Устройство транзистора. Устройство и принцип работы транзистора: как работает ключевой компонент электроники

Как устроен транзистор. Какие бывают типы транзисторов. Как работает биполярный транзистор. В каких режимах может работать транзистор. Где используются транзисторы в современной электронике.

Содержание

Что такое транзистор и для чего он нужен

Транзистор — это полупроводниковый прибор, который используется для усиления и преобразования электрических сигналов. Он является одним из ключевых компонентов современной электроники.

Основные функции транзистора:

  • Усиление слабых электрических сигналов
  • Генерация электрических колебаний
  • Переключение электрических цепей
  • Преобразование электрических сигналов

Транзисторы пришли на смену электронным лампам и произвели настоящую революцию в электронике благодаря своим компактным размерам, низкому энергопотреблению и высокой надежности.

Устройство транзистора

Транзистор состоит из трех областей полупроводникового материала с разным типом проводимости. Обычно используется кремний или германий. Выделяют два основных типа транзисторов:


Биполярные транзисторы

Содержат три области:

  • Эмиттер (E)
  • База (B)
  • Коллектор (C)

Бывают n-p-n и p-n-p типа в зависимости от чередования областей с разным типом проводимости.

Полевые транзисторы

Имеют три электрода:

  • Исток (S)
  • Сток (D)
  • Затвор (G)

Различают транзисторы с управляющим p-n переходом и с изолированным затвором (МОП-транзисторы).

Принцип работы биполярного транзистора

Рассмотрим принцип работы биполярного n-p-n транзистора:

  1. Между эмиттером и базой создается прямое смещение p-n перехода
  2. Электроны из эмиттера инжектируются в тонкий слой базы
  3. Большая часть электронов проходит через базу и попадает в коллектор
  4. Между коллектором и базой создается обратное смещение p-n перехода
  5. Электроны из базы втягиваются в коллектор под действием электрического поля

Таким образом, небольшое изменение тока базы вызывает значительное изменение тока коллектора. В этом и заключается усилительный эффект транзистора.

Режимы работы транзистора

Транзистор может работать в нескольких режимах:


Активный режим

Эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Это основной режим усиления сигналов.

Режим отсечки

Оба перехода закрыты, ток через транзистор не протекает. Транзистор закрыт.

Режим насыщения

Оба перехода открыты, транзистор максимально открыт и пропускает большой ток.

Инверсный режим

Коллекторный переход открыт, а эмиттерный закрыт. Используется редко.

Применение транзисторов

Основные области применения транзисторов:

  • Усилители сигналов в радиотехнике и электронике
  • Генераторы электрических колебаний
  • Ключевые и импульсные схемы
  • Стабилизаторы напряжения и тока
  • Интегральные микросхемы
  • Микропроцессоры и микроконтроллеры
  • Модули памяти
  • Силовая электроника

Транзисторы произвели революцию в электронике и стали основой для создания современных компьютеров, мобильных устройств и других электронных систем.

Преимущества транзисторов перед электронными лампами

Транзисторы имеют ряд важных преимуществ по сравнению с электронными лампами:

  • Миниатюрные размеры
  • Низкое энергопотребление
  • Отсутствие нагрева при работе
  • Высокая механическая прочность
  • Длительный срок службы
  • Возможность работы при низких напряжениях
  • Совместимость с технологиями интегральных микросхем

Эти преимущества позволили создавать компактную и энергоэффективную электронику, которая произвела революцию во многих отраслях.


Роль транзисторов в современной электронике

Сегодня транзисторы играют ключевую роль в электронике и используются практически во всех электронных устройствах:

  • В микропроцессорах современных компьютеров содержатся миллиарды транзисторов
  • Модули памяти мобильных устройств построены на транзисторных ячейках
  • Усилители звука в аудиотехнике используют транзисторные каскады
  • Силовые транзисторы применяются в блоках питания и преобразователях напряжения
  • Радиопередатчики содержат высокочастотные транзисторные генераторы

Дальнейшее развитие транзисторных технологий позволяет создавать все более производительные и энергоэффективные электронные устройства.

