Устройство и принцип действия трансформатора: подробный обзор

Что такое трансформатор и как он работает. Из каких основных частей состоит трансформатор. Какие бывают виды трансформаторов. Каковы основные режимы работы трансформатора. Как правильно выбрать трансформатор.

Содержание

Что такое трансформатор и для чего он нужен

Трансформатор — это статическое электромагнитное устройство, предназначенное для преобразования переменного тока одного напряжения в переменный ток другого напряжения той же частоты. Трансформаторы играют ключевую роль в современных системах производства, передачи и распределения электроэнергии.

Основные функции трансформаторов:

  • Повышение напряжения для передачи электроэнергии на большие расстояния с минимальными потерями
  • Понижение напряжения для распределения электроэнергии конечным потребителям
  • Гальваническая развязка электрических цепей
  • Согласование напряжений и токов в различных электронных устройствах

Без трансформаторов была бы невозможна современная система электроснабжения. Они используются на всех этапах — от генерации до конечного потребления электроэнергии.


Основные части и устройство трансформатора

Конструкция трансформатора включает следующие основные элементы:

  1. Магнитопровод (сердечник) — замкнутый магнитный контур, выполненный из ферромагнитного материала (обычно электротехнической стали)
  2. Обмотки — проводники, намотанные на магнитопровод:
    • Первичная обмотка — подключается к источнику переменного тока
    • Вторичная обмотка — к ней подключается нагрузка
  3. Изоляция — электрическая изоляция обмоток и магнитопровода
  4. Система охлаждения — для отвода тепла, выделяющегося при работе
  5. Вводы — для подключения обмоток к внешним цепям
  6. Бак (для масляных трансформаторов) — для размещения активной части и масла

Магнитопровод и обмотки образуют активную часть трансформатора, в которой происходит электромагнитное преобразование энергии. Остальные элементы выполняют вспомогательные функции.

Принцип действия трансформатора

Работа трансформатора основана на явлении электромагнитной индукции, открытом Майклом Фарадеем. Рассмотрим принцип действия трансформатора по шагам:


  1. На первичную обмотку подается переменное напряжение
  2. В первичной обмотке возникает переменный ток
  3. Переменный ток создает в магнитопроводе переменный магнитный поток
  4. Магнитный поток пронизывает витки вторичной обмотки
  5. Во вторичной обмотке индуцируется ЭДС (электродвижущая сила)
  6. Если ко вторичной обмотке подключена нагрузка, в ней возникает ток

Соотношение напряжений на обмотках трансформатора определяется коэффициентом трансформации:

k = U1 / U2 = w1 / w2

где U1, U2 — напряжения на первичной и вторичной обмотках, w1, w2 — число витков обмоток.

Виды трансформаторов

Трансформаторы классифицируют по различным признакам:

По назначению:

  • Силовые — для преобразования напряжения в силовых цепях
  • Измерительные — для измерения токов и напряжений
  • Специальные — сварочные, печные, преобразовательные и др.

По числу фаз:

  • Однофазные
  • Трехфазные

По способу охлаждения:

  • Сухие — с воздушным охлаждением
  • Масляные — с охлаждением трансформаторным маслом

По конструкции магнитопровода:

  • Стержневые
  • Броневые
  • Тороидальные

Выбор типа трансформатора зависит от конкретных условий применения и требований.


Основные режимы работы трансформатора

В процессе эксплуатации трансформатор может работать в следующих основных режимах:

Режим холостого хода

Вторичная обмотка разомкнута, ток в ней отсутствует. Первичная обмотка потребляет небольшой ток намагничивания. Этот режим используется для определения коэффициента трансформации.

Режим нагрузки

Ко вторичной обмотке подключена нагрузка, в ней протекает ток. Это нормальный рабочий режим трансформатора.

Режим короткого замыкания

Вторичная обмотка замкнута накоротко. Возникают большие токи, опасные для трансформатора. Этот режим используется только кратковременно при испытаниях.

Знание особенностей каждого режима необходимо для правильной эксплуатации трансформаторов.

Как выбрать трансформатор

При выборе трансформатора необходимо учитывать следующие основные параметры:

  • Мощность — должна соответствовать мощности нагрузки
  • Напряжение первичной и вторичной обмоток
  • Частота сети
  • Условия эксплуатации (внутренняя/наружная установка)
  • Способ охлаждения
  • Группа соединения обмоток (для трехфазных)
  • Потери холостого хода и короткого замыкания

Важно также учитывать конструктивное исполнение, массогабаритные показатели, стоимость и другие факторы. Правильный выбор обеспечит надежную и эффективную работу трансформатора.


Заключение

Трансформаторы — ключевые элементы современных систем электроснабжения. Понимание принципов их работы и особенностей различных типов необходимо для грамотного проектирования и эксплуатации электроэнергетических систем. Прогресс в области материалов и технологий позволяет постоянно совершенствовать конструкции трансформаторов, повышая их эффективность и надежность.


Трансформатор. Устройство и принцип действия трансформатора.

Простейший трансформатор представляет собой устройство, состоящее из стального сердечника и двух обмоток (рис. 1). При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки. Отношение первичного напряжения ко вторичному (коэффициент трансформации) приблизительно равно отношению чисел витков первичной и вторичной обмоток.

Рис. 1. Принцип устройства однофазного двухобмоточного трансформатора. 1 первичная обмотка, 2 вторичная обмотка, 3 сердечник. U1 первичное напряжение, U2 вторичное напряжение, I1 первичный ток, I2 вторичный ток, Ф магнитный поток

Простейшие условные обозначения трансформаторов изображены на рис. 2; для наглядности разные обмотки трансформатора можно, как и на рисунке, представить разными цветами.

Рис. 2. Условное обозначение трансформатора в подробных (многолинейных) схемах (a) и в схемах электрических сетей (b)

Трансформаторы могут быть одно- или многофазными, а вторичных обмоток может быть больше одной. В электрических сетях обычно используются трехфазные трансформаторы с одной или двумя вторичными обмотками. Если первичное и вторичное напряжения относительно близки друг другу, то могут использоваться и однообмоточные автотрансформаторы, принципиальные схемы которых представлены на рис. 3.

Рис. 3. Принципиальные схемы понижающего (a) и повышающего (b) автотрансформаторов

Важнейшими номинальными показателями трансформатора являются его номинальные первичное и вторичное напряжения, номинальные первичный и вторичный ток, а также номинальная вторичная полная мощность (номинальная мощность). Трансформаторы могут изготовляться как на весьма малую мощность (например, для микроэлектронных цепей), так и на очень большую (например, для мощных энергосистем), охватывая диапазон мощностей от 0,1 mVA до 1000 MVA.

Потери энергии в трансформаторе – обусловленные активным сопротивлением обмоток потери в меди и вызванные вихревыми токами и гистерезисом в сердечнике потери в стали – обычно настолько малы, что кпд трансформатора, как правило, выше 99 %. Несмотря на это, тепловыделение в мощных трансформаторах может оказаться настолько сильным, что необходимо прибегать к эффективным способам теплоотвода. Чаще всего активная часть трансформатора размещается в баке, заполненном минеральным (трасформаторным) маслом, который, при необходимости снабжается принудительным воздушным или водяным охлаждением. При мощности до 10 MVA (иногда и выше) могут применяться и сухие трансформаторы, обмотки которых обычно залиты с эпоксидной смолой. Основные преимущества сухих трансформаторов заключаются в более высокой огнебезопасности и в исключении течи трансформаторного масла, благодаря чему они могут без препятствий устанавливаться в любых частях зданий, в том числе на любом этаже. Для измерения переменных тока или напряжения (особенно в случае больших токов и высоких напряжений) часто используются измерительные трансформаторы.

Устройство трансформатора напряжения по своему принципу не отличается от силовых трансформаторов, но работает он в режиме, близком к холостому ходу; коэффициент трансформации в таком случае достаточно постоянен. Номинальное вторичное напряжение таких трансформаторов обычно равно 100 V. Вторичная обмотка трансформатора тока в идеальном случае короткозамкнута и вторичный ток в таком случае пропорционален первичному. Номинальный вторичный ток обычно составляет 5 A, но иногда может быть и меньше (например, 1 A). Примеры условных обозначений трансформаторов тока приведены на рис. 4.

Рис. 4. Условное обозначение трансформатора тока в развернутых схемах (a) и в однолинейных схемах (b)

Первым трансформатором может считаться изготовленное Майклом Фарадеем (Michael Faraday) индукционное кольцо (англ. induction ring), состоящее из кольцевого стального сердечника и двух обмоток, при помощи которого он 29 августа 1831 года открыл явление электромагнитной индукции (рис.

5). Во время быстрого переходного процесса, возникающего при включении или отключении первичной обмотки, соединенной с источником постоянного тока, во вторичной обмотке индуцируется импульсная ЭДС. Такое устройство может поэтому называться импульсным или транзиентным трансформатором.

Рис. 5. Принцип устройства транзиентного трансформатора Майкла Фарадея. i1 первичный ток, i2 вторичный ток, t время

Исходя из открытия Фарадея, учитель физики колледжа города Маргнута (Margnooth) около Дублина (Dublin, Ирландия) Николас Келлан (Nicholas Callan, 1799–1864) построил в 1836 году индукционную катушку (искровой индуктор), состоящий из прерывателя и трансформатора; это устройство позволяло преобразовать постоянный ток в переменный ток высокого напряжения и вызывать длинные искровые разряды. Индукционные катушки стали быстро усовершенствоваться и в 19-м веке широко применялись при исследовании электрических разрядов. К ним могут быть отнесены и катушки зажигания современных автомобилей.

Первый трансформатор переменного тока запатентовал в 1876 году живший в Париже русский электротехник Павел Яблочков, использовав его в цепях питания своих дуговых ламп. Сердечник трансформатора Яблочкова представлял собой прямой пучок стальных проволок, вследствие чего магнитная цепь была не замкнутой, как у Фарадея, а открытой, и в других установках такой трансформатор применять не стали. В 1885 году инженеры-электрики Будапештского завода Ганц и Компания (Ganz & Co.) Макс Дери (Max Deri, 172 1854–1938), Отто Титуш Блати (Otto Titus Blathy, 1860–1939) и Кароль Зиперновски (Karoly Zipernovsky, 1853–1942) изготовили трансформатор с тороидальным проволочным сердечником и заодно разработали систему распределения электроэнергии на переменном токе, основанную на применении этих трансформаторов. Трансформатор с еще лучшими свойствами, сердечник которого собирался из Е- и I-образных стальных листов, создал в том же году американский электротехник Уильям Стенли (William Stanley, 1858–1916), после чего началось быстрое развитие систем переменного тока как в Европе, так и в Америке. Первый трехфазный трансформатор построил в 1889 году Михаил Доливо-Добровольский.

режимы, схема, назначение, из чего состоит

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов  и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

 

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

 

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

 

Конечно, трансформаторы не так просты, как может показаться на первый взгляд — ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике  с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Трансформатор — устройство и принцип работы

Трансформатор – статический электромагнитный аппарат для преобразования переменного тока одного напряжения в переменный ток другого напряжения, той же частоты. Трансформаторы применяют в электрических цепях при передаче и распределении электрической энергии, а также в сварочных, нагревательных, выпрямительных электроустановках и многом другом.

Трансформаторы различают по числу фаз, числу обмоток, способу охлаждения. В основном используются силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических цепях.

Устройство и принцип работы

Схема однофазного двухобмоточного трансформатора представлена ниже.                                        

На схеме изображены основные части: ферромагнитный сердечник, две обмотки на сердечнике. Первая обмотка и все величины которые к ней относятся (i1-ток, u1-напряжение, n1-число витков,Ф1 – магнитный поток) называют первичными, вторую обмотку и соответствующие величины — вторичными.

Первичную обмотку включают в сеть с переменным напряжением, её намагничивающая сила i1n1 создает в магнитопроводе переменный магнитный поток Ф, который сцеплен с обеими обмотками и в них индуцирует ЭДС e1= -n1 dФ/dt, e2= -n2dФ/dt. При синусоидальном изменении магнитного потока Ф = Фm sinωt , ЭДС равно e = Em sin (ωt-π/2). Для того чтобы посчитать действующее значение ЭДС нужно воспользоваться формулой E=4.44 f n Фm, где f- циклическая частота, n – количество витков, Фm – амплитуда магнитного потока. Причем если вы хотите посчитать величину ЭДС в какой либо из обмоток, нужно вместо n подставить число витков в данной обмотке.

Из приведенных выше формул можно сделать вывод о том, что ЭДС отстает от магнитного потока на четверть периода и отношение ЭДС в обмотках трансформатора равно отношению чисел витков E1/E2=n1/n2.

Если вторая обмотка не находится под нагрузкой, значит трансформатор находится в режиме холостого хода. В этом случае i2 = 0, а u2=E2, ток i1 мал и мало падение напряжения в первичной обмотке, поэтому u1≈E1 и отношение ЭДС можно заменить отношением напряжений u1/u2 = n1/n2 = E1/E2 = k.  Из этого можно сделать вывод, что вторичное напряжение может быть меньше или больше первичного, в зависимости от отношения чисел витков обмоток. Отношение первичного напряжения ко вторичному при холостом ходе трансформатора называется коэффициентом трансформации k.

Как только вторичная обмотка подключается к нагрузке, в цепи возникает ток i2, то есть совершается передача энергии от трансформатора, который получает ее из сети, к нагрузке. Передача энергии в самом трансформаторе происходит благодаря магнитному потоку Ф.

