Устройство трансляционного динамика с трансформатором: Раскрыт секрет абонентского трансформатора

Содержание

Раскрыт секрет абонентского трансформатора

 

Последнее обновление 05.02.11

 
 

Абонентский трансформатор и его роль в сети ПВ при вещании в нее пиратской станции.

Как известно, вещание в абонентскую линию (далее АЛ) подъезда или дома — один и самых простых, но неэффективных способов вещания в радиосеть. Простота в том что АЛ подведена в каждую квартиру, неэффективность — потери мощности в проводах от пиратской станции до абонентского трансформатора (

далее АТ)), а также в нем самом. При идеальной слышимости сигнала АЛ своего, в распределительном фидере (далее РФ) остается мало что, не говоря уже об АЛ других домов.

Причина такого низкого КПД в том, что АТ, повышая в данном случае 30в до 240в, должен быть нагружен сопротивлением 5760 Ом (240в, 10вт). В этом случае напряжение станции будет действительно повышаться в 8 раз. Но трансформатор подключен первичной обмоткой к распределительному фидеру, импеданс (полное сопротивление, переменному току, в данном случае на f=400гц) которого обычно лежит в пределах 8…30ом (240в, 2..7кВт), т.е. они абсолютно не согласованы друг с другом. То есть, АТ уже не способен работать как повышающий, а работает в режиме короткого замыкания.

При этом вся мощность, подаваемая нами в АЛ, рассеивается на трансформаторе и проводах АЛ в виде тепла.

Вообще, на сетях проводного очень часто импеданс источника меньше, чем нагрузки. На рисунке ниже приведены импедансы основных цепей и устройств.
Сеть находится в исправном состоянии, все абонентские громкоговорители (далее АГ
) включены на полную громкость, мощность каждого 0.25вт, включены в АЛ через резисторы по 300ом в каждом проводе, напряжение АЛ 30в, мощность АТ 10вт, напряжение РФ 240в, мощность одного РФ 500вт, на ТП РФ соединены вместе напрямую, мощность ТП 5кВт, напряжение МФ 960в. Опорно-Усилительную станцию (далее ОУС) для простоты не рассматриваем, а ее выходной импеданс вместе с проводами МФ принимаем равным 50ом.

1. Начнем снизу: попробуем вынуть вилку

абонентского громкоговорителя из радиорозетки и измерить его импеданс. Он как правило равен 3.6кОм (для АГ 0.25вт) или 7.2кОм (для АГ 0.125вт).

2. Теперь измеряем импеданс между отверстиями радиорозетки. При наличии и правильном номинале резисторов, исправности проводки он будет чуть более 600 ом (провода АЛ, вторичная обмотка АТ, и другая нагрузка АЛ имеют импеданс на три порядка ниже, так что им пренебрегаем).

3. Суем вилку АГ на место, и размыкаем провода перед коробкой со своими резисторами. Измеряем

импеданс на проводе, идущем в квартиру (комнату). Он равен сумме АГ и резисторов, то есть 4200 ом.

4. Измеряем импеданс АЛ в точке подключения к ней квартирного провода (не важно, подключена-ли в этот момент квартира к АЛ, импедансы разные на два порядка). Он равен импедансу последовательно включенных проводов стояка и вторичной обмотки АТ, и параллельно им подключенной нагрузке подъезда. Примем импеданс проводов равным 7.5 ом (40 метров провода ТРП 2*0.5мм), импеданс вторички АТ (подключенного к РФ) тоже 7.

5ом. Нагрузкой подъезда являются 40 точек по 4200ом, в итоге импеданс 105ом (то что нагрузка раскидана по этажам по всей длине стояка АЛ учитывать не будем). В итоге получаем примерно 13ом (7.5+7.5=15; (15*105)/(15+105)=13). Именно на такой импеданс должен быть рассчитан усилитель при вещании, хотя все равно пересчитывать придется в зависимости от этажа, типа АТ и кол-ва АГ в парадной.

5. Размыкаем провод от вторичной обмотки АТ к АЛ (около самого АТ, наверху стояка). Измеряем импеданс между проводами АЛ. Он равен импедансу нагрузки подъезда, то есть

105 ом (сопротивление проводов будет на порядок ниже, так что им пренебрегаем).

6. Измеряем импеданс вторичной обмотки АТ. Он зависит от числа витков, сечения провода обмоток, типа сердечника, и от того, к чему в конкретном случае подключена первичная обмотка. Рассчитать это достаточно сложно даже для нормального режима, не говоря о режиме короткого замыкания (тем более неполного КЗ, т.е. импеданс РФ нулю все таки не равен). По результатам измерения с эквивалентом РФ (10ом), он равен для трансформатора типа ТА-10 (выпущенного в 1999 году в СПБ)

7.5ом. При замкнутой накоротко первичной обмотке 7ом. Советую поэкспериментировать с разными типами трансформаторов. Если взять более мощный, импеданс будет ниже, но и на проводах АЛ будет теряться больше.

7. Подключаем на место АЛ к АТ. Отключаем первичную обмотку АТ от РФ. И измеряем импеданс первичной обмотки АТ. Он, как и в предыдущем случае, зависит от типа АТ, но уже в гораздо меньшей степени (т.к. это не режим короткого замыкания, а нормальный рабочий). В основном он зависит от нагрузки на трансформатор, то бишь в АЛ. Для указанного выше АТ он равен

5681 ом.

8. Измеряем импеданс РФ в точке подключения к нему АТ (не важно, подключена-ли в этот момент первичка АТ к РФ, импедансы разные на два порядка). Он равен импедансу соединенных последовательно проводов РФ (того, который измеряем) и вторичной обмотки трансформатора ТП, и подключенной параллельно нагрузкой всех РФ. Примем импеданс проводов равным 6 ом (удельное сопротивление применяемого сталеалюминиевого провода, как и его название, мне неизвестно). Импеданс вторичной обмотки трансформатора ТП примем равным 6 ом. Нагрузка на каждый РФ — 50 штук АТ, (каждый со своей нагрузкой), в итоге импеданс 115 ом. В сумме импеданс нагрузки 9 штук РФ (все кроме измеряемого РФ) будет 12.7 ом (то что нагрузка РФ раскидана по всей их длине, указывать не будем).

Таким образом, импеданс ТП со всеми остальными РФ будет чуть более 4 ома ( (6*12.7)/(6+12.7)=4 ). С учетом проводов от ТП до места измерения, а также нагрузки измеряемого РФ это будет 9.2 ома (4+6=10, (10*115)/(10+115)=9.2). Именно на такой импеданс должен быть рассчитан усилитель при вещании, хотя все равно пересчитывать придется в зависимости от расстояния до ТП, ее мощности, расстояния от нее до ОУС, числа РФ на ТП, наличия в каждом РФ ограничивающих устройств.

9. Отключаем провода РФ от ТП (около самой ТП, на ее стойке). Измеряем импеданс между проводами РФ. Он равен импедансу нагрузки РФ, то есть 115 ом (сопротивление проводов будет на порядок ниже, так что им пренебрегаем).

10. Отключаем провода всех РФ, и соединяем их вместе, не подключая к ТП. Измеряем импеданс в точке соединения или рядом. Он будет равен импедансу нагрузки всех 10 штук РФ, то есть 11.5 ом.

11. Остальное позже…

Эксперименты с эквивалентами сети.

Недавно я проводил опыты с эквивалентами оборудования радиосети, чтобы проверить прохождение сигнала от станции до слушателя, при вещании в абонентскую линию или на распределительный фидер. Цель: Определение субъективной громкости передачи у слушателя, находящегося в другом доме, на той-же сети РФ.

Оборудование: В обеих случаях (т.е и на РФ и на АЛ) и у слушателя и на станции применяется одно и то-же оборудование, разница лишь в подключении станции. На станции ставится усилитель 100У-101 мощностью 100вт, выходное напряжение 30в, в подъездах станции и слушателя трансформатор ТАМУ-10С (мощность трансформатора у слушателя не имеет значения), у слушателя имеются резисторы перед матюгальником номиналом 300ом каждый, трехпрограммный громкоговоритель «МАЯК-202», работающий без усиления и рассчитанный на 30в.

На усилитель подается реальный музыкальный сигнал, выставляется максимальная неискаженная громкость (U=30в).

Ход эксперимента.

1. Прямое подключение к распределительному фидеру.

Резистор R1 является эквивалентом всей нагрузки фидера (сотни АТ со своими АЛ, ТП со своей ОУС), и взят номиналом 10ом. Он нагружает усилитель так, как это делал- бы реальный распределительный фидер.

В обычных условиях, когда станция недалеко от ТП, потери в проводах РФ небольшие, и их сопротивлением можно пренебречь.

Трансформатор Т1 является абонентским трансформатором, стоящем в подъезде одного из слушателей. Резистор R2 — номинальная нагрузка трансформатора — радиоточки всего подъезда. Его номинал — 47ом (это 75 радиоточек).

R3 и R4 — резисторы в квартире слушателя. Но они, как мы знаем, при приеме на стандартный матюгальник сильно ни на что не влияют.

В качестве громкоговорителя использован стандартный матюгальник МАЯК-202, используемый большинством абонентов. Он работает в пассивном режиме, без усиления.

Результат №1 — громкость небольшая, но реальный музыкальный сигнал слышен на расстоянии 5…7 метров, и даже мешает смотреть телевизор.

2. Вещание в свою абонентскую линию.

Резисторы R1 и R2 — провода абонентской линии от станции до АТ. Рассматривается худший случай, когда провода довольно длинные, сопротивление (и импеданс на НЧ тоже) каждого — 4.7ом.

Сопротивлением нагрузки своей АЛ можно пренебречь, так как, если она исправна, то не оказывает большого влияния на работу системы.

Абонентский трансформатор тоже выбран далеко не лучший, но распространенный — ТАМУ-10с.

Роль R3 та-же, что R1 в предыдущем случае — нагрузка РФ (10ом). Все остальные элементы, как и R3, такие-же, только другая нумерация.

Результат №2 — громкость намного ниже, чем в предыдущем случае. Разобрать что-либо можно, только приложив ухо к динамику. Причина — несогласованность импеданса вторички Т1 и нагрузки R3.

Вывод: При вещании в АЛ потери в ее проводах и АТ существенны, но если очень надо, передачу можно услышать.

 

Разбираемся в параметрах Тиля Смолла. Автозвук и DIY | Колонки | Блог

Параметры Тиля-Смолла позволяют понять, как будет звучать динамик в том или ином корпусе без покупки, прослушивания и сравнительных тестов. Особенно это пригодится любителям автозвука, ведь именно им приходится иметь дело с голыми динамиками, которые монтируются в двери и багажники. Кто-то с помощью этих параметров рассчитывает подходящий объем и тип пространства для громкоговорителя, кто-то любит подбирать динамики от разных производителей и проверяет их совместимость друг с другом. Эта статья простым языком объяснит, кто такие Тиль, Смолл, что за параметры они придумали и что теперь с ними делать.

С кого все началось

Слева Тиль, справа Смолл

  • Альберт Невил Тиль — австралийский инженер, в детстве, которое выпало на тридцатые, выступил со школьным хором на радио и заинтересовался акустикой, получил инженерное образование, исследовал трансляцию звука и картинки на заре телевещания, дослужился до главного инженера в крупных телераидокомпаниях. В 1961 году он выпустил научную статью, в которой предложил описывать характеристики любых динамиков одним набором параметров: «резонансной частотой, объемом воздуха, эквивалентного акустической гибкости громкоговорителя и отношением электрического сопротивления к сопротивлению движения на резонансной частоте». И, обращаясь к компаниям-производителям акустики, призвал «публиковать эти параметры как часть основных сведений об их изделиях».
  • Ричард Смолл — электроакустик из Калифорнии, в детстве с отцом-пианистом крафтил усилители и колонки, получил степень магистра наук в MIT. Работал с Тиллем в семидесятых, вместе они довели набор параметров до ума. В частности, Смолл добавил понятие механической добротности. Любопытно, что в дальнейшем он долгое время работал в компании Harman-Becker главным инженером отдела автомобильной аудиотехники.

Что дают эти параметры

  • Если в руки попал динамик без имени и маркировки, но с виду неплохой. Измерив параметры Тиля-Смолла можно об этом динамике многое узнать: на каких частотах он играет, сколько будет баса, в каком объеме его лучше разместить и т.п.
  • Если есть акустическая система, но не нравится, как она звучит. Можно вытащить из нее динамики и, замерив, выяснить, соответствуют ли они вообще тому корпусу, в котором установлены. Часто бывает так, что нет шанса подружить громкоговорители с коробкой, в которую их поселил производитель, и тогда придется менять либо одно, либо другое.
  • Если нужно подобрать акустическое оформление к низкочастотнику: вуферу, сабвуферу, мидбасу. Параметры Тиля-Смолла расскажут, как их установить, чтобы добиться наилучшего результата. 
  • Если нужно подобрать кроссоверы и настроить фильтры для твитеров таким образом, чтобы во время их работы они держались подальше от собственной резонансной частоты — так звук будет лучше, а всяких шумов, гула и артефактов будет меньше. 
  • Если нужно подобрать сабвуфер. Чем больше низких частот играет динамик, тем больше нужно учитывать параметры Тиля-Смолла, поскольку они описывают, в том числе, взаимодействие динамика с окружающей средой, а ведь именно басы заставляют дрожать стекла соседних домов от дабстепа из проезжающей мимо тачки с двумя 18 дюймовыми сабами. 
  • Если нужно построить сабвуфер. Некоторые покупают голые динамики для саба и с помощью параметров Тиля-Смолла и специальных калькуляторов рассчитывают подходящее акустическое оформление. Если пила и молоток не чужды умелым рукам, то получаются очень приличные сабвуферы за смешные для своего качества деньги. 
  • Если хочется скрафтить акустическую систему. Конструкторские эксперименты с сабами нередко вдохновляют и на более серьезные свершения в области акустической инженерии. Некоторые начинают строить собственные домашние АС и находят в этом новое хобби, а то и ремесло.

Как раз работа такого поршня и описывается параметрами Тиля-Смолла. Фундаментальных параметров три.

1. Эквивалентный объем (Vas, м3)

У подвеса и центрирующей шайбы есть некоторая упругость, которая мешает всей системе двигаться свободно. Ее можно представить как пружину. Если взять такой объем воздуха, который по своей упругости равен этой пружине, то как раз и получится эквивалентный объем.

Чем эквивалентный объем меньше, тем подвижная система у динамика жестче.

Этот параметр относится скорее к желаемой характеристике корпуса, а не самого динамика. Однако это ни в коем случае не тот объем корпуса, в который нужно поместить динамик. Если такое провернуть, то чересчур вырастет добротность и резонансная частота. Подушка из воздуха поднимет резонанс и будет работать как пружина, мешая торможению динамика.

Эквивалентный объем рассчитывается путем умножения жесткости подвеса, диаметра диффузора (потому что эта поверхность взаимодействует с другой пружиной — воздухом), плотности окружающего воздуха и скорости звука в нем. Соответственно, чем жестче подвес, тем меньше будет тот объем воздуха, который будет влиять на динамик фактом своего существования. Аналогично с диффузором — чем больше мембрана, тем сильнее она сжимает воздух внутри корпуса колонки или саба, а следовательно и ответная сила противостоящего ему воздуха будет выше.

Именно Vas часто играет решающую роль при выборе динамика под определенный объем. Особенно это касается сабвуферов — большим диффузорам нужны большие объемы. Обычно советуют прицеливаться на саб с Vas в районе 30–50 л.

2. Резонансная частота (Fs, Гц)

Если флешбеки со школьных уроков физики еще не начались, то тут они точно появятся. Есть колеблющаяся система — например, качели. Если отвести их в сторону и отпустить, то они будут качаться с определенной собственной частотой. Это и будет резонансная частота. Если вдобавок толкать качели с ней в такт, это позволит раскачать их быстрее и сильнее, чем применив любую другую частоту. 

Чем быстрее диффузор встанет в исходную позицию после излучения сигнала, тем добротность ниже.

Чем добротность ниже — тем лучше. Если диффузор будет долго возвращаться в исходное положение, из-за колебаний на резонансной частоте появятся посторонние шумы, гул и артефакты.

Полная добротность состоит из двух «неполных»:

  1. Механическая добротность (Qms), которая зависит от массы подвижной системы (чем тяжелее, тем дольше будет останавливаться диффузор, тем добротность выше) и жесткости подвеса (жестче — выше).
  2. Электрическая добротность (Qes). Именно ее добавил Ричард Смолл, выяснив, что катушка динамика при возвращении в исходное положение работает как электрогенератор. Движение обмотки напротив магнита дает электрический ток, который идет по обмотке и сталкивается с сигналом усилителя. Получается что-то типа короткого замыкания, которое мешает движению диффузора, причем гораздо сильнее, чем Qms. Электрическая добротность зависит от мощности магнита — чем мощнее, тем она ниже.

Любопытно, что добротность — параметр безразмерный. К примеру, если он равен единице, это означает, что для остановки диффузора последний должен совершить ровно один цикл колебаний (т.е. пропал сигнал, мембрана идет вверх-вниз, затем останавливается).

Считается, что наилучшая добротность для акустической системы равняется примерно 0,5-0,7 для обычной музыки и 0,8-0,9 для тех, кто любит жанры с преобладанием резкого баса. Чем она меньше этих значений, тем выше по графику АЧХ ползет спад басовых частот, лишая их слушателя. При больших значениях Qts на графике АЧХ случается горб в районе резонанса, а остальные характеристики ухудшаются.  

Также важно соотношение резонансной частоты к полной добротности. Если результат деления обоих значений равен 50, то динамик стоит использовать лишь в закрытом объеме. Если же он достигает 100, тогда в конструкцию можно добавить фазоинвертор.

Второстепенные параметры

Три приведенных выше параметра — фундаментальные, но не единственные. Иногда в паспортах на динамик или АС встречаются и другие характеристики, однако не все они имеют значение и применимость. Обычно встречаются следующие:

  • Sd (кв. м.) — эффективная площадь диффузора, требуется для расчета основных параметров.
  • Mms (кг) — масса подвижной системы, при измерении которой берется во внимание даже масса движущегося вместе с мембраной воздуха. Нужна для расчета основных параметров.
  • Xmax (мм) — максимальное смещение диффузора в одну из сторон, при котором сохраняется линейность хода (то есть не будет искажений звука).
  • Bl, (Тл*м) — коэффициент электромеханической связи, произведение длины провода в зазоре между магнитом на силу магнитного потока. Чем выше Bl, тем сильнее «двигатель» динамика, тем лучше.
  • Sensitivity (дб) — показатель чувствительности динамика, не относится к параметрам ТС, но очень важна, поскольку показывает будущую громкость АС. Чувствительность — это громкость, которую выдает динамик при определенной мощности. Грубо говоря, если взять два динамика и подать на них сигнал одинаковой мощности, то тот, который заорет громче, и будет чувствительнее.

Где найти эти параметры

Фундаментальные параметры Тиля-Смолла позволяют смоделировать как минимум среднюю громкость и импеданс будущей акустической системы. Также они помогут рассчитать конструкцию и объем корпуса, в который будет заключен громкоговоритель.

Но чтобы воспользоваться этими параметрами, нужно их для начала узнать. Иногда это просто, как с JBL STAGE3 607C. Достаточно открыть руководство по установке и вуаля!

Но часто они спрятаны глубоко под маркетинговыми лозунгами. К примеру, чтобы узнать искомые характеристики АС Morel Tempo Ultra 572, нужно найти в дебрях официального сайта pdf с презентацией линейки динамиков и отмотать в самый низ. Наградой станет здоровенная таблица со всеми параметрами всех динамиков в линейке производителя:

Есть и другие способы. Например, в одном из онлайн-калькуляторов можно найти базу моделей популярных динамиков. К примеру, нужно выяснить характеристики Ural АК-74.С. При выборе нужной модели в приложении открывается ее профиль с основными характеристиками, включая параметры ТС. А, кликнув на расчет короба, можно увидеть графики импеданса и Spl:

Как измерить самостоятельно

Из-под завалов хлама в гараже были извлечены пара ноунейм динамиков. С виду неплохие, но кто их сделал и для каких задач — тайна, покрытая мраком. Измерив их параметры, можно понять, что это за звери и на что сгодятся. Сделать это несложно, но понадобится несколько девайсов:

  • звуковая карта;
  • любой усилитель;
  • самодельный аттенюатор из четырех резисторов, чтобы не спалить преамп звуковой карты;
  • грузик для измерения эквивалентного объема методом добавочной массы. Нужно узнать точный вес этого груза, например, взвесить ювелирными весами медную монетку — важно, чтобы грузик не магнитился;
  • программа Room Eq Wizard. Она бесплатная, можно скачать с официального сайта. В ней нужно будет провести всего два измерения — с грузиком и без.

Процедура несложная, но требует определенной подготовки, поэтому описание заняло бы самостоятельностью статью. Благо, на официальном сайте Room Eq Wizard есть такая статья на английском, а на ютубе — русскоязычные видео с подробным описанием процесса: