укладку провода на простую цилиндрическую гильзу, закрепляя витки клеем или лаком. Для повышения прочности каждый последующий слой делается короче предыдущего на 0,5 – 1 мм и такая бескаркасная намотка удобна для массового производства.
Галетная обмотка выполняется в виде отдельных элементов, галет, где каждая галета представляет собой полностью законченную деталь. Галеты одна за другой нанизываются на стержень магнитопровода и соединяются между собой электрически или иным способом. Отдельные галеты могут изготавливаться независимо одна от другой, что допускает возможность замены отдельных секций трансформатора во время ремонта.
Обмотки трансформаторов должны быть хорошо изолированы как от магнитопровода, так и друг от друга. Изоляция обмоток от магнитопровода осуществляется при помощи каркасов (катушек), изготавливаемых из листовых изоляционных материалов с хорошей электрической и механической прочностью, например, электрокартона, прессшпана, гетинакса, различных изоляционных пластмасс.
Выбор материала каркаса определяется его стоимостью, удобством обработки и теплостойкостью, а конструкция каркаса определяется способом намотки и устройством выводов. Намотка внавал требует применения каркаса в виде катушки, тогда как бескаркасная намотка выполняется на простых цилиндрических каркасах (гильзах), склеенных из кабельной бумаги. Широкое применение нашли склеенные и составные каркасы из листовых материалов Конструкции различных каркасов показаны на рисунке ниже.
Выводы концов обмоток могут выполняться непосредственно обмоточным проводом, выпущенным из катушки на необходимую длину или специальным изолированным проводом; специальными ленточными выводами, укрепленными на внешней изоляции обмотки, а также при помощи специальных контактов, укрепленных на щечках каркаса или элементах магнитопровода.
Стягивание магнитопровода маломощных трансформаторов производится металлической скобой, тогда как магнитопроводы более мощных трансформаторов стягиваются специальными планками, при помощи болтов стяжек. Стягивающее устройство должно обладать необходимой механической прочностью и обеспечивать прочное соединение деталей магнитопровода.
Защита трансформаторов от климатических условий осуществляется пропиткой обмоток или пропиткой целого трансформатора изоляционными лаками. В процессе пропитки заполняются микроскопические поры изоляционных материалов, а также мелкие промежутки между витками обмоток, слоями волокнистой изоляции и конструктивными элементами трансформатора. Пропитка не только улучшает влагостойкость обмотки, но и увеличивает ее механическую и электрическую прочность, повышает допустимую температуру нагрева и теплопроводность.
Однако только одна пропитка не всегда может обеспечить полной защиты обмоток от влаги, поэтому торцы катушек дополнительно заделывают изоляционными замазками (пастами), специальными обволакивающими составами или опрессовывают. Если же трансформатор предполагается использовать в нормальных или близких к нормальным условиях, то пропитка может отсутствовать.
При повышенных требованиях к влагостойкости применяют герметизацию, которая обеспечивает полную изоляцию трансформатора от окружающей среды непроницаемой оболочкой, выполненной из металла и залитой специальным изоляционным составом, например, эпоксидными или полиуретановыми смолами.
3. Обозначение трансформаторов на схемах.
На принципиальных схемах обмотки трансформатора обозначают катушками индуктивности, расположенных близко одна от другой, а магнитопровод – линией между катушками. Низкочастотные трансформаторы со стальными магнитопроводами и магнитопроводами из железоникелевых сплавов, например, пермаллоя, на схемах обозначаются буквой «Т», а обмотки трансформаторов обозначаются римскими цифрами. Иногда используют условную нумерацию их выводов в соответствии с маркировкой указанной на корпусе трансформатора.
В радиочастотной технике обмотки высокочастотных трансформаторов нередко являются элементами колебательных контуров и фильтров, поэтому на схемах им присваивают буквенное значение катушек индуктивности «L». Высокочастотные трансформаторы могут быть как с магнитопроводом, так и без него, а их обмотки (катушки) могут располагаться на одном или разных каркасах, но очень близко друг к другу.
Если магнитопровод является общим для всех обмоток, то на схемах его обозначают прерывистой линией (а), если же каждая из катушек имеет свой магнитопровод, то его изображают над катушками (б).
Возможность подстройки индуктивности катушек изменением положения магнитопровода отображают знаком подстроечного регулирования, который пересекает символы обмоток (а), а чтобы показать индуктивную связь между катушками, их символы пересекают знаком регулирования (б).
В приемной и передающей радиоаппаратуре для корректной работы некоторых блоков, содержащих трансформаторы, иногда требуется знать фазировку обмоток, т.е. порядок подключения выводов. В таких случаях на принципиальных схемах начало обмоток трансформаторов и катушек индуктивности обозначают жирной точкой, которую ставят у соответствующего вывода.
Для питания бытовой радиоаппаратуры применяют силовые трансформаторы, выполняющие две важные функции: они преобразуют напряжение переменного тока электрической сети к нужному, как правило, более низкому значению, которое используется для питания электронной схемы, а также «изолируют» электронную схему от непосредственного контакта с сетью, так как обмотки электрически изолированы одна от другой.
Выпускаемые промышленностью силовые трансформаторы предназначены для работы с напряжением 110, 127 или 220В и обеспечивают разнообразные значения вторичных напряжений от одного до нескольких тысяч вольт и токами от нескольких миллиампер до сотен ампер. Мощность наиболее распространенных трансформаторов чаще всего лежит в пределах 30 – 200 В•А. Как правило, силовые трансформаторы имеют несколько вторичных обмоток с различными напряжениями, но общее количество обмоток обычно не превышает четырех-пяти.
Некоторые устройства, питающиеся от сети переменного тока (коллекторные электродвигатели, сварочные аппараты и т.п.), создают интенсивные помехи, которые через электрическую сеть и силовой трансформатор могут проникнуть в аппаратуру и нарушить ее работу.
Для ослабления этих помех между первичной (сетевой) и остальными обмотками помещают электростатический экран, представляющий собой незамкнутый виток из полоски медной или алюминиевой фольги или один слой изолированного провода. Вывод экрана соединяют с шасси или с общим проводом (корпусом) прибора, а наличие экранирующей обмотки изображают штриховой линией, параллельной символу магнитопровода, со знаком корпуса прибора на конце.
Иногда для работы в измерительной и бытовой аудиоаппаратуре обмотку трансформатора экранируют путем размещения внутри металлического футляра (экрана) из магнитного материала, который также соединяют с шасси или с общим проводом (корпусом) прибора.
Вот в принципе и все, что хотел рассказать об устройстве и принципе работе трансформатора.
До встречи на страницах сайта.
Удачи!
Литература:
1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. В. Фролов – «Язык радиосхем», Москва «Радио и связь», 1988 г.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.
Трансформатор | Устройство, виды, принцип работы
Слово “трансформатор” образуется от английского слова “transform” – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.
Трансформатор напряжения
Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.
Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода
а с другой катушки два красных провода
Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого
Ничего сложного, правда ведь?
Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.
Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.
Обмотки трансформатора
Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.
Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.
У самого простого однофазного трансформатора можно увидеть две такие обмотки.
Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.
Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.
I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.
O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.
Как работает трансформатор
Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.
Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.
Формула трансформатора
Главная формула трансформатора выглядит так.
где
U2 – напряжение на вторичной обмотке
U1 – напряжение на первичной обмотке
N1 – количество витков первичной обмотки
N2 – количество витков вторичной обмотки
k – коэффициент трансформации
В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:
Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.
Типы трансформаторов по конструкции
Однофазные трансформаторы
Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.
В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.
На схемах однофазный трансформатор обозначается так:
Первичная обмотка слева, а вторичная – справа.
Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:
Трехфазные трансформаторы
Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.
На схемах трехфазные трансформаторы обозначаются вот так:
Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.
Здесь мы видим три типа соединения обмоток (слева-направо)
- звезда-звезда
- звезда-треугольник
- треугольник-звезда
В 90% случаев используется именно звезда-звезда.
Типы трансформаторов по напряжению
Понижающий трансформатор
Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.
Повышающий трансформатор
Это трансформатор, который повышает напряжение. Допустим, на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.
Разделительный или развязывающий трансформатор
Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.
Согласующий трансформатор
Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.
Работа понижающего трансформатора на практике
Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .
Итак, имеем простой однофазный понижающий трансформатор.
Именно на нем мы будем проводить различные опыты.
Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.
Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.
Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.
Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.
Как проверить трансформатор
Как проверить на короткое замыкание обмоток
Хотя обмотки прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.
Проверка на обрыв обмоток
При обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.
Таким же образом проверяем и вторичную обмотку.
Отсюда делаем вывод, что наш трансформатор жив и здоров.
Похожие статьи по теме “трансформатор”
Лабораторный автотрансформатор (ЛАТР)
Программа для расчета трансформатора
Как получить постоянное напряжение из переменного
устройство и принцип работы, назначение, схемы, фото и видео-инструкция как сделать и подключить трансформатор своими руками
Автор Aluarius На чтение 7 мин. Просмотров 687 Опубликовано
Вопрос, что такое трансформатор, для опытных и даже начинающих электриков совершенно простой. Но обычные обыватели, которые с электрикой не дружат, даже и не представляют, как выглядит трансформатор, для чего он необходим, а тем более, не осведомлены о его конструкции и принципе работы. Поэтому в этой статье будем разбираться с этим прибором, рассмотрим вопрос, а можно ли сделать трансформатор своими руками, и так далее. Итак, трансформатор – это электромагнитное устройство, которое может изменять напряжение переменного тока (увеличивать или уменьшать).
Трансформаторы токаУстройство и принцип работы
Итак, конструкция трансформатора достаточно проста и состоит из сердечника и двух катушек из медной проволоки. В основе принципа работы лежит электромагнитная индукция. Чтобы вы поняли, как работает этот прибор, рассмотрим, как магнитное поле, образуемое в катушках (обмотках) устройства, изменяет показатель напряжения.
Подаваемый на первую обмотку электрический ток (он переменный, поэтому изменяется по направлению и величине) образует в катушке магнитное поле (оно также переменное). В свою очередь магнитное поле образует во второй катушке электрический ток. Такой своеобразный обмен параметрами. Но просто так изменение напряжения не произойдет, оно зависит от того, сколько витков медной проволоки в каждой обмотке. Конечно, величина изменения магнитного поля (скорость) также влияет на величину напряжения.
Что касается количества витков, то получается так:
- если число витков в первичной катушке больше, чем во вторичной, то это понижающий трансформатор;
- и, наоборот, если количество витков во вторичной обмотке больше, чем в первичной, то это повышающий трансформаторный прибор.
Поэтому существует формула, которая определяет так называемый коэффициент трансформации. Вот она:
k=w1/w2, где w – это число витков в катушке с соответствующим номером.
Внимание! Любой трансформатор может быть и понижающим, и повышающим, все зависит от того, к какой обмотке (катушке) подсоединяется питающий кабель сети переменного тока.
И еще один момент, касающийся устройства. Это сердечник трансформатора. Все дело в том, что существуют разные виды этого устройства, в которых сердечник присутствует или отсутствует.
- Так вот, в тех видах, где сердечник трансформатора отсутствует или изготовлен из феррита или альсифера называются высокочастотными (выше 100 кГц).
- Приборы с сердечником из стали, феррита или пермаллои – низкочастотные (ниже 100 кГц).
Первые используются в радио- и электросвязи. Вторые в для усиления звуковых частот, к примеру, в телефонии. Со стальным сердечником используется в электротехнике (в бытовых приборах в том числе).
Условные обозначения и параметры
Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение. Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта.
А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).
Расшифровка маркировки трансформатораЧто касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:
- Напряжение в первичной катушке.
- Напряжение во вторичной катушке.
- Первичная сила тока.
- Вторичная сила тока.
- Общая мощность аппарата.
- Коэффициент трансформации.
- КПД.
- Коэффициент мощности и нагрузки.
Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:
Обозначение на схемахK=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.
Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.
Как сделать самостоятельно
Итак, как сделать трансформатор самому? Зная, принцип работы установки и его конструктивные особенности, можно собрать своими руками простейший аппарат. Для этого вам понадобится любое металлическое кольцо, на котором надо накрутить два участка обмотки. Самое важно – обмотки не должны касаться друг друга, а место их намотки не зависит конкретно от их расположения. То есть, они могут быть размещена напротив друг друга или рядом. Важно – даже небольшое расстояние между ними.
Внимание! Трансформатор работает только от сети переменного тока. Так что не стоит подключать к вашему устройству батарейку или аккумулятор, где присутствует ток постоянный. Работать от этих источников электроэнергии он не будет.
Как уже было сказано выше, количество витков в обмотках определяет, какой прибор вы собираете – понижающий или повышающий. К примеру, если вы на первичной обмотке соберете 1200 витков, а на вторичной всего лишь 10, то на выходе вы получите напряжение 2 вольта. Конечно, при подключении первичной катушки к напряжению 220-240 вольт. Если фазировка трансформатора будет заменена, то есть, провести подсоединение 220 вольт к вторичной обмотке, то на выходе первичной получится ток напряжением 2000 вольт. То есть, к назначению трансформатора надо подходить осторожно, учитывая тот самый коэффициент трансформации.
Как правильно подключить
Что касается монтажа трансформатора, особенно его понижающего типа в быту дома, то необходимо знать некоторые нюансы проводимого процесса.
- Во-первых, это касается самого устройства. При монтаже трансформатора иногда появляется необходимость подключения не одного потребителя, а сразу нескольких. Поэтому обращайте внимание на количество выходных клемм. Конечно, необходимо знать, что суммарная потребляемая мощность потребителей не должна быть больше мощности самого трансформаторного устройства. Во всяком случае, специалисты рекомендуют, чтобы второй показатель был всегда больше первого на 15-20%.
- Во-вторых, подключение трансформатора производится электрической проводкой. Так вот ее длина и до прибора, и после не должна быть очень большой. К примеру, понижающий аппарат для светодиодного освещения предполагает наличие проводки от него до светильников не больше двух метров. Это позволит избежать больших потерь мощности.
Внимание! Нельзя процесс монтажа трансформатора проводить и в том случае, если потребляемая мощность потребителей будет меньше мощности самого агрегата.
- В-третьих, место установки электрического понижающего прибора должно быть выбрано правильно. Самое важное, чтобы до него всегда можно было бы добраться просто, особенно когда есть необходимость провести демонтаж со следующей заменой и монтажом трансформатора. Поэтому перед тем как подключить трансформатор, необходимо определиться с его местом установки.
Схема замещения
Буквально несколько слов о том, что такое схема замещения трансформатора. Начнем с того, что две катушки соединены между собой магнитным полем, поэтому проанализировать работы трансформатора, а тем более его характеристики, очень сложно. Поэтому для этих целей сам прибор заменяют моделью, которая и называется схема замещения трансформатора.
По сути, все переводится на математический уровень, а точнее, в уравнения (токов и электрического состояния). Здесь важно, чтобы все уравнения, касающиеся прибора и его модели, совпадали. Кстати, для многих схема замещения трансформатора достаточно сложна, поэтому существует упрощенный вариант, в котором нет тока холостого хода, ведь на него приходится незначительная часть.
Фазировка
Фазировка трансформатора – это испытание его выходов, когда в одну цепь подключены несколько приборов параллельно. Ведь обязательное условие эффективной работы цепи с отсутствием больших потерь мощности – это правильное соединение фаз между собой, чтобы образовался замкнутый контур.
Если фазы не совпадут, то падает мощности и растет нагрузка. Если не совпадает чередование фаз, то произойдет короткое замыкание.
Заключение по теме
Итак, был сделан небольшой обзор всего, что касается трансформаторных установок, поэтому будем считать, что вопрос, зачем нужны трансформаторы, исчерпан, хотя и не полностью. Об этом приборе можно говорить долго. К примеру, самые простые варианты: как разобрать трансформатор, как прозвонить его, как подключить или демонтировать самому дома.
Принцип работы трансформатора. Устройство и режимы работы
Здравствуйте, дорогие читатели! Сегодня поговорим про принцип работы трансформатора, рассмотрим его устройство и режимы работы. И так…
В энергетике, электронике и других отраслях прикладной электротехники большая роль отводится преобразованиям электромагнитной энергии из одного вида в другой. Этим вопросом занимаются многочисленные трансформаторные устройства, которые создаются под различные производственные задачи.
Одни из них, имеющие наиболее сложную конструкцию, выполняют трансформацию мощных потоков высоковольтной энергии, например 500 или 750 киловольт в 330 и 110 кВ или в обратном направлении.
Высоковольтный трансформатор
Другие работают в составе малогабаритных устройств бытовой техники, электронных приборов, системах автоматизации. Они также широко используются в различных блоках питания мобильных устройств.
Плата с трансформатором, от блока питания, для мобильных устройств
Трансформаторы работают только в цепях переменного напряжения разной частоты и не предназначены для применения в схемах постоянного тока, в которых используются преобразователи других типов.
Общий принцип работы трансформатора
Мы знаем, что электромагнитная энергия неразрывна. Но ее принято представлять двумя составляющими:
- электрической
- магнитной
Так проще понимать происходящие явления, описывать процессы, делать расчеты, конструировать различные устройства и схемы. Целые разделы электротехники посвящены раздельным анализам работы электрических и магнитных цепей.
Электрический ток, как и магнитный поток, протекает только по замкнутой цепи, обладающей сопротивлением (электрическим или магнитным). Его создают внешние приложенные силы — источники напряжения соответствующих энергий.
Однако, при рассмотрении принципов работы трансформаторных устройств придётся одновременно исследовать оба этих фактора, учесть их комплексное воздействие на преобразование мощности.
Простейший трансформатор состоит из двух обмоток, выполненных намоткой витками изолированной проволоки, по которым протекает электрический ток и одной магистрали для магнитного потока. Ее принято называть сердечником или магнитопроводом.
Принцип работы трансформатора
К вводу одной обмотки приложено напряжение от источника электроэнергии U1, а с выводов второй оно после преобразования в U2, подается на подключенную нагрузку R.
Под действием напряжения U1 в первой обмотке по замкнутой цепи протекает ток I1, величина которого зависит от полного сопротивления Z, состоящего из двух составляющих:
- активного сопротивления проводов обмотки
- реактивной составляющей, обладающей индуктивным характером
Величина индуктивного сопротивления оказывает большое влияние на работу трансформатора.
Протекающая по первичной обмотки электрическая энергия в виде тока I1 представляет собой часть электромагнитной, магнитное поле которой направлено перпендикулярно движению зарядов или расположению витков проволоки. В его плоскости размещен сердечник трансформатора — магнитопровод, по которому замыкается магнитный поток Ф.
Все это наглядно отражено на картинке и строго соблюдается при изготовлении. Сам магнитопровод тоже замкнут, хотя в отдельных целях, например, для снижения магнитного потока в нем могут делать зазоры, увеличивающие его магнитное сопротивление.
За счет протекания первичного тока по обмотке магнитная составляющая электромагнитного поля проникает в магнитопровод и циркулирует по нему, пересекая витки вторичной обмотки, которая замкнута на выходное сопротивление R.
Под действием магнитного потока во вторичной обмотке наводится электрический ток I2. На его величине сказывается значение приложенной напряженности магнитной составляющей и полной сопротивление цепи, включая подключенную нагрузку R.
При работе трансформатора внутри магнитопровода создается общий магнитный поток Ф и его составные части Ф1 и Ф2.
Как устроен и работает автотрансформатор
Среди трансформаторных устройств особой популярностью пользуются упрощенные конструкции, использующие в работе не две разные отдельно выполненные обмотки, а одну общую, разделенную на секции. Их называют автотрансформаторами.
Схема устройства автотрансформатора
Принцип работы трансформатора такой схемы практически остался прежним. Происходит преобразование входной электромагнитной энергии в выходную. По виткам обмотки W1 протекают первичные токи I1, а по W2 — вторичные I2. Магнитопровод обеспечивает путь движения для магнитного потока Ф.
У автотрансформатора имеется гальванически связь между входными и выходными цепями. Так как преобразованию подвергается не вся приложенная мощность источника, а только часть ее, то создается более высокий КПД, чем у обычного трансформатора.
Такие конструкции позволяют экономить на материалах: стали для магнитопровода, меди для обмоток. Они обладают меньшим весом и стоимостью. Поэтому их эффективно используют в системе энергетики от 110 кВ и выше.
Особых отличий в режимах работы трансформатора и автотрансформатора практически нет.
Рабочие режимы трансформатора
При эксплуатации любой трансформатор может находиться в одном из состояний:
- выведен из работы
- номинальный режим
- холостой ход
- короткое замыкание
- перенапряжение
1. Режим вывода из работы
Для его создания достаточно снять питающее напряжение источника электроэнергии с первичной обмотки и этим исключить прохождение электрического тока по ней, что и делают всегда в обязательном порядке с подобными устройствами.
Однако на практике при работе со сложными трансформаторными конструкциями такая мера не обеспечивает полностью меры безопасности: на обмотках может оставаться напряжение и приносить вред оборудованию, подвергать опасности обслуживающий персонал за счет случайного воздействия разрядов тока.
Как это может произойти?
У малогабаритных трансформаторов, которые работают в качестве блока питания, как показано на верхней фотографии, постороннее напряжение никакого вреда не причинит. Ему там просто неоткуда взяться. А на энергетическом оборудовании его обязательно следует учитывать. Разберём две часто встречающиеся причины:
- Подключение постороннего источника электроэнергии
- Действие наведенного напряжения
Подключение постороннего источника электроэнергии
На сложных трансформаторах работает не одна, а несколько обмоток, которые используются в разных цепях. Со всех их необходимо отключать напряжение.
Кроме того, на подстанциях, эксплуатируемой в автоматическом режиме без постоянного оперативного персонала к шинам силовых трансформаторов подключают дополнительные трансформаторы, обеспечивающие собственные нужды подстанции электроэнергией 0,4 кВ. Они предназначены для питания защит, устройств автоматики, освещения, отопления и других целей.
Их так и называют — ТСН или трансформаторы собственных нужд. Если со входа силового трансформатора снято напряжение и его вторичные цепи разомкнуты, а на ТСН проводятся работы, то существует вероятность обратной трансформации, когда напряжение 220 вольт с низкой стороны проникнет на высокую по подключенным шинам питания. Поэтому их необходимо обязательно отключать.
Действие наведенного напряжения
Если около шин отключенного трансформатора проходит высоковольтная линия, находящаяся под напряжением, то токи, протекающие по ней, способны наводить напряжение на шинах. Необходимо применять меры для его снятия.
2. Номинальный режим работы
Это обычное состояние трансформатора во время его эксплуатации для которого он и создан. Токи в обмотках и приложенные к ним напряжения соответствуют расчетным значениям.
Трансформатор в режиме номинальной нагрузки потребляет и преобразует мощности, соответствующие проектным значениям в течение всего предусмотренного ему ресурса.
3. Режим холостого хода
Он создается в том случае, когда на трансформатор подано напряжение от источника питания, а на выводах выходной обмотки отключена нагрузка, то есть разомкнута цепь. Этим исключается протекание тока по вторичной обмотке.
Трансформатор в режиме холостого хода потребляет минимально возможную мощность, определяемую его конструкторскими особенностями.
4. Режим короткого замыкания
Так называют ситуацию, когда нагрузка, подключенная к трансформатору оказывается закороченной, наглухо зашунтированной цепочками с очень малыми электрическими сопротивлениями и на нее действует вся мощность питания источника напряжения.
В этом режиме протекание огромных токов КЗ ни чем практически не ограничивается. Они обладают огромной тепловой энергией и способны сжечь провода или оборудование. Причем действуют до тех пор, пока схема питания через вторичную или первичную обмотку не выгорит, разорвавшись в наиболее слабом месте.
Это самый опасный режим, который способен возникнуть при работе трансформатора, причем, в любой, самый неожиданный момент времени. Его появление можно предвидеть, а развитие следует ограничивать. С этой целью используют защиты, которые отслеживают превышение допустимых токов на нагрузке и максимально быстро их отключают.
5. Режим перенапряжения
Обмотки трансформатора покрыты слоем изоляции, который создается для работы под определенным напряжением. При эксплуатации возможно его превышение по различным причинам, возникающим как внутри электрической системы, так и в результате воздействия атмосферных явлений.
В заводских условиях определяется величина допустимого превышения напряжения, которое может действовать на изоляцию до нескольких часов и кратковременных перенапряжений, создаваемых переходными процессами при коммутациях оборудования.
Для предотвращения их воздействия создают защиты от повышения напряжения, которые при возникновении аварийной ситуации отключают питание со схемы в автоматическом режиме или ограничивают импульсы разрядов.
Видео, принцип работы трансформатора
Смотрите также по теме:
Трансформатор Тесла (Tesla coil). Делаем своими руками.
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
принцип действия и его устройство
Трансформаторами в электрике называют специальные электроустановки, которые передают переменный электрический ток из одной своей катушки к другой, которая не связана с первой электрическим способом. Сфера их применения крайне широка, поэтому следует разобраться, что это за прибор и каков принцип действия устройства однофазного трансформатора.
Что такое однофазный трансформатор
Электрическая установка, которая содержит две и более катушки, связанные индуктивно, называется трансформатором. Этот прибор способен преобразовывать электроток одной напряженности в переменный ток другой напряженности. На данный момент особой популярностью пользуются трехфазные и однофазные электротрансформаторы.
Схема простейшего однофазного трансформатораОбычный однофазный прибор представляет собой замкнутый сердечник из ферромагнитного вещества, который обматывают первичной и вторичной катушками. Для снижения токов вихревого типа сердечник делают из тонких (пол-миллиметра) слоев специальной стали.
Обратите внимание! На схемах трансформаторов обычно применяют плюсовые направления всех значений, которые характеризуют процессы работы. Исходит это из того, что первичная катушка — это приемник энергии, а вторичная — источник.
Однофазный трансформатор NDK-50VA 230/24 IECКак работает однофазный трансформатор
Работа этого прибора заключается в следовании законам электромагнетизма. Во время подключения первой обмотки к питанию по ней начинает идти переменный ток, создающий в ферромагнитном сердечнике магнитные токи переменного знака. Когда этот поток замыкается в сердечнике, то он сцепляет первичную и вторичную катушки и производит в них электродвижущую силу, которая пропорциональна количеству витков катушки.
Важно! Когда по первичной катушке проходит ток, он создает с ее помощью магнитное поле, пронизывающее не только эту обмотку, но и вторичную.
Принцип работы и рассеивание магнитных волнВ чем его достоинства и недостатки
Любое электротехническое приспособление обладает рядом преимуществ и недостатков. Однофазные электрические трансформаторы этому не исключение. Достоинств у них больше, чем минусов. Основными из них являются:
- обладают одним из самых больших коэффициентов полезного действия (КПД), который составляет 98 %;
- отлично охлаждаются и обладают повышенной стойкостью к перегрузкам и кратковременным скачкам напряжения;
- экологическая безопасность сухого вида. Масла в них нет, а значит, что окружающей среде ничего не может навредить даже после утилизации;
- отсутствие нужды соблюдения особых противопожарных мер в местах установки трансформаторов;
- сравнительно небольшие размеры, позволяющие устанавливать аппараты в небольшие отсеки.
Не лишены эти приборы и ряда недостатков, которые зависят от их вида и места применения:
- сложное обслуживание, если аппарат масляный. Его регулярно нужно проверять на пробой и подтекание резиновых прокладок, замена которых достаточно сложная;
- сухие однофазные приборы не переносят повышенную влажность, ветер, химические и физические воздействия, а также загрязнение;
- высокая стоимость сухих трансформаторов по сравнению с масляными.
Конструкция однофазного трансформатора
Конструкция простейшего однофазного электрического трансформатора такова: замкнутый ферромагнитный стальной сердечник, находящийся внутри двух катушек (их может быть и больше). Та обмотка, которая соединена с источником электрической энергии, называется первичной. Катушка, соединенная с потребителем энергии, называется вторичной.
Обратите внимание! Все параметры и величины в таком приборе делятся на первичные и вторичные. Это зависит от того, где они наблюдаются (в той или иной обмотке) и на что влияют.
В процессе протекания по прибору электрического тока в первичной катушке возникают напряжение и сила намагничивания, возбуждающая поток магнитных волн в стальном сердечнике. Этот поток в первой катушке появляется благодаря силе самоиндукции, а во второй — взаимоиндукции.
Конструкция аппаратаНазначение однофазного трансформатора
Трансформаторные установки нашли широкое применение в различных электросетях. Они являются незаменимыми частями всей электрической системы. Все дело в том, что передача электроэнергии по сетям осуществляется при высоком напряжении (от 500 до 1000 кВ), а для перемещения той же мощности потребуется куда менее сильный ток, что ведет к снижению потерь. На станции с помощью трансформаторов повышают напряжение со стороны отправителя и уменьшают его со стороны получателя.
К сведению! Выше описаны силовые приборы, но есть и измерительные, сварочные трансформаторы. В некоторых приборах они используются для разделения цепи гальваническим методом. Электротрансформаторы относят к машинам, хотя они не имеют движущихся частей.
Коробка для подключенияОднофазный трансформатор имеет широкое распространение в электротехнике и электрических сетях. Благодаря своему простому строению и высокому КПД его зона применения расширилась от силовых установок до бытовых приборов.
Принцип работы трехфазного трансформатора
Принцип действия трехфазного трансформатора
Трансформаторы – статические электромагнитные аппараты, с помощью которых возможно преобразовать переменный ток из одного класса напряжения в другой, при этом с неизменной частотой.
В энергосистемах трансформатор, который преобразовывает электроэнергию трехфазного напряжения, называют трехфазным силовым.
Для передачи электроэнергии от генераторов электростанций к линиям электропередач (ЛЭП) применяют повышающие трансформаторы (они увеличивают класс напряжения), от ЛЭП к распределительным подстанциям и далее к потребителям – понижающие (они уменьшают класс напряжения).
Конструктивная особенность
Трехфазный трансформатор имеет основу – магнитный сердечник, собранный из трёх ферромагнитных стержней.
На стержнях располагаются первичная обмотка высокого напряжения и вторичная обмотка низкого напряжения. Для соединения фаз первичных обмоток применяют схемы «треугольник» либо «звезда». Аналогичным способом соединения выполняются и вторичные обмотки.
На первичную обмотку подаётся электроэнергия из питающей сети, а на вторичную подключается нагрузка.
Электроэнергия передаётся за счет электромагнитной индукции.
Главная функция магнитопровода – обеспечить между обмотками магнитную связь. Магнитопровод изготавливают из тонких стальных пластин (электротехническая листовая сталь). Чтобы сократить потери, стальные листы между собой изолируют, используя оксидную пленку или специальный лак.
Трансформатор силовой трехфазный с литой изоляцией ТСЛ (ТСГЛ) и ТСЗЛ (ТСЗГЛ)
Трансформатор силовой трехфазный ТС и ТСЗ
Трансформатор-стабилизатор высоковольтный дискретный ВДТ-СН
Обмотки с магнитопроводом погружаются в бак, в котором находится трансформаторное масло. Оно одновременно выполняет функцию изоляции и охлаждающей среды. Такие трансформаторы называются масляными. Трехфазный трансформатор, у которого в качестве охлаждения и изоляции используется воздух, называют сухим. Недостаток масляных трансформаторов заключается в повышенной пожароопасности.
Принцип работы
Электромагнитная индукция является базовым явлением в работе трансформатора.
Из электрической сети подается питание к первичной обмотке, в ней появляется переменный ток, в магнитопроводе при этом образуется магнитный переменный поток. Как известно из физики, если поместить второй проводник в магнитное поле, в нем также появляется переменный ток. В качестве второго проводника в трансформаторе выступает вторичная обмотка. Таким образом, в ней появляется напряжение.
Разница между первичным и вторичным напряжением зависит от коэффициента трансформации, который определяется числом витков в обмотках.
Трехфазный трансформатор: строение, виды, принцип работы
Преобразование трёхфазной системы напряжения можно реализовать с помощью трёх однофазных трансформаторов. Но при этом будет использован аппарат значительного веса и внушительных размеров. Трехфазный трансформатор лишён этих недостатков, так как его обмотки располагаются на стержнях общего магнитопровода. Поэтому в сетях мощностью до 60 тыс. кВА его применение является оптимальным вариантом.
Назначение трёхфазного трансформатора
Главной функцией трансформаторов является передача электроэнергии на большие дистанции. Электрическая энергия переменного тока вырабатывается на электростанциях. При передаче электроэнергии появляются потери на нагревание проводов. Их можно уменьшить, снизив силу тока. Для этого необходимо увеличить напряжение таким образом, чтобы его значение находилось в диапазоне от 6 до 500 кВ.
Кратность увеличения зависит от значения передаваемой мощности и расстояния до конечного пункта.
Мощность, которая при этом передаётся, зависит от двух параметров: напряжения и силы тока.
Главной характеристикой, влияющей на изменение потерь проводов, связанных с нагревом, является значение силы тока. Для того, чтобы снизить потери на нагревание, необходимо уменьшить силу тока. Уменьшая ток, величину напряжения соответственно нужно увеличивать. Тогда значение мощности, которая передаётся, останется неизменным.
После того, как напряжение будет доставлено потребителям, его следует снизить до необходимой величины.
Соответственно, основной задачей трёхфазных трансформаторов является повышение напряжения перед передачей электроэнергии и понижение после неё.
Определение и виды прибора
Трехфазный трансформатор — это статический аппарат с тремя парами обмоток. Прибор предназначен для преобразования напряжения при передаче мощности на значительные дистанции.
Классификация по количеству фаз:
- однофазные;
- трехфазные.
Однофазные трансформаторы имеют небольшую мощность. Основными областями их применения являются быт и проведение работ специального назначения (сварка, измерения, испытания).
Диапазон мощности трёхфазных трансформаторов варьируется в больших пределах. Поэтому и область их применения весьма разнообразна:
- для питания токоприёмников специального назначения;
- для присоединения измерительных приборов;
- для изменения значения напряжения при испытаниях;
- для увеличения или уменьшения напряжения при подключении освещения или силовой нагрузки.
Принцип действия
Основой трёхфазного трансформатора являются магнитопровод и обмотки. В каждой фазе присутствует своя повышающая и понижающая обмотка. Так как фаз три, соответственно обмоток шесть. Между собой они не соединены.
Принцип работы трёхфазного трансформатора, как и однофазного, базируется на законе электромагнитной индукции.
При подключении к сети первичной обмотки в ней начинает протекать переменный ток. Из-за него в сердечнике магнитопровода из стали появляется основной магнитный поток, который охватывает обмотки в каждой фазе. В каждом витке появляется одинаковая по значению и величине электродвижущая сила.
Если количество витков вторичной обмотки меньше, нежели число витков первичной, то на выходе окажется напряжение меньшего значения, чем на входе и наоборот.
Тот факт, что значение электродвижущей силы зависит лишь от количества витков определённой обмотки, подтверждают формулы:
E 1 = 4, 44f 1 Ф W 1
E 2 = 4, 44 f 1 Ф W 2
E 1, Е 2 — значение электродвижущей силы в первичной и вторичной обмотках соответственно, В;
f 1 — частота тока в сети, Гц;
Ф — максимальное значение основного магнитного потока, Вб;
W 1, W 2 — количество витков в первичной и вторичной обмотках соответственно.
Строение трансформатора
Основными частями преобразователя напряжения являются:
- магнитопровод;
- обмотки высокого и низкого напряжения;
- бак;
- вводы и выводы.
К дополнительной аппаратуре относятся:
- расширительный бак;
- выхлопная труба;
- пробивной предохранитель;
- приборы для контроля и сигнализации.
Магнитопровод необходим для крепления всех частей аппарата. Он является своеобразным скелетом преобразователя напряжения. Второй его задачей является создание направление движения для основного магнитного потока. В зависимости от особенностей крепления обмоток к сердечнику, магнитопровод трансформатора может быть трёх видов:
- бронестержневой;
- броневой;
- стержневой.
Для изготовления обмоток трансформаторов небольшой мощности используют провод из меди, имеющий прямоугольное или круглое сечение.
Трансформаторное масло является очень важным элементом в аппарате. В маломощных трансформаторах (сухих) его не применяют. При средней и высокой мощности его использование обязательно.
У трансформаторного масла две задачи:
- охлаждение обмоток, нагревающихся вследствие протекания по ним тока;
- повышение изоляции.
Схемы и группы соединения обмоток
В трёхфазных трансформаторах необходимо соединять между собой первичные обмотки по фазам и вторичные.
Существует три схемы соединения:
- звезда;
- треугольник;
- зигзаг.
При соединении обмоток звездой напряжение линейное — между началами фаз — будет в 1,73 раза больше, чем фазное (между началом и концом фазы). При соединении обмоток трансформатора треугольником фазное и линейное напряжения будут одинаковы.
Соединять обмотки звездой более выгодно при высоких напряжениях, а треугольником — при значительных токах. Соединение обмоток зигзагом даёт возможность сгладить асимметрию намагничивающих токов. Но недостатком такого способа соединения является повышенная трата обмоточного материала.
Сфера использования
Такие трансформаторы в основном используются в промышленности. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.
На схемах трехфазные трансформаторы обозначаются вот так:
Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.
Немного из истории
Изобретение трансформаторов начиналось ещё в 1876 году великим русским учёным П.Н. Яблоковым. Его изделие не имело замкнутого сердечника, он появился позже – в 1884 году. И с появлением прибора учёные активно стали интересоваться переменным током.
Например, уже в 1889 году М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый трёхфазный асинхронный двигатель и трансформатор. Через два года была представлена презентация трёхфазной высоковольтной линии протяженностью 175 км, где успешно повышалась и понижалась электроэнергия.
Чуть позже появились масляные агрегаты, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.
Источники:
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.
The Illustrated Transformer — Джей Аламмар — Визуализация машинного обучения по одной концепции за раз.
Обсуждения:
Hacker News (65 баллов, 4 комментария), Reddit r / MachineLearning (29 баллов, 3 комментария)
Переводы: Испанский, Китайский (упрощенный), Корейский, Русский, Французский, Японский
Смотреть: лекция MIT по теме «Глубокое обучение», ссылка на которую имеется в этой публикации
В предыдущем посте мы рассмотрели «Внимание» — широко распространенный метод в современных моделях глубокого обучения.Внимание — это концепция, которая помогла повысить производительность приложений нейронного машинного перевода. В этом посте мы рассмотрим The Transformer — модель, которая использует внимание для повышения скорости обучения этих моделей. Transformers превосходит модель нейронного машинного перевода Google в определенных задачах. Однако самое большое преимущество заключается в том, что The Transformer поддается распараллеливанию. Фактически, Google Cloud рекомендует использовать The Transformer в качестве эталонной модели для использования своего предложения Cloud TPU.Итак, давайте попробуем разбить модель на части и посмотреть, как она работает.
Трансформатор был предложен в статье «Внимание — это все, что вам нужно». Его реализация в TensorFlow доступна как часть пакета Tensor2Tensor. Группа НЛП из Гарварда создала руководство с комментариями к статье с использованием PyTorch. В этом посте мы попытаемся немного упростить вещи и представить концепции одну за другой, чтобы, надеюсь, облегчить понимание людям, не имеющим глубоких знаний по предмету.
2020 Обновление : Я создал видео «Рассказанный трансформер», в котором более мягкий подход к теме:
Взгляд высокого уровня
Давайте начнем с рассмотрения модели как единого черного ящика. В приложении машинного перевода оно берет предложение на одном языке и выводит его перевод на другом.
Раскрывая эту доброту Оптимуса Прайма, мы видим компонент кодирования, компонент декодирования и связи между ними.
Компонент кодирования представляет собой стек кодировщиков (на бумаге шесть из них складываются друг на друга — в цифре шесть нет ничего волшебного, можно определенно поэкспериментировать с другим расположением). Компонент декодирования представляет собой стек декодеров с одинаковым числом.
Все кодировщики идентичны по структуре (но не имеют общих весов). Каждый из них разбит на два подслоя:
Входные данные кодировщика сначала проходят через слой самовнимания — слой, который помогает кодировщику смотреть на другие слова во входном предложении, когда он кодирует определенное слово.Мы более подробно рассмотрим самовнимание позже в этой статье.
Выходные данные слоя самовнимания передаются в нейронную сеть прямого распространения. Точно такая же сеть прямой связи независимо применяется к каждой позиции.
Декодер имеет оба этих уровня, но между ними есть уровень внимания, который помогает декодеру сосредоточиться на соответствующих частях входного предложения (аналогично тому, что делает внимание в моделях seq2seq).
Использование тензоров в картине
Теперь, когда мы увидели основные компоненты модели, давайте начнем смотреть на различные векторы / тензоры и то, как они перемещаются между этими компонентами, чтобы превратить входные данные обученной модели в выходные.
Как и в случае с приложениями НЛП в целом, мы начинаем с преобразования каждого входного слова в вектор с помощью алгоритма встраивания.
Каждое слово вложено в вектор размером 512. Мы представим эти векторы этими простыми прямоугольниками.
Встраивание происходит только в самый нижний кодировщик. Абстракция, которая является общей для всех кодировщиков, заключается в том, что они получают список векторов, каждый из которых имеет размер 512. В нижнем кодировщике это будет слово embeddings, но в других кодировщиках это будет выход кодировщика, который находится непосредственно под .Размер этого списка — это гиперпараметр, который мы можем установить — в основном это будет длина самого длинного предложения в нашем наборе обучающих данных.
После внедрения слов в нашу входную последовательность каждое из них проходит через каждый из двух уровней кодировщика.
Здесь мы начинаем видеть одно ключевое свойство преобразователя, а именно то, что слово в каждой позиции проходит свой собственный путь в кодировщике. Между этими путями на уровне самовнимания есть зависимости.Однако уровень прямой связи не имеет этих зависимостей, и, таким образом, различные пути могут выполняться параллельно при прохождении через слой прямой связи.
Затем мы заменим пример более коротким предложением и посмотрим, что происходит на каждом подуровне кодировщика.
Теперь мы кодируем!
Как мы уже упоминали, кодировщик получает на вход список векторов. Он обрабатывает этот список, передавая эти векторы в слой «самовнимания», затем в нейронную сеть с прямой связью, а затем отправляет выходные данные вверх следующему кодировщику.
Слово в каждой позиции проходит через процесс самовнимания. Затем каждый из них проходит через нейронную сеть с прямой связью — ту же самую сеть, и каждый вектор проходит через нее отдельно.
Самовнимание на высоком уровне
Не обманывайтесь, когда я использую слово «самовнимание», как будто это понятие должно быть знакомо каждому. Я лично никогда не сталкивался с этой концепцией, пока не прочитал статью «Все, что вам нужно». Давайте разберемся, как это работает.
Скажем, следующее предложение является вводным предложением, которое мы хотим перевести:
” Животное не переходило улицу, потому что оно слишком устало
”
Что означает «оно» в этом предложении? Относится ли это к улице или к животному? Это простой вопрос для человека, но не такой простой для алгоритма.
Когда модель обрабатывает слово «оно», самовнимание позволяет ей ассоциировать «это» с «животным».
По мере того как модель обрабатывает каждое слово (каждую позицию во входной последовательности), самовнимание позволяет ей смотреть на другие позиции во входной последовательности в поисках подсказок, которые могут помочь улучшить кодирование этого слова.
Если вы знакомы с RNN, подумайте, как поддержание скрытого состояния позволяет RNN включать свое представление предыдущих слов / векторов, которые она обработала, с текущим, обрабатываемым ею. Самовнимание — это метод, который Трансформер использует для «запекания» «понимания» других релевантных слов в словах, которые мы обрабатываем в настоящее время.
Поскольку мы кодируем слово «оно» в кодировщике №5 (верхний кодировщик в стеке), часть механизма внимания была сосредоточена на «Животном» и запекла часть его представления в кодировке «оно».
Обязательно ознакомьтесь с записной книжкой Tensor2Tensor, где вы можете загрузить модель Transformer и изучить ее с помощью этой интерактивной визуализации.
Самостоятельное внимание в деталях
Давайте сначала посмотрим, как вычислить самовнимание с помощью векторов, а затем перейдем к тому, как это на самом деле реализовано — с помощью матриц.
Первый шаг в вычислении самовнимания состоит в том, чтобы создать три вектора из каждого из входных векторов кодировщика (в данном случае — вложение каждого слова).Итак, для каждого слова мы создаем вектор запроса, вектор ключа и вектор значения. Эти векторы создаются путем умножения вложения на три матрицы, которые мы обучили в процессе обучения.
Обратите внимание, что эти новые векторы меньше по размерности, чем вектор внедрения. T
Производители силовых трансформаторов Поставщики | Справочник IQS
бизнес Отраслевая информация
Силовые трансформаторы
Трансформаторы, по определению, представляют собой электромагнитные компоненты, которые используются для преобразования различных уровней напряжения и передачи энергии от одной цепи к другой.Роль силовых трансформаторов, в частности, имеет решающее значение для обеспечения безопасной и эффективной передачи энергии от линии электропитания к системе цепей, особенно в домах или на предприятиях. Силовые трансформаторы бывают самых разных конфигураций. Некоторые примеры включают настенные, устанавливаемые на площадках и полюсные трансформаторы, и могут иметь три или четыре корпуса. Силовые трансформаторы также оснащены наборами токопроводящих обмоток, которые обычно изготавливаются из меди или алюминия.Некоторые разновидности трансформаторов также предназначены для передачи электрического тока по подземным линиям электропередачи. Трансформаторы необходимы для передачи энергии в коммерческом и потребительском контекстах, независимо от размера электронного устройства.
Конкретным примером конфигурации силового трансформатора является тороидальный трансформатор. Эта разновидность силового трансформатора имеет форму пончика или тороидального типа и может быть изготовлена с двумя наборами первичной и вторичной обмоток каждая. Это позволяет трансформатору быть универсальным как по входному, так и по выходному напряжению.Кроме того, эти наборы катушек изолированы как друг от друга, так и от сердечника трансформатора, что обеспечивает минимальный электрический разряд. Конкретным примером отрасли, широко использующей эти трансформаторы, является медицинская промышленность. Важно, чтобы уровень напряжения тщательно регулировался, чтобы он не повредил чувствительное медицинское оборудование и, в свою очередь, не поставил под угрозу безопасность пациентов и медицинских работников. Трансформаторы жизненно важны для использования в медицинском лабораторном оборудовании , больничных койках, оборудовании для мониторинга пациентов и стоматологических креслах.За пределами медицинской промышленности такие трансформаторы, как электробритвы, фены и другие портативные устройства, значительно выигрывают от использования этих трансформаторов.
Процесс преобразования мощности состоит из серии шагов, и трансформатор требуется для каждого шага изменения уровня напряжения во время передачи. Эти этапы включают преобразование электростанции в подстанцию, затем из подстанции в трансформатор и из трансформатора в офис или дом.Внутри электростанции электроэнергия проходит по линии высокого напряжения. Уровень напряжения питания на этом этапе может доходить до нескольких сотен тысяч вольт. Мощность высокого напряжения передается на силовые подстанции, которые включают серию трансформаторов, которые снижают уровень напряжения до 7000 вольт. От подстанций мощность передается по нескольким линиям передачи, каждая из которых передает 7000 вольт, к другому трансформатору. Этот трансформатор обычно устанавливается на опорах электроснабжения за пределами различных зданий.Эти трансформаторы отвечают за преобразование напряжения до уровня, подходящего для соответствующего дома или бизнеса. В Соединенных Штатах уровень напряжения снижается до 120–220 вольт к тому моменту, когда оно покидает трансформатор и достигает розеток.
При выборе трансформатора, подходящего для вашего применения, необходимо учитывать несколько факторов. Эти соображения включают:
- Величина напряжения
- Напряжение, необходимое для оборудования
- Текущая и будущая нагрузка, кВА
- Одно- или трехфазное напряжение Частота
- Гц
- Будет ли трансформатор использоваться в помещении или на открытом воздухе
Производители силовых трансформаторов производят свою продукцию с бесчисленными комбинациями функций.Поэтому настоятельно рекомендуется проконсультироваться с производителем, так как они будут работать с вами в поиске подходящего оборудования.
Силовые трансформаторы имеют довольно много возможностей, но не обязательно. Эти устройства играют настолько важную роль в обеспечении электропитанием бытовых приборов, что может быть тревожно думать о том, к чему может привести продолжительное отключение питания. Иногда временные перебои в работе могут произойти из-за отказа силовых трансформаторов, во многом подобно тому, как линия электропередачи может выйти из строя из-за воздействия определенных условий.Причины выхода из строя трансформатора могут быть разными: животные, ветер, дождь, солнце, снег, упавшие деревья или другие предметы, которые врезаются в него. Иногда причина отключения может быть внутренней, например, перегрев трансформатора. При использовании современных технологий, как правило, не требуется много времени, чтобы определить проблему и снова запустить трансформатор. Поскольку производители не часто производят силовые трансформаторы, стихийные бедствия, такие как торнадо, ураганы и солнечные вспышки, могут привести к повреждению электростанций, а производители не смогут обеспечить немедленную замену.К счастью, новейшие технологии позволили нам предсказать, когда и где могут произойти стихийные бедствия, а также их серьезность. Исследования стихийных бедствий могут сыграть роль в текущих технологических разработках, направленных на улучшение работы электростанций и трансформаторов.
Трансформатор управления мощностью — Triad Magnetics | Инкапсулированный силовой трансформатор — Triad Magnetics | Тороидальный силовой трансформатор — Triad Magnetics |
Силовой трансформатор Quick Pack — Triad Magnetics | Силовые трансформаторы Triad для монтажа на ПК — Triad Magnetics | Силовой трансформатор для установки на шасси — Triad Magnetics |
Информационные видеоролики о силовом трансформаторе
Трансформаторная техника
Страна Афганистан Аландские острова Албания Алжир американское Самоа Андорра Ангола Ангилья Антарктида Антигуа и Барбуда Аргентина Армения Аруба Австралия Австрия Азербайджан Багамы Бахрейн Бангладеш Барбадос Беларусь Бельгия Белиз Бенин Бермуды Бутан Боливия Босния и Герцеговина Ботсвана Остров Буве Бразилия Британская территория Индийского океана Бруней-Даруссалам Болгария Буркина-Фасо Бурунди Камбоджа Камерун Канада Кабо-Верде Каймановы острова Центрально-Африканская Республика Чад Чили Китай Остров Рождества Кокосовые (Килинг) острова Колумбия Коморские острова Конго Конго, Демократическая Республика Острова Кука Коста-Рика Берег Слоновой Кости Хорватия Куба Кюрасао Кипр Чехия Дания Джибути Доминика Доминиканская Респблика Эквадор Египет Эль Сальвадор Экваториальная Гвинея Эритрея Эстония Эфиопия Фолклендские (Мальвинские) острова Фарерские острова Фиджи Финляндия Франция Французская Гвиана Французская Полинезия Южные Французские Территории Габон Гамбия Грузия Германия Гана Гибралтар Греция Гренландия Гренада Гваделупа Гуам Гватемала Гернси Гвинея Гвинея-Бисау Гайана Гаити Остров Херд и острова Макдональд Святой Престол (государство-город Ватикан) Гондурас Гонконг Венгрия Исландия Индия Индонезия Иран, Исламская Республика Ирак Ирландия Остров Мэн Израиль Италия Ямайка Япония Джерси Иордания Казахстан Кения Кирибати Корея, Народно-Демократическая Республика Корея, Республика Кувейт Кыргызстан Лаосская Народно-Демократическая Республика Латвия Ливан Лесото Либерия Ливийская арабская джамахирия Лихтенштейн Литва Люксембург Макао Македония Мадагаскар Малави Малайзия Мальдивы Мали Мальта Маршалловы острова Мартиника Мавритания Маврикий Майотта Мексика Микронезия, Федеративные Штаты Молдова, Республика Монако Монголия Черногория Монсеррат Марокко Мозамбик Мьянма Намибия Науру Непал Нидерланды Нидерландские Антильские острова Новая Каледония Новая Зеландия Никарагуа Нигер Нигерия Ниуэ Остров Норфолк Северная Македония Северные Марианские острова Норвегия Оман Пакистан Палау Палестинская территория Панама Папуа — Новая Гвинея Парагвай Перу Филиппины Питкэрн Польша Португалия Пуэрто-Рико Катар Воссоединение Румыния Российская Федерация Руанда Святой Елены Сент-Китс и Невис Сент-Люсия Сен-Пьер и Микелон Святой Винсент и Гренадины Самоа Сан-Марино Сан-Томе и Принсипи Саудовская Аравия Сенегал Сербия Сейшельские острова Сьерра-Леоне Сингапур Словакия Словения Соломоновы острова Сомали Южная Африка Южная Георгия и Южные Сандвичевы острова южный Судан Испания Шри-Ланка Судан Суринам Шпицберген и Ян Майен Свазиленд Швеция Швейцария Сирийская Арабская Республика Тайвань Таджикистан Танзания, Объединенная Республика Таиланд Тимор-Лешти Идти Токелау Тонга Тринидад и Тобаго Тунис индюк Туркменистан Острова Теркс и Кайкос Тувалу Уганда Украина Объединенные Арабские Эмираты Соединенное Королевство Соединенные Штаты Внешние малые острова США Уругвай Узбекистан Вануату Венесуэла Вьетнам Виргинские острова, Британские Виргинские острова, СШАС. Уоллис и Футуна Западная Сахара Йемен Замбия Зимбабве
Модели — документация по трансформаторам 4.0.0
pretrained_model_name_or_path ( str
, optional ) —
Может быть:
Строка, идентификатор модели предварительно обученной модели, размещенной в репозитории моделей на huggingface.co. Допустимые идентификаторы модели могут быть расположены на корневом уровне, например
bert-base-uncased
, или в пространстве имен под имя пользователя или организации, напримерdbmdz / bert-base-german-cased
.Путь к каталогу , содержащему веса модели, сохраненные с использованием
save_pretrained ()
, например,./my_model_directory/
.Путь или URL к файлу контрольной точки индекса тензорного потока (например,
./tf_model/model.ckpt.index
). В в этом случае дляfrom_tf
должно быть установлено значениеTrue
и должен быть предоставлен объект конфигурации какconfig
аргумент. Этот путь загрузки медленнее, чем преобразование контрольной точки TensorFlow в модель PyTorch с использованием предоставленных сценариев преобразования и последующей загрузкой модели PyTorch.
Нет
, если вы одновременно предоставляете конфигурацию и словарь состояний (соответственно с ключевым словом аргументыconfig
иstate_dict
).
model_args (последовательность позиционных аргументов, необязательно ) — Все оставшиеся позиционные аргументы будут переданы методу __init__
базовой модели.
config ( Union [PretrainedConfig, str]
, опционально ) —
Может быть:
Конфигурация модели, которая будет использоваться вместо автоматически загружаемой конфигурации.Конфигурация может автоматически загружаться, когда:
Модель — это модель, предоставленная библиотекой (загруженная строкой с идентификатором модели предварительно обученного модель).
Модель была сохранена с помощью
save_pretrained ()
и перезагружена указав каталог для сохранения.Модель загружается путем предоставления локального каталога как
pretrained_model_name_or_path
и a Конфигурационный файл JSON с именем config.json находится в каталоге.
state_dict ( Dict [str, torch.Tensor]
, необязательно ) —
Словарь состояний для использования вместо словаря состояний, загруженного из файла сохраненных весов.
Эту опцию можно использовать, если вы хотите создать модель из предварительно обученной конфигурации, но загрузить свою собственную.
веса. Однако в этом случае вы должны проверить, используете ли save_pretrained ()
и from_pretrained ()
— не самый простой вариант.
cache_dir ( str
, необязательно ) — путь к каталогу, в котором должна быть кэширована загруженная предварительно обученная конфигурация модели, если
стандартный кеш не следует использовать.
from_tf ( bool
, необязательно , по умолчанию False
) — загрузить веса модели из файла сохранения контрольной точки TensorFlow (см. аргумент pretrained_model_name_or_path
).
force_download ( bool
, необязательно , по умолчанию False
) — необходимость принудительной (повторной) загрузки файлов весов модели и конфигурации, переопределение
кешированные версии, если они существуют.
resume_download ( bool
, необязательно , по умолчанию False
) — следует ли удалять не полностью полученные файлы. Попытка возобновить загрузку, если такая
Файл существует.
прокси ( Dict [str, str], `необязательно
) — словарь прокси-серверов для использования протоколом или конечной точкой, например, {'http': 'foo.bar:3128',
'http: // имя хоста': 'foo.bar:4012'}
. Прокси используются для каждого запроса.
output_loading_info ( bool
, необязательно , по умолчанию False
) — не следует ли также возвращать словарь, содержащий отсутствующие ключи, неожиданные ключи и сообщения об ошибках.
local_files_only ( bool
, необязательно , по умолчанию False
) — смотреть ли только локальные файлы (т.е. не пытаться загрузить модель).
revision ( str
, optional , по умолчанию "main"
) — версия конкретной модели для использования.Это может быть имя ветки, имя тега или идентификатор фиксации, поскольку мы используем
система на основе git для хранения моделей и других артефактов на huggingface.co, поэтому ревизия
может быть любой
идентификатор, разрешенный git.
mirror ( str
, optional , по умолчанию None
) — источник зеркала для ускорения загрузок в Китае. Если вы из Китая и у вас есть доступ
проблема, вы можете установить этот параметр, чтобы решить ее. Обратите внимание, что мы не гарантируем своевременность или безопасность.Пожалуйста, обратитесь к зеркалу для получения дополнительной информации.
kwargs (оставшийся словарь аргументов ключевых слов, необязательно ) —
Может использоваться для обновления объекта конфигурации (после его загрузки) и запуска модели (например, output_attentions = Истина
). Ведет себя по-разному в зависимости от того, предоставляется ли конфигурация
или
автоматически загружается:
Если конфигурация предоставляется с
config
,** kwargs
будет напрямую передан в метод__init__
базовой модели (мы предполагаем, что все соответствующие обновления конфигурации содержат уже сделано)Если конфигурация не указана,
kwargs
сначала будет передано в класс конфигурации функция инициализации (from_pretrained ()
).Каждый ключkwargs
, который соответствует атрибуту конфигурации, будет использоваться для переопределения указанного атрибута с поставленным значениемkwargs
. Остальные ключи, не соответствующие ни одной конфигурации будет передан в функцию__init__
базовой модели.
Transformers — документация transformers 4.0.0
В настоящее время библиотека содержит реализации PyTorch, Tensorflow и Flax, предварительно обученные веса моделей, сценарии использования и утилиты преобразования для следующих моделей:
ALBERT (от Google Research и Технологического института Toyota в Чикаго) выпущен с докладом «АЛЬБЕРТ: облегченный BERT для самостоятельного изучения языковых представлений» Чжэньчжун Лан, Минда Чен, Себастьян Гудман, Кевин Гимпель, Пиюш Шарма, Раду Сорикут.
BART (из Facebook) выпущен с бумагой BART: Denoising Sequence-to-Sequence Предварительная подготовка по созданию, переводу и пониманию естественного языка, проведенная Майком Льюисом, Йинханом Лю, Наманом Гоялом, Марджаном Газвининеджадом, Абдельрахманом Мохамед, Омер Леви, Вес Стоянов и Люк Зеттлемойер.
BERT (от Google) выпущен с бумагой BERT: предварительное обучение Deep Bidirectional Трансформеры для понимания языка Джейкоб Девлин, Мин-Вэй Чанг, Кентон Ли и Кристина Тутанова.
BERT For Sequence Generation (от Google) выпущен с бумажным использованием Предварительно обученные контрольные точки для задач создания последовательности Саша Роте, Шаши Нараян, Алиаксей Северин.
Blenderbot (от Facebook) выпущен с бумажными рецептами для создания чат-бот с открытым доменом от Стивена Роллера, Эмили Динан, Намана Гояла, Да Джу, Мэри Уильямсон, Иньхан Лю, Цзин Сюй, Майл Отт, Курт Шустер, Эрик М. Смит, И-Лан Буро, Джейсон Уэстон.
CamemBERT (из Inria / Facebook / Sorbonne) выпущен с бумагой CamemBERT: Tasty Модель французского языка Луи Мартина *, Бенджамина Мюллера *, Педро Хавьера Ортиса Суарес *, Йоанн Дюпон, Лоран Ромари, Эрик Виллемонте де ла Клержери, Джаме Седдах и Бенуа Саго.
CTRL (от Salesforce) выпущен с бумажным CTRL: язык условного преобразователя Модель управляемой генерации Нитиш Шириш Кескар *, Брайан Макканн *, Лав Р. Варшней, Кайминг Сюн и Ричард Сохер.
DeBERTa (от Microsoft Research) выпущен с бумагой DeBERTa: Decoding-Enhanced BERT с раскрытым вниманием Пэнчэн Хэ, Сяодун Лю, Цзяньфэн Гао, Weizhu Chen.
DialoGPT (от Microsoft Research) выпущен с бумагой DialoGPT: Large-Scale Генеративный предварительный тренинг для генерации разговорного ответа Ижэ Чжан, Сици Сун, Мишель Галлей, Йен-Чун Чен, Крис Брокетт, Сян Гао, Цзяньфэн Гао, Цзинцзин Лю, Билл Долан.
DistilBERT (от HuggingFace), выпущенный вместе с бумагой DistilBERT, a дистиллированная версия BERT: меньше, быстрее, дешевле и легче от Victor Сань, Лисандра Дебют и Томас Вольф. Тот же метод был применен для сжатия GPT2 в DistilGPT2, RoBERTa в DistilRoBERTa, Multilingual BERT в DistilmBERT и немец версия DistilBERT.
DPR (от Facebook) выпущен с бумагой Dense Passage Retrieval for Open-Domain Ответы на вопрос: Владимир Карпухин, Барлас Одуз, Севон Мин, Патрик Льюис, Леделл Ву, Сергей Эдунов, Данки Чен и Вэнь-тау Йих.
ELECTRA (от Google Research / Стэнфордский университет) выпущен с бумагой ELECTRA: Предварительное обучение кодировщиков текста как дискриминаторов, а не генераторов, Кевин Кларк, Минь-Тханг Луонг, Куок В. Ле, Кристофер Д. Мэннинг.
FlauBERT (от CNRS) выпущен с бумагой FlauBERT: Unsupervised Language Model Предварительное обучение французскому языку Ханг Ле, Лоик Виаль, Джибриль Фрей, Винсент Сегонн, Максимин Коаву, Бенджамин Лекуто, Александр Аллозен, Бенуа Краббе, Лоран Безасье, Дидье Шваб.
Funnel Transformer (от CMU / Google Brain) выпущен с бумажным Funnel-Transformer: Фильтрация последовательной избыточности для эффективной обработки языка с помощью Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
GPT (от OpenAI) выпущен с документом «Улучшение понимания языка с помощью генеративного Предварительная подготовка: Алек Рэдфорд, Картик Нарасимхан, Тим Салиманс и Илья Суцкевер.
GPT-2 (от OpenAI), выпущенный с бумажной версией языковых моделей, является неконтролируемой многозадачностью Учащиеся Алек Рэдфорд *, Джеффри Ву *, Ревон Чайлд, Дэвид Луан, Дарио Амодей ** и Илья Суцкевер **.
LayoutLM (от Microsoft Research Asia) выпущен с бумажным LayoutLM: предварительное обучение текста и макета для понимания изображения документа — Ихэн Сюй, Минхао Ли, Лэй Цуй, Шаохань Хуан, Фуру Вэй, Мин Чжоу.
Longformer (от AllenAI) выпущен с бумагой Longformer: The Long-Document Трансформеры Из Бельтаги, Мэтью Э. Питерс, Арман Коэн.
LXMERT (из UNC Chapel Hill) выпущен с бумагой LXMERT: Learning Cross-Modality Представления кодировщика от трансформаторов для ответов на вопросы в открытой области Хао Тан и Мохит Бансал.
MarianMT Модели машинного перевода, обученные с использованием данных OPUS Йорг Тидеманн. Marian Framework разрабатывается Microsoft Команда переводчиков.
MBart (от Facebook) выпущен с бумагой Multilingual Denoising Pre-training для Нейронный машинный перевод Иньхан Лю, Цзятао Гу, Наман Гоял, Сиань Ли, Сергей Едунов, Марьян Газвининежд, Майк Льюис, Люк Зеттлемойер.
MT5 (от Google AI) выпущен с бумажным mT5: многоязычный предварительно обученный преобразователь текста в текст Линтинга Сюэ, Ноя Константа, Адама Робертса, Михира Кале, Рами Аль-Рфу, Адитья Сиддхант, Адитья Баруа, Колин Раффель.
Pegasus (от Google) выпущен с бумагой PEGASUS: Pre-training with Extracted Предложения с пробелами для абстрактного обобщения> Цзинцин Чжан, Яо Чжао, Мохаммад Салех и Питер Дж. Лю.
ProphetNet (от Microsoft Research) выпущен с бумагой ProphetNet: Predicting Будущая N-грамма для предварительного обучения от последовательности к последовательности Ю Янь, Вэйчжэнь Ци, Еюнь Гун, Дайхэн Лю, Нань Дуань, Цзюшен Чен, Руофэй Чжан и Мин Чжоу.
Reformer (от Google Research) выпущен с бумажным Reformer: The Efficient Трансформер Никиты Китаева, Лукаша Кайзера, Ансельма Левской.
RoBERTa (от Facebook), выпущенный вместе с бумагой Robustly Optimized BERT Предтренировочный подход Иньхан Лю, Майл Отт, Наман Гоял, Цзинфэй Ду, Мандар Джоши, Данки Чен, Омер Леви, Майк Льюис, Люк Зеттлемойер, Веселин Стоянов. многоязычный BERT в DistilmBERT и немецкую версию DistilBERT.
SqueezeBert выпущен с бумагой SqueezeBERT: чему компьютерное зрение может научить НЛП про эффективные нейронные сети? Форрест Н. Иандола, Альберт Э.Шоу, Рави Кришна и Курт В. Койцер.
T5 (от Google AI) выпущен с бумагой Exploring the Limits of Transfer Learning with a Унифицированный преобразователь текста в текст от Колина Раффеля, Ноама Шазира и Адама Робертс и Кэтрин Ли, Шаран Наранг, Майкл Матена, Янки Чжоу, Вэй Ли и Питер Дж. Лю.
Transformer-XL (от Google / CMU) выпущен с бумажным Transformer-XL: Модели внимательного языка вне контекста фиксированной длины, Цзихан Дай *, Чжилинь Ян *, Иминь Ян, Хайме Карбонелл, Куок В.Ле, Руслан Салахутдинов.
XLM (от Facebook) выпущен вместе с бумажной кросс-языковой моделью языка Предварительная подготовка Гийома Лампле и Алексиса Конно.
XLM-ProphetNet (от Microsoft Research), выпущенный с бумагой ProphetNet: Предсказание будущей N-граммы для предварительного обучения от последовательности к последовательности Ю Янь, Вэйчжэнь Ци, Еюнь Гун, Дайхэн Лю, Нань Дуань, Цзюшен Чен, Руофей Чжан и Мин Чжоу.
XLM-RoBERTa (из Facebook AI), выпущен вместе с газетой Unsupervised Масштабное обучение кросс-языковому представлению Алексис Конно *, Картикай Ханделвал *, Наман Гоял, Вишрав Чаудхари, Гийом Вензек, Франсиско Гусман, Эдуард Грейв, Майл Отт, Люк Зеттлемойер и Веселин Стоянов.
XLNet (от Google / CMU) выпущен с бумагой XLNet: Generalized Autoregressive Предварительная подготовка к пониманию языка, проведенная Чжилин Ян *, Цзихан Дай *, Имин Ян, Хайме Карбонелл, Руслан Салахутдинов, Куок В. Ле.
Другие модели сообщества, предоставленные сообществом.
В таблице ниже представлена текущая поддержка в библиотеке для каждой из этих моделей, независимо от того, есть ли у них Python токенизатор (называемый «медленным»). «Быстрый» токенизатор, поддерживаемый библиотекой 🤗 Tokenizers, независимо от того, есть ли у них поддержка в PyTorch, TensorFlow и / или лен.
Лучший стандартный электрический трансформатор — Выгодные предложения на стандартный электрический трансформатор от мировых продавцов стандартных электрических трансформаторов
Отличные новости !!! Вы попали в нужное место, чтобы купить стандартный электрический трансформатор. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях.Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот стандартный электрический трансформатор в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели стандартный электрический трансформатор на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в стандартном электрическом трансформаторе и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. , а также ожидаемую экономию.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз.Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress.Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести стандартный электрический трансформатор по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
.