Будущее транзисторных технологий

Развитие транзисторных технологий продолжается в нескольких направлениях:

  • Уменьшение размеров транзисторов для повышения плотности интеграции
  • Использование новых полупроводниковых материалов
  • Создание 3D-структур транзисторов
  • Разработка квантовых транзисторов
  • Применение нанотехнологий для формирования транзисторных структур

Эти инновации позволят создавать еще более мощные и энергоэффективные электронные устройства в будущем. Транзисторы продолжат играть ключевую роль в развитии электроники и информационных технологий.


Принцип работы транзистора

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

  • Устройство
  • Принцип действия
  • Классификация устройств
  • Устройство транзисторов
  • Принцип работы транзистора
  • Как работает транзистор — видео
  • Принцип работы биполярного транзистора
  • Типы полевых транзисторов
  • Режимы работы

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок.

Принцип действия

Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным — большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером.

Биполярный прибор бывает двух типов:

  • p-n-p;
  • n-p-n.

Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.

Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход.

Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале. Атомы в полупроводнике располагаются в виде решётки, и сам по себе такой материал не является проводником. Но если в решётку добавить атомы другого материала, то физические свойства полупроводника изменяются. Примешанные атомы образовывают, в зависимости от своей природы, свободные электроны или дырки.

Образованные свободные электроны формируют отрицательный заряд, а дырки — положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.

Классификация устройств

В первую очередь такие приборы разделяются на одиночные и составные. Существуют и так называемые комплексные радиоэлементы. Они имеют три вывода и выполненны, как единое целое. Такие сборки содержат как однотипные, так и разные по своему типу транзисторы.

Основное разделение приборов происходит по следующим признакам:

  1. Канальность. В зависимости от того, какие носители зарядов являются основными бывают p-типа и n-типа.
  2. Технологии изготовления. Выпускаются биполярными, полевыми, комбинированными.
  3. По типу полупроводника. В качестве материала для изготовления применяется кремний, германий и арсенид-галлия. В последнее время начали выпускаться транзисторы, использующие в качестве основы прозрачные полупроводники. Например, для построения дисплейных матриц. А также использующие в качестве материалов полимеры и углеродные нанотрубки.
  4. По рассеиваемой мощности. Разделяются на три типа: маломощные, средней мощности и мощные. Первые не превышают значения 0,1 Вт, вторые находятся в диапазоне 0,1−1 Вт, а к мощным относят все те, что превышают 1 Вт.
  5. По виду исполнению. Выделяют дискретные транзисторы, которые могут быть как корпусными, так и нет, и транзисторы, входящие в состав интегральных схем.

Устройство транзисторов

Наиболее популярный вид полупроводникового транзистора – биполярный.

В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.

  • Б – база, очень тонкий внутренний слой;
  • Э – эмиттер, предназначается для переноса заряженных частиц в базу;
  • К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.

Типы проводимости:

  • n-типа — носителями зарядов являются электроны.
  • p-типа — носители зарядов – положительно заряженные «дырки».

Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла. Легирование – это добавление в состав материала различных примесей для улучшения физических и химических свойств этого материала. Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p.

Принцип работы транзистора

Транзистор работает в режимах «Открыто» и «Закрыто».

В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.

Простое изложение принципа работы биполярного транзистора:

  • Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
  • Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
  • При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.

Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.

Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.

Как работает транзистор — видео

Принцип работы биполярного транзистора

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как 

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет

Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Типы полевых транзисторов

1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.

2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.

Внешне они очень похожи на биполярные, что подтверждает фото ниже.

Режимы работы

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении[2] (открыт), а переход коллектор-база — в обратном (закрыт):

UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.

Инверсный активный режим

Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).

Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.

Режим отсечки

В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).

Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0[5][6].

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 9 чел.
Средний рейтинг: 4.3 из 5.

Устройство и принцип работы биполярного транзистора.

Aveal

Всем доброго времени суток, в сегодняшней статье мы положим начало обсуждению очень важной и обширной темы, посвященной транзисторам. Разберем теоретические аспекты, устройство, виды, рассмотрим принцип работы на практических примерах, методику расчета схем, в общем, постараемся затронуть по максимуму.

Чтобы обсуждение было максимально структурированным и понятным, материал будет разбит на четкие разделы и разные статьи. А, поскольку транзисторы сразу же можно разделить на два крупных класса, а именно — биполярные и полевые, то так и поступим — начнем с подробного разбора биполярных и, изучив их полностью, перейдем к полевым.

Устройство биполярного транзистора.

И для начала мы рассмотрим устройство биполярного транзистора и химические процессы, протекающие в нем. В этом нам очень поможет статья о p-n переходе (ссылка), поскольку ключевые понятия мы будем использовать те же самые. Ведь транзистор есть ни что иное как три полупроводниковые области, которые формируют между собой два p-n перехода.

Кстати транзистор называется биполярным, потому что в переносе заряда участвуют и дырки, и электроны.

Итак, биполярный транзистор состоит из 3-х полупроводниковых областей. Причем тип примесной проводимости у этих областей чередуется:

  • p-n-p или
  • n-p-n

То есть мы получаем два вида биполярных транзисторов — n-p-n и p-n-p. Давайте дальше все обсуждение строить на примере n-p-n транзисторов, суть для p-n-p будет такой же:

Называются эти три полупроводниковые области:

  • эмиттер
  • база
  • коллектор

Тип проводимости эмиттера и коллектора одинаковый, но технологически они отличаются довольно значительно. Во-первых, общая область перехода база-эмиттер намного меньше общей области перехода база-коллектор. Зачем так сделано мы разберемся чуть позже. И, во-вторых, область коллектора содержит намного меньше примесей, чем область эмиттера.

Принцип работы биполярного транзистора.

Итак, транзистор содержит два p-n перехода (эмиттер-база и база-коллектор). Если не прикладывать к выводам транзистора никаких внешних напряжений, то на каждом из p-n переходов формируются области, обедненные свободными носителями заряда. Все в точности так же как здесь:

В активном же режиме переход эмиттер-база (эмиттерный переход) имеет прямое смещение, а коллекторный переход — обратное.

Так как переход эмиттер-база смещен в прямом направлении, то внешнее электрическое поле будет перемещать электроны из области эмиттера в область базы. Там они частично будут вступать во взаимодействие с дырками и рекомбинировать.

Но большая часть электронов доберется до перехода база-коллектор (это связано с тем, что область базы конструктивно выполняется очень тонкой и содержит небольшой количество примесей), который смещен уже в обратном направлении. И в этом случае внешнее электрическое поле снова будет содействовать электронам, а именно помогать им проскочить в область коллектора.

В результате получается, что ток коллектора приблизительно равен току эмиттера:

I_к = \alpha I_э

Коэффициент \alpha численно равен 0.9…0.99. В то же время:

I_э = I_б + I_к

А что произойдет, если мы увеличим ток базы? Это приведет к тому, что переход эмиттер-база откроется еще сильнее, и большее количество электронов смогут попасть в область коллектора (все по тому же маршруту, который мы обсудили). Давайте выразим ток эмиттера из первой формулы, подставим во вторую и получим:

I_э = \frac{I_к}{\alpha}
\frac{I_к}{\alpha} = I_б + I_к

Выражаем ток коллектора через ток базы:

I_к = \frac{\alpha}{1 - \alpha}  I_б = \beta I_б

Коэффициент \beta обычно составляет 100-500. Таким образом, незначительный ток базы управляет гораздо большим током коллектора. В этом по сути и заключается принцип работы биполярного транзистора.

Коэффициент, связывающий величину тока коллектора с величиной тока базы, называют коэффициентом усиления по току и обозначают h_{21}. Этот коэффициент является одной из основных характеристик биполярного транзистора. В следующих статьях мы будем рассматривать схемы включения транзисторов и подробнее разберем этот параметр и его зависимость от условий эксплуатации.

Режимы работы.

Итак, мы рассмотрели активный режим работы транзистора (переход эмиттер-база открыт, переход коллектор-база закрыт), не обойдем вниманием и другие.

Режим отсечки. Оба p-n перехода закрыты. Причем важно отметить, что переход эмиттер-база открывается начиная с некоторого значения приложенного прямого напряжения (не с нуля). Это напряжение обычно составляет около 0.6 В. То есть в режиме отсечки либо оба перехода смещены в обратном направлении, либо коллекторный переход — в обратном, а эмиттерный — в прямом, но величина напряжения не превышает 0.6 В.

В данном режиме переходы сильно обеднены свободными носителями заряда и протекание тока практически полностью прекращается. Исключение составляют только малые побочные токи переходов. В идеальном случае (без токов утечки) транзистор в режиме отсечки эквивалентен обрыву цепи.

Режим насыщения. Оба перехода открыты, и в результате основные носители заряда активно перемещаются из коллектора и эмиттера в базу. В базе возникает избыток носителей заряда, ее сопротивление и сопротивление p-n переходов уменьшается и между эмиттером и коллектором начинает течь ток. В идеальном случае транзистор в таком режиме эквивалентен замыканию цепи.

Барьерный режим. Его мы обязательно еще разберем подробнее, вкратце, идея заключается в том, что база напрямую или через небольшое сопротивление соединена с коллектором. Это эквивалентно использованию диода с последовательно подключенным сопротивлением.

Вот и все основные режимы работы биполярного транзистора. Еще очень многое предстоит обсудить в рамках изучения транзисторов, а на сегодня заканчиваем статью. Спасибо за внимание и ждем вас на нашем сайте снова 🤝

Транзистор | Определение и использование

транзистор

Посмотреть все СМИ

Ключевые люди:
Гордон Мур Уильям Б. Шокли Джон Бардин Уолтер Х. Браттейн Джек Килби
Похожие темы:
тиристор кремниевый транзистор тонкопленочный транзистор схема с общей базой полевой транзистор

См. все связанные материалы →

транзистор , полупроводниковое устройство для усиления, управления и генерации электрических сигналов. Транзисторы являются активными компонентами интегральных схем или «микрочипов», которые часто содержат миллиарды этих крошечных устройств, выгравированных на их блестящих поверхностях. Глубоко встроенные почти во все электронные устройства, транзисторы стали нервными клетками информационного века.

Обычно в транзисторе имеется три электрических вывода, называемых эмиттером, коллектором и базой, или, в современных переключающих устройствах, истоком, стоком и затвором. Электрический сигнал, подаваемый на базу (или затвор), влияет на способность полупроводникового материала проводить электрический ток, который протекает между эмиттером (или истоком) и коллектором (или стоком) в большинстве приложений. Источник напряжения, такой как батарея, управляет током, в то время как скорость тока, протекающего через транзистор в любой момент, регулируется входным сигналом на затворе — так же, как клапан крана используется для регулирования потока воды в саду. шланг.

Первые коммерческие применения транзисторов были для слуховых аппаратов и «карманных» радиоприемников в 1950-х годах. Благодаря своим небольшим размерам и низкому энергопотреблению транзисторы были желанной заменой электронных ламп (известных в Великобритании как «клапаны»), которые тогда использовались для усиления слабых электрических сигналов и воспроизведения звуков. Транзисторы также начали заменять электронные лампы в схемах генератора, используемых для генерации радиосигналов, особенно после того, как были разработаны специализированные конструкции для работы с более высокими частотами и уровнями мощности. Низкочастотные, мощные приложения, такие как инверторы источников питания, которые преобразуют переменный ток (AC) в постоянный ток (DC), также были транзисторными. Некоторые силовые транзисторы теперь могут выдерживать токи в сотни ампер при электрическом напряжении более тысячи вольт.

Наиболее распространенное применение транзисторов сегодня — микросхемы компьютерной памяти, в том числе твердотельные устройства хранения мультимедиа для электронных игр, фотоаппараты и MP3-плееры, а также микропроцессоры, где миллионы компонентов встроены в единую интегральную схему. Здесь напряжение, подаваемое на электрод затвора, обычно несколько вольт или меньше, определяет, может ли ток течь от истока транзистора к его стоку. В этом случае транзистор работает как переключатель: если ток течет, соответствующая цепь включена, а если нет, то она выключена. Эти два различных состояния, единственные возможности в такой схеме, соответствуют соответственно двоичным единицам и нулям, используемым в цифровых компьютерах. Подобные применения транзисторов встречаются в сложных схемах переключения, используемых во всех современных телекоммуникационных системах. Потенциальные скорости переключения этих транзисторов сейчас составляют сотни гигагерц, или более 100 миллиардов циклов включения и выключения в секунду.

Викторина «Британника»

Компьютеры и операционные системы

Разработка транзисторов

Транзистор был изобретен в 1947–1948 годах тремя американскими физиками, Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли, в лабораториях Белла Американской телефонной и телеграфной компании. Транзистор оказался жизнеспособной альтернативой электронной лампе и к концу 1950-х годов вытеснил последнюю во многих приложениях. Его небольшие размеры, низкое тепловыделение, высокая надежность и низкое энергопотребление сделали возможным прорыв в миниатюризации сложных схем. В течение 19В 60-х и 70-х годах транзисторы были включены в интегральные схемы, в которых множество компонентов (например, диоды, резисторы и конденсаторы) формируются на одном «чипе» из полупроводникового материала.

Мотивация и раннее радиолокационное исследование

Электронные лампы громоздки и хрупки, и они потребляют большое количество энергии для нагрева своих катодных нитей и создания потоков электронов; также они часто перегорают после нескольких тысяч часов работы. Электромеханические переключатели или реле работают медленно и могут застрять во включенном или выключенном положении. Для приложений, требующих тысяч трубок или переключателей, таких как общенациональные телефонные системы, разрабатываемые по всему миру в 1940-х годов и первых электронных цифровых компьютеров, это означало необходимость постоянной бдительности, чтобы свести к минимуму неизбежные поломки.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Альтернатива была найдена в полупроводниках, таких материалах, как кремний или германий, электропроводность которых находится посередине между электропроводностью изоляторов, таких как стекло, и проводников, таких как алюминий. Проводящими свойствами полупроводников можно управлять, «легируя» их избранными примесями, и несколько провидцев увидели потенциал таких устройств для телекоммуникаций и компьютеров. Однако именно военное финансирование разработки РЛС в 1940-х годов, которые открыли двери для их реализации. «Супергетеродинные» электронные схемы, используемые для обнаружения радиолокационных волн, требовали диодного выпрямителя — устройства, позволяющего току течь только в одном направлении, — которое могло бы успешно работать на сверхвысоких частотах свыше одного гигагерца. Электронных ламп просто не хватало, а твердотельные диоды на основе существующих полупроводников на основе оксида меди также были слишком медленными для этой цели.

На помощь пришли кристаллические выпрямители

на основе кремния и германия. В этих устройствах вольфрамовая проволока втыкалась в поверхность полупроводникового материала, который был легирован небольшим количеством примесей, таких как бор или фосфор. Атомы примеси занимали позиции в кристаллической решетке материала, вытесняя атомы кремния (или германия) и тем самым создавая крошечные популяции носителей заряда (например, электронов), способных проводить полезный электрический ток. В зависимости от природы носителей заряда и приложенного напряжения ток может течь от провода к поверхности или наоборот, но не в обоих направлениях. Таким образом, эти устройства послужили столь необходимыми выпрямителями, работающими на гигагерцовых частотах, необходимых для обнаружения отраженного микроволнового излучения в военных радиолокационных системах. К концу Второй мировой войны такие американские производители, как Sylvania и Western Electric, ежегодно производили миллионы кварцевых выпрямителей.

Транзистор | Определение и использование

транзистор

Посмотреть все СМИ

Ключевые люди:
Гордон Мур Уильям Б. Шокли Джон Бардин Уолтер Х. Браттейн Джек Килби
Похожие темы:
тиристор кремниевый транзистор тонкопленочный транзистор схема с общей базой полевой транзистор

См. все связанные материалы →

транзистор , полупроводниковое устройство для усиления, управления и генерации электрических сигналов. Транзисторы являются активными компонентами интегральных схем или «микрочипов», которые часто содержат миллиарды этих крошечных устройств, выгравированных на их блестящих поверхностях. Глубоко встроенные почти во все электронные устройства, транзисторы стали нервными клетками информационного века.

Обычно в транзисторе имеется три электрических вывода, называемых эмиттером, коллектором и базой, или, в современных переключающих устройствах, истоком, стоком и затвором. Электрический сигнал, подаваемый на базу (или затвор), влияет на способность полупроводникового материала проводить электрический ток, который протекает между эмиттером (или истоком) и коллектором (или стоком) в большинстве приложений. Источник напряжения, такой как батарея, управляет током, в то время как скорость тока, протекающего через транзистор в любой момент, регулируется входным сигналом на затворе — так же, как клапан крана используется для регулирования потока воды в саду. шланг.

Первые коммерческие применения транзисторов были для слуховых аппаратов и «карманных» радиоприемников в 1950-х годах. Благодаря своим небольшим размерам и низкому энергопотреблению транзисторы были желанной заменой электронных ламп (известных в Великобритании как «клапаны»), которые тогда использовались для усиления слабых электрических сигналов и воспроизведения звуков. Транзисторы также начали заменять электронные лампы в схемах генератора, используемых для генерации радиосигналов, особенно после того, как были разработаны специализированные конструкции для работы с более высокими частотами и уровнями мощности. Низкочастотные, мощные приложения, такие как инверторы источников питания, которые преобразуют переменный ток (AC) в постоянный ток (DC), также были транзисторными. Некоторые силовые транзисторы теперь могут выдерживать токи в сотни ампер при электрическом напряжении более тысячи вольт.

Наиболее распространенное применение транзисторов сегодня — микросхемы компьютерной памяти, в том числе твердотельные устройства хранения мультимедиа для электронных игр, фотоаппараты и MP3-плееры, а также микропроцессоры, где миллионы компонентов встроены в единую интегральную схему. Здесь напряжение, подаваемое на электрод затвора, обычно несколько вольт или меньше, определяет, может ли ток течь от истока транзистора к его стоку. В этом случае транзистор работает как переключатель: если ток течет, соответствующая цепь включена, а если нет, то она выключена. Эти два различных состояния, единственные возможности в такой схеме, соответствуют соответственно двоичным единицам и нулям, используемым в цифровых компьютерах. Подобные применения транзисторов встречаются в сложных схемах переключения, используемых во всех современных телекоммуникационных системах. Потенциальные скорости переключения этих транзисторов сейчас составляют сотни гигагерц, или более 100 миллиардов циклов включения и выключения в секунду.

Викторина «Британника»

Изобретатели и изобретения

Разработка транзисторов

Транзистор был изобретен в 1947–1948 годах тремя американскими физиками, Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли, в лабораториях Белла Американской телефонной и телеграфной компании. Транзистор оказался жизнеспособной альтернативой электронной лампе и к концу 1950-х годов вытеснил последнюю во многих приложениях. Его небольшие размеры, низкое тепловыделение, высокая надежность и низкое энергопотребление сделали возможным прорыв в миниатюризации сложных схем. В течение 19В 60-х и 70-х годах транзисторы были включены в интегральные схемы, в которых множество компонентов (например, диоды, резисторы и конденсаторы) формируются на одном «чипе» из полупроводникового материала.

Мотивация и раннее радиолокационное исследование

Электронные лампы громоздки и хрупки, и они потребляют большое количество энергии для нагрева своих катодных нитей и создания потоков электронов; также они часто перегорают после нескольких тысяч часов работы. Электромеханические переключатели или реле работают медленно и могут застрять во включенном или выключенном положении. Для приложений, требующих тысяч трубок или переключателей, таких как общенациональные телефонные системы, разрабатываемые по всему миру в 1940-х годов и первых электронных цифровых компьютеров, это означало необходимость постоянной бдительности, чтобы свести к минимуму неизбежные поломки.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Альтернатива была найдена в полупроводниках, таких материалах, как кремний или германий, электропроводность которых находится посередине между электропроводностью изоляторов, таких как стекло, и проводников, таких как алюминий. Проводящими свойствами полупроводников можно управлять, «легируя» их избранными примесями, и несколько провидцев увидели потенциал таких устройств для телекоммуникаций и компьютеров. Однако именно военное финансирование разработки РЛС в 1940-х годов, которые открыли двери для их реализации. «Супергетеродинные» электронные схемы, используемые для обнаружения радиолокационных волн, требовали диодного выпрямителя — устройства, позволяющего току течь только в одном направлении, — которое могло бы успешно работать на сверхвысоких частотах свыше одного гигагерца. Электронных ламп просто не хватало, а твердотельные диоды на основе существующих полупроводников на основе оксида меди также были слишком медленными для этой цели.

На помощь пришли кристаллические выпрямители

на основе кремния и германия. В этих устройствах вольфрамовая проволока втыкалась в поверхность полупроводникового материала, который был легирован небольшим количеством примесей, таких как бор или фосфор. Атомы примеси занимали позиции в кристаллической решетке материала, вытесняя атомы кремния (или германия) и тем самым создавая крошечные популяции носителей заряда (например, электронов), способных проводить полезный электрический ток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *