Как работают ветрогенераторы. Какие существуют типы ветряных турбин. Где применяются ветрогенераторы. Насколько эффективны современные ветряные электростанции. Каковы перспективы развития ветроэнергетики.
Принцип работы ветрогенератора
Ветрогенератор — это устройство для преобразования кинетической энергии ветра в электрическую энергию. Основной принцип работы ветрогенератора заключается в следующем:
- Ветер вращает лопасти ротора
- Вращение ротора передается на вал генератора
- Генератор преобразует механическую энергию вращения в электричество
Чем сильнее ветер, тем быстрее вращается ротор и тем больше электроэнергии вырабатывает генератор. Современные ветрогенераторы способны эффективно работать даже при слабом ветре скоростью 3-4 м/с.
Основные компоненты ветрогенератора
Типичный ветрогенератор состоит из следующих основных частей:
- Лопасти ротора — обычно 3 штуки, улавливают энергию ветра
- Ступица — соединяет лопасти с валом
- Вал — передает вращение от ротора к генератору
- Редуктор — увеличивает скорость вращения для генератора
- Генератор — преобразует механическую энергию в электрическую
- Система управления — контролирует работу и ориентацию
- Башня — поднимает ротор на высоту с сильными ветрами
Также ветрогенератор оснащается системами торможения, молниезащиты и другими вспомогательными компонентами.
Типы ветрогенераторов
Существует два основных типа ветрогенераторов по ориентации оси вращения:
С горизонтальной осью
Это наиболее распространенный тип. Ось вращения ротора расположена горизонтально. Преимущества:
- Высокая эффективность
- Большая мощность (до нескольких МВт)
- Хорошо изученная технология
С вертикальной осью
Ось вращения ротора расположена вертикально. Основные плюсы:
- Не требуют ориентации на ветер
- Низкий уровень шума
- Компактные размеры
Вертикально-осевые турбины менее эффективны, но лучше подходят для городских условий.
Применение ветрогенераторов
Основные области применения ветрогенераторов:
Промышленная ветроэнергетика
Крупные ветропарки мощностью в сотни мегаватт для выработки электроэнергии в промышленных масштабах. Ветрогенераторы объединяются в сеть и подключаются к энергосистеме.
Автономное энергоснабжение
Небольшие ветрогенераторы для обеспечения электричеством отдельных домов, ферм, телекоммуникационных вышек в отдаленных районах. Часто используются в комбинации с солнечными батареями.
Опреснение воды
Ветрогенераторы используются для питания установок опреснения морской воды в прибрежных районах с дефицитом пресной воды.
Зарядка электромобилей
Некоторые зарядные станции для электромобилей оборудуются небольшими ветрогенераторами для выработки «зеленой» энергии.
Эффективность ветрогенераторов
Эффективность современных ветрогенераторов достигает 45-50%. Это означает, что до половины кинетической энергии ветра преобразуется в электричество. Основные факторы, влияющие на эффективность:
- Скорость ветра — чем выше, тем больше мощность
- Диаметр ротора — большие турбины эффективнее
- Высота башни — на большей высоте ветер сильнее
- Аэродинамика лопастей — влияет на КПД
- Система управления — оптимизирует работу
Крупные промышленные ветрогенераторы мощностью 2-5 МВт имеют коэффициент использования установленной мощности 25-40% в зависимости от ветровых условий.
Преимущества и недостатки ветроэнергетики
Основные плюсы использования ветрогенераторов:
- Экологически чистый источник энергии
- Возобновляемый ресурс
- Не требует топлива
- Низкие эксплуатационные расходы
Недостатки ветроэнергетики:
- Зависимость от погодных условий
- Шумовое и визуальное воздействие
- Высокие начальные инвестиции
- Влияние на птиц и летучих мышей
Несмотря на некоторые недостатки, ветроэнергетика активно развивается во многих странах мира благодаря экологичности и возобновляемости ресурса.
Перспективы развития ветроэнергетики
Ветроэнергетика — одно из наиболее быстрорастущих направлений возобновляемой энергетики. Основные тенденции развития отрасли:
- Увеличение единичной мощности ветрогенераторов до 10-15 МВт
- Развитие офшорной (морской) ветроэнергетики
- Совершенствование систем управления и прогнозирования
- Снижение стоимости производства энергии
- Интеграция с системами хранения энергии
По прогнозам, к 2050 году ветроэнергетика может обеспечивать до 35% мирового потребления электроэнергии. Это внесет значительный вклад в борьбу с изменением климата.
Ветрогенераторы для яхт | ЭлектроФорс
Для владельцев парусных яхт ветрогенератор – это естественный и понятный способ увеличения электрической мощности. Он используют туже энергию, что движет парусное судно, а технология, лежащая в основе его работы, надежна и хорошо изучена. Поэтому несмотря на растущую популярность гидрогенераторов и появление все более эффективных солнечных панелей, автономные ветрогенераторы по-прежнему широко распространены на яхтах.
Содержание статьи
Преимущества и недостатки ветрогенераторов
Для зарядки тяговых аккумуляторов от береговой электрической сети на яхте устанавливают комбинированный инвертор или зарядное устройство. В межсезонье с этой задачей справляется небольшая солнечная панель. Ветряную турбину имеет смысл использовать, когда требуется дополнительный мощный источник зарядки, который будет работать на яхте совместно с солнечными батареями или гидрогенератором.
Яхтенные ветрогенераторы – это небольшие устройства относительно малой мощности. Однако вырабатываемой ими энергии достаточно, чтобы в течении суток зарядить 12-вольтовую аккумуляторную батарею емкостью 800 ампер-часов. Плюс ветрогенератора в том, что он производит электрическую энергию практически постоянно — во время движения и на якорной стоянке, в солнечные и в пасмурные дни. Ветрогенератор не требует технического обслуживания, ремонта и дополнительного оборудования для запуска.
Модель | D400 | Superwind 350 | Rutland 1200 |
Характеристики ветрогенераторов для яхт
Максимальная мощность при напряжении 12 В, Вт | 600 | 350 | 483 |
Максимальная скорость ветра, узлов | 37 | 24 | 29 |
Мощность при скорости ветра 20 узлов | 192 | 180 | 255 |
Мощность при скорости ветра 12 узлов | 48 | 20 | 60 |
Скорость включения, узлов | 5 | 6,8 | 4 |
Вес, кг | 17 | 11 | 8 |
Диаметр лопастей, м | 1,09 | 1,19 | 1,22 |
Количество лопастей, шт | 5 | 3 | 3 |
Коэффициент TSR | 3,9 | 6,5 | 7 |
Регулятор напряжения в комплекте | Нет | Нет | нет |
Внешний регулятор | PWM | PWM | PWM/MPPT |
Но существуют и минусы. Яхтенные маршруты, проложенные по ветру отнимают у генератора часть его мощности. А поскольку энергия ветра зависит от третьей степени его скорости, то с уменьшением скорости, мощность ветрогенератора стремительно падает. Например, при реальной скорости ветра 20 узлов, для яхты идущей по ветру со скоростью 8 узлов наблюдаемая скорость ветра составит всего 12 узлов. При ветре 20 узлов большинство моделей малых ветрогенераторов вырабатывают около 200 Вт, а при 12 узлах мощность опускается до 40-50 Вт. Зависимость мощности турбины от скорости ветра необходимо учитывать и при планировании стоянок. Порты и якорные стоянки привлекают владельцев яхт именно потому, что обеспечивают защиту от стихии, значит скорость ветра там ниже, чем прогнозируется на расстоянии от берега.
Все небольшие ветрогенераторы имеют примерно одинаковую максимальная мощность — от 400 до 600 Вт. Однако более важная характеристика – это ток, отдаваемый турбиной при слабом ветре. Ведь именно с ним большинство владельцев яхт хотят иметь дело во время своих путешествий. Поэтому производительность ветрогенератора при относительной скорости ветра 12 или 20 узлов гораздо лучший показателем его зарядной способности
Кроме того, кривые мощности, которые приводят производители ветрогенераторов основаны на результатах испытания плавным, постоянным воздушным потоком в аэродинамической трубе. Реальные результаты могут оказаться гораздо ниже. Поэтому там где требуется гарантированно высокая мощность владельцы предпочитают устанавливать две турбины и подключать их параллельного через один регулятор.
Как установить ветрогенератор на яхте
Чтобы получить от ветрогенератора максимальную выходную мощность, необходимо выполнить два условия. Во-первых, конструкция на которой установлена турбина должна быть как можно более устойчивой, иначе любая качка или крен будут отворачивает ее от ветра. Во-вторых, ветрогенератору нужен свободный, ровный и гладкий воздушный поток
Многолопастной ветрогенератор D400 мощностью 600 Вт, установленный на корме яхтыВ какой-то степени эти два требования противоречат друг другу. Скорость ветра на мачте может быть на 50 процентов выше, чем на уровне моря, поэтому чем выше вы поднимите ветрогенератор, тем больше энергии вы получите. С другой стороны турбина, ее крепление и кабельная разводка весят 20-30 кг. Такой дополнительный вес на движущейся яхте увеличивает маятниковый эффект, а значит возрастают тангаж и крен и снижается общая устойчивость
Существует множество успешных установок ветрогенераторов на мачтах. Однако для большинства владельцев яхт устанавливать турбину рекомендуется поверх кокпита. Там ее проще монтировать и обслуживать, а если возникнет неисправность, и другие способы торможения выйдут из строя, устройство можно будет отключить вручную.
Падение напряжения в кабеле существенно влияет на общую производительность системы зарядки. При установке турбины внизу кабель от нее до аккумуляторов окажется гораздо короче, а значит его сечение можно выбрать меньше и это не увеличит потери энергии .
Контроллер заряда ветрогенератора
На первый взгляд сохранение полученной электрической энергии в аккумуляторе — это самая простая часть ветряной энергоустановки. Однако единого способа решения этой задачи среди производителей не существует и каждый из них придерживается собственных подходов.
Английская компания Marlec, использует MPPT регулятор. MPPT контроллеры получили распространение благодаря солнечным источникам энергии, у которых они повысили выходную мощность на целых 30 процентов. Контроллер регулирует напряжение генератора так, чтобы в каждый момент времени мощность установки была максимальной. Для снижения скорости турбины Marlec применяет широтно-импульсную модуляцию. Когда заряд аккумуляторной батареи приближается к 100% и ей требуется меньше энергии ШИМ-регулятор замыкает обмотки все более длинными импульсами, создавая растущий тормозной момент.
Зависимость тока, вырабатываемого ветрогенератором D400, от скорости ветраСоздатель ветрогенератора D400 Петер Андерсен из компании Eclectic Energy придерживается другого подхода. Он считает, что обеспечить структурированный выходной сигнал на основе такого входа как у ветряных турбин нельзя. Более того исследование показывают, что общая производительность системы с MPPT контроллером не возрастает, а иногда наоборот снижается.
Другие производители также считают, что MPPT регулятор не добавляет достоинств небольшой ветряной турбине с правильно спроектированным и оптимизированным для низких скоростей ветра генератором. Преимущества, достигаемые благодаря эффективности генератора, сводятся на нет потерями в электронике MPPT. Однако PWM регулятор позволяет заряжать аккумулятор до 100 процентов, поскольку обеспечивает аккумулятор именно тем током, который батарея может принять на каждой стадии зарядки.
Некоторые производители вместо MPPT контроллера, устанавливают на выходе генератора DC-DC конвертер. Конвертер повышает выходное напряжение генератора и позволяет заряжать аккумуляторы при слабом ветре (скоростью менее 2 м /с ). Ветрогенераторы с DС-DС преобразователями начинают зарядку аккумуляторов при выходном напряжении от 2 вольт и обеспечивают зарядную мощность 3 — 5 Вт. Такие устройства подходят для заряда аккумуляторов на защищенных от ветра стоянках, однако дополнительное количество энергии, получаемое от них, не велико.
Многие намеренно не используют технологии MPPT или PWM, считая простоту и надежность ключевыми достоинствами своих изделий. Если турбины работают совместно с солнечными батареями, то ветрогенератор реализует этап быстрой зарядки, а до 100% аккумуляторы заряжают солнечные панели . Дополнительная электроника в этом случае лишь увеличивает сложность и повышает стоимость изделий
Дополнительно с внешним, часто используют разгрузочный регулятор. Его добавляют, чтобы контролировать мощность, поступающую от турбины. Когда заряженность аккумулятора возрастает, избыток энергии отводят через резистор, рассеивающий тепло. С таким регулятором турбина всегда работает при полной нагрузке, а ее лопасти вращаются с оптимальной частотой.
Системы имеющие только встроенный «регулятор» турбины, лучше не использовать. Такой регулятор представляет собой электронный тормоз, срабатывающий, когда напряжение аккумулятора поднялось слишком высоко, а турбина продолжает выдавать много энергии. После остановки генератора напряжение аккумулятора падает и регулятор перезапускает генератор вновь. Если аккумуляторов почти заряжен, то происходит многократная остановка и повторный запуск ветрогенератора. Этот метод регулирование далек от того, который нужен аккумуляторной батарее — по мере увеличения заряженности ток должен плавно понижаться.
Лопасти ветрогенератора
Конструкция лопастей турбины – это еще одна область в которой модели разных производителей отличаются друг от друга. Лопасть во время вращения подвергается тем же воздействиям, что и крыло самолета. Однако в их работе существуют и небольшие отличия. Если у лопастей постоянный шаг, то их оптимальный режим работы достигается при одной заданной скорости вращения. Значит у слишком быстро или слишком медленно вращающейся турбины эффективность снижается
Комплект небольшого ветрогенератора для яхты — генератор, лопасти, резисторы для рассеивания мощности. Контроллер заряда приобретается отдельноНемецкая компания Superwind выпускает ветрогенераторы с изменяемым шагом, величина которого зависит от скорости вращения. Чем быстрее вращается турбина, тем больше лопасти поворачиваются вокруг своей оси и сильнее замедляют вращение. Компания утверждает, что эта система реагирует очень быстро и может защитить систему в случае отказа электронного торможения.
Лопасти – основная причина шума и вибрации, исходящих от ветрогенератора. Если скорость вращения кончиков слишком высока, то обтекающий их поток воздуха становится нестабильным, возникает турбулентность и лопасти начинают вибрировать. Известен случай, когда лопасти установленного на яхте ветрогенератора издавали такой вой на высоких скоростях вращения, что соседние лодки были вынуждены покинуть якорную стоянку.
Существует специальный коэффициент (TSR), характеризующий во сколько раз кончик лопатки турбины движется быстрее, чем реальная скорость ветра. Например, если турбина имеет TSR равный 16 — при ветре в 20 узлов концы лопасти будут двигаться со скоростью 320 узлов, а при небольшом шторме их скорость приблизится к скорости звука. Для ветрогенератора D400 производитель указывает TSR всего 3,9. Это говорит о том, что турбина спроектирована для гораздо более медленного вращения, чем модели других производителей. D400 не самый легкий ветрогенератор, вес только чистой меди в его обмотках почти 1 кг. Но его преимущество в устойчивости, надежности и относительно низких оборотах вращения
Некоторые производители указывают для своих машин максимальную скорость ветра. Однако к этой характеристике следует относится с недоверием. В ветровом потоке наиболее разрушительным является уровень турбулентности, а его нельзя не предсказать, ни легко измерить.
Мощность ветрогенератора
Перед установкой любого электрогенерирующего оборудования на яхте, в первую очередь считают потребление энергии. Расход вычисляют как для якорной стоянки, так и для движения под парусом. В результате появляется подобие некоторого энергетического бюджета, в котором перечислены как очевидные крупные потребители, такие как холодильники, дисплеи, водонагреватели и освещение, так и менее мощные устройства — ночные навигационные огни, насосы, газовые сигнализации, мониторы двигателей, развлекательные системы.
Для подруливающего устройства или электрической лебедки предусматривают дополнительный запас мощности. Если на яхте установлен кондиционер, маловероятно, что возобновляемые источники энергии удовлетворят его потребности. В этом случае лучше подумать о дизельном генераторе или топливных элементах.
После того как расход энергии подсчитан, оценивают стиль управления яхтой. Необходимо принять во внимание регулярную среднюю скорость на маршруте и понять двигается ли яхта чаще всего против ветра, или ей всегда сопутствует попутный? Дополнительно учитывают другие генерирующие мощности, установленные на борту — солнечные панели, гидрогенератор и DC-DC зарядное устройство, работающее от генератора дизельного двигателя.
Задайте вопрос,
и получите консультацию по лодочным электромоторам, аккумуляторам или зарядным устройствам для катера или яхты
Прогуляемся по ветропарку? | Compasskids
Привет, дорогой друг!
Мы продолжаем наше увлекательное путешествие в мир ветроэнергетики и приглашаем тебя сегодня узнать о том, что такое ветрогенераторы и ветропарки. Для начала ты можешь освежить свои знания о ветрогенерации и почему она так полезна для здоровья Земли, прочитав или перечитав наш первый материал на эту тему .
Итак, что такое ветрогенератор? Это генератор электрической энергии, предназначенный для превращения энергии ветра в электрическую. Современные ветрогенераторы позволяют использовать энергию даже самых слабых ветров. Да, это тот самый «ветряк» с лопастями на длинном шесте, который ты можешь видеть в полях, выезжая куда-то на природу.
Давай посмотрим, из чего состоит ветрогенератор, и рассмотрим его основные элементы.
- Само «тело» ветрогенератора, в котором можно выделить лопасти, турбину, преобразователь механической энергии в электрическую, и систему торможения;
- Аккумулятор, где накапливается выработанная ветряком энергия. Этот модуль позволяет стабилизировать энергопоток при резкой перемене скорости ветра. К одному генератору рекомендовано подключать хотя бы 1 аккумулятор.
- Контроллер заряда – это устройство отвечает за правильную работу аккумулятора.
- Инвертор – данный модуль преобразует постоянный ток, получаемый из аккумулятора обратно в переменный, пригодный для использования в домашней сети.
Что такое ветропарки?
Несколько ветрогенераторов, объединенных в единую сеть, называют ветропарком. Крупные ветропарки могут состоять из сотни и более ветрогенераторов. Как правило, ветроэлектростанции (ВЭУ) расположены на удалении 3–10 диаметров ветроколеса друг от друга. Выработанная ветряком электроэнергия поступает на подстанцию, откуда затем передается в общую электрическую сеть.
Ветроэлектростанции бывают нескольких типов. Самый распространенный – наземная ВЭУ, устанавливаемая на естественных или искусственных возвышенностях. Другой тип ВЭУ – прибрежная. Ее возводят на небольшом удалении от берега моря или океана. Еще один тип ВЭУ – шельфовая ветроустановка. Ее строят в море, в нескольких десятках километров от берега. Из-за этого ее практически не видно с берега, она не занимает полезную территорию и более эффективна из-за постоянных морских ветров. Для монтажа такой установки на шельфе и ее обслуживания необходима специальная морская техника.
Оценка ветровых ресурсов
Одним из этапов подготовки площадки для строительства ветропарка является измерение ветровых ресурсов. Первоначально специалисты проводят анализ наземных и спутниковых баз метеоданных, определяют розу ветров и перспективное место размещения ВЭС. Изучается рельеф местности, уточняются параметры ветрового потока, определяется оптимальное количество измерительного оборудования и места его установки.
Наиболее часто ветромониторинг проводят с использованием специальных комплексов-мачт с установленными на нескольких уровнях датчиками измерения скорости и направления ветра, влажности, температуры и других параметров. в последние годы для определения ветровых ресурсов все чаще используют удаленные системы измерения – Light Detection and Ranging (LIDAR) и Sonic Detection And Ranging (SODAR). LIDAR – лазерный дальномер или в переводе «лазерное обнаружение и обработка изображений ранжированием». Он осуществляет измерения с помощью световых волн, посылая лазерный луч в воздух.
Ветромониторинг проводят в течение длительного периода времени (от года), после завершения данные фильтруются и корректируются под долгосрочный период. Последний этап особенно важен, поскольку позволяет смоделировать ветровую статистику на площадке не просто за конкретный период измерений, на 15-25 лет вперед (то есть на время эксплуатации запланированной ВЭС), за счет чего повышается точность прогноза выработки энергии ВЭС. Обработанные таким образом данные мониторинга необходимы для составления точной карты ветропотенциала территории, выбора оптимального типоразмера и модели ВЭУ, сравнения различных вариантов размещения ветроэлектростанции. Во внимание также принимаются все объекты, способные влиять на ветер, в том числе крупные сооружения и лесополосы.
Интересно всё это, правда? Поэтому стоит попросить родителей отвезти тебя на экскурсию в ветропарк. А пока напомним тебе преимущества ветроэлектростанций
- Минимальные потери при передаче электроэнергии
- Ветряк занимает небольшую площадь в сравнении с другими энергообъектами
- Практически бесконечный источник энергии
- Расположенную рядом территорию можно использовать для сельскохозяйственных целей
- Экологически чистая энергия, без вредных выбросов СО2 и других парниковых газов, а также иного негативного влияния на окружающую среду и человека
Российская компания «Росатом», которая строит атомные электростанции (АЭС) в России и по всему миру, занимается также развитием и ветрогенерации в нашей стране. И не только ею, а вообще безуглеродной энергетикой. Это так называемый «зеленый квадрат» –развитие ветрогенерации, солнечной генерации, гидрогенерации и атомной энергетики. При использовании этих энерготехнологий тепловые выбросы и объемы выделяемого углекислого газа равны нулю. Считается, что переход планеты к возобновляемой энергетике позволит в большей степени решить накопившиеся проблемы с климатом.
Как работают ветряные турбины?
Офис технологий ветроэнергетики
Ветряные турбины работают по простому принципу: вместо того, чтобы использовать электричество для производства ветра, как вентилятор, ветряные турбины используют ветер для производства электроэнергии. Ветер вращает пропеллерные лопасти турбины вокруг ротора, который вращает генератор, вырабатывающий электричество.
Исследуйте ветряную турбину
Чтобы увидеть, как работает ветряная турбина, нажмите на изображение для демонстрации.
Типы ветряных турбин >
Размеры ветряных турбин >
Узнать больше >
Ветер — это форма солнечной энергии, вызванная комбинацией трех одновременных явлений:
- Солнце неравномерно нагревает атмосферу
- Неравномерность земная поверхность
- Вращение Земли.
Характер и скорость ветрового потока сильно различаются по всей территории Соединенных Штатов и зависят от водоемов, растительности и различий в рельефе. Люди используют этот поток ветра или энергию движения для многих целей: парусный спорт, запуск воздушного змея и даже производство электроэнергии.
Термины «энергия ветра» и «энергия ветра» описывают процесс, посредством которого ветер используется для выработки механической энергии или электричества. Эта механическая энергия может использоваться для определенных задач (таких как измельчение зерна или откачка воды), или генератор может преобразовывать эту механическую энергию в электричество.
Ветряная турбина преобразует энергию ветра в электричество, используя аэродинамическую силу лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Ротор соединяется с генератором либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют уменьшить физически размер генератора. Этот перевод аэродинамической силы во вращение генератора создает электричество.
Типы ветряных турбин
Большинство ветряных турбин подразделяются на два основных типа:
Турбины с горизонтальной осью
Деннис Шредер | NREL 25897
Ветряные турбины с горизонтальной осью — это то, что многие люди представляют себе, когда думают о ветряных турбинах.
Чаще всего они имеют три лопасти и работают «против ветра», при этом турбина вращается в верхней части башни, поэтому лопасти обращены к ветру.
Турбины с вертикальной осью
Майк ван Бавел | 42795
Ветряные турбины с вертикальной осью бывают нескольких разновидностей, в том числе модель Дарье в стиле взбивалки, названная в честь французского изобретателя.
Эти турбины всенаправленные, то есть их не нужно направлять на ветер для работы.
Ветряные турбины могут быть построены на суше или на море в больших водоемах, таких как океаны и озера. Министерство энергетики США в настоящее время финансирует проекты , чтобы облегчить развертывание морской ветроэнергетики в водах США.
Применение ветряных турбин
Современные ветряные турбины можно разделить на категории по месту их установки и способу подключения к сети:
Наземный ветер
WINDExchange
Мощность наземных ветряных турбин варьируется от 100 киловатт до нескольких мегаватт.
Более крупные ветряные турбины более эффективны с точки зрения затрат и сгруппированы в ветряные электростанции, которые обеспечивают большую мощность в электросети.
Морской ветер
Деннис Шредер | NREL 40484
Морские ветряные турбины, как правило, массивны и выше Статуи Свободы.
У них нет таких проблем с транспортировкой, как у наземных ветряных установок, поскольку крупные компоненты можно перевозить на кораблях, а не по дорогам.
Эти турбины способны улавливать мощные океанские ветры и генерировать огромное количество энергии.
Распределенный ветер
Когда ветряные турбины любого размера устанавливаются на «потребительской» стороне электросчетчика или устанавливаются в месте или рядом с местом, где будет использоваться производимая ими энергия, они называются «распределенным ветром».
Примус Ветроэнергетика | 44231
Многие турбины, используемые в распределенных приложениях, представляют собой небольшие ветряные турбины. Одиночные небольшие ветряные турбины мощностью менее 100 киловатт обычно используются в жилых, сельскохозяйственных, а также небольших коммерческих и промышленных целях.
Небольшие турбины могут использоваться в гибридных энергетических системах с другими распределенными энергоресурсами, например, в микросетях, питаемых от дизельных генераторов, аккумуляторов и фотогальваники.
Эти системы называются гибридными ветровыми системами и обычно используются в удаленных, автономных местах (где подключение к коммунальной сети недоступно) и становятся все более распространенными в приложениях, подключенных к сети, для обеспечения отказоустойчивости.
Узнайте больше о распределенном ветре из Distributed Wind Animation или прочитайте о том, что делает Управление технологий ветроэнергетики для поддержки развертывания распределенных ветровых систем для домов, предприятий, ферм и общественных ветровых проектов.
Узнать больше
Заинтересованы в энергии ветра? Справочник по малому ветру помогает домовладельцам, владельцам ранчо и малому бизнесу решить, подходит ли им энергия ветра.
Дополнительные ресурсы по энергии ветра можно найти на WINDExchange, где есть планы уроков, веб-сайты и видео для учащихся K-12, а также информация о проекте «Ветер для школ» и университетском конкурсе ветра.
Энергия 101: Производство чистой электроэнергии из ветра
Видео URL
youtube.com/embed/EYYHfMCw-FI?autoplay=0&start=0&rel=0″>В этом видеоролике рассказывается об основных принципах работы ветряных турбин и показано, как работают различные компоненты для улавливания и преобразования энергии ветра в электричество. См. текстовую версию.
Министерство энергетики США
History of U.S. Wind Energy
На протяжении всей истории использование энергии ветра то возрастало, то уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных электростанциях сегодня…
Узнать больше
10 фактов о ветроэнергетике, которых вы не знали
Освежите свои знания о ветре! Получите подробную информацию о нескольких менее известных фактах об энергии ветра.
Узнать больше
Кто использует распределенный ветер?
Существует множество различных типов клиентов распределенного ветра. Узнайте больше о распределенном ветре и о том, кто его использует.
Узнать больше
Топ-10 вещей, которые вы не знали о распределенной энергии ветра
Узнайте об основных фактах, связанных с ветряными турбинами, используемыми в распределенных приложениях.
Узнать больше
10 вещей, которые вы не знали об оффшорной ветроэнергетике
Узнайте больше об усилиях по разработке обширных оффшорных ветровых ресурсов Америки.
Узнать больше
Узнайте больше о ветроэнергетике, посетив веб-страницу Управления технологий ветроэнергетики или просмотрев финансируемые Управлением мероприятия.
Как работает ветряная турбина — текстовая версия
Сила ветра
Ветряные турбины используют ветер — чистый, бесплатный и широко доступный возобновляемый источник энергии — для производства электроэнергии. На этой странице представлена текстовая версия интерактивной анимации: Как работает ветряная турбина.
Как работает ветряная турбинаВетряная турбина преобразует энергию ветра в электричество за счет аэродинамической силы лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Ротор соединяется с генератором либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют физически уменьшить генератор. Этот перевод аэродинамической силы во вращение генератора создает электричество.
Как работает ветряная электростанцияВетряные электростанции производят электроэнергию за счет множества ветряных турбин, расположенных в одном месте. На размещение ветряной электростанции влияют такие факторы, как ветровые условия, окружающая местность, доступ к линиям электропередач и другие факторы размещения. В ветряной электростанции коммунального масштаба каждая турбина вырабатывает электроэнергию, которая поступает на подстанцию, где затем передается в сеть, где питает наши сообщества.
Передача инфекции
Линии электропередач передают электричество высокого напряжения на большие расстояния от ветряных турбин и других генераторов энергии в районы, где эта энергия необходима.
Трансформеры
Трансформаторы получают электроэнергию переменного тока при одном напряжении и повышают или понижают напряжение для подачи электроэнергии по мере необходимости. Ветряная электростанция будет использовать повышающий трансформатор для повышения напряжения (таким образом, уменьшая требуемый ток), что снижает потери мощности, возникающие при передаче больших токов на большие расстояния по линиям электропередач. Когда электричество достигает сообщества, трансформаторы снижают напряжение, чтобы сделать его безопасным и пригодным для использования зданиями и домами в этом сообществе.
Подстанция
Подстанция соединяет систему передачи с системой распределения, которая поставляет электроэнергию населению. Внутри подстанции трансформаторы преобразуют электроэнергию с высокого напряжения в более низкое напряжение, которое затем может быть безопасно доставлено потребителям электроэнергии.
Башня ветряной турбиныИзготовленная из трубчатой стали, башня поддерживает конструкцию турбины. Башни обычно состоят из трех секций и собираются на месте. Поскольку скорость ветра увеличивается с высотой, более высокие башни позволяют турбинам захватывать больше энергии и генерировать больше электроэнергии. Ветры на высоте 30 метров (примерно 100 футов) и выше также менее турбулентны.
Направление ветра
Определяет конструкцию турбины. Ветряные турбины, подобные показанной здесь, обращены к ветру, а подветренные — в сторону. Большинство наземных ветряных турбин коммунального масштаба являются ветряными турбинами.
Флюгер
Флюгер измеряет направление ветра и сообщается с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.
Анемометр
Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.
Лезвия
Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Лопасти турбин различаются по размеру, но типичная современная наземная ветряная турбина имеет лопасти длиной более 170 футов (52 метра). Самая большая турбина — морская ветряная турбина GE Haliade-X с лопастями длиной 351 фут (107 метров) — примерно такой же длины, как футбольное поле. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться.
Наземная турбина с редукторомТрансмиссия турбины с редуктором состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.
Гондола
Гондола находится на вершине башни и содержит коробку передач, низкоскоростные и высокоскоростные валы, генератор и тормоз. Некоторые гондолы больше дома и для турбины с редуктором мощностью 1,5 МВт могут весить более 4,5 тонн.
Система рыскания
Привод рыскания поворачивает гондолу на ветряных турбинах, чтобы они оставались обращенными к ветру при изменении направления ветра. Для этого двигатели рыскания приводят в действие привод рыскания.
Ветряные турбины не требуют привода рыскания, потому что ветер вручную уносит ротор от него.
Система подачи
Система шага регулирует угол наклона лопастей ветряного двигателя по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора. Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.
Центр
Часть трансмиссии турбины, лопасти турбины входят в ступицу, соединенную с главным валом турбины.
Коробка передач
Трансмиссия состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.
Ротор
Лопасти и ступица вместе образуют ротор турбины.
Тихоходный вал
Часть трансмиссии турбины, низкоскоростной вал соединен с ротором и вращается со скоростью 8–20 оборотов в минуту.
Подшипник главного вала
Часть трансмиссии турбины, главный подшипник поддерживает вращающийся низкоскоростной вал и уменьшает трение между движущимися частями, чтобы силы от ротора не повреждали вал.
Высокоскоростной вал
Часть трансмиссии турбины, высокоскоростной вал соединяется с коробкой передач и приводит в движение генератор.
Генератор
Генератор приводится в движение высокоскоростным валом. Медные обмотки вращаются через магнитное поле в генераторе для производства электроэнергии. Некоторые генераторы приводятся в действие редукторами (показанными здесь), а другие представляют собой прямые приводы, в которых ротор присоединяется непосредственно к генератору.
Контроллер
Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.
Тормоз
Турбинные тормоза не похожи на автомобильные тормоза. Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.
Морская ветряная турбина с прямым приводомТурбины с прямым приводом упрощают системы гондол и могут повысить эффективность и надежность за счет устранения проблем с коробкой передач. Они работают, соединяя ротор напрямую с генератором для выработки электроэнергии.
Морской флюгер и анемометр с прямым приводом
Флюгер измеряет направление ветра и сообщается с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.
Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.
Система рыскания с прямым приводом
Электродвигатели рыскания приводят в действие привод рыскания, который вращает гондолы ветряных турбин, чтобы они оставались обращенными к ветру при изменении направления ветра.
Лопасти генератора с прямым приводом
Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Лопасти турбины GE Haliade X имеют длину 351 фут (107 метров) — примерно такую же длину, как футбольное поле!
Система шага с прямым приводом
Система шага регулирует угол наклона лопастей ветряного двигателя по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора. Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.
Концентратор прямого привода
Лопасти турбины вставляются в ступицу, соединенную с генератором турбины.
Ротор с прямым приводом
Лопасти и ступица вместе образуют ротор турбины.
Генератор с прямым приводом
Генераторы с прямым приводом не используют редуктор для выработки электроэнергии. Они генерируют энергию, используя гигантское кольцо постоянных магнитов, которые вращаются вместе с ротором, производя электрический ток, проходя через стационарные медные катушки. Большой диаметр кольца позволяет генератору создавать большую мощность при вращении с той же скоростью, что и лопасти (8–20 оборотов в минуту), поэтому ему не нужен редуктор, чтобы разогнать его до тысяч оборотов. в минуту требуют другие генераторы.
Контроллер прямого привода
Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.
Тормоз с прямым приводом
Турбинные тормоза — это не автомобильные тормоза. Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.
Подшипник ротора прямого привода
Подшипник ротора поддерживает главный вал и уменьшает трение между движущимися частями, чтобы силы от ротора не повреждали вал.
Узнайте больше об энергии ветра
Как работают ветряные турбины?
Изучите основы работы ветряных турбин для производства чистой энергии из обильного возобновляемого ресурса — ветра.
Узнать больше
Основы ветроэнергетики
Узнайте больше о ветроэнергетике здесь, от принципа работы ветряной турбины до новых захватывающих исследований в области ветровой энергии.