Обычно мощность на выходе и мощность на входе приблизительно равны, так как трансформаторы являются электрическими машинами с довольно высоким КПД, но если требуется произвести более точный расчет, то КПД находиться как отношение активной мощности на выходе к активной мощности на входе η = P2/P1.

Магнитопровод трансформатора представляет собой закрытый сердечник собранный из листов электротехнической стали толщиной 0,5 или 0,35мм. Перед сборкой листы с обеих сторон изолируют лаком.

По типу конструкции различают стержневой (Г-образный) и броневой (Ш-образный) магнитопроводы. Рассмотрим их структуру.

Стержневой трансформатор состоит из двух стержней, на которых находятся обмотки и ярма, которое соединяет стержни, собственно, поэтому он и получил свое название. Трансформаторы этого типа применяются значительно чаще, чем броневые трансформаторы.

Броневой трансформатор представляет собой ярмо внутри которого заключается стержень с обмоткой. Ярмо как бы защищает стержень, поэтому трансформатор называется броневым. 

Обмотка

Конструкция обмоток, их изоляция и способы крепления на стержнях зависят от мощности трансформатора. Для их изготовления применяют медные провода круглого и прямоугольного сечения, изолированные хлопчатобумажной пряжей или кабельной бумагой. Обмотки должны быть прочными, эластичными, иметь малые потери энергии и быть простыми и недорогими в изготовлении.

Охлаждение

В обмотке и сердечнике трансформатора наблюдаются потери энергии, в результате которых выделяется тепло. В связи с этим трансформатору требуется охлаждение. Некоторые маломощные трансформаторы отдают свое тепло в окружающую среду, при этом температура установившегося режима не влияет на работу трансформатора. Такие трансформаторы называют “сухими”, т.е. с естественным воздушным охлаждением. Но при средних и больших мощностях, воздушное охлаждение не справляется, вместо него применяют жидкостное, а точнее масляное. В таких трансформаторах обмотка и магнитопровод помещены в бак с трансформаторным маслом, которое усиливает электрическую изоляцию обмоток от магнитопровода и одновременно служит для их охлаждения. Масло принимает теплоту от обмоток и магнитопровода и отдает ее стенкам бака, с которых тепло рассеивается в окружающую среду. При этом слои масла имеющие разницу в температуре циркулируют, что улучшает теплообмен. Трансформаторам с мощностью до 20-30 кВА хватает охлаждения бака с гладкими стенками, но при больших мощностях устанавливаются баки с гофрированными стенками. Также нужно учитывать что при нагреве масло имеет свойство увеличиваться в объеме, поэтому в высокомощных трансформаторах устанавливают резервные баки и выхлопные трубы (в случае если масло закипит, появятся пары которым нужен выход). В трансформаторах меньшей мощности ограничиваются тем, что масло не заливают до самой крышки.         

Читайте также — Приведение обмоток трансформатора                                                                                                                      

  • Просмотров: 18440
  • Устройство и принципы действия трансформаторов: назначение, виды, критерии подбора

    Трансформаторные установки — преобразователи электрической энергии. Они применяются в большинстве электрических приборов, в электросетях, устройствах автоматики, бытовых приборах и коммуникационных аппаратах. Принцип действия трансформаторов опирается на закон электромагнитной индукции Фарадея.

    Устройство трансформатора

    Конструктивно трансформатор состоит из одной или нескольких изолированных обмоток, которые намотаны на ферромагнитный сердечник. В простейшей схеме это первичная и вторичная обмотки. На первичную подаётся напряжение, со вторичной снимается. Под воздействием переменного тока, который подаётся на первичную обмотку, в магнитопроводе образуется синусоидальный магнитный поток Ф. Пронизывая обмотки, он индуцирует в первичной обмотке электродвижущую силу самоиндукции (ЭДС), а во вторичной — ЭДС индукции.

    Обе эти электродвижущие силы индуцируются магнитным потоком Ф, следовательно, ЭДС (E) одинакова в каждом витке. Витки соединены последовательно, поэтому ЭДС первичной обмотки будет E1 = E · w1. Для вторичной это соотношение: E2 = E · w2, где w1, w2 — число витков.

    При разомкнутой вторичной обмотке ток в ней не течёт, и напряжение на концах равно ЭДС, U2 = E2. При небольшом токе в первичной обмотке потери будут незначительны и U1 ≈ E1. Заменим E1 и E2, и тогда отношение напряжений выразится некоторой постоянной K, называемой коэффициентом трансформации, U1/U2 = E1/E2 = w1/w2 = K.

    Виды преобразователей

    Назначение и принцип действия трансформатора заключаются в возможности повышать и понижать напряжение, изменять число фаз, преобразовывать частоту. В зависимости от выполняемых функций трансформаторы подразделяются на следующие виды:

    • Силовые трансформаторные установки. Генераторы на электростанциях вырабатывают энергию высокого напряжения 6—24 кВ. Чтобы избежать больших потерь в линиях электропередач, требуется повышать напряжение до 750 кВ. Для распределения энергии между конечными потребителями приходится понижать напряжение до 380 В. Силовые трансформаторы выполняют эти задачи преобразования напряжений.
    • Трансформаторные установки тока. Применяются для измерений в электрических цепях. Первичную обмотку подключают в цепь, ток в которой требуется измерить, а вторичная служит для подключения измерительных приборов. Во вторичной обмотке течёт ток, пропорциональный току первичной.
    • Трансформаторные установки напряжения. Преобразуют высокое напряжение в низкое.

    Сварочные трансформаторные установки. Применяются в сварочных агрегатах. Преобразовывают высокое напряжение в низкое, при этом ток повышается до тысяч ампер.

    • Автотрансформаторы. Обе обмотки соединены, имеется и магнитная, и электрическая связь.
    • Импульсные трансформаторные установки. Служат для преобразования импульсных сигналов.

    По количеству обмоток различают:

    • Двухобмоточные установки.
    • Трехобмоточные установки.
    • Многофазные трансформаторные установки.

    По конструкции трансформаторы бывают сухие и масляные. При работе трансформаторных установок возникают тепловые потери. Для маломощных агрегатов они невелики, там применяется воздушное охлаждение. Это сухие трансформаторы. Масляные трансформаторы более мощные и нуждаются в охлаждении жидкостью. Для этого их помещают в баки с трансформаторным маслом, что способствует более полному охлаждению и улучшает изоляцию. Масляные агрегаты предназначаются для работы при напряжениях выше 6 тыс. В.

    Режимы работы трансформаторных устройств

    Все устройства могут работать в режимах холостого хода, под нагрузкой и короткого замыкания. Холостой ход — это условия работы, при которых отсутствует нагрузка, вторичная обмотка разомкнута. При этом режиме рассчитываются:

    • Коэффициенты трансформации.
    • Сопротивление ветви намагничивания. Для этого во вторичную обмотку включается вольтметр. Сопротивление должно быть таким, чтобы величина тока была минимальна.
    • Коэффициент мощности.
    • Короткое замыкание — условия работы, при которых концы вторичной обмотки соединяются. При работе агрегата короткое замыкание — это аварийный режим. Первичный и вторичный токи возрастают в десятки раз. Для предотвращения аварии включаются механизмы защиты.

    В условиях испытаний определяется напряжение короткого замыкания. Это паспортная характеристика агрегата. Для определения характеристики соединяют концы вторичной обмотки, а напряжение на первичной понижается до такого, при котором ток не превышает номинальных значений.

    При таких испытаниях вместе с испытаниями на холостом ходу определяется коэффициент полезного действия установок.

    Критерии выбора оборудования

    При приобретении трансформаторного оборудования необходимо рассматривать его основные параметры:

    • Напряжение.
    • Коэффициент трансформации.
    • Угловая погрешность для трансформаторов тока.

    Учитываются также условия эксплуатации. Очень важны для выбора область применения, нагрузки и напряжения короткого замыкания. Особенно нужно правильно эксплуатировать установки. Существуют нормативы по пуску, наладке и использованию агрегатов. Главным моментом является обслуживание установок, при котором следует проверять сопротивление на обмотках и ток.

    Периодически следует проверять уровень масла и чистоту изоляции. При выполнении всех требований регламента по установке и обслуживанию агрегатов будет обеспечена безопасность эксплуатации и гарантийный срок службы устройств.

    Трансформаторы. Описание, типы, классификация трансформаторов. Измерительные, силовые, импульсные трансформаторы.

    Электрический трансформатор — это устройство, предназначенное для изменения величины напряжения в сети переменного тока. Принцип действия трансформаторов основан на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока, в обмотках генерируется магнитное поле, которые взывает ЭДМ во вторичных обмотках. Данная ЭДС пропорциональна числу  витков в первичных и вторичных  обмотках. Отношение электродвижующей силы в первичной обомотке/вторичной называется коэффициентом трансформации.

    Основными элементами конструкции трансформатора являются первичные и вторичные обмотки и ферромагнитный магнитопровод (обычно замкнутого типа). Обмотки расположены на магнитопроводе и индуктивно связаны друг с другом. Использование магнитопровода позволяет саккумулировать большую часть магнитного поля внутри трансформатора, что повышает КПД устройства. Магнитопровод обычно состоит из набора металлических пластин, покрытых изоляцией, для предотвращения возникновения «паразитных» токов внутри магнитопровода.
    Зачастую часть вторичной обмотки служит часть первичной и наоборот. Данный тип трансформаторов называют автотрансформаторами. В этом случае концы первичных обмоток подключаются к сети  переменного напряжения, а концы вторичной присоединяются к потребителям электроэнергии.

    Основная классификация трансформаторов.

    • По назначению: измерительные трансформаторы тока, напряжения, защитные, лабораторные, промежуточные.
    • По способу установки: наружные, внутренние, шинные, опорные, стационарные, переносные.
    • По числу ступеней: одноступенчатные, многоступенчатые (каскадные).
    • По номинальному напряжения: низковольтные, высоковольтные.
    • По типу изоляции обмоток: c сухой изоляцией, компаундной, бумажно-маслянной.

    Основные типы трансформаторов 

    Силовые трансформаторы — наиболее распространенный тип  электро. трансформаторов.  Они предназначены  для изменения  энергии переменного тока в электросетях энергосистем, в сетях освещения или питания электрооборудования. Применяются для создания комплектных трансформаторных подстанций.
    Классифицируются по количеству фаз и номинальному напряжения.
    Наиболее известные низковольтные однофазные и трехфазные трансформаторы серии ТП и ОСМ.
    Среди высоковольтных трансформаторов, наиболее используемые в данной момент в энергетике,  трансформаторы ТМГ-с масляным охлаждением в герметичном баке.. Преимуществами данной серии вляется высокий КПД (до 99%), высокие показатели защиты от перегрева, высокие эксплуатационные характеристики, и минимальное обслуживание во время использования.
    Помимо силовых, существуют трансформаторы различных типов и назначения: для измерения больших напряжений и токов (измерительные трансформаторы), для преобразования напряжения синусоидальной формы в импульсное (пик-трансформаторы), для преобразования импульсов тока и напряжения (импульсные трансформаторы), для выделения переменной составляющей тока, для разделения электрических цепей на гальванически не связанные между собой части, для их согласования и т.д.

    Измерительные трансформаторы— электротехнические устройства, предназначенные для изменения уровня напряжения с высокой точностью трансформации.
    Классифицируются по назначению, изменению уровня напряжения или тока.
    Также делятся на низковольтные трансформаторы тока  типа Т, 066 ТШ-0,66, ТТИ-066 и Высоковольтные трансформаторы напряжения, такие как НАМИТ и ЗНОЛ.
    Вторичные обмотки данных устройств соединены с измерительными устройствами (амперметрами, счетчиками электроэнергии, вольтметрами, фазометрами, реле тока и т.д.) Применение данного оборудования позволяет изолировать измеряющее оборудование от больших токов и напряжений измеряемой цепи, и создает возможность стандартизации измеряющего оборудования.

    Автотрансформаторы – устройства, обмотки которого соеденены гальванически между собой.  Благодыря малым коэффициентам трансформации,  автотрансформаторы имеют меньшие габариты и стоимость оп сравнению с многообмоточными. Из недостатков необходимо отметить невозможность гальванической изоляции цепей. 
    Основные сферы использования автотрансформаторов – изменение напряжения в пусковых устройствах крупных электрических машин переменного тока, в системах релейной защиты при плавном регулировании напряжения.  В случае реализации в конструкции автотрансформатора изменения количества рабочих витков вторичной обмотки, появляется возможность сохранять уровень вторичного напряжения при изменении первичного напряжения. Наибольшее распространение данный  данный механизм используется в стабилизаторах напряжения.

    Импульсный трансформатор — это устройство  с ферромагнитным сердечником, используемый для изменения импульсов тока  или напряжения.
    Импульсные трансформаторы наиболее часто используются в электронновычислительных устройствах, системах радиолокации, импульсной радиосвязи и т.д. в качестве измерительного устройства в счетчиках электроэнергии.
    Основное требование импульсным трансформаторам, — при изменении импульса форма импульса должна сохраняться. Это достигается максимальным уменьшением межвитковой емкости, индуктивности рассеивания за счет использования применением сердечников малой величины, взаимным расположение и уменьшением числа обмоток. 

    Пик-трансформатор — устройство, изменяющее  напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.  Пик-трансформаторы применяются в качестве генераторов  импульсов главным, высоковольтных исследовательских установках и системах автоматики..

    Простой принцип работы трансформатора | matematicus.ru

    Трансформатор – электромагнитное устройство (имеет от двух и более обмоток), предназначенное для повышения, понижения переменного напряжения (практически без потери энергии), силы тока за счёт электромагнитной индукции при этом частота остаётся постоянной. Первый трансформатор изобрел русский электротехник, инженер Яблочков П.Н. в 1876 году для питания свечей. Независимо от Яблочкова П.Н. в 1882 году также изобрел трансформатор русский физик Усагин И.Ф.

    Принцип работы трансформатора

    Принцип работы трансформатора основан на явлении электромагнитной индукции. От внешнего источника питания на первую обмотку трансформатора подаётся напряжение, протекающей по ней переменный ток создаёт переменный магнитный поток в сердечнике. За счет этого магнитный поток создается ЭДС индукции во второй обмотке трансформатора, подключенной к нагрузке. В целях снижения потерь энергии, затрачиваемые на нагревание токами Фуко (вихревыми токами) сердечника трансформатора, их производят из специальных изолированных друг от друга тонких  пластин стали.

    Схема Обозначения трансформатора со стальным сердечником в электрических схемах. Слева 1 — входные характеристики напряжения первичной обмотки, справа 2,3- выходные характеристики вторичных обмоток

      

    Общая принципиальная схема трансформатора с двумя обмотками

    Формула коэффициента трансформации трансформатора:

    U1 – напряжение на первичной обмотке трансформатора, B;

    U2 – напряжение на вторичной обмотке трансформатора, B;

    I1 – сила тока на первичной обмотке трансформатора, А;

    I2 – сила тока на вторичной обмотке трансформатора, А;

    N1 – число витков на первичной обмотке;

    N2 – число витков на вторичной обмотке.

    при k<1 (N2>N1),  U1<U2повышающий трансформатор;
    при k>1 (N2<N1),  U1>U2понижающий трансформатор.

    Схема повышающего трансформатора

    Схема понижающего трансформатора

    КПД больших трансформаторов составляет 0,98 и более, мелких — от 0,95 и более.

    Для охлаждения мощных трансформаторов применяют минеральное масло.

    Трансформаторы делятся на высокочастотные (частота более 100 кГц) без сердечника или с сердечником из высокочастотного феррита и трансформаторы низкочастотные с ферромагнитным сердечником (частота менее 100 кГц). Применяются в электросвязи, радиосвязи, усилителях, телефонной связи и т.д.

    Трансформатор широко применяется в электролиниях для передачи энергии на расстояния. Путем повышения напряжения при котором передается ток — уменьшается потеря энергии. При увеличении напряжения в 10 раз, потери уменьшатся в 100 раз. Данное открытие сделал русский электротехник Д.А. Лачинов в 1880 году.


    Пример

    В первом случае, передаем 100 А с напряжением 1000 В, и во втором случае, передаем 10 А с напряжением 10000 В, сопротивлением провода в обоих случаях 5 Ом.{2} А* 5 Ом=0,5кВт$

    В первом случае потери составляют 50%, а во втором 0,05%

    назначение и зачем нужен, устройство и принцип работы, различные виды

    Электромагнитные статические устройства используются для создания и применения магнитного поля. Случаев, зачем нужен трансформатор в электронных, электрических цепях и радиотехнике, существует много. Устройство оснащено индуктивными обмотками, взаимно связанными на магнитопроводе. Сеть способствует возникновению переменного поля, а трансформатор с помощью электромагнитной индукции придает току постоянные значения без изменения частоты.

     

    Определение и назначение

    Для питания приборов нужны напряжения различных характеристик. Трансформатор — это конструкция для использования индукционной работы магнитного поля. Ленточные или проволочные катушки, объединенные общим потоком, понижают или увеличивают напряжение. В телевизоре применяется 5 В для работы транзисторов и микросхем, питание кинескопа требует нескольких киловольт при использовании каскадного генератора.

    Изолированные обмотки располагаются на сердечнике из спонтанно намагниченного материала с определенным значением напряженности. Старые агрегаты использовали существующую частоту сети, около 60 Гц. В современных схемах питания электроприборов применяют импульсные трансформаторы с высокой частотой. Переменное напряжение выпрямляется и преобразовывается при помощи генератора в величину с заданными параметрами.

    Напряжение стабилизируется благодаря управляющей установке с импульсно-широтной модуляцией. Высокочастотные всплески передаются трансформатору, на выходе получают стабильные показатели. Массивность и тяжесть приборов прошлых лет сменяется легкостью и небольшими размерами. Линейные показатели агрегата пропорциональны мощности в отношении 1:4, для уменьшения габаритов устройства увеличивается частота тока.

    Массивные приборы используют в схемах электроснабжения, если требуется создать минимальный уровень рассеяния помех с высокой частотой, например при обеспечении качественного звука.

    Устройство и принцип работы

    Производитель выбирает базовые правила функционирования агрегата, но это не влияет на надежность эксплуатации. Отличаются концепции процессом изготовления. Принцип действия трансформатора основывается на двух положениях:

    • изменяющееся движение направленных носителей заряда создает переменное магнитное силовое поле;
    • влияние на силовой поток, передаваемый через катушку, продуцирует электродвижущую силу и индукцию.

    Устройство состоит из следующих частей:

    • магнитный привод;
    • катушки или обмотки;
    • основа для расположения витков;
    • изолирующий материал;
    • охладительная система;
    • другие элементы крепления, доступа, защиты.

    Работа трансформатора осуществляется по виду конструкции и сочетания сердечника и обмоток. В стержневом типе проводник заключен в обмотках, его трудно рассмотреть. Витки спирали видны, просматривается верх и низ сердечника, ось располагается вертикально. Материал, из чего состоит виток, должен хорошо проводить электричество.

    В изделиях броневого типа стержень скрывает большую часть оборотов, он ставится горизонтально или отвесно. Тороидальная конструкция трансформаторов предусматривает расположение на магнитопроводе двух независимых обмоток без электрической связи между собой.

    Магнитная система

    Выполняется из легированной трансформаторной стали, феррита, пермаллоя с сохранением геометрической формы для продуцирования магнитного поля агрегата. Проводник конструируется из пластин, лент, подков, его изготавливают на прессе. Часть, на которой располагается обмотка, называются стержнем. Ярмо — это элемент без витков, выполняющий замыкания цепи.

    Принцип действия трансформатора зависит от схемы стоек, которая бывает:

    • плоская — оси ярм и сердечников находятся в единой плоскости;
    • пространственная — продольные элементы устраиваются в разных поверхностях;
    • симметричная — одинаковые по форме, размеру и конструкции проводники расположены ко всем ярмам аналогично другим;
    • несимметричная — отдельные стойки отличаются по виду, габаритам и ставятся в разных положениях.

    Если предполагается, что через обмотку, которую называют первичной, протекает постоянный ток, то магнитный провод делают разомкнутым. В остальных случаях сердечник закрытый, он служит для замыкания силовых линий.

    Обмотки

    Делают в виде совокупности витков, устраиваемых на проводниках квадратного сечения. Форма используется для эффективной работы и повышения коэффициента заполнения в окне магнитопровода. Если требуется увеличить сечение сердечника, то его выполняют в виде двух параллельных элементов, чтобы уменьшить возникновение вихревых токов. Каждый такой проводник называется жилой.

    Стержень оборачивается бумагой, покрывается эмалевым лаком. Иногда два сердечника, расположенных параллельно, заключают в общую изоляцию, комплект называется кабелем. Обмотки различают по назначению:

    • основные — к ним подводится переменный ток, выходит преобразованный электроток;
    • регулирующие — в них предусмотрены отводы для трансформации напряжения при невысокой силе тока;
    • вспомогательные — служат для снабжения своей сети с мощностью меньше номинального показателя трансформатора и подмагничивания схемы постоянным током.

    Способы обкручивания:

    • рядовая обмотка — обороты делают в направлении оси по всей длине проводника, последующие витки наматывают плотно, без промежутков;
    • винтовое обматывание — многослойная обвивка с просветами между кольцами или заходом на соседние элементы;
    • дисковая накрутка — спиральный ряд выполняется последовательно, в круге обвивание производится в радиальном порядке по внутреннему и наружному направлению;
    • фольговая спираль ставится из алюминиевого и медного широкого листа, толщина которого колеблется в пределах 0,1-2 мм.

    Условные обозначения

    Чтобы удобно читалась схема трансформатора, есть специальные знаки. Сердечник вычерчивается толстой линией, цифра 1 показывает первичную обмотку, вторичные витки обозначаются цифрами 2 и 3.

    В некоторых схемах линия сердечника аналогична по толщине черте полуокружностей обвивки. Обозначение материала стержня различается:

    • магнитопровод из феррита чертят толстой линией;
    • стальной сердечник с магнитным зазором рисуют тонкой чертой с разрывом в середине;
    • ось из намагниченного диэлектрика обозначают тонким пунктиром;
    • медный стержень имеет на схеме вид узкой линии с условным обозначением материала по таблице Менделеева.

    Для выделения катушечного вывода применяют жирные точки, обозначение мгновеннодействующей индукции одинаково. Используется для обозначения промежуточных агрегатов в каскадных генераторах для показания противофазности. Ставят точки, если требуется установить полярность при сборке и направление расположения обмоток. Число витков в первичной обмотке определяется условно, как не нормируется и количество полуокружностей, пропорциональность есть, но строго не соблюдается.

    Основные характеристики

    Холостой режим применяется при разомкнутом вторичном контуре трансформатора, в нем отсутствует напряжение. Ток проходит по первичной обвивке, возникает реактивное намагничивание. При помощи холостой работы определяют КПД, показатель трансформации и потери в сердечнике.

    Функционирование под нагрузкой подразумевает подключение источника питания к первичной цепи, где протекает суммарный ток функционирования и холостого хода. Нагрузка подсоединяется к вторичному контуру трансформатора. Этот режим является распространенным.

    Фаза короткого замыкания возникает, если сопротивление вторичной спирали составляет единственную нагрузку. В этом режиме определяются потери на нагревание катушки в цепи. Параметры трансформаторов учитываются в системе замещения прибора с помощью установки сопротивления.

    Отношением потребляемой и отдаваемой мощности определяется коэффициент полезного действия трансформатора.

    Область применения

    Бытовые приборы имеют контакт с заземлением посредством нейтрального провода. Одновременное касание потребителем тока фазы и нулевой цепи ведет к замыканию контура и травме. Подключение через разделительный трансформатор позволяет обезопасить человека, т. к. вторичная обмотка не контактирует с землей.

    Импульсные агрегаты используются при передаче прямоугольного толчка и трансформации коротких сигналов при нагрузке. На выходе изменяется полярность и амплитуда тока, но остается неизменным напряжение.

    Измерительное оборудование постоянного тока является магнитным усилителем. Изменять переменное напряжение помогает направленное движение электронов небольшой мощности. Выпрямитель поставляет постоянную энергию и зависит от значений входного электричества.

    Силовые агрегаты широко используются в генераторах тока малой величины, мощности, показатели в дизелях имеют средние значения. Трансформаторы монтируют последовательно с нагрузкой, прибор подключается к источнику первичной обмоткой, вторичный контур выдает преобразованную энергию. Значение выходного тока прямо пропорционально нагрузке. Используется оборудование с 3 магнитными стержнями, если генератор трехфазного тока.

    Инвертирующие агрегаты имеют транзисторы одинаковой проводимости и на выходе усиливают только часть сигнала. Для полного преобразования напряжения импульс подается на оба транзистора.

    Согласующее оборудование используют для подсоединения к электронным приборам с высоким сопротивлением на входе и выходе нагрузки с низким показателем прохождения электричества. Агрегаты полезны в высокочастотных линиях, где разница величин ведет к потерям энергии.

    Типы трансформаторов

    От номинального значения тока в первичном и вторичном контуре зависит классификация трансформаторов. В распространенных видах показатель находится в пределах 1-5 А.

    Разделительный агрегат не предусматривает связь обеих спиралей. Оборудование обеспечивает гальваническую развязку, т. е. передачу импульса бесконтактным способом. Без нее протекающий между цепями ток ограничивается только сопротивлением, которое не принимается во внимание из-за малого значения.

    Согласующий трансформатор обеспечивает согласование различных показателей сопротивления для минимизации искажения формы импульса на выходе. Служит для организации гальванической развязки.

    Прежде чем выяснить, какие бывают трансформаторы силового направления, отмечают, что их выпускают для работы с сетями большой мощности. Приборы переменного тока изменяют показатели энергии в приемных установках и работают в местах с большой пропускной способностью и скоростью изменения электроэнергии.

    Вращающий трансформатор не следует путать с вращающимся оборудованием — машиной для преобразования угла поворота в напряжение цепи, где эффективность зависит от частоты вращения. Прибор передает электроимпульс на подвижные части техники, например на головку видеомагнитофона. Двойной сердечник с отдельными обмотками, одна из которых поворачивается вокруг другой.

    Масляный агрегат использует охлаждение катушек специальным трансформаторным маслом. Имеют магнитопровод замкнутого типа. В отличие от воздушных видов могут взаимодействовать с сетями большой мощности.

    Сварочные трансформаторы для оптимизации работы оборудования, понижения напряжения и создания тока высокой частоты. Это происходит из-за изменения индуктивного сопротивления или показателей холостого хода. Ступенчатое регулирование выполняется компоновкой электрообмотки на проводниках.

    Принцип работы трансформатора

    , конструкция, типы, применение

    Большинство электронных схем, используемых на Circuitstoday.com, имеют различные применения трансформатора. Поэтому важно знать принцип работы, конструкцию и типы трансформаторов, используемых в различных аналоговых схемах.

    Что такое трансформатор?

    Трансформатор можно определить как статическое устройство, которое помогает в преобразовании электроэнергии в одной цепи в электроэнергию той же частоты в другой цепи.Напряжение в цепи можно повышать или понижать, но с пропорциональным увеличением или уменьшением номинального тока. В этой статье мы узнаем об основах и принципах работы Transformer

    .

    Трансформатор — принцип работы

    Основным принципом работы трансформатора является взаимная индуктивность двух цепей, связанных общим магнитным потоком. Базовый трансформатор состоит из двух катушек, которые электрически разделены и индуктивны, но связаны магнитным полем через сопротивление.Принцип работы трансформатора можно понять из рисунка ниже.

    Трансформатор рабочий

    Как показано выше, электрический трансформатор имеет первичную и вторичную обмотки. Пластины сердечника соединены в виде полос, между полосами вы можете видеть, что есть узкие зазоры прямо через поперечное сечение сердечника. Эти смещенные суставы называются «черепичными». Обе катушки имеют высокую взаимную индуктивность. Взаимная электродвижущая сила индуцируется в трансформаторе из-за переменного потока, который создается в многослойном сердечнике, из-за катушки, которая подключена к источнику переменного напряжения.Большая часть переменного потока, создаваемого этой катушкой, связана с другой катушкой и, таким образом, создает взаимно индуцированную электродвижущую силу. Возникающая таким образом электродвижущая сила может быть объяснена с помощью законов электромагнитной индукции Фарадея как

    e = M * dI / dt

    Если цепь второй катушки замкнута, в ней протекает ток и, таким образом, электрическая энергия передается магнитным путем от первой ко второй катушке.

    Подача переменного тока подается на первую катушку, поэтому ее можно назвать первичной обмоткой.Энергия отбирается из второй катушки и, таким образом, может называться вторичной обмоткой.

    Вкратце, трансформатор выполняет следующие операции:

    1. Передача электроэнергии из одной цепи в другую.
    2. Передача электроэнергии без изменения частоты.
    3. Передача с принципом электромагнитной индукции.
    4. Две электрические цепи связаны взаимной индукцией.

    Строительство трансформатора

    Для простой конструкции трансформатора вам понадобятся две катушки с взаимной индуктивностью и многослойный стальной сердечник.Обе катушки изолированы друг от друга и от стального сердечника. Устройству также потребуется подходящий контейнер для собранного сердечника и обмоток, среда, с помощью которой можно изолировать сердечник и его обмотки от его контейнера.

    Для изоляции и вывода выводов обмотки из резервуара необходимо использовать подходящие вводы, изготовленные из фарфора или конденсаторного типа.

    Во всех трансформаторах, которые используются в коммерческих целях, сердечник изготовлен из листовой стали трансформатора, собранной для обеспечения непрерывного магнитного пути с минимальным воздушным зазором.Сталь должна иметь высокую проницаемость и низкие потери на гистерезис. Для этого сталь должна быть изготовлена ​​с высоким содержанием кремния и подвергаться термообработке. Эффективное ламинирование сердечника позволяет снизить вихретоковые потери. Ламинирование может быть выполнено с помощью тонкого слоя лака для стержневых плит или наложения оксидного слоя на поверхность. Для частоты 50 Гц толщина ламинирования варьируется от 0,35 мм до 0,5 мм для частоты 25 Гц.

    Типы трансформаторов
    Типы по дизайну

    Типы трансформаторов различаются по способу размещения первичной и вторичной обмоток вокруг многослойного стального сердечника.По конструкции трансформаторы можно разделить на два:

    .
    1. Трансформатор с сердечником

    В трансформаторе с сердечником обмотки подводятся к значительной части сердечника. Катушки, используемые в этом трансформаторе, имеют фасонную намотку и имеют цилиндрический тип. Такой тип трансформатора может применяться как для малогабаритных, так и для крупногабаритных трансформаторов. В малоразмерном типе сердечник будет прямоугольной формы, а используемые катушки — цилиндрическими.На рисунке ниже показан шрифт большого размера. Вы можете видеть, что круглые или цилиндрические катушки намотаны таким образом, чтобы соответствовать крестообразной части сердечника. В случае круглых цилиндрических катушек они имеют значительное преимущество в виде хорошей механической прочности. Цилиндрические катушки будут иметь разные слои, и каждый слой будет изолирован от другого с помощью таких материалов, как бумага, ткань, микарта-картон и так далее. Общее расположение трансформатора с сердечником относительно сердечника показано ниже.Показаны обмотки как низкого (LV), так и высокого (HV) напряжения.

    Трансформатор с сердечником Крестообразное сечение Трансформаторы с сердечником

    Обмотки низкого напряжения располагаются ближе к сердечнику, так как их легче всего изолировать. Эффективная площадь сердечника трансформатора может быть уменьшена за счет использования пластин и изоляции.

    2. Корпусный трансформатор

    В трансформаторах оболочечного типа сердечник окружает значительную часть обмоток. Сравнение показано на рисунке ниже.

    Обмотка трансформатора с сердечником и оболочкой

    Катушки имеют формную намотку, но представляют собой многослойные диски, обычно намотанные в виде блинов. Бумага используется для изоляции различных слоев многослойных дисков. Вся обмотка состоит из дисков, уложенных друг на друга с изоляционными промежутками между катушками. Эти изоляционные пространства образуют горизонтальные охлаждающие и изолирующие каналы. Такой трансформатор может иметь форму простого прямоугольника или также может иметь распределенную форму. Обе конструкции показаны на рисунке ниже:

    Трансформаторы корпусного типа прямоугольной формы Трансформаторы корпусного типа распределенного типа

    Сердечники и катушки трансформаторов должны быть усилены жесткими механическими связями.Это поможет свести к минимуму перемещение устройства, а также предотвратит повреждение изоляции устройства. Трансформатор с хорошей фиксацией не будет издавать гудения во время работы, а также снизит вибрацию.

    Для трансформаторов должна быть предусмотрена специальная площадка для размещения. Обычно устройство помещается в плотно пригнанные емкости из листового металла, заполненные специальным изоляционным маслом. Это масло необходимо для циркуляции через устройство и охлаждения змеевиков. Он также обеспечивает дополнительную изоляцию устройства, когда оно находится в воздухе.

    Возможны случаи, когда гладкая поверхность бака не сможет обеспечить необходимую площадь охлаждения. В таких случаях борта бака гофрированы или собраны с радиаторами по бокам устройства. Масло, используемое для охлаждения, должно быть абсолютно свободным от щелочей, серы и, самое главное, влаги. Даже небольшое количество влаги в масле приведет к значительному изменению изоляционных свойств устройства, поскольку это в значительной степени снижает диэлектрическую прочность масла.

    С математической точки зрения, присутствие примерно 8 частей воды на 1 миллион снижает изоляционные качества масла до значения, которое не считается стандартным для использования. Таким образом, резервуары защищены герметичным уплотнением в меньших единицах. При использовании больших трансформаторов герметичный метод реализовать практически невозможно. В таких случаях предусмотрены камеры для расширения и сжатия масла при повышении и понижении его температуры.

    Эти сапуны образуют барьер и препятствуют контакту атмосферной влаги с маслом.Также следует проявлять особую осторожность, чтобы не кататься на санках. Сливание происходит, когда масло разлагается из-за чрезмерного воздействия кислорода во время нагрева. Это приводит к образованию больших отложений темного и тяжелого вещества, которые забивают охлаждающие каналы в трансформаторе.

    Качество, долговечность и обращение с этими изоляционными материалами определяют срок службы трансформатора. Все выводы трансформатора выведены из корпусов через подходящие вводы. Существует множество их конструкций, их размер и конструкция в зависимости от напряжения на выводах.Фарфоровые вводы можно использовать для изоляции выводов трансформаторов, которые используются при умеренном напряжении. В трансформаторах высокого напряжения используются маслонаполненные вводы или вводы емкостного типа.

    Выбор между типом сердечника и оболочки производится путем сравнения стоимости, поскольку аналогичные характеристики могут быть получены от обоих типов. Большинство производителей предпочитают использовать трансформаторы кожухового типа для высоковольтных систем или для многообмоточных конструкций. По сравнению с сердечником, оболочка имеет большую среднюю длину витка катушки.Другими параметрами, которые сравниваются при выборе типа трансформатора, являются номинальное напряжение, номинальная сила тока в киловольтах, вес, напряжение изоляции, распределение тепла и т. Д.

    Трансформаторы

    также можно классифицировать по типу используемого охлаждения. Различные типы в соответствии с этой классификацией:

    Типы трансформаторов по методу охлаждения
    1. Самоохлаждающийся с масляным наполнением

    В маслонаполненном типе с самоохлаждением используются распределительные трансформаторы малых и средних размеров.Собранные обмотки и сердечник таких трансформаторов устанавливаются в сварные маслонепроницаемые стальные резервуары, снабженные стальной крышкой. Резервуар заполняется очищенным высококачественным изоляционным маслом, как только сердечник возвращается на свое место. Масло помогает передавать тепло от сердечника и обмоток к корпусу, откуда оно излучается в окружающую среду.

    Для трансформаторов меньшего размера резервуары обычно имеют гладкую поверхность, но для трансформаторов больших размеров требуется большая площадь теплового излучения, и это тоже без нарушения кубической емкости резервуара.Это достигается частым рифлением корпусов. Еще более крупные размеры снабжены радиацией или трубами.

    2. Тип с масляным водяным охлаждением

    Этот тип используется для гораздо более экономичного строительства больших трансформаторов, так как описанный выше метод с самоохлаждением очень дорог. Здесь используется тот же метод — обмотки и сердечник погружаются в масло. Единственное отличие состоит в том, что у поверхности масла установлен охлаждающий змеевик, по которому холодная вода продолжает циркулировать.Эта вода уносит тепло от устройства. Эта конструкция обычно реализуется на трансформаторах, которые используются в высоковольтных линиях электропередачи. Самым большим преимуществом такой конструкции является то, что для таких трансформаторов не требуется другого корпуса, кроме собственного. Это значительно снижает затраты. Еще одним преимуществом является то, что техническое обслуживание и осмотр этого типа требуется только один или два раза в год.

    3. Тип воздушной струи

    Этот тип используется для трансформаторов с напряжением ниже 25 000 вольт.Трансформатор помещен в коробку из тонкого листового металла, открытую с обоих концов, через которую воздух продувается снизу вверх.

    E.M.F Уравнение трансформатора Трансформатор ЭДС Equation

    Let,

    N A = Число витков первичной обмотки

    N B = Количество витков вторичной обмотки

    Ø макс. = максимальный поток в сердечнике в перепонках = B макс. X A

    f = Частота переменного тока на входе в герцах (H Z )

    Как показано на рисунке выше, магнитный поток в сердечнике увеличивается от нулевого значения до максимального значения Ø max за одну четверть цикла, то есть за частоты секунды.

    Следовательно, средняя скорость изменения потока = Ø макс. / ¼ f = 4f Ø макс. Вт / с

    Скорость изменения магнитного потока на виток означает наведенную электродвижущую силу в вольтах.

    Следовательно, средняя индуцированная электродвижущая сила / оборот = 4f Ø макс. вольт

    Если поток Ø изменяется синусоидально, то среднеквадратичное значение наведенной ЭДС получается путем умножения среднего значения на коэффициент формы.

    Форм-фактор

    = среднеквадратичное значение. значение / среднее значение = 1.11

    Следовательно, среднеквадратичное значение ЭДС / оборот = 1,11 X 4f Ø макс. = 4,44f Ø макс.

    Теперь, среднеквадратичное значение наведенной ЭДС во всей первичной обмотке

    = (наведенная ЭДС / оборот) X Количество витков первичной обмотки

    Следовательно,

    E A = 4,44f N A Ø макс. = 4,44fN A B м A

    Аналогично, среднеквадратичное значение наведенной ЭДС во вторичной обмотке равно

    .

    E B = 4.44f N B Ø макс = 4,44fN B B м A

    В идеальном трансформаторе без нагрузки,

    В A = E A и V B = E B , где V B — напряжение на клеммах

    Коэффициент трансформации напряжения (K)

    Из приведенных выше уравнений получаем

    E B / E A = V B / V A = N B / N A = K

    Эта постоянная K известна как коэффициент трансформации напряжения.

    (1) Если N B > N A , то есть K> 1, то трансформатор называется повышающим трансформатором.

    (2) Если N B <1, то есть K <1, то трансформатор называется понижающим трансформатором.

    Опять же идеальный трансформатор,

    Вход В A = выход В A

    В A I A = V B I B

    Или, I B / I A = V A / V B = 1 / K

    Следовательно, токи обратно пропорциональны коэффициенту трансформации (напряжения).

    Применение трансформатора

    Трансформаторы используются в большинстве электронных схем. У трансформатора всего 3 применения;

    1. Для увеличения напряжения и тока.
    2. Для понижения напряжения и тока
    3. Для предотвращения постоянного тока — трансформаторы могут пропускать только переменный ток, поэтому они полностью предотвращают прохождение постоянного тока в следующую цепь.

    Но применение этих трех приложений бесконечно, поэтому они используются во многих схемах.

    Теория работы однофазных трансформаторов

    Определение трансформатора

    Трансформатор электроэнергии — это статическое устройство, которое преобразует электрическую энергию из одной цепи в другую без какого-либо прямого электрического соединения. Он также выполняет это с помощью взаимной индукции между двумя обмотками. Он может преобразовывать мощность из одной цепи в другую без изменения ее частоты, но может иметь разные уровни напряжения в зависимости от необходимости.


    Схема однофазного трансформатора


    Символ трансформатора

    Трансформатор Конструкция

    Три основные части трансформатора:

    • Первичная обмотка : Обмотка, которая потребляет электроэнергию и создает магнитный поток, когда она подключена к источнику электроэнергии.
    • Магнитный сердечник : Это относится к магнитному потоку, создаваемому первичной обмоткой. Поток проходит через путь с низким сопротивлением, связанный со вторичной обмоткой, создавая замкнутую магнитную цепь.
    • Вторичная обмотка : Обмотка, которая обеспечивает желаемое выходное напряжение за счет взаимной индукции в трансформаторе.

    Принцип работы трансформаторов

    Принцип работы однофазного трансформатора основан на законе электромагнитной индукции Фарадея.В основном, взаимная индукция между двумя или более обмотками отвечает за действие преобразования в электрическом трансформаторе.

    Законы электромагнитной индукции Фарадея

    Согласно закону Фарадея «Скорость изменения магнитной связи во времени прямо пропорциональна наведенной ЭДС в проводнике или катушке».

    Основная теория трансформатора

    Первичная обмотка питается от источника переменного тока.Переменный ток через первичную обмотку создает переменный поток, окружающий обмотку. Другая обмотка, также известная как вторичная обмотка, приближена к первичной обмотке. В конце концов, некоторая часть потока в первичной обмотке будет связана с вторичной. Поскольку этот поток непрерывно изменяется по амплитуде и направлению, происходит изменение магнитной связи и во второй обмотке. Согласно закону электромагнитной индукции Фарадея, во вторичной обмотке индуцируется электродвижущая сила (ЭДС), которая называется наведенной ЭДС.Если цепь вторичной обмотки замкнута, через нее будет протекать индуцированный ток. Это простейшая форма преобразования электроэнергии; это самый основной принцип работы трансформатора.

    Принцип работы трансформатора был объяснен в следующих простых шагах:

    • Как только первичная обмотка подключается к однофазному источнику питания, через нее начинает течь переменный ток.
    • Переменный поток создается в сердечнике первичным переменным током.
    • Переменный поток через сердечник связывается со вторичной обмоткой.
    • Теперь, согласно законам электромагнитной индукции Фарадея, этот изменяющийся поток будет индуцировать напряжение во вторичной обмотке.

    Сопутствующие товары

    Вышеупомянутый тип трансформатора теоретически возможен, но не практически, потому что есть потери, связанные с работой трансформаторов.

    Что такое трансформатор? | Определение, принцип работы и типы

    Определение трансформатора

    Итак, что же такое трансформатор в конце концов? Простое определение трансформатора состоит в том, что это статическое электрическое устройство, которое преобразует электрическую энергию из одной электрической цепи в другую без какого-либо изменения частоты посредством процесса электромагнитной индукции. Интересно отметить, что передача энергии от одной цепи к другой происходит с помощью взаимной индукции, то есть поток, индуцированный в первичной обмотке, связывается со вторичной обмоткой, что мы объясним позже.Отказ трансформатора также может произойти, если для его работы не будут приняты соответствующие меры.

    Основная роль трансформатора заключается в повышении или понижении напряжения в зависимости от ситуации, в которой он установлен.

    Работа трансформатора

    Работа трансформатора основана на простом принципе взаимной индукции между первичной и вторичной обмотками, которые иначе называются катушками, которые помогают преобразовывать энергию из одной цепи в другую.Теперь давайте попробуем понять общую картину:

    Итак, в общем случае первичная обмотка трансформатора получает переменное по своей природе напряжение. Переменный ток, следующий за катушкой, создает непрерывно изменяющийся и переменный поток, который создается вокруг первичной обмотки. Затем у нас есть другая катушка или вторичная катушка, которая находится рядом с первичной катушкой, которая связана с первичной обмоткой, потому что связан некоторый переменный поток. Поскольку поток непрерывно изменяется, он индуцирует ЭДС, индуцированную во вторичной катушке в соответствии с законом электромагнитной индукции Фарадея.Если цепь вторичной стороны замкнута, будет течь ток, и это самая основная работа трансформатора.

    Конструкция трехфазного трансформатора

    Три основных части любого трансформатора — это первичная обмотка, вторичная обмотка и магнитный сердечник. Теперь мы подробно рассмотрим каждый из этих компонентов.

    Первичная обмотка

    Это основная обмотка, через которую ожидается поступающий переменный ток. В зависимости от того, является ли трансформатор повышающим или понижающим трансформатором, конструкция обмотки изменяется соответствующим образом.

    Вторичная обмотка

    Это обмотка, в которой соединяется поток, создаваемый первичной обмоткой. В этом случае также в зависимости от того, является ли трансформатор повышающим или понижающим трансформатором, конструкция обмотки изменяется соответствующим образом.

    Магнитный сердечник

    Это требуется для обеспечения пути с низким сопротивлением для магнитного потока, протекающего от первичной обмотки ко вторичной обмотке, чтобы сформировать замкнутую магнитную цепь.Обычно он состоит из CRGOS (холоднокатаная кремниевая сталь с ориентированной зернистостью).

    Уравнение трансформатора

    Итак, теперь давайте посмотрим на теоретический аспект трансформатора, для этого нам важно понять уравнение трансформатора и то, как оно получено, а также различные отношения, которые мы имеем в отношении напряжения, витков и поток.

    ЭДС, индуцированная в каждой обмотке трансформатора, может быть рассчитана по его уравнению для ЭДС.

    Связь потока представлена ​​законом электромагнитной индукции Фарадея.Это выражается как,

    Вышеупомянутое уравнение может быть записано как,

    , где E m = 4,44ωΦ m = максимальное значение e. Для синусоидальной волны среднеквадратичное значение ЭДС равно

    ЭДС, индуцированная в их первичной и вторичной обмотках, выражается как

    Среднеквадратичное напряжение вторичной обмотки составляет

    , где φ м — максимальное значение магнитного потока по Веберу (Wb), f — частота в герцах (Гц), а E 1 и E 2 в вольтах.

    If, B м = максимальная плотность магнитного потока в Тесла (Тл)

    A = площадь поперечного сечения сердечника в квадратных метрах (м 2 )

    Обмотка, имеющая наибольшую Количество напряжения имеет высокое напряжение, а первичная обмотка имеет низкое напряжение.

    Соотношение напряжений и оборотов

    Отношение E / T называется вольт на оборот. Первичное и вторичное напряжение на виток определяется формулой

    Уравнение (1) и (2) показывает, что напряжение на виток в обеих обмотках одинаковое, то есть

    Отношение T 1 / T 2 называется коэффициентом поворота. Соотношение витков выражается как

    Отношение витков первичной обмотки к вторичному, которое равно индуцированному напряжению первичной обмотки и вторичной обмотки, показывает, насколько первичное напряжение понижено или повышено.Коэффициент трансформации или коэффициент наведенного напряжения называется коэффициентом трансформации и обозначается символом a. Таким образом,

    Любое желаемое соотношение напряжений может быть получено путем изменения числа витков.

    Типы трансформаторов

    Поскольку трансформаторы используются, вероятно, в каждой области, они представляют собой различные типы трансформаторов в зависимости от нескольких факторов, таких как конструкция трансформатора, область применения, область, в которой он используется, конечное назначение трансформатора и т. Д.и т. д.

    Теперь мы рассмотрим каждый из них более подробно:

    Классификация трансформаторов на основе уровней напряжения

    Это, вероятно, самая основная форма классификации, когда дело доходит до трансформаторов, независимо от того, является ли это ступенькой выше. или понижающий трансформатор.

    Повышающий трансформатор

    Как следует из названия, повышающие трансформаторы используются для увеличения напряжения на вторичной стороне трансформатора. Это достигается за счет большего количества витков на вторичной обмотке трансформатора по сравнению с первичной обмоткой трансформатора.Такой тип трансформатора обычно используется на генерирующих станциях, где напряжение генератора, как правило, составляет 23,5 кВ, повышается до 132 кВ или более.

    Понижающий трансформатор

    Как следует из названия, понижающие трансформаторы используются для понижения напряжения на вторичной стороне трансформатора. Это достигается за счет меньшего количества витков на вторичной обмотке трансформатора по сравнению с первичной обмоткой трансформатора. Трансформаторы такого типа обычно используются в распределительных сетях, где сетевое напряжение с 11 кВ понижается до 415 В для бытового или коммерческого использования.

    Классификация трансформаторов на основе Core Medium

    Теперь в зависимости от сердечника между первичной и вторичной обмотками обмотки трансформатора трансформаторы классифицируются как с воздушным сердечником или железным сердечником.

    Трансформаторы с воздушным сердечником

    Первичная и вторичная обмотки трансформатора намотаны на магнитную ленту, а магнитная связь между ними осуществляется по воздуху. Этот тип трансформаторов обычно не является предпочтительным, поскольку взаимная индуктивность значительно меньше по сравнению с сердечником, поскольку сопротивление, обеспечиваемое воздушным сердечником, очень велико.Но интересно отметить, что гистерезис и потери на вихревые токи полностью устранены.

    Железный сердечник

    Первичная обмотка и вторичная обмотка размещены на железном сердечнике, который обеспечивает идеальную связь потока между ними. Этот тип трансформатора обычно является предпочтительным, поскольку он обеспечивает очень меньшее сопротивление потоку связи из-за его превосходных магнитных свойств, что делает общий КПД трансформатора намного выше по сравнению с трансформатором с воздушным сердечником.

    Классификация трансформаторов на основе использования

    Трансформаторы далее классифицируются в зависимости от области применения; мы подробно рассмотрим каждый из них:

    Силовой трансформатор

    Это те трансформаторы, которые используются в передающих сетях, работающих при очень высоких уровнях напряжения и используются либо для повышения, либо для понижающего применения. Класс напряжения включает 400 кВ, 200 кВ, 110 кВ, 66 кВ, 33 кВ и обычно имеет номинальное значение выше 200 МВА.

    Поскольку они используются для передачи при большой нагрузке и при напряжении более 33 кВ, они имеют большие размеры, поскольку требуется высокая изоляция. Они также предназначены для работы со 100% -ным КПД, чтобы избежать потерь при передаче.

    Для них, чтобы избежать потерь передачи или потерь I2r, они спроектированы таким образом, чтобы сердечник использовался по максимуму и имел потери в стали, равные потерям в меди при нагрузке утечки, для достижения максимальной эффективности.

    Распределительный трансформатор

    Как следует из названия, такой тип трансформаторов используется в распределительных сетях низкого напряжения в качестве средства обеспечения энергией конечного пользователя. Класс напряжения для распределительного трансформатора составляет 11 кВ, 6,6 кВ, 3,3 кВ, 440 В и 230 В и обычно составляет менее 200 МВА.

    Этот тип трансформатора используется для подачи энергии в промышленность на 33 кВ или для бытовых целей на 415 В. Они работают с более низким КПД, составляющим 50-70%, и имеют небольшие размеры, поскольку требуемая изоляция меньше по сравнению с силовым трансформатором.

    Распределительный трансформатор может быть дополнительно классифицирован в зависимости от типа изоляции: жидкостный трансформатор или трансформатор сухого типа

    Жидкостный трансформатор

    Этот тип распределительного трансформатора использует масло в качестве охлаждающей жидкости внутри корпуса трансформатора. Обмотки погружены в трансформатор, а изоляционное масло помогает поддерживать температуру внутри. Следует отметить, что изоляционное масло со временем ухудшается, и его необходимо обрабатывать через некоторое время, потому что значение BDV (напряжение пробоя) падает из-за образования осадка в масле.

    Более того, они должны находиться в строгом режиме технического обслуживания и проверяться на наличие утечек в течение многих лет эксплуатации. Далее они подразделяются в зависимости от схем охлаждения:

  • Масло, естественное воздушное, естественное (ONAN)
  • Масло, естественное воздушное принудительное (ONAF)
  • Масло принудительное воздушное принудительное принудительное (OFAF)
  • Масло принудительное воздушное принудительное принудительное (OFWF)
  • Сухой трансформатор

    Как следует из названия, в трансформаторах этого типа в качестве изоляционной среды используется масло, а не трансформаторы с воздушным охлаждением, а обмотки изготовлены из изоляции классов F и H.Обычно они предпочитают выбирать трансформатор, когда приложение находится внутри здания или в месте, где безопасность является наивысшим приоритетом. Они также очень компактны по сравнению с масляным трансформатором, поскольку к ним не прикреплены радиаторы для охлаждения. В зависимости от того, как они охлаждаются, они подразделяются на два типа:

  • Air Natural (AN)
  • Air Blast
  • Измерительный трансформатор

    Этот тип трансформатора используется для регистрации напряжения и тока в местах постоянного измерения невозможны из-за очень высокой стоимости.Поэтому приборный трансформатор используется для понижения этих токов / напряжений с целью измерения. Есть два типа:

    Трансформаторы тока

    Эти типы трансформаторов используются для того, чтобы амперметры катушек других приборов не были напрямую подключены к линиям высокого тока или, другими словами, трансформатор тока понижал значения на известное соотношение, чтобы его можно было безопасно зарегистрировать с помощью измерительного устройства.

    Трансформаторы потенциала

    Они работают более или менее по тому же принципу, что и силовой или распределительный трансформатор.Единственная разница в том, что их мощность невелика и колеблется от 100 до 500 ВА, а сторона низкого напряжения обычно намотана на 115–120 В

    Часто задаваемые вопросы по трансформаторам

    Почему мы слышим гудящий звук возле трансформатора?

    Отв. Это происходит из-за явления, которое с научной точки зрения называется магнитострикцией, когда магнитная сталь, используемая в сердечнике, расширяется при намагничивании и сжимается при размагничивании в течение полного цикла намагничивания.Несмотря на то, что они крошечные пропорционально и поэтому обычно не видны невооруженным глазом, их достаточно, чтобы вызвать вибрацию и, следовательно, шум.

    Могут ли трансформаторы работать при напряжениях, отличных от номинальных?

    Отв. Они могут работать при напряжении ниже номинального, но ни в коем случае не выше номинального напряжения до тех пор, пока они не будут снабжены переключателем ответвлений. Следует отметить, что если трансформатор работает ниже номинального напряжения, мощность LVA также будет соответственно уменьшена.

    Может ли трансформатор, рассчитанный на 60 Гц, работать на частоте 50 Гц?

    Отв. Трансформатор, рассчитанный на 60 Гц, не может работать на частоте 50 Гц, так как будут возникать большие потери, что также приведет к более высокому повышению температуры и сокращению срока службы. Но, с другой стороны, трансформатор с номинальной частотой 50 Гц может работать на частоте 60 Гц.

    Почему трансформаторы рассчитаны в кВА, а не в кВт?

    Отв. Когда мы говорим о трансформаторе, у нас есть два типа потерь: потери в стали и потери в меди.Теперь, поскольку потери в стали зависят от напряжения, а потери в меди от тока, общие потери зависят от напряжения и тока, и коэффициент мощности не учитывается. Трансформаторы указаны в кВА, так как кВт будет включать коэффициент мощности.

    Могут ли 3-фазные трансформаторы работать параллельно?

    Отв. Да, они могут работать параллельно при условии, что они имеют одинаковое полное сопротивление, номинальное напряжение и одинаковую полярность.

    Прочтите наши другие интересные статьи по электротехнике здесь

    Электрический трансформатор — основная конструкция, работа и типы

    Электрический трансформатор — это статическая электрическая машина, которая преобразует электрическую мощность из одной цепи в другую без изменения частоты.Трансформатор может увеличивать или уменьшать напряжение с соответствующим уменьшением или увеличением тока.

    Принцип работы трансформатора

    Основной принцип работы трансформатора — это явление взаимной индукции между двумя обмотками, связанными общим магнитным потоком. На рисунке справа показана простейшая форма трансформатора. В основном трансформатор состоит из двух индуктивных катушек; первичная обмотка и вторичная обмотка. Катушки электрически разделены, но магнитно связаны друг с другом.Когда первичная обмотка подключена к источнику переменного напряжения, вокруг обмотки создается переменный магнитный поток. Сердечник обеспечивает магнитный путь для потока, чтобы соединиться с вторичной обмоткой. Большая часть потока связана с вторичной обмоткой, которая называется «полезным потоком» или основным «потоком», а поток, который не связан с вторичной обмоткой, называется «потоком рассеяния». Поскольку создаваемый поток является переменным (его направление постоянно меняется), ЭДС индуцируется во вторичной обмотке согласно закону электромагнитной индукции Фарадея.Эта ЭДС называется «взаимно индуцированной ЭДС», и частота взаимно индуцированной ЭДС такая же, как и частота подаваемой ЭДС. Если вторичная обмотка является замкнутой цепью, то через нее протекает взаимно индуцированный ток, и, следовательно, электрическая энергия передается от одной цепи (первичной) к другой цепи (вторичной).

    Базовая конструкция трансформатора

    В основном трансформатор состоит из двух индуктивных обмоток и многослойного стального сердечника. Катушки изолированы друг от друга, а также от стального сердечника.Трансформатор также может состоять из контейнера для сборки обмотки и сердечника (называемого баком), подходящих вводов для подключения клемм, маслорасширителя для подачи масла в бак трансформатора для охлаждения и т. Д. На рисунке слева показана основная конструкция трансформатор.
    Во всех типах трансформаторов сердечник изготавливается путем сборки (штабелирования) ламинированных листов стали с минимальным воздушным зазором между ними (для обеспечения непрерывного магнитного пути). Используемая сталь имеет высокое содержание кремния и иногда подвергается термообработке, чтобы обеспечить высокую проницаемость и низкие потери на гистерезис.Ламинированные стальные листы используются для уменьшения потерь на вихревые токи. Листы нарезаются в форме E, I и L. Чтобы избежать высокого сопротивления в стыках, листы укладывают друг на друга, чередуя стороны стыка. То есть, если стыки первой сборки листа находятся на передней стороне, стыки следующей сборки остаются на задней стороне.

    Типы трансформаторов

    Трансформаторы можно классифицировать по разным признакам, например по типам конструкции, типам охлаждения и т. Д.

    (A) По конструкции трансформаторы можно разделить на два типа: (i) трансформатор с сердечником и (ii) трансформатор с корпусом, которые описаны ниже.

    (i) Трансформатор с сердечником

    В трансформаторе с сердечником обмотки представляют собой цилиндрическую намотку, установленную на плечах сердечника, как показано на рисунке выше. Цилиндрические катушки имеют разные слои, и каждый слой изолирован друг от друга. Для изоляции можно использовать такие материалы, как бумага, ткань или слюда. Обмотки низкого напряжения располагаются ближе к сердечнику, так как их легче изолировать.

    (ii) Трансформатор корпусного типа
    Катушки предварительно намотаны и смонтированы слоями с изоляцией между ними.Трансформатор оболочечного типа может иметь простую прямоугольную форму (как показано на рис. Выше) или распределенную форму.

    (B) В зависимости от их назначения

    1. Повышающий трансформатор: Напряжение увеличивается (с последующим уменьшением тока) на вторичной обмотке.
    2. Понижающий трансформатор: Напряжение уменьшается (с последующим увеличением тока) на вторичной обмотке.
    (C) В зависимости от типа питания
    1. Однофазный трансформатор
    2. Трехфазный трансформатор
    (D) На основании их использования
    1. Силовой трансформатор: Используется в сети передачи, высокий рейтинг
    2. Распределительный трансформатор: Используется в распределительной сети, сравнительно более низкий номинал, чем у силовых трансформаторов.
    3. Измерительный трансформатор: используется для реле и защиты в различных приборах в промышленности
    • Трансформатор тока (ТТ)
    • Трансформатор потенциала (ПТ)
    (E) На основе используемого охлаждения
    1. Маслонаполненный самоохлаждаемый тип
    2. Масляные с водяным охлаждением типа
    3. Воздуховоздушного типа (с воздушным охлаждением)

      Введение в трансформаторы | Строительство, работа, приложения

      В этом руководстве мы увидим краткое введение в трансформаторы.Мы узнаем, что такое электрический трансформатор, конструкция трансформатора, принцип его работы, классификации трансформаторов, потери и КПД, а также некоторые области применения.

      Трансформаторы: знакомство к другому.

      Возможно уменьшение или увеличение напряжения и тока с помощью трансформатора в цепях переменного тока в зависимости от требований электрического оборудования, устройства или нагрузки. В различных приложениях используется широкий спектр трансформаторов, включая силовые, измерительные и импульсные трансформаторы.

      В целом трансформаторы делятся на два типа, а именно электронные трансформаторы и силовые трансформаторы. Рабочие напряжения электронных трансформаторов очень низкие и рассчитаны на низкие уровни мощности.Они используются в бытовом электронном оборудовании, таком как телевизоры, персональные компьютеры, CD / DVD-плееры и другие устройства.

      Термин «силовой трансформатор» относится к трансформаторам с высокими номиналами мощности и напряжения. Они широко используются в системах выработки, передачи, распределения и коммунальных услуг для повышения или понижения уровней напряжения. Однако работа этих двух типов трансформаторов одинакова. Итак, давайте подробнее остановимся на трансформаторах.

      Что такое электрический трансформатор?

      Трансформатор — это статическое устройство (то есть не имеющее движущихся частей), состоящее из одной, двух или более обмоток, которые связаны магнитным полем и электрически разделены с магнитным сердечником или без него.Он передает электрическую энергию от одной цепи к другой по принципу электромагнитной индукции.

      Обмотка, подключенная к основному источнику переменного тока, называется первичной обмоткой, а обмотка, подключенная к нагрузке или от которой отводится энергия, называется вторичной обмоткой. Эти две обмотки с надлежащей изоляцией намотаны на многослойный сердечник, который обеспечивает магнитный путь между обмотками.

      электрический трансформатор

      Когда первичная обмотка запитана источником переменного напряжения, в сердечнике трансформатора будет создаваться переменный магнитный поток или поле.Эта амплитуда магнитного потока зависит от величины приложенного напряжения, частоты источника питания и количества витков на первичной стороне.

      Этот поток циркулирует по сердечнику и, следовательно, связан с вторичной обмоткой. Основанное на принципе электромагнитной индукции, эта магнитная связь индуцирует напряжение во вторичной обмотке. Это называется взаимной индукцией между двумя цепями. Напряжение вторичной обмотки зависит от количества витков вторичной обмотки, а также от магнитного потока и частоты.

      Трансформаторы широко используются в электроэнергетических системах для создания переменных значений напряжения и токов с одинаковой частотой. Следовательно, за счет соответствующего соотношения витков первичной и вторичной обмоток трансформатор получает желаемое соотношение напряжений.

      В начало

      Конструкция трансформатора

      Основными частями трансформатора являются сердечник, обмотки, контейнер или бак, вводы, расширитель и радиаторы.

      Сердечник

      Для приложений большой мощности сердечник трансформатора изготовлен из материала с высокой проницаемостью, который обеспечивает путь с низким сопротивлением для магнитного потока.Поперечное сечение жилы может быть квадратным или прямоугольным.

      Обычно трансформаторы с железным сердечником обеспечивают лучшее преобразование мощности по сравнению с трансформаторами с воздушным сердечником. Трансформаторы с воздушным сердечником используются для высокочастотных применений (выше 2 кГц), тогда как для низкочастотных применений (ниже 2 кГц) используются трансформаторы с железным сердечником.

      Во всех типах трансформаторов сердечник состоит из пластин из кремнистой стали или листовой стали, которые собираются таким образом, чтобы обеспечить непрерывный магнитный путь для магнитного потока.С этим слоистым сердечником потери на вихревые токи сведены к минимуму.

      Толщина этих многослойных стальных листов составляет от 0,35 до 5 мм, они изолированы лаком, оксидом или фосфатом, а затем формируются в виде сердечника.

      Для улучшения магнитных свойств используется горячекатаная сталь с ориентированным зерном (HRGO), или холоднокатаная сталь с ориентированным зерном (CRGO), или листы с высоким содержанием B (HiB). В случае небольших трансформаторов сердечник сконструирован из горячекатаных листов кремнистой стали в форме E, и используются I, C и I или O.

      Конструкция
      Обмотки

      Обычно (двухобмоточный) трансформатор имеет две обмотки, а именно первичную и вторичную обмотки, которые сделаны из высококачественной меди.

      Изолированные многожильные проводники используются в качестве обмоток для передачи больших токов. Эта изоляция позволяет избежать контакта витков с другими витками.

      обмоток трансформатора

      Напряжение, подключенное к первичной обмотке, называется первичным напряжением, тогда как индуцированное напряжение во вторичной обмотке называется вторичным напряжением.Если вторичное напряжение больше первичного, оно называется повышающим трансформатором, а если меньше — понижающим трансформатором. Поэтому обмотки обозначаются как обмотки ВН и НН в зависимости от уровня напряжения.

      По сравнению с обмоткой НН, обмотка ВН требует большей изоляции, чтобы выдерживать высокие напряжения, а также большего зазора между сердечником и корпусом.

      Катушки трансформатора могут быть концентрическими или многослойными. Концентрические катушки используются в трансформаторах с сердечником, тогда как многослойные катушки используются в трансформаторах с корпусом.При концентрическом расположении обмотка НН размещается рядом с сердечником, а обмотка ВН размещается вокруг обмотки НН для обеспечения низких требований к изоляции и зазорам. Наиболее часто используемые катушки для трансформатора включают спиральные, многослойные, дисковые и перекрестные катушки.

      Другими необходимыми частями трансформатора являются расширительный бак, который используется для обеспечения необходимого хранения масла, чтобы давление масла при больших нагрузках стабилизировалось. Когда масло в трансформаторе нагревается, естественно, масло расширяется и сжимается.При этом масло подвергается сильному давлению, поэтому без расширительного бака существует вероятность взрыва трансформатора.

      Проходные изоляторы обеспечивают изоляцию выходных клемм, снимаемых с обмоток трансформатора. Это могут быть фарфоровые вводы или вводы конденсаторного типа, которые выбираются в зависимости от уровня рабочего напряжения. Из-за простой, прочной и прочной конструкции трансформаторы требуют небольшого обслуживания. Из-за отсутствия движущихся частей КПД трансформатора очень высок, который может варьироваться от 95% до 98%.

      Вернуться к началу

      Классификация трансформаторов

      Трансформаторы подразделяются на несколько типов в зависимости от различных факторов, включая номинальное напряжение, конструкцию, тип охлаждения, количество фаз в системе переменного тока, место, где он используется, и т. Д. мы обсудим некоторые из этих типов трансформаторов.

      На основе функции

      Трансформаторы подразделяются на два типа на основе преобразования уровня напряжения. Это повышающие и понижающие трансформаторы.

      Повышающие трансформаторы

      В повышающем трансформаторе вторичное напряжение больше первичного. Это связано с меньшим количеством катушек в первичной обмотке по сравнению с вторичной. Этот тип трансформатора используется для повышения напряжения до более высокого уровня. Они используются в системах передачи и рассчитаны на более высокие уровни мощности.

      Понижающие трансформаторы

      В понижающем трансформаторе вторичное напряжение меньше первичного из-за меньшего количества витков во вторичной обмотке.Следовательно, этот тип трансформатора используется для понижения напряжения до определенных уровней цепи. В большинстве источников питания используется понижающий трансформатор, чтобы поддерживать рабочий диапазон схемы в пределах указанного более безопасного предела напряжения. Эти типы трансформаторов используются в распределительных системах (силовые трансформаторы) и в электронных схемах (электронные трансформаторы).

      Следует отметить, что трансформатор является обратимым устройством, поэтому его можно использовать как повышающий, так и понижающий трансформатор. Например, если цепи требуется высокое напряжение, мы подключим клеммы ВН к нагрузке, тогда как нагрузке или цепи требуется низкое напряжение, мы подключим клеммы НН к нагрузке.

      Коэффициент напряжения трансформатора определяется соотношением витков. Чем больше витков в обмотке, тем выше будет создаваемое в ней напряжение. Следовательно, понижающий трансформатор имеет меньшее количество витков на вторичной обмотке для получения низкого напряжения и больше витков на первичной обмотке, чтобы выдерживать высокие уровни напряжения источника переменного тока.

      Соотношение витков = первичное напряжение / вторичное напряжение = первичное / вторичное

      Отношение витков: VP / VS = NP / NS

      На основе конструкции сердечника

      На основании конструкции трансформаторы подразделяются на два типа: способ размещения обмоток вокруг сердечника.Это трансформаторы с сердечником и оболочкой.

      Трансформатор с сердечником
      Трансформатор с сердечником

      В трансформаторе этого типа обмотки окружают значительную часть сердечника. Обычно распределительные трансформаторы бывают сердечникового типа. Некоторые из крупных силовых трансформаторов имеют корпусный тип.

      В трансформаторах с сердечником используются цилиндрические катушки с формованной обмоткой, и эти катушки могут быть прямоугольными, овальными или круглыми. Для трансформатора с сердечником небольшого размера используется простой прямоугольный сердечник с цилиндрической катушкой круглой или прямоугольной формы.

      А для трансформаторов с сердечником большого размера используется крестообразный сердечник с круглыми или круглыми цилиндрическими катушками. В большинстве трансформаторов с сердечником используются цилиндрические катушки из-за их механической прочности. Эти цилиндрические катушки намотаны спиральными слоями и изолированы друг от друга изолирующими материалами, такими как ткань, бумага, слюда и т. Д.

      Обмотку низкого напряжения легко изолировать по сравнению с обмоткой высокого напряжения; следовательно, он расположен ближе к сердцевине.

      Трансформатор кожухового типа

      В трансформаторе кожухового типа железный сердечник окружает значительную часть медной обмотки, как обратный случай трансформатора сердечникового типа.В этом типе катушки также предварительно намотаны, но представляют собой многослойные катушки дискового типа, намотанные в виде блинов. Эти многослойные дисковые катушки в разных слоях разделены друг от друга бумагой. Вся обмотка состоит из уложенных друг на друга дисков, а между катушками предусмотрено изоляционное пространство для образования горизонтальных изолирующих и охлаждающих каналов.

      Трансформатор Berry — это наиболее часто используемый трансформатор кожухового типа. В корпусном типе сердечник имеет три плеча, а обмотки намотаны вокруг центрального плеча.Обмотки как низкого, так и высокого напряжения разделены на разные катушки, которые расположены поочередно. Между обмотками НН зажаты обмотки ВН. Опять же, чтобы снизить требования к изоляции, обмотки низкого напряжения размещаются рядом с сердечником. Этот тип конструкции предпочтителен для трансформаторов с высокими номиналами.

      трансформатор корпусного типа
      в зависимости от типа питания

      В зависимости от типа питания трансформаторы могут быть одно- или трехфазными. Однофазные трансформаторы предназначены для работы в однофазной системе; поэтому он имеет две обмотки для преобразования уровней напряжения.Они используются на удаленных концах системы распределения электроэнергии. Они имеют меньшую мощность по сравнению с трехфазными трансформаторами. Для этого типа трансформатора в основном используется конструкция с сердечником.

      Для работы с трехфазной системой нам понадобятся три однофазных трансформатора. Таким образом, из соображений экономической выгоды трехфазный трансформатор рассматривается для трехфазного режима работы. Он состоит из трех обмоток или катушек, которые соединены надлежащим образом в соответствии с входным напряжением. Этот тип трансформаторов, первичная и вторичная обмотки подключаются по схеме звезда-треугольник или треугольник-звезда в зависимости от требований к напряжению нагрузки

      На основе использования
      1. Силовой трансформатор
      2. Распределительный трансформатор
      3. Измерительный трансформатор
      Другие типы трансформаторов

      В зависимости от типа охлаждения они классифицируются как

      1. Трансформатор с воздушным охлаждением
      2. Трансформатор с воздушным охлаждением
      3. Масляный трансформатор с самоохлаждением
      4. Масляный трансформатор с водяным охлаждением
      5. Масляный трансформатор с принудительным масляным охлаждением

      В начало

      Принцип работы трансформатора

      Работа трансформатора основана на принципе взаимной индукции между двумя катушками или обмотками, которые связаны общим магнитным потоком.Когда первичная обмотка запитана от источника переменного тока, в первичной обмотке устанавливается магнитный поток.

      Этот поток связан как с первичной, так и с вторичной обмотками, поскольку сердечник обеспечивает путь с низким сопротивлением для магнитного потока. Следовательно, большая часть потока, создаваемого первичной обмоткой, связана с вторичной обмоткой. Это называется основным потоком или полезным потоком. Кроме того, поток, который не связан с вторичной обмоткой, называется потоком рассеяния. Большинство трансформаторов имеют низкий поток утечки для уменьшения потерь.

      Согласно законам электромагнитной индукции Фарадея, эта магнитная связь как с первичной, так и с вторичной обмотками индуцирует в них ЭДС. Эта ЭДС, наведенная в каждой обмотке, пропорциональна количеству витков в ней. Напряжение или ЭДС, индуцированное в первичной обмотке, называется обратной ЭДС, которая противодействует входному напряжению питания до такой степени, что первичный ток не протекает.

      Но небольшой ток намагничивания протекает через первичную обмотку трансформатора. ЭДС, наведенная во вторичной обмотке, представляет собой напряжение холостого хода.Если вторичная цепь замкнута или нагрузка подключена, вторичный ток начинает течь через нее, что приводит к созданию размагничивающего магнитного потока. Из-за этого размагничивающего потока возникает дисбаланс между приложенным напряжением и обратной ЭДС.

      Чтобы восстановить баланс между этими двумя, от источника питания потребляется больше тока, так что эквивалентное магнитное поле создается для баланса с вторичным полем.

      Поскольку одинаковый взаимный поток разрезает обе обмотки, ЭДС, индуцированная в каждом витке обеих обмоток, одинакова.Следовательно, общая наведенная ЭДС в каждой обмотке должна быть пропорциональна количеству витков в этой обмотке. Это оказывается для установления известной зависимости между наведенной ЭДС и числом витков. И задается как

      E1 / E2 = N1 / N2

      Поскольку напряжения на клеммах обеих обмоток немного отличаются от их наведенных ЭДС, мы можем записать как

      V1 / V2 = N1 / N2

      Это называется как коэффициент трансформации трансформатора. Это значение преобразования больше единицы в случае повышающего трансформатора и меньше единицы в понижающем трансформаторе.

      С точки зрения баланса витков в ампер,

      I1N1 = I2N2

      I1 / I2 = N2 / N1

      В начало

      Эквивалентная схема трансформатора

      Эквивалентная схема машины или устройства — это просто интерпретация уравнений который сочетает в себе постоянные и переменные резисторы и реактивные сопротивления, что точно имитирует или полностью описывает поведение машины.

      Как правило, проблемы, связанные с напряжением и током трансформатора, могут быть решены с помощью векторных диаграмм.Однако, чтобы упростить вычисления, очень удобно представить трансформатор эквивалентной схемой.

      Применяя теорию прямых цепей к этой эквивалентной схеме, мы можем легко определить ток и напряжения в трансформаторе.

      На приведенном выше рисунке показана эквивалентная схема трансформатора, в которой предполагается, что сопротивление и реактивное сопротивление как первичной, так и вторичной обмоток являются внешними (показаны отдельно) по отношению к обмотке.Ток холостого хода Io представляет собой комбинацию намагничивающей составляющей Iu и активной составляющей Iw.

      Следовательно, влияние тока намагничивания представлено как Xo, а влияние активного компонента или компонента потерь в сердечнике представлено неиндуктивным резистивным Ro. И Ro, и Xo подключены через первичную обмотку, как показано на рисунке. Эта параллельная комбинация называется эквивалентной схемой при отсутствии нагрузки.

      Когда нагрузка подключена к вторичной обмотке, ток I2 начинает течь через вторичную цепь и вызывает падение напряжения на X2 и R2.Как упоминалось выше, из-за вторичного тока I2 первичная обмотка потребляет больше тока. Таким образом, первичный ток I1 вызывает значительное падение на R1 и X1.

      Для упрощения расчетов эквивалентная схема дополнительно упрощена за счет переноса вторичных сопротивлений и реактивных сопротивлений на первичную сторону, так что на соотношение E2 / E1 не влияет ни фаза, ни величина.

      Первичный эквивалент вторичной ЭДС

      E2 ‘= E2 / K

      Где K — коэффициент трансформации

      Аналогично первичный эквивалент вторичного напряжения на клеммах

      V2′ = V2 / K

      Первичный эквивалент вторичного тока составляет

      I2 ‘= I2 / K

      Пусть R2′ — это сопротивление, передаваемое на первичную сторону, которое вызывает падение первичной обмотки, такое же, как и во вторичной обмотке.Итак, I2’R2 ’- это падение напряжения в первичной обмотке на R2’. Оказывается, соотношение I2’R2 ’и I2R2 должно быть таким же, как и отношение N1 / N2 (отношение оборотов).

      Следовательно,

      (I2’R2 ‘) / (I2R2) = (N1 / N2) = (1 / K)

      R2′ = R2 × (I2 / I2 ‘) × (1 / K)

      Но (I2 / I2 ‘) = (N1 / N2) = (1 / K)

      Следовательно, R2′ = R2 / K 2

      Аналогично X2 ‘= X2 / K 2

      Таким же образом сопротивление нагрузки и реактивное сопротивление также могут передаваться на первичную обмотку.Со всеми этими переданными значениями точная эквивалентная схема трансформатора показана ниже.

      Также возможно передать первичное сопротивление и реактивное сопротивление (или просто импеданс) вторичному, так же как вторичное сопротивление и реактивное сопротивление (или импеданс) передаются первичному. Пусть R1 ‘и X1’ — это сопротивление и реактивное сопротивление, передаваемые на вторичную сторону от первичной, тогда

      R1 ‘= K 2 R1

      X1′ = K 2 X1

      Следует отметить, что ток холостого хода составляет небольшую часть тока полной нагрузки, а также E1 отличается от V1 на небольшую величину, и, следовательно, ток I2 ‘практически равен I1.

      Таким образом, падением напряжения из-за тока холостого хода Io на R1 и X1 можно пренебречь. Следовательно, точная эквивалентная схема дополнительно упрощается путем смещения влево параллельной ветви холостого хода, состоящей из Ro и Xo, в крайнее левое положение, как показано на рисунке ниже.

      Эта схема называется соответствующей схемой замещения трансформатора относительно первичной обмотки. Следовательно, анализ упрощается за счет добавления последовательных сопротивлений и реактивных сопротивлений.

      Вернуться к началу

      Потери в трансформаторе

      Трансформатор не имеет движущихся частей и, следовательно, в нем отсутствуют механические потери.Следовательно, потери в трансформаторе считаются потерями электроэнергии. В трансформаторе существуют два типа электрических потерь: потери в сердечнике и потери в меди.

      Потери в сердечнике или в железе

      Эти потери включают в себя как гистерезисные, так и вихретоковые потери.

      Магнитный поток, создаваемый в сердечнике трансформатора, переменный; тем самым он подвергается циклу намагничивания и размагничивания. При этом требуется соответствующая мощность для непрерывного реверсирования элементарных магнитов железного сердечника.Это называется эффектом гистерезиса, и из-за этого происходит значительная потеря энергии.

      Потери на гистерезис = K h B m 1,67 fv Вт

      Где,

      K h = Константа гистерезиса

      B м = Максимальная частота потока

      f =

      объем сердечника

      Поскольку сердечник трансформатора состоит из ферромагнитных материалов, которые также являются хорошими проводниками. Следовательно, магнитный поток, связанный с сердечником, вызывает в сердечнике ЭДС.Следовательно, сердечник создает в сердечнике вихревые токи, вследствие чего в сердечнике возникают значительные потери на вихревые токи.

      Потери на вихревые токи = K e B м 2 f 2 t 2 Вт на единицу объема

      Где,

      K e = Вихретоковая постоянная

      t = толщина core

      Из двух приведенных выше уравнений следует заметить, что напряжение питания при фиксированной частоте является постоянным и, следовательно, поток, в свою очередь, плотность потока в сердечнике почти постоянна.Следовательно, и гистерезис, и потери на вихревые токи постоянны при всех нагрузках. Следовательно, потери в сердечнике также называют постоянными потерями.

      За счет использования высококачественных материалов сердечника, таких как кремнистая сталь, имеющая очень низкую петлю гистерезиса, гистерезисные потери минимизируются или уменьшаются. С другой стороны, потери на вихревые токи минимизируются за счет использования многослойного сердечника. Эти постоянные потери или потери в сердечнике могут быть измерены путем разомкнутой цепи трансформатора.

      Потери в меди

      Эти потери возникают в сопротивлениях обмоток трансформатора, когда по нему проходит ток нагрузки.Общие потери в меди в трансформаторе рассчитываются путем сложения потерь в меди в первичной и вторичной обмотках. Они обнаруживаются проведением короткого замыкания на трансформаторе.

      Другие потери в трансформаторе включают диэлектрические потери и потери паразитной нагрузки. Паразитные потери являются результатом вихревых токов в баке и проводниках обмотки. Диэлектрические потери возникают в изоляционных материалах, таких как масляная и твердая изоляция трансформатора.

      В начало

      КПД трансформатора

      Это отношение полезной выходной мощности к входной мощности трансформатора, работающего при определенной нагрузке и коэффициенте мощности.

      КПД = выход / вход

      = выход / (выход + общие потери) или

      = (вход — потери) / вход

      = 1- (потери / вход)

      Обычно КПД трансформатора выражается в диапазон от 95 до 98%. Из приведенного выше уравнения эффективности можно отметить, что эффективность зависит от ватт, а не от вольт-амперной характеристики. Следовательно, при любом номинальном значении вольт-ампер КПД трансформатора зависит от коэффициента мощности. КПД максимален при единичном коэффициенте мощности и определяется путем расчета общих потерь при испытаниях OC и SC.

      В начало

      Применения трансформаторов

      • Повышение или понижение уровня напряжения в системах передачи энергии, таких как системы передачи и распределения.
      • Для изоляции цепей низкого напряжения от цепей высокого напряжения на подстанциях, цепях управления в промышленности и т.д.
      • Измерительные трансформаторы, такие как трансформаторы тока и напряжения, используются в системах защиты и индикации счетчиков.
      • Они также используются для согласования импеданса.

      Наверх

      Устройство и принцип действия трехфазного трансформатора

      Силовой трансформатор — важное оборудование в электрической системе. Он используется для передачи и распределения электроэнергии для потребления. У вас должна быть машина с достаточно большой мощностью, чтобы удовлетворить потребности в передаче энергии на большие расстояния. Вот почему родился трехфазный трансформатор.

      Так что же такое трехфазный трансформатор? И что это за структура? Давайте рассмотрим статью ниже.

      Содержание

      1. Что такое трехфазный трансформатор?

      2. Устройство и принцип действия трехфазного трансформатора

      а. Устройство 3-х фазного трансформатора

      г. Принцип действия 3-х фазного трансформатора

      3. Некоторые типы 3-х фазных трансформаторов

      а. Трансформатор трехфазный закрытый

      г. Трансформатор трехфазный открытый

      г. Сухой трансформатор

      4.Прейскурант на трехфазные трансформаторы

      1. Что такое трехфазный трансформатор?

      Трехфазный трансформатор — это статическое электромагнитное устройство, предназначенное для передачи энергии или передачи переменных электрических сигналов между цепями посредством явления электромагнитной индукции Фарадея.

      Трехфазные трансформаторы играют важную роль в системе передачи электроэнергии. Это оборудование в основном используется в промышленных целях для выработки, передачи и распределения электроэнергии.Трехфазные трансформаторы используются и устанавливаются в местах, потребляющих очень большое количество электроэнергии, таких как здания, квартиры, больницы, электростанции и т. Д.

      2. Устройство и принцип действия трехфазного трансформатора

      а. Конструкция трехфазного трансформатора

      В состав трехфазного трансформатора входят 3 основных компонента:

      • Стальной сердечник — один из основных компонентов трехфазного трансформатора.Стальной сердечник трехфазного трансформатора имеет три магнитных столба для наматывания провода и магнит для замыкания магнитной цепи. Стальной сердечник машины изготовлен из листов электротехнической стали, с двух сторон покрыт изоляционной краской и собран вместе в цилиндрическую форму.
      • Трехфазная обмотка машины имеет шесть изолированных медных обмоток, намотанных вокруг цилиндра. Обмотка используется для приема и передачи энергии во время работы машины.
      • Кожухи трансформатора
      • также очень важны, помогая защитить и поддерживать срок службы трансформатора. Обычно корпус трехфазного трансформатора изготавливается из пластика, железа, стали и т. Д., В зависимости от конструкции машины и каждого производителя трехфазного трансформатора, они будут иметь разную конструкцию.

      Внутри трехфазного трансформатора

      б. Принцип действия трехфазного трансформатора

      Принцип работы трехфазного трансформатора очень прост, трехфазные трансформаторы будут работать на основе двух физических явлений:

      + Электрический ток течет через генерируемый провод Магнитное поле

      + Изменение магнитного потока в катушке проводника создает индуцированное напряжение
      Когда вы поймете принцип работы машины, вы быстро поймете порядок работы и принципы, обеспечивающие эффективную работу трехфазных трансформаторов и правильную мощность устройства.

      3. Некоторые типы 3-х фазных трансформаторов

      Обычно трансформаторы классифицируются по классам напряжения, используемому сердечнику, компоновке и расположению обмотки. Ниже мы перечисляем наиболее часто используемые трехфазные трансформаторы на рынке сегодня:

      • Трехфазный трансформатор герметичного типа
      • Трехфазный трансформатор открытого типа
      • Сухой трехфазный трансформатор

      а.Трехфазный трансформатор закрытого типа

      Трехфазный трансформатор герметичного типа, охлаждаемый расширительными лопастями. Когда температура в VH высока, эти лопасти расширяются; воздух, идущий непосредственно через лопасти, помогает машине охладиться.

      Трехфазный трансформатор закрытого типа

      б. Трехфазный трансформатор открытого типа

      Трехфазный трансформатор открытого типа имеет цикл охлаждения через вспомогательный масляный бак и лопасти вентилятора.Разница между открытым и герметичным типом заключается в дополнительном масляном баке.

      Трехфазный трансформатор открытого типа MBT

      г. Сухой трансформатор

      Сухие трансформаторы, также известные как трансформаторы из литого пластика, представляют собой трансформаторы с катушками, покрытыми эпоксидной смолой. В отличие от обычных трансформаторов, обмотки и магнитопроводы сухого трансформатора находятся под давлением воздуха. Сухие трансформаторы были созданы, чтобы преодолеть недостатки масляных трансформаторов.Сухие трансформаторы используются в особых условиях, таких как сильное загрязнение окружающей среды, влажность воздуха выше 95%, температура окружающей среды до — 25 ºC.

      MBT — Сухой трехфазный трансформатор

      Статьи по теме:

      Что такое силовой трансформатор?

      Назначение трансформатора

      4. Прейскурант на трехфазные трансформаторы

      Трехфазный трансформатор является флагманским продуктом Акционерного общества электрического оборудования MBT (MBT) .Наша компания гордится тем, что является ведущим производителем и поставщиком престижных распределительных трансформаторов во Вьетнаме с более чем 20-летним опытом в области исследований и производства трансформаторов с командой сотрудников. Сотрудники компании обладают высокой квалификацией; рынок высоко оценил современное технологическое оборудование и станки, продукцию и услуги компании.


      Обладая четырьмя заводами площадью более 20000 м2, MBT предлагает полную линейку продукции от однофазных трансформаторов, трехфазных масляных трансформаторов герметичного типа, трансформаторов открытого типа, сухих трансформаторов и т. Д… К настоящему времени количество трансформаторов, которые MBT экспортировала на рынок, достигло более 50 000 единиц. Кроме того, существуют другие продуктовые линейки, такие как распределительные устройства среднего и низкого напряжения, киоски, одноколоночные интегрированные электростанции, стабилизаторы напряжения, реакторы переменного и постоянного тока и т. Д.


      Под девизом бизнеса: «Качество питает надежность» — обращаясь в MBT, клиенты всегда получат высококачественную продукцию, разумные цены, самые быстрые сроки доставки и лучшее гарантийное обслуживание.

      Немедленно свяжитесь с +84913 006 538 или по электронной почте: [адрес электронной почты защищен] для бесплатной консультации и поддержки и получения наиболее выгодного предложения.

      Трансформатор

      Трансформатор — это электрическое устройство, используемое для изменения значения переменного напряжения. трансформаторы широко используются в электромонтажных работах. Они встречаются ежедневно в промышленных, коммерческих и бытовых ситуациях. Они различаются по размеру от миниатюрных блоков, используемых в электронике, до огромных блоков, используемых на электростанциях.Эффективная передача и распределение электроэнергии по всей стране были бы невозможны без использования силовых трансформаторов.

      Трансформаторы

      также используются по соображениям безопасности на строительных площадках при использовании электроинструментов и в домашних условиях в ванной комнате в бритвах. Они используются в дверных звонках, а также для питания электронного оборудования, зарядных устройств, телевизоров, компьютеров, систем сигнализации и т. Д.

      Трансформаторы значительно различаются по конструкции, размеру и форме в зависимости от области применения.

      Все трансформаторы работают по принципу взаимной индуктивности.

      Обозначения трансформаторов

      Конструкция трансформаторов

      Трансформатор состоит из двух катушек проводов, называемых обмотками, намотанных на общий железный сердечник. Провод, используемый в двух обмотках, первичной и вторичной, покрыт изолирующим лаком. Обе катушки намотаны на железный сердечник, но изолированы от него. См. Рисунок 2.

      Конструкция трансформатора

      Принцип трансформатора

      Когда проводник или катушка перемещается в постоянном магнитном поле, он перерезает линии магнитного потока, и в проводнике или катушке индуцируется ЭДС.Тот же принцип также применяется, когда проводник удерживается в неподвижном состоянии, а магнитный поток изменяется или изменяется.

      Теперь рассмотрим переменный ток, приложенный к неподвижной катушке. Магнитное поле будет нарастать и разрушаться в катушке, непрерывно повышаясь и опускаясь в соответствии с приложенным переменным током, как показано на Рисунке 3.

      Принцип работы трансформатора

      Если вторая катушка (катушка 2) расположена рядом с первой катушкой (катушка 1), переменный магнитный поток в катушке 1 соединяется с катушкой 2.См. Рисунок 4. Это приводит к возникновению ЭДС в катушке 2. Этот процесс известен как взаимная индукция.

      Принцип работы трансформатора 2

      Если катушка 1 и катушка 2 установлены на железном сердечнике, магнитный поток вокруг обеих катушек будет сосредоточен. Такое расположение катушек и железного сердечника образуют законченное устройство, известное как трансформатор. См. Рисунок 5

      Принцип работы трансформатора 3

      Входная катушка трансформатора питается от источника переменного тока и называется первичной обмоткой.Выходная катушка, к которой подключена нагрузка, называется вторичной обмоткой. Важно помнить, что между первичной и вторичной обмотками трансформатора нет электрического соединения. Единственная общая связь между двумя обмотками — магнитное поле.

      Обороты и коэффициент напряжения

      Взаимосвязь между числом витков первичной обмотки (N1) и числом витков вторичной обмотки (N2) вместе с первичным входным напряжением (U1) и вторичным выходным напряжением (U2) может быть выражена как соотношение или уравнение, как показано ниже.

      Где:

      N1 = количество витков первичной обмотки
      N2 = количество витков вторичной обмотки
      U1 = первичное входное напряжение
      U2 = вторичное выходное напряжение

      Эту формулу можно преобразовать, чтобы найти любую неизвестную, если известны три других.

      ВТОРИЧНЫЙ ТОК

      По закону Ома величина вторичного тока равна вторичному напряжению, деленному на сопротивление вторичной цепи. На рис.1 принято значение 100 Ом для R L и пренебрежимо малое сопротивление катушки.

      Схема работы трансформатора Вторичный ток

      МОЩНОСТЬ ВТОРИЧНАЯ

      Мощность, рассеиваемая R L во вторичной обмотке I S 2 X R L или V S 9109 9109 S , что в данном примере равно 100 Вт. Вычисления

      Важно отметить, что мощность, потребляемая вторичной нагрузкой, такой как R L на рис.1 питается от генератора в первичной обмотке. Как нагрузка вторичной обмотки потребляет энергию от генератора первичной обмотки, можно объяснить следующим образом

      При токе во вторичной обмотке его магнитное поле противодействует изменяющемуся потоку первичного тока. Затем генератор должен производить больший первичный ток, чтобы поддерживать самоиндуцированное напряжение на L P и вторичное напряжение, создаваемое в L S за счет взаимной индукции.Если вторичный ток удваивается, например, потому что сопротивление нагрузки уменьшается вдвое. Значение первичного тока также удвоится, чтобы обеспечить требуемую мощность вторичной обмотки. Следовательно, влияние мощности вторичной нагрузки на генератор такое же, как если бы R L находились в первичной обмотке, за исключением того, что во вторичной обмотке напряжение для R L повышается или на коэффициент поворотов.

      СООТНОШЕНИЕ ТОКА

      При нулевых потерях в трансформаторе мощность вторичной обмотки равна мощности первичной:

      Коэффициент тока является обратной величиной коэффициента напряжения: то есть повышение напряжения во вторичной обмотке означает понижение тока и наоборот.Вторичный не генерирует энергию, а только берет ее от первичной обмотки. Следовательно, повышение или понижение тока определяется вторичным током I S , который определяется сопротивлением нагрузки на вторичном напряжении.

      .